

# Applied and Reproducible Econometrics with R

Achim Zeileis

http://eeecon.uibk.ac.at/~zeileis/

# Overview

- R and econometrics
- AER: Book and package
- Illustrations
  - Demand for economics journals
  - Mobility in educational attainment
  - Forensic econometrics of growth
- Excursions
  - Object orientation
  - Reproducible research

# **R** and econometrics

- Econometric *theory* always had large impact on statistical research.
- However, econometrics lagged behind in embracing *computational methods* and *software* as an intrinsic part of research.
- Traditionally, rely on software provided by commercial publishers, e.g., Stata, EViews, or programming environments such as GAUSS, Ox, among others.
- Recently, software development/dissemination are increasingly regarded as natural concomitants of econometric research.
- Hence also increasing interest in econometrics with R.

# **R** and econometrics

Question: Why R?

#### Answers:

- Free and platform independent: Important for teaching.
- Open source: Important for reproducible research.
- Flexible, object-oriented programming environment.
- Superior graphics and extensive methods for (exploratory) data analysis.
- Tools for reproducibility: Packaging of data/code/documentation, Sweave() for "dynamic" documents, ...

# **R** and econometrics

#### Challenges:

- Differences in language and terminology, e.g.,
  - factor vs. dummy variable(s),
  - generalized linear model (GLM) vs. logit, probit, Poisson regression.
- Different workflow: Command line interface, functional language, object-oriented approach.
- Some basic econometric methods scattered across various CRAN packages. Some of these still relatively new, e.g., the following have been published in JSS.
  - gmm: Generalized method of moments.
  - **np**: Nonparametric kernel methods.
  - plm, splm: Linear models for (spatial) panel data.
  - **pscl**: Zero-inflated and hurdle models for count data.
  - vars: Vector autoregression and error correction models.

# AER: Book and package

Book: Kleiber & Zeileis, Applied Econometrics with R, Springer-Verlag.

#### Aims:

- Introduction to econometric computing with R.
- Not an econometrics book, rather "second book" for a course in econometrics.
- Bridge differences in jargon, explain some statistical concepts.
- Provide overview of relevant/useful R packages.

**R package:** http://CRAN.R-project.org/package=AER.

- Demos: Full R code from the book.
- Data: More than 100 data sets from leading applied econometrics journals and popular econometrics books.
- Examples: Replication code for many examples from textbooks of Baltagi, Greene, Stock & Watson, Winkelmann & Boes, ...

**Data:** From Stock & Watson (2007), originally collected by T. Bergstrom, on subscriptions to 180 economics journals at US libraries, for the year 2000.

10 variables are provided including:

- subs number of library subscriptions,
- price library subscription price,
- citations total number of citations,

and other information such as number of pages, founding year, characters per page, etc.

**Of interest:** Relation between demand and price for economics journals. Price is measured as price per citation.

Load data and obtain basic information:

R> library("AER")
R> data("Journals", package = "AER")
R> dim(Journals)
[1] 180 10

R> names(Journals)

| [1] | "title" | "publisher" | "society"   | "price"        |
|-----|---------|-------------|-------------|----------------|
| [5] | "pages" | "charpp"    | "citations" | "foundingyear" |
| [9] | "subs"  | "field"     |             |                |

Plot variables of interest:

R> plot(log(subs) ~ log(price/citations), data = Journals)

Fit linear regression model:

```
R> j_lm <- lm(log(subs) ~ log(price/citations), data = Journals)
R> abline(j_lm)
```





```
R> summary(j_lm)
Call:
lm(formula = log(subs) ~ log(price/citations), data = Journals)
Residuals:
   Min 10 Median 30
                                 Max
-2.7248 -0.5361 0.0372 0.4662 1.8481
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 4.7662 0.0559 85.2 <2e-16
log(price/citations) -0.5331 0.0356 -15.0 <2e-16
Residual standard error: 0.75 on 178 degrees of freedom
Multiple R-squared: 0.557, Adjusted R-squared: 0.555
F-statistic: 224 on 1 and 178 DF, p-value: <2e-16
```

**In most other econometrics packages:** An analysis leads to a large amount of output containing information on estimation, model diagnostics, specification tests, etc.

In R:

- Analysis is broken down into a series of steps.
- Intermediate results are stored in *objects*.
- Minimal output at each step (often none).
- Objects can be manipulated and interrogated to obtain the information required (e.g., print(), summary(), plot()).

Fundamental design principle: "Everything is an object."

