

Monitoring Structural Change in Dynamic Econometric Models

Achim Zeileis Friedrich Leisch Christian Kleiber Kurt Hornik

http://www.ci.tuwien.ac.at/~zeileis/

Model frame

- Generalized fluctuation tests
 - OLS-based processes
 - Rescaling of estimates-based processes
 - ✤ Boundaries

Applications

- ♦ German M1 money demand
- ♦ U.S. labor productivity

Software

Consider the linear regression model in a monitoring situation

$$y_i = x_i^\top \beta_i + u_i$$
 $(i = 1, \dots, n, \dots).$

Technical assumptions:

*
$$\limsup_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} ||x_i||^{2+\delta} < \infty$$
, for some $\delta > 0$.

* $\frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top} \xrightarrow{\mathsf{p}} Q$; Q finite, regular, nonstochastic.

 $\{u_i\}$ is a homoskedastic martingale difference sequence.

Basic assumption:

The regression relationship is stable ($\beta_i = \beta_0$) during the history period i = 1, ..., n.

Null hypothesis:

$$H_0: \quad \beta_i = \beta_0 \qquad (i > n).$$

Alternative:

 $H_1: \quad \beta_i \neq \beta_0 \qquad \text{for some } i > n.$

The generalized fluctuation test framework ...

"... includes formal significance tests but its philosophy is basically that of data analysis as expounded by Tukey. Essentially, the techniques are designed to **bring out departures from constancy in a graphic way** instead of parametrizing particular types of departure in advance and then developing formal significance tests intended to have high power against these particular alternatives." (Brown, Durbin, Evans, 1975)

Generalized fluctuation tests **TU**

- empirical fluctuation processes reflect fluctuation in
 - residuals
 - coefficient estimates
- theoretical limiting process is known
- * choose boundaries which are crossed by the limiting process only with a known probability α .
- * if the empirical fluctuation process crosses the theoretical boundaries the fluctuation is improbably large \Rightarrow reject the null hypothesis.

Generalized fluctuation tests **TU**

Chu, Stinchcombe, White (1996)

Extension of fluctuation tests to the monitoring situation: processes based on recursive estimates and recursive residuals.

Leisch, Hornik, Kuan (2000)

Generalized framework for estimates-based tests for monitoring.

Contains the test of Chu et al., and considered in particular moving estimates.

Processes based on estimates:

$$\hat{\beta}^{(i)} = \left(X_{(i)}^{\top} X_{(i)}\right)^{-1} X_{(i)}^{\top} y^{(i)}$$

Recursive estimates (RE) process:

$$Y_n(t) = \frac{i}{\widehat{\sigma}\sqrt{n}} Q_{(n)}^{\frac{1}{2}} \left(\widehat{\beta}^{(i)} - \widehat{\beta}^{(n)}\right),$$

where $i = \lfloor k + t(n-k) \rfloor$ and $t \ge 0$.

Processes based on estimates:

$$\hat{\beta}^{(i)} = \left(X_{(i)}^{\top}X_{(i)}\right)^{-1}X_{(i)}^{\top}y^{(i)}$$

Recursive estimates (RE) process:

$$Y_n(t) = \frac{i}{\widehat{\sigma}\sqrt{n}} Q_{(n)}^{\frac{1}{2}} \left(\widehat{\beta}^{(i)} - \widehat{\beta}^{(n)}\right),$$

where $i = \lfloor k + t(n-k) \rfloor$ and $t \ge 0$.

Moving estimates (ME) process:

$$Z_n(t|h) = \frac{\lfloor nh \rfloor}{\widehat{\sigma}\sqrt{n}} Q_{(n)}^{\frac{1}{2}} \left(\widehat{\beta}^{(\lfloor nt \rfloor - \lfloor nh \rfloor, \lfloor nh \rfloor)} - \widehat{\beta}^{(n)}\right),$$

where $t \geq h$.

Generalized fluctuation tests **TU**

Limiting processes: (increments of a) k-dimensional Brownian bridge.

Boundaries:

RE:
$$b(t) = \sqrt{t(t-1)\left[\lambda^2 + \log\left(\frac{t}{t-1}\right)\right]}$$

ME: $c(t) = \lambda \cdot \sqrt{\log_+ t}$

Check for crossings in the monitoring period 1 < t < T. Significance level is determined by λ .

