

Residual-based Shadings for Visualizing (Conditional) Independence

Achim Zeileis, David Meyer, Kurt Hornik

http://statmath.wu.ac.at/~zeileis/

Overview

- The independence problem in 2-way contingency tables
 - standard approach: $\chi^{\rm 2}$ test
 - alternative approach: max test
- Visualizing the independence problem
 - mosaic plots
 - association plots
- Extensions
 - visualization & significance testing
 - perceptually based HCL colors
 - conditional independence in multi-way tables

The independence problem

Standard approach:

- Analyze the relationship between two categorical variables based on the associated 2-way contingency table.
- Measure the discrepancy between observed frequencies {n_{ij}} and expected frequencies under independence { n̂_{ij}} by the Pearson residuals:

$$au_{ij} = rac{n_{ij} - \hat{n}_{ij}}{\sqrt{\hat{n}_{ij}}}.$$

• Use the Pearson X^2 statistic for testing:

$$X^2 = \sum_{ij} r_{ij}^2,$$

which has an unconditional asymptotic χ^2 distribution.

I

The independence problem

Alternative approach(es):

- There are many conceivable functionals λ(·) which lead to reasonable test statistics λ ({r_{ij}}).
- In particular:

$$M = \max_{ij} |r_{ij}|.$$

Then, every residual exceeding the critical value c_{α} violates the null hypothesis at level α .

• Instead of relying on unconditional limiting distributions, perform a permutation test, either by simulating or computing the conditional permutation distribution of $\lambda(\{r_{ij}\})$.

The independence problem

Treatment and improvement in a double-blind clinical trial for 84 patients with rheumatoid arthritis:

	Improvement			
Treatment	None	Some	Marked	Total
Placebo	29	7	7	43
Treated	13	7	21	41
Total	42	14	28	84

$$X^2 = 13.055$$
 $p = 0.0014$
 $M = 1.987$ $p = 0.0018$

Visualization

Mosaic plot:

Display in which the sizes of the mosaic tiles is proportional to the observed frequencies $\{n_{ij}\}$.

Constructed by recursive paritioning with respect to conditional relative frequencies.

Association plot:

Display for the Pearson residuals $\{r_{ij}\}$ and the raw residuals $\{n_{ij} - \hat{n}_{ij}\}$ in an rectangular array.

Visualization

Visualization

Friendly shading

Colors are commonly used to enhance these plots—in particular, shadings suggested by Michael Friendly for mosaic displays. In R these are implemented based on HSV colors.

Hue: codes sign of residuals,

- blue (h = 2/3) for positive residuals ($|r_{ij}| > 0$),
- red (h = 0) for negative residuals ($|r_{ij}| < 0$).

Saturation: codes absolute size of residuals,

- no saturation (s = 0) for $|r_{ij}| < 2$,
- medium saturation (s = 0.5) for $2 \le |r_{ij}| < 4$,
- full saturation (s = 1) for $|r_{ij}| \ge 4$.

Friendly shading

Problem 1: Significance

Intuition:

- No color in the plot conveys the impression that there is no significant departure from independence.
- Vice versa, colored cells would convey the impression that there is significant dependence.

Currently, both is not true.

Problem 1: Significance

Approach 1: use the 90% and 99% critical values for the max statistic *M* instead of 2 and 4.

- color \Leftrightarrow significance
- highlights the cells which "cause" the dependence (if any).

But: This does not work for the χ^2 test (or any other functional $\lambda(\cdot)$).

Approach 2: Use value to code the *result of a significance test* for independence, i.e., use darker colors to code non-significance.

Problem 1: Significance

Problem 2: HSV Colors

Disadvantages of HSV-based shadings:

- flashy colors good for drawing attention to plot but hard to look at,
- not perceptually based,
- can lead to color-caused optical illusions in graphs,
- grey conveys neutrality much better than white.

Alternative: perceptually based HCL colors (polar coordinates in CIELUV space),

- leads to intuitive and less flashy colors,
- some care is required due to irregular shape of HCL space,
- simple guidelines (with R implementation) available.

Problem 2: HSV Colors

Problem 2: HSV Colors

Principal idea of the mosaic plot:

- subdivision of tiles according to conditional probabilities
- \rightarrow can also be used for multi-way tables

Can easily be used for visualizing complete/joint/conditional indpendence.

Hence, mosaic displays are well-suited for visualizing hierarchical log-linear models.

The same idea does *not* directly apply to association plots.

Conditional indpendence:

Admission $\perp\!\!\!\perp$ Gender | Department at UC Berkeley.

Correspondence:

- $\bullet\,$ conditioning in the model (\rightarrow shading of residuals)
- conditioning in the visual display
- \rightarrow can also be done in Trellis-like layout

This idea *does* also work for association plots.

Summary

Visualizing conditional independence:

- usage of conditional permutation distributions,
- combination of visualization and significance testing,
- diverging palette using perceptually based HCL colors,
- more generally applicable hierarchical log-linear models.

A flexible and highly extensible implementation using **grid** graphics is available in package **vcd** from

http://CRAN.R-project.org/

References

Zeileis A, Hornik K, Murrell P (2009). "Escaping RGBland: Selecting Colors for Statistical Graphics." *Computational Statistics & Data Analysis*, **53**(9), 3259–3270. doi:10.1016/j.csda.2008.11.033

Zeileis A, Meyer D, Hornik K (2007). "Residual-Based Shadings for Visualizing (Conditional) Independence." *Journal of Computational and Graphical Statistics*, **16**(3), 507–525. doi:10.1198/106186007X237856

Zeileis A, Meyer D, Hornik K (2006). "The Strucplot Framework: Visualizing Multi-Way Contingency Tables with **vcd**." *Journal of Statistical Software*, **17**(3), 1–48. URL http://www.jstatsoft.org/v17/i03/