**Examples:** Vectors and matrices are objects, but also fitted model objects, functions, and even function calls  $\Rightarrow$  facilitates programming tasks.

| <pre>print()</pre>        | simple printed display with coefficients      |
|---------------------------|-----------------------------------------------|
| <pre>summary()</pre>      | standard regression summary                   |
| plot()                    | diagnostic plots                              |
| coef()                    | extract coefficients                          |
| vcov()                    | associated covariance matrix                  |
| <pre>predict()</pre>      | (different types of) predictions for new data |
| fitted()                  | fitted values for observed data               |
| residuals()               | extract (different types of) residuals        |
| terms()                   | extract terms                                 |
| <pre>model.matrix()</pre> | extract model matrix (or matrices)            |
| nobs()                    | extract number of observations                |
| df.residual()             | extract residual degrees of freedom           |
| logLik()                  | extract fitted log-likelihood                 |

**Furthermore:** "Smart" generics can rely on suitable methods such as coef(), vcov(), logLik(), nobs(), etc.

| confint()              | confidence intervals                                                       |
|------------------------|----------------------------------------------------------------------------|
| AIC(), BIC()           | information criteria (AIC, BIC,)                                           |
| coeftest()             | partial Wald tests of coefficients (Imtest)                                |
| waldtest()             | Wald tests of nested models (Imtest)                                       |
| linearHypothesis()     | Wald tests of linear hypotheses (car)                                      |
| lrtest()               | likelihood ratio tests of nested models (Imtest)                           |
| <pre>sandwich(),</pre> | sandwich/HC/HAC estimators of covari-<br>ance matrices ( <b>sandwich</b> ) |

```
R> confint(j_lm)
```

2.5 % 97.5 % (Intercept) 4.6559 4.8765 log(price/citations) -0.6033 -0.4628

```
R> linearHypothesis(j_lm, "log(price/citations) = -0.5")
```

Linear hypothesis test

```
Hypothesis:
log(price/citations) = - 0.5
Model 1: restricted model
Model 2: log(subs) ~ log(price/citations)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 179 100
2 178 100 1 0.484 0.86 0.35
```

```
R> coeftest(j_lm)
```

```
t test of coefficients:
```

```
      Estimate Std. Error t value Pr(>|t|)

      (Intercept)
      4.7662
      0.0559
      85.2
      <2e-16</td>

      log(price/citations)
      -0.5331
      0.0356
      -15.0
      <2e-16</td>

      R> coeftest(j_lm, vcov = sandwich)
```

```
t test of coefficients:
```

|                      | Estimate | Std. Error | t value | Pr(> t ) |
|----------------------|----------|------------|---------|----------|
| (Intercept)          | 4.7662   | 0.0550     | 86.7    | <2e-16   |
| log(price/citations) | -0.5331  | 0.0338     | -15.8   | <2e-16   |

**Data:** From Winkelmann & Boes (2009). Cross-section of 675 14-year old children taken from the German Socio-Economic Panel (GSOEP), 1994–2002.

**Model:** Secondary school choice (Hauptschule, Realschule, Gymnasium) explained by mother's education (in years), correcting for mother's employment level, household income and size (in logs).

Comparison: Multinomial logit (MNL) and ordered logit model (OLM).

In R:

- MNL: multinom() from package **nnet** (because neural networks have same fitting algorithm).
- OLM: polr() from package **MASS** (because model is also known as proportional odds logistic regression in the statistics literature).
- Couple with effects package for visualizing predicted probabilities.

```
Exploratory display:
R> data("GSOEP9402", package = "AER")
R> plot(school ~ meducation, data = GSOEP9402,
+ breaks = c(7, 9, 10.5, 11.5, 12.5, 15, 18))
```



meducation

```
Model formula:
R> f <- school ~ meducation + memployment + log(income) + log(size)
Multinomial logit:
R> library("nnet")
R> gsoep_mnl <- multinom(f, data = GSOEP9402)
Ordered logit:
R> library("MASS")
R> gsoep_olm <- polr(f, data = GSOEP9402, Hess = TRUE)
Comparison:
R> AIC(gsoep_mnl, gsoep_olm)
          df AIC
gsoep_mnl 12 1279
gsoep_olm 7 1277
```

Selected model:

```
R> coeftest(gsoep_olm)
```

```
z test of coefficients:
```

|                          | Estimate | Std. Error | z value | Pr( z ) |
|--------------------------|----------|------------|---------|---------|
| meducation               | 0.4766   | 0.0513     | 9.28    | < 2e-16 |
| memploymentparttime      | 0.6932   | 0.2452     | 2.83    | 0.0047  |
| memploymentnone          | 0.8124   | 0.2507     | 3.24    | 0.0012  |
| log(income)              | 1.0392   | 0.1868     | 5.56    | 2.6e-08 |
| log(size)                | -1.2550  | 0.3230     | -3.89   | 0.0001  |
| Hauptschule   Realschule | 14.6720  | 1.9332     | 7.59    | 3.2e-14 |
| Realschule Gymnasium     | 16.2233  | 1.9532     | 8.31    | < 2e-16 |

