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Overview

@ Generalized linear models (GLMs) with extra parameters

@ R package gimx

@ Heteroskedastic probit models (and “heteroskedastic” GLMs)
@ (Binary) GLMs with parametric links

°

Discussion

e Nonlinearity
o Identifiability
o Parameter recovery



Generalized linear models

The conditional distribution of the dependent variable is from an
exponential family (including Gaussian, binomial, Poisson, gamma, ...).

yilxi ~ F(ui, o).

Conditional expectation w; depends on linear predictor through known

link function g(-):

g(lu’i) = XiTB'

Dispersion parameter ¢ may be known and fixed (e.g., for binomial or
Poisson) or treated as a nuisance parameter.



GLMs with extra parameters

Possible extensions:

@ Distribution F(u;, ¢, ) may have additional parameters 6 but is
exponential family for given @ (e.g., negative binomial).

@ The link function g(-, #) only known up to parameter 6, typically
with standard link functions as special cases (e.g., Gossett,
Pregibon, ...).

@ Additional “heteroskedasticity” by scaling the linear predictor with
o; (e.g., heteroskedastic probit).



R package gimx

@ Testbed for GLMs with extra parameters. Development on
R-Forge. First CRAN release this week.
@ Joint work with Roger Koenker and Philipp Doebler.
@ Function glmx () for parametric family objects.
@ Optimization via optim(method = "BFGS").
By default using profile likelihood.
e Analytical gradients may be supplied optionally.
e Several S3 methods available but more desirable.
@ Function hetglm() for heteroskedastic GLMs.

e Optimization via nlminb () (default) or optim().
e Both analytical gradients and analytical expected Hessian available.
e Large set of S3 methods available.

@ Various new parametric link generators: Gossett, Pregibon,
Aranda-Ordaz, Guerrero-Johnson, Rocke, folded exponential, {,,
zero-censored negative binomial, . ..



Heteroskedastic probit models

Standard probit motivation: Latent variable y;" = X,Tﬁ + ¢ that
captures “propensity” for “success” but only y; = I(y;* > 0) is observed.

For Gaussian errors ¢; ~ N(0, 02):
Prob(y; =11]x) = Prob(y/ > 0| x)

— o <X’Tﬁ - 0)
g

Scale parameter ¢ not identified and hence usually o = 1.

Extension: Scale itself is not identified but scale differences via
log(o7) = z'~

where z; must not include a constant term for identifiability.

Interpretation: “Ambivalence” in discrete choices.



Heteroskedastic probit models

Questions:
@ Heteroskedasticity vs. nonlinearity.
@ Heteroskedasticity vs. interaction effects.
@ Identification.
@ Parameter recovery.



Heteroskedastic probit models

Example: Nonlinearity for x = z € [—1, 1] with

—05+3-x

*7m = exp(1-x)

Latent
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Heteroskedastic probit models

Example: Nonlinearity for x = z € [—1, 1] with

O (1) = —
exp(1 - x)
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Heteroskedastic probit models

Example: Nonlinearity for x = z € [—1, 1] with

O (1) = —
exp(1 - x)
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Heteroskedastic probit models

Hence: Hard to distinguish heteroskedasticity from nonlinear mean.

Example: Heteroskedastic probit model with 5 = (—0.5,3)T, v = 1,
and x = z € [0, 1] for n = 1000 observations.

Models: Correctly specified model vs. probit with quadratic trend.
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Heteroskedastic probit models

Example: Interactions with a numeric regressor x and two groups
ze{0,1}.

First group (z = 0):

®(n) = % = Bi+ B2 x
Second group (z = 1):
O ) = PEE = G o

Interpretation: Groupwise intercepts and slopes but with
proportionality constraint,

B1/Br = Bo/B2 = exp(7).



Heteroskedastic probit models

Example: Lack of identification for two groups with x = z € {0, 1}.

First group (x = z = 0):

-0
O
Second group (x =z = 1):
-1 -
o = LT

Interpretation: Three parameters but only two identified, i.e., grouping
in latent mean must not coincide with grouping in latent scale.



Heteroskedastic probit models

Parameter recovery:
@ Estimates can be very biased even in moderately large samples.
@ Parameters are often only “weakly” identified.
@ Mean function can typically be recovered much better.

Example: Quadratic polynomial for both x = z € [-0.5,1.5] and
B=(-1,1,1)T,v=(-1,2)T, n=1000.

Parameter True Estimate Lower Upper
B Intercept —1.00 —-1.06 —-1.26 —0.86
X 1.00 0.38 -—-1.77 2.52

x2 1.00 2.00 —1.56 5.55
v oox —1.00 —0.41 —-3.05 224
X2 2.00 1.71 0.08 3.35




Heteroskedastic probit models
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Heteroskedastic GLMs

More generally: GLMs with heteroskedastic linear predictor scale.

Vil xi ~ F(ui,¢)

T
9(mi) = X’UI,B
ho)) = h(1)+2z'~

where
@ Distribution F(u, ¢) and link function g(-) are “as usual”.
@ h(+) is an additional link function, e.g., log, square root, identity.
@ h(1) assures o; = 1if z v = 0.



(Binary) GLMs with parametric links

Idea: Additional flexibility by extra parameter(s) in the link function.
g(:uiv 9) = Xi—rﬁ

Example: Gossett link for binary responses.

@ g(+,0) is the quantile function of the Student ¢ distribution with 6
degrees of freedom.

@ Contains the probit link (8 = co0) and the cauchit link (6 = 1) as
special cases.

@ Can be employed for “goodness-of-link” tests.
@ Numerically challenging for 8 < 0.5.

Similarly: Other families of links that generalize/nest standard link
functions.



(Binary) GLMs with parametric links

Properties: Similar as for heteroskedastic GLMs.
@ Additional model flexibility.

@ Tension between using extra parameters 6 vs. adding
regressors/interactions in x;' 3.

@ Parameter recovery may be difficult even for moderately large
samples.



Summary

@ Binary choice models with heteroskedasticity or parametric links
can now easily be estimated in R using the glmx package.

@ These models can capture nonlinearity in different (and sometimes
more parsimonious) ways than nonlinear terms in the predictor.

@ Hard to distinguish from other forms of nonlinearity.

@ Parameters are harder to recover than the conditional mean
function.
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