OLS-based processes

Processes based on OLS residuals:

$$\hat{u}_i = y_i - x_i^\top \hat{\beta}^{(n)}$$

OLS-based CUSUM process:

$$W_n^0(t) = \frac{1}{\widehat{\sigma}\sqrt{n}} \sum_{i=1}^{\lfloor nt \rfloor} \widehat{u}_i \qquad (t \ge 0).$$

Processes based on OLS residuals:

$$\hat{u}_i = y_i - x_i^\top \hat{\beta}^{(n)}$$

OLS-based CUSUM process:

$$W_n^0(t) = \frac{1}{\hat{\sigma}\sqrt{n}} \sum_{i=1}^{\lfloor nt \rfloor} \hat{u}_i \qquad (t \ge 0).$$

OLS-based MOSUM process:

$$M_n^{0}(t|h) = \frac{1}{\widehat{\sigma}\sqrt{n}} \left(\sum_{i=\lfloor \eta t \rfloor - \lfloor nh \rfloor + 1}^{\lfloor \eta t \rfloor} \widehat{u}_i \right) \qquad (t \ge h).$$

Limiting processes: (increments of a) 1-dimensional Brownian bridge.

 \Rightarrow the same boundaries can be used.

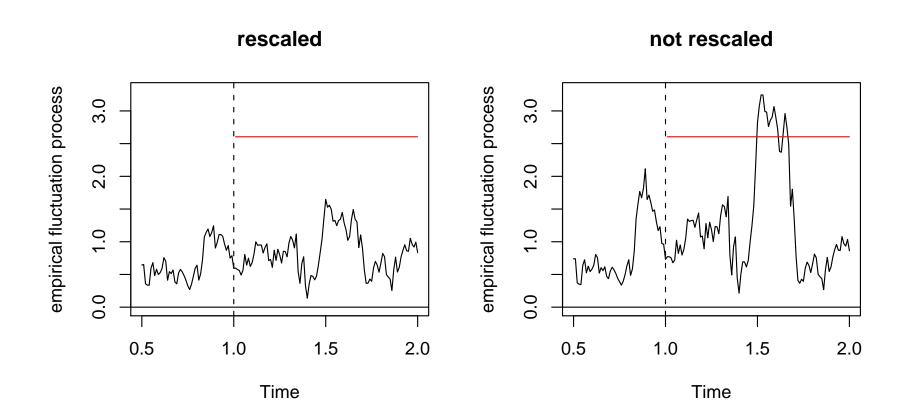
Advantages:

easy to interpret,

easy to compute.

Kuan & Chen (1994):

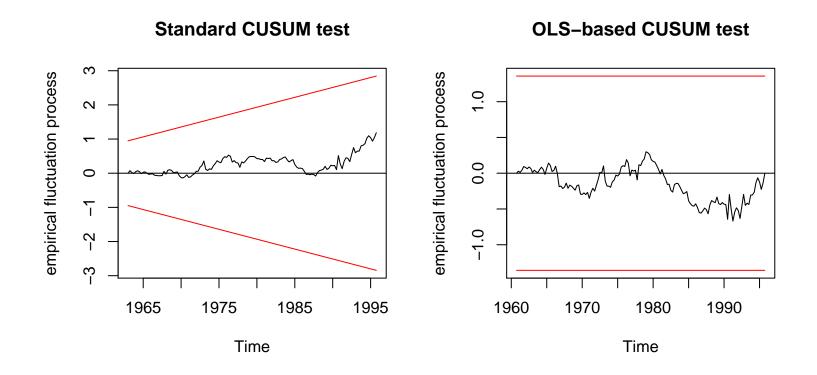
Empirical size of (historical) estimates-based tests can be seriously distorted in dynamic models if the whole inverse sample covariance matrix estimate


$$Q_{(n)} = 1/n \cdot X_{(n)}^{\top} X_{(n)}$$

is used to scale the fluctuation process. Improvement: use $Q_{(i)}$ instead.

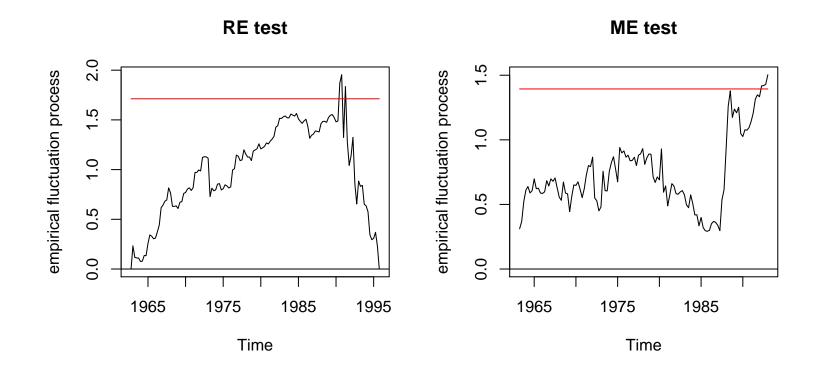
In a monitoring situation rescaling cannot improve the size of the RE test but it does so for the ME test!

