Universität Innshruck

History Repeating: Spain Beats Germany in the EURO 2012 Final

Achim Zeileis, Christoph Leitner, Kurt Hornik
http://eeecon.uibk.ac.at/~zeileis/

Overview

- EURO 2012 tournament forecast based on bookmakers odds.
- Main results: Spain and Germany are the top favorites with winning probabilities of 25.8% and 22.2%, respectively.
- Most likely final: Spain vs. Germany (8.9\%) with odds slightly in favor of Spain (52.9\% winning probability).

Overview

- Bookmakers odds
- Modeling consensus and agreement
- Abilities and paired comparisons
- Performance throughout the tournament
- Discussion

Bookmakers odds: Motivation

Forecasts of sports events:

- Increasing interest in forecasting of competitive sports events due to growing popularity of online sports betting.
- Forecasts often based on ratings or rankings of competitors' ability/strength. In football: Elo rating, FIFA rating.
- Alternatively, bookmakers odds for winning a competition.

Advantages of bookmakers odds:

- Bookmakers can be regarded as expert judges with monetary incentives to rate competitors correctly. If they set their odds too high or low, they will lose profits.
- Prospective in nature: Bookmakers factor not only the competitors abilities into their odds but also tournament draws/seedings, home advantages, recent events such as injuries, etc.
- Winning probabilities can be derived relatively easily.

Bookmakers odds: Overround adjustment

Quoted odds: Not an honest judgment of winning chances due to inclusion of a profit margin known as "overround".

$$
\text { quoted odds }{ }_{i}=\text { odds }_{i} \cdot \delta+1
$$

- where odds ${ }_{i}$ is the bookmaker's "true" judgment of the odds for competitor i,
- δ is the bookmaker's payout proportion (overround: $1-\delta$),
- and +1 is the stake.

Winning probabilities: The adjusted odds j_{i} then corresponding to the odds of competitor i for losing the tournament. They can be easily transformed to the corresponding winning probability

$$
p_{i}=1-\frac{o d d s_{i}}{1+\text { odds }_{i}}
$$

Bookmakers odds: Overround adjustment

Determining the overround: Assuming that a bookmaker's overround is constant across competitors, it can be determined by requiring that the winning probabilities of all competitors (here: all 16 teams) sum to $1: \sum_{i} p_{i}=1$.

Illustration: EURO 2012 rating for Spain by bookmaker bwin.

- Bookmaker bwin pays 3.75 for a stake of 1 set on a victory of Spain, i.e., a profit of 2.75 .
- The overround implied by bwin's quoted odds for all 16 teams in the tournament is 14.8%.
- Thus, bwin's implied odds for Spain are:
$3.227=(3.75-1) /(1-0.148)$, i.e., it is more than three times more likely that Spain loses vs. wins.
- The corresponding winning probability for Spain is 23.7%.

Bookmakers odds: EURO 2012

Data processing:

- Quoted odds from 23 online bookmakers.
- Obtained on 2012-05-09 from http://www. oddscomparisons. com/football/european-championship/ and http://www.bwin.com/.
- Computed overrounds 1 - δ_{b} individually for each bookmaker $b=1, \ldots, 23$ by unity sum restriction across teams $i=1, \ldots, 16$.
- Median overround is 14.3%.
- Yields overround-adjusted and transformed winning probabilities $p_{i, b}$ for each team i and bookmaker b.

Modeling consensus and agreement

Goal: Get consensus probabilities by aggregation across bookmakers.

Strategy:

- Employ statistical model assuming some latent consensus probability p_{i} for team i along deviations $\epsilon_{i, b}$.
- Additive model is plausible on suitable scale, e.g., logit or probit.
- Logit is more natural here, as it corresponds to log-odds.
- Methodology can also be used for consensus ratings of default probability in credit risk rating of bank b for firm i.

Model: Bookmaker consensus model

$$
\operatorname{logit}\left(p_{i, b}\right)=\operatorname{logit}\left(p_{i}\right)+\epsilon_{i, b},
$$

where further effects could be included, e.g., group effects in consensus logits or bookmaker-specific bias and variance in $\epsilon_{i, b}$.

Modeling consensus and agreement

Here:

- Simple fixed-effects model with zero-mean deviations.
- Consensus logits are simply team-specific means across bookmakers:

$$
\left.\widehat{\operatorname{logit}\left(p_{i}\right.}\right)=\frac{1}{23} \sum_{b=1}^{23} \operatorname{logit}\left(p_{i, b}\right)
$$

- Consensus winning probabilities are obtained by transforming back to the probability scale:

$$
\left.\hat{p}_{i}=\operatorname{logit}^{-1}\left(\widehat{\operatorname{logit}\left(p_{i}\right.}\right)\right) .
$$

- Model captures 99.0% of the variance in $p_{i, b}$ and the associated estimated standard error is 0.1155 .