#### Visualization:

```
R> library("effects")
R> plot(effect("meducation", gsoep_mnl), confint = FALSE)
R> plot(effect("meducation", gsoep_olm), confint = FALSE)
```





# Excursion: Reproducible research

**Idea:** Facilitate reproducibility by keeping text and code in sync within the same document.

In R: Sweave() combines R code with  $\[\]{ETEX}$  text (or HTML, Markdown, ODF, . . .).

- Single . Rnw file contains both text and code.
- Tangling: Extract code.
- Weaving: Execute code to produce all numbers, tables, figures, ...
- Optionally, R input and output can be shown or hidden.
- Results in "dynamic" or "revivable" documents.

Here: These slides are actually produced using Sweave().

**Investigation:** Cross-country growth behavior based on extended Solow model.

- Durlauf and Johnson (1995, *Journal of Applied Econometrics*) extend analysis by Mankiw, Romer, Weil (1992, *The Quarterly Journal of Economics*).
- Of interest: Output (GDP per capita) growth from 1960 to 1985 for 98 non-oil-producing countries.
- Variables: Real GDP per capita; fraction of real GDP devoted to investment; population growth; fraction of population in secondary schools; and adult litercy rate.
- Data taken from MRW. DJ added literacy rate. Available as data.dj in JAE data archive.

**Models:** OLS regressions for full sample and breaks based on initial output and literacy.

Dependent variable:  $\log(Y/L)_{i,1985} - \log(Y/L)_{i,1960}$ .

|                          |             | $(Y/L)_{i,1960} < 1950$ | $(Y/L)_{i,1960} \ge 1950$ |
|--------------------------|-------------|-------------------------|---------------------------|
|                          | Full sample | $LR_{i,1960} < 54\%$    | $LR_{i,1960} \geq 54\%$   |
| Observations             | 98          | 42                      | 42                        |
| Constant                 | 3.040       | 1.400                   | 0.450                     |
|                          | (0.831)     | (1.850)                 | (0.723)                   |
| $\log(Y/L)_{i,1960}$     | -0.289      | -0.444                  | -0.434                    |
|                          | (0.062)     | (0.157)                 | (0.085)                   |
| $\log(I/Y)_i$            | 0.524       | 0.310                   | 0.689                     |
|                          | (0.087)     | (0.114)                 | (0.170)                   |
| $\log(n+0.05)_i$         | -0.505      | -0.379                  | -0.545                    |
|                          | (0.288)     | (0.468)                 | (0.283)                   |
| log(SCHOOL) <sub>i</sub> | 0.233       | 0.209                   | 0.114                     |
|                          | (0.060)     | (0.094)                 | (0.164)                   |

**Replication:** Data is available from JAE archive, and OLS regression should be trivial ... right?

Data: Read, code missing values, and select non-oil countries.

```
R> dj <- read.table("data.dj", header = TRUE,
+ na.strings = c("-999.0", "-999.00"))
R> dj <- subset(dj, NONOIL == 1)</pre>
```

Model: R formula (converting percentages to fractions).

```
R> f1 <- I(log(GDP85) - log(GDP60)) ~ log(GDP60) +
+ log(IONY/100) + log(POPGR0/100 + 0.05) + log(SCH00L/100)
```

**Regression:** OLS fit for full sample and subsamples.

```
R> mrw <- lm(f1, data = dj)
R> sub1 <- lm(f1, data = dj, subset = GDP60 < 1950 & LIT60 < 54)
R> sub2 <- lm(f1, data = dj, subset = GDP60 >= 1950 & LIT60 >= 54)
```

Full sample results: Success! Only minor deviations.

R> mrw <- lm(f1, data = dj)
R> coeftest(mrw)

|                                   | Durlauf & Johnson | Replication |
|-----------------------------------|-------------------|-------------|
| Observations                      | 98                | 98          |
| Constant                          | 3.040             | 3.022       |
|                                   | (0.831)           | (0.827)     |
| $\log(Y/L)_{i,1960}$              | -0.289            | -0.288      |
|                                   | (0.062)           | (0.062)     |
| $\log(I/Y)_i$                     | 0.524             | 0.524       |
|                                   | (0.087)           | (0.087)     |
| $\log(n+0.05)_i$                  | -0.505            | -0.506      |
|                                   | (0.288)           | (0.289)     |
| log( <i>SCHOOL</i> ) <sub>i</sub> | 0.233             | 0.231       |
|                                   | (0.060)           | (0.059)     |

Subsample results: Failure! Not even sample size is correct.