Example: AR(1) process with $\rho = 0.9$ but **without** a shift:


Lütkepohl, Teräsvirta, Wolters (1999) investigate the linearity and stability of German M1 money demand: stable regression relation for the time before the monetary unification on 1990-06-01 but a clear structural instability afterwards.

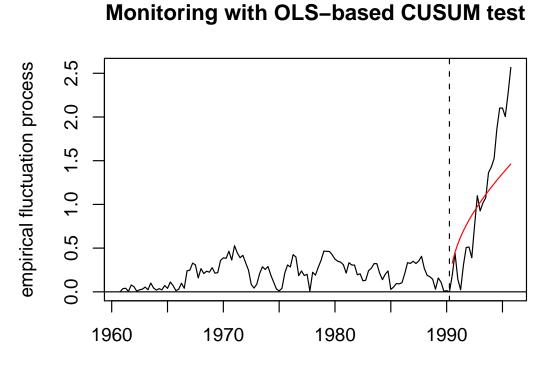
Data: seasonally unadjusted quarterly data, 1961(1) to 1995(4)

Error Correction Model (in logs) with variables: M1 (real, per capita) m_t , price index p_t , GNP (real, per capita) y_t and long-run interest rate R_t :


$$\Delta m_t = -0.30 \Delta y_{t-2} - 0.67 \Delta R_t - 1.00 \Delta R_{t-1} - 0.53 \Delta p_t$$

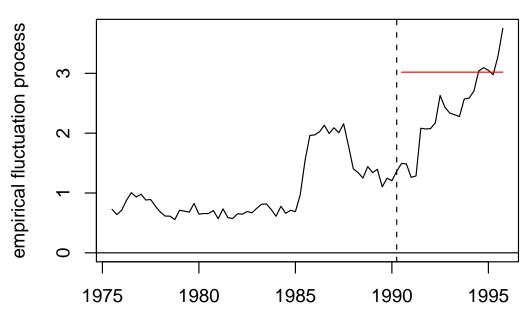
-0.12m_{t-1} + 0.13y_{t-1} - 0.62R_{t-1}
-0.05 - 0.13Q1 - 0.016Q2 - 0.11Q3 + \hat{u}_t ,

Historical residual-based tests...do not discover shift:



The shift has an estimated angle of 90.11° .

Historical estimates-based tests discover shift **ex post**:



Monitoring discovers shift **online**:

Time

Monitoring discovers shift **online**:

Monitoring with ME test

Time

All methods implemented in the R system for statistical computing and graphics

```
http://www.R-project.org/
```

in the contributed package strucchange.

Both are available under the GPL (General Public Licence) from the Comprehensive R Archive Network (CRAN):

http://cran.R-project.org/

Further functionality:

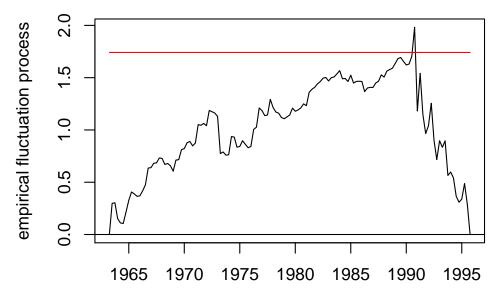
- # Historical tests:
 - Generalized fluctuation tests (Kuan & Hornik): CUSUM, MOSUM, RE, ME, Nyblom-Hansen,
 - ♦ F tests (Andrews & Ploberger): supF, aveF, expF.
- Dating breaks (Bai & Perron):
 - breakpoint estimation,
 - confidence intervals.

Documented in:

A. Zeileis, F. Leisch, K. Hornik, C. Kleiber (2002), "strucchange: An R Package for Testing for Structural Change in Linear Regression Models," *Journal of Statistical Software*, 7(2), 1–38.

A. Zeileis, C. Kleiber, W. Krämer, K. Hornik (2003), "Testing and Dating Structural Changes in Practice," *Computational Statistics & Data Analysis*, forthcoming.

Software


```
R> LTW.model <- dm ~ dy2 + dR + dR1 + dp + m1 + y1 + R1 + season
R> re <- efp(LTW.model, type = "RE", data = GermanM1)
R> plot(re)
```

Software


```
R> LTW.model <- dm ~ dy2 + dR + dR1 + dp + m1 + y1 + R1 + season
R> re <- efp(LTW.model, type = "RE", data = GermanM1)
R> plot(re)
```


Time

R> sctest(re)

Fluctuation test (recursive estimates test)

data: re
FL = 1.9821, p-value = 0.008475