Modeling consensus and agreement

Team	FIFA code	Probability	Log-odds	Log-ability	Group
Spain	ESP	25.8	-1.055	-2.025	C
Germany	GER	22.2	-1.256	-2.140	B
Netherlands	NED	11.3	-2.063	-2.464	B
England	ENG	8.0	-2.441	-2.654	D
France	FRA	6.9	-2.602	-2.700	D
Italy	ITA	5.9	-2.773	-2.776	C
Portugal	POR	4.3	-3.107	-2.857	B
Russia	RUS	4.0	-3.172	-2.993	A
Ukraine	UKR	2.1	-3.863	-3.158	D
Croatia	CRO	1.8	-4.009	-3.178	C
Poland	POL	1.6	-4.111	-3.332	A
Czech Republic	CZE	1.4	-4.263	-3.351	A
Sweden	SWE	1.3	-4.313	-3.266	D
Greece	GRE	1.3	-4.356	-3.375	A
Republic of Ireland	IRL	1.0	-4.582	-3.348	C
Denmark	DEN	1.0	-4.614	-3.325	B

Abilities and paired comparisons

Question: Is Spain really the strongest team in the tournament?
Motivation:

- Germany was apparently drawn in a stronger group than Spain.
- Tournament schedule was known to bookmakers and hence factored into their quoted odds.
- Can abilities (or strengths) of the teams be obtained, adjusting for such tournament effects?

Answer: Yes, an approximate solution can be found by simulation when

- adopting a standard model for paired comparisons (i.e., matches),
- assuming that the abilities do not change over the tournament.

Abilities and paired comparisons

Strategy: Based on Bradley-Terry model.

- Standard model to derive pairwise winning probabilities $\pi_{i, j}$ from a set of abilities:

$$
\operatorname{Pr}(i \text { beats } j)=\pi_{i, j}=\frac{\text { ability }_{i}}{\text { ability }_{i}+\text { ability }_{j}} .
$$

- Given $\pi_{i, j}$ the whole tournament can be simulated (assuming the abilities do not change over the course of the tournament).
- Using "many" simulations (here: 100,000) of the tournament, the empirical relative frequencies \tilde{p}_{i} of each team i winning the tournament can be determined.
- Choose ability j_{i} for $i=1, \ldots, 16$ such that the simulated winning probabilities \tilde{p}_{i} approximately match the consensus winning probabilities \hat{p}_{i}.
- Found by simple iterative local search starting from log-odds.

Abilities and paired comparisons

Team ${ }^{\text {j }}$
IRL DEN GRE SWE CZE POL UKR CRO RUS POR ITA FRA ENG NED GER ESP

Abilities and paired comparisons

Group effects:

- Germany has to play the much stronger group (B) than Spain (C).
- However, in the quarter-finals Germany plays against an opponent from the weakest group (A), provided they proceed to that stage.
- Hence, it is not much harder for Germany to proceed to the final than for Spain.
- However, more disadvantages for The Netherlands and Portugal to be drawn in the same group as Germany.
- A final of Spain vs. Germany can be expected to be very close. There is only a slight advantage for Spain with a winning probability of 52.9\%.

Abilities and paired comparisons

Performance throughout the tournament

Furthermore: Simulation approach does not only provide probabilities for winning the tournament but also for "surviving" each stage of the tournament (group phase, quarter- and semi-finals).

Results:

- Groups B, C, and D have more or less clear favorites.
- Group A has no clear favorite.
- Probability to proceed to semifinals is extremely low for teams from group A because they have to face teams from group B in the quarterfinals.
- Group D is particularly exciting because the group's favorites (England and France) are extremely close and only one can avoid facing the expected group C winner Spain in the quarterfinals.

Performance throughout the tournament

Performance throughout the tournament

Discussion

- Winning probabilities for EURO 2012 are obtained from quoted odds of 23 online bookmakers.
- Basis is adjustment for overround and averaging on suitable log-odds scale.
- Furthermore, implied team abilities are inferred by classical pairwise-comparison model in combination with iterated tournament simulations.
- Approach outperformed Elo and FIFA ratings for EURO 2008 and correctly predicted the final (Germany vs. Spain).
- Also correctly predicted FIFA 2010 World Cup winner (Spain).
- Nevertheless, all forecasts are in terms of probabilities much lower than 100%. Other outcomes are not unlikely, hopefully making EURO 2012 the exciting event that football fans worldwide are looking forward to.

References

Zeileis A, Leitner C, Hornik K (2012). "History Repeating: Spain Beats Germany in the EURO 2012 Final." Working Paper 2012-09, Working Papers in Economics and Statistics, Research Platform Empirical and Experimental Economics, Universität Innsbruck. URL http://EconPapers.RePEc.org/RePEc:inn:wpaper:2012-09.

Leitner C, Zeileis A, Hornik K (2011). "Bookmaker Consensus and Agreement for the UEFA Champions League 2008/09." IMA Journal of Management Mathematics, 22(2), 183-194. doi:10.1093/imaman/dpq016.

Leitner C, Zeileis A, Hornik K (2010a). "Forecasting Sports Tournaments by Ratings of (Prob)abilities: A Comparison for the EURO 2008." International Journal of Forecasting, 26(3), 471-481. doi:10.1016/j.ijforecast.2009.10.001.

Leitner C, Zeileis A, Hornik K (2010b). "Forecasting the Winner of the FIFA World Cup 2010." Report 100, Institute for Statistics and Mathematics, WU Wirtschaftsuniversität Wien, Research Report Series. URL http://epub.wu.ac.at/702/.