R> sub2 <- lm(f1, data = dj, subset = GDP60 >= 1950 & LIT60 >= 54)
R> coeftest(sub2)

|                          | Durlauf & Johnson | Replication |
|--------------------------|-------------------|-------------|
| Observations             | 42                | 39          |
| Constant                 | 0.450             | 3.952       |
|                          | (0.723)           | (1.337)     |
| $\log(Y/L)_{i,1960}$     | -0.434            | -0.425      |
|                          | (0.085)           | (0.104)     |
| $\log(I/Y)_i$            | 0.689             | 0.653       |
|                          | (0.170)           | (0.187)     |
| $\log(n+0.05)_i$         | -0.545            | -0.587      |
|                          | (0.283)           | (0.361)     |
| log(SCHOOL) <sub>i</sub> | 0.114             | 0.137       |
|                          | (0.164)           | (0.180)     |

Problem 1: Grid search plus educated guessing leads to different breaks.

R> sub2b <- lm(f1, data = dj, subset = GDP60 >= 1800 & LIT60 >= 50)
R> coeftest(sub2b)

|                      | Durlauf & Johnson | Replication |
|----------------------|-------------------|-------------|
| Observations         | 42                | 42          |
| Constant             | 0.450             | 4.147       |
|                      | (0.723)           | (1.230)     |
| $\log(Y/L)_{i,1960}$ | -0.434            | -0.435      |
|                      | (0.085)           | (0.096)     |
| $\log(I/Y)_i$        | 0.689             | 0.689       |
|                      | (0.170)           | (0.178)     |
| $\log(n+0.05)_i$     | -0.545            | -0.545      |
|                      | (0.283)           | (0.345)     |
| $log(SCHOOL)_i$      | 0.114             | 0.114       |
|                      | (0.164)           | (0.171)     |

Problem 2: Population growth and schooling not fractions but percent.

```
R> sub2c <- update(sub2b, . ~ log(GDP60) +
+ log(IONY) + log(POPGRO/100 + 0.05) + log(SCHOOL))</pre>
```

|                          | Durlauf & Johnson | Replication |
|--------------------------|-------------------|-------------|
| Observations             | 42                | 42          |
| Constant                 | 0.450             | 0.450       |
|                          | (0.723)           | (0.899)     |
| $\log(Y/L)_{i,1960}$     | -0.434            | -0.435      |
|                          | (0.085)           | (0.096)     |
| $\log(I/Y)_i$            | 0.689             | 0.689       |
|                          | (0.170)           | (0.178)     |
| $\log(n+0.05)_i$         | -0.545            | -0.545      |
|                          | (0.283)           | (0.345)     |
| log(SCHOOL) <sub>i</sub> | 0.114             | 0.114       |
|                          | (0.164)           | (0.171)     |

Problem 3: Robust sandwich standard errors.

R> coeftest(sub2c, vcov = sandwich)

|                          | Durlauf & Johnson | Replication |
|--------------------------|-------------------|-------------|
| Observations             | 42                | 42          |
| Constant                 | 0.450             | 0.450       |
|                          | (0.723)           | (0.723)     |
| $\log(Y/L)_{i,1960}$     | -0.434            | -0.435      |
|                          | (0.085)           | (0.085)     |
| $\log(I/Y)_i$            | 0.689             | 0.689       |
|                          | (0.170)           | (0.170)     |
| $\log(n+0.05)_i$         | -0.545            | -0.545      |
|                          | (0.283)           | (0.283)     |
| log(SCHOOL) <sub>i</sub> | 0.114             | 0.114       |
|                          | (0.164)           | (0.164)     |

#### Summary:

- Cutoffs actually used did not match those indicated.
- Usage of standard errors inconsistent.
- Scaling of variables (and hence intercepts) inconsistent.
- Other models in DJ paper: Similar problems, and some inference not reproducible at all.

#### Implications:

- Casts doubt results. (Even though in this case, so far qualitative results remain unchanged.)
- Very hard to track down without original code.
- Might have been impossible for less standard models.
- *Hence:* Keep analysis and documentation/manuscript in sync. Provide replication code even for simple things and details.

# Summary

- R system is a free open-source environment with tools for reproducible research.
- Wide variety of econometric methods already available.
- Workflow, development process, and terminology may sometimes be unfamiliar to econometricians.
- Many resources available to bridge differences: Examples, demos, textbooks, software papers, ...

#### References

Kleiber C, Zeileis