
Beyond Binary GLMs: Exploring Heteroskedastic
Probit and Parametric Link Models

Achim Zeileis

http://eeecon.uibk.ac.at/~zeileis/

http://eeecon.uibk.ac.at/~zeileis/


Overview

Generalized linear models (GLMs) with extra parameters

R package glmx

Heteroskedastic probit models (and “heteroskedastic” GLMs)

(Binary) GLMs with parametric links
Discussion

Nonlinearity
Identifiability
Parameter recovery



Generalized linear models

The conditional distribution of the dependent variable is from an
exponential family (including Gaussian, binomial, Poisson, gamma, . . . ).

yi | xi ∼ F(µi , φ).

Conditional expectation µi depends on linear predictor through known
link function g(·):

g(µi) = x>i β.

Dispersion parameter φ may be known and fixed (e.g., for binomial or
Poisson) or treated as a nuisance parameter.



GLMs with extra parameters

Possible extensions:

Distribution F(µi , φ, θ) may have additional parameters θ but is
exponential family for given θ (e.g., negative binomial).

The link function g(·, θ) only known up to parameter θ, typically
with standard link functions as special cases (e.g., Gossett,
Pregibon, . . . ).

Additional “heteroskedasticity” by scaling the linear predictor with
σi (e.g., heteroskedastic probit).



R package glmx

Testbed for GLMs with extra parameters. Development on
R-Forge. First CRAN release this week.

Joint work with Roger Koenker and Philipp Doebler.
Function glmx() for parametric family objects.

Optimization via optim(method = "BFGS").
By default using profile likelihood.
Analytical gradients may be supplied optionally.
Several S3 methods available but more desirable.

Function hetglm() for heteroskedastic GLMs.
Optimization via nlminb() (default) or optim().
Both analytical gradients and analytical expected Hessian available.
Large set of S3 methods available.

Various new parametric link generators: Gossett, Pregibon,
Aranda-Ordaz, Guerrero-Johnson, Rocke, folded exponential, tα,
zero-censored negative binomial, . . .



Heteroskedastic probit models

Standard probit motivation: Latent variable y∗i = x>i β + εi that
captures “propensity” for “success” but only yi = I(y∗i > 0) is observed.

For Gaussian errors εi ∼ N (0, σ2):

Prob(yi = 1 | xi) = Prob(y∗i > 0 | xi)

= Φ

(
x>i β − 0

σ

)
Scale parameter σ not identified and hence usually σ = 1.

Extension: Scale itself is not identified but scale differences via

log(σi) = z>i γ

where zi must not include a constant term for identifiability.

Interpretation: “Ambivalence” in discrete choices.



Heteroskedastic probit models

Questions:

Heteroskedasticity vs. nonlinearity.

Heteroskedasticity vs. interaction effects.

Identification.

Parameter recovery.



Heteroskedastic probit models

Example: Nonlinearity for x = z ∈ [−1, 1] with

Φ−1(µ) =
−0.5 + 3 · x

exp(1 · x)
.
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Heteroskedastic probit models

Hence: Hard to distinguish heteroskedasticity from nonlinear mean.

Example: Heteroskedastic probit model with β = (−0.5, 3)>, γ = 1,
and x = z ∈ [0, 1] for n = 1000 observations.

Models: Correctly specified model vs. probit with quadratic trend.
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Heteroskedastic probit models

Example: Interactions with a numeric regressor x and two groups
z ∈ {0, 1}.

First group (z = 0):

Φ−1(µ) =
β1 + β2 · x

exp(0)
= β1 + β2 · x

Second group (z = 1):

Φ−1(µ) =
β1 + β2 · x

exp(γ)
= β̃1 + β̃2 · x

Interpretation: Groupwise intercepts and slopes but with
proportionality constraint,

β1/β̃1 = β2/β̃2 = exp(γ).



Heteroskedastic probit models

Example: Lack of identification for two groups with x = z ∈ {0, 1}.

First group (x = z = 0):

Φ−1(µ) =
β1 + β2 · 0

exp(0)
= β1

Second group (x = z = 1):

Φ−1(µ) =
β1 + β2 · 1

exp(γ)
= β̃1

Interpretation: Three parameters but only two identified, i.e., grouping
in latent mean must not coincide with grouping in latent scale.



Heteroskedastic probit models

Parameter recovery:

Estimates can be very biased even in moderately large samples.

Parameters are often only “weakly” identified.

Mean function can typically be recovered much better.

Example: Quadratic polynomial for both x = z ∈ [−0.5, 1.5] and
β = (−1, 1, 1)>, γ = (−1, 2)>, n = 1000.

Parameter True Estimate Lower Upper

β Intercept −1.00 −1.06 −1.26 −0.86

x 1.00 0.38 −1.77 2.52

x2 1.00 2.00 −1.56 5.55

γ x −1.00 −0.41 −3.05 2.24

x2 2.00 1.71 0.08 3.35



Heteroskedastic probit models
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Heteroskedastic GLMs

More generally: GLMs with heteroskedastic linear predictor scale.

yi | xi ∼ F(µi , φ)

g(µi) =
x>i β
σi

h(σi) = h(1) + z>i γ

where

Distribution F(µ, φ) and link function g(·) are “as usual”.

h(·) is an additional link function, e.g., log, square root, identity.

h(1) assures σi = 1 if z>i γ = 0.



(Binary) GLMs with parametric links

Idea: Additional flexibility by extra parameter(s) in the link function.

g(µi , θ) = x>i β

Example: Gossett link for binary responses.

g(·, θ) is the quantile function of the Student t distribution with θ
degrees of freedom.

Contains the probit link (θ =∞) and the cauchit link (θ = 1) as
special cases.

Can be employed for “goodness-of-link” tests.

Numerically challenging for θ < 0.5.

Similarly: Other families of links that generalize/nest standard link
functions.



(Binary) GLMs with parametric links

Properties: Similar as for heteroskedastic GLMs.

Additional model flexibility.

Tension between using extra parameters θ vs. adding
regressors/interactions in x>i β.

Parameter recovery may be difficult even for moderately large
samples.



Summary

Binary choice models with heteroskedasticity or parametric links
can now easily be estimated in R using the glmx package.

These models can capture nonlinearity in different (and sometimes
more parsimonious) ways than nonlinear terms in the predictor.

Hard to distinguish from other forms of nonlinearity.

Parameters are harder to recover than the conditional mean
function.
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