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Motivation

Starting point: Popularity of classification and regression
trees stems mainly from two features:

1. interpretability, enhanced by visualizations of the fitted
decision trees,

2. predictive power in non-linear regression relationships.

Idea: Enhance decision trees (especially for exploration) by
adding statistical graphics for the models fitted in the leafs
to the tree displays. This facilitates to communicate com-
plex regression problems, particularly to non-statisticians.



Growing trees

The suggested visualization techniques are applicable
much more generally, but are readily implemented in R for
two algorithms:

• conditional inference trees (CTree), learns non-
parametric tree models where response variable and
partitioning variables can be measured at arbitrary
scales. Visualizations are aimed particularly at univari-
ate responses at different scales.

• model-based recursive partitioning (MOB), learns para-
metric tree models based on M-type estimators (e.g.,
ML or OLS). Visualizations are aimed particularly at
trees based on regression models.



Conditional inference trees

1. Test the global null hypothesis of independence be-
tween any of the partitioning variables and the re-
sponse. If there is some overall dependence, select the
variable with strongest association to the response.

2. Compute the split point(s) that locally optimize the asso-
ciation measure.

3. Split this node into daughter nodes and repeat the pro-
cedure.



Model-based recursive partitioning

1. Fit the model once to all observations in the current
node by optimization of an objective function (e.g., log-
likelihood, sum of squares).

2. Assess whether the parameter estimates are stable with
respect to every partitioning variable. If there is some
overall instability, select the variable associated with the
highest parameter instability, otherwise stop.

3. Compute the split point(s) that locally optimize the ob-
jective function.

4. Split this node into daughter nodes and repeat the pro-
cedure.



Univariate displays

Decision trees are easily visualized by their associated tree
graph.

Inner nodes are typically just summarized by their label
(and p value).

Edge labels describe the splits.

Univariate graphical displays can be used instead of textual
summaries in terminal nodes:

• numeric: boxplot, histogram, kernel density.
• categorical: barplots (besides or stacked).
• censored: Kaplan-Meier curves.



Bivariate displays

For model-based trees, the nodes can include partial plots
of the response against (each of) the regressor(s) along
with (projected) model fits:

• numeric ∼ numeric: scatterplot.
• numeric ∼ categorical: parallel boxplots.
• categorical ∼ categorical: mosaic plots, spineplots.
• categorical ∼ numeric: spinograms, CD plots.



Examples: CTree

• Classification tree: Customer choice for an art book ad-
vertised by the Bookbinder’s Book Club depending on
socio-economic covariates and customer history.

• Regression tree: Abundance of tree pipits depending on
environmental factors.

• Survival tree: Breast cancer survival depending on
prognostic factors.



Examples: Customer choice
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Examples: Tree pipits
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Examples: Breast cancer survival
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Examples: MOB

Each of the following models is segmented by further co-
variates:

• Linear regression: Demand for economic journals (li-
brary subscriptions) by price per citation.

• Logisitc regression: Outcome of diabetes test by plasma
glucose concentration.

• Weibull survival regression: Breast cancer survival by
node positive breast nodes and hormonal therapy.



Examples: Demand for econ. journals
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Examples: Pima Indians diabetes
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Examples: Breast cancer survival 2
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Implementation in R

All trees and associated visualizations can be easily gener-
ated with the R package party, a recursive party tioning lab,
available from

http://CRAN.R-project.org/

Visualizations are made possible by the grid graphics sys-
tem: a viewport is created for each node of the tree and
painted by a panel function. New panel functions can be
plugged in by the user, flexible defaults are chosen auto-
matically.

http://CRAN.R-project.org/


Implementation in R

CTree is provided by function ctree():

fmBBBC <- ctree(choice ~ ., data = BBBClub)
plot(fmBBBC)

MOB is provided by function mob():

fmPID <- mob(diabetes ~ glucose | pregnant + pressure + triceps +
insulin + mass + pedigree + age, data = PimaIndiansDiabetes,
model = glinearModel, family = binomial())

plot(fmPID)



Summary

Tree models are popular due to their interpretability and pre-
dictive power.

Prediction: In purely predictive settings, single trees are
often outperformed by ensemble methods, boosting, ran-
dom forests or support vector machines.

Exploration: However, trees are still an excellent mea-
sure to communicate complex regression problems to non-
statisticians. Graphical representations of tree graphs cou-
pled with standard statistical graphics enhance the inter-
pretability and make trees even more intellegible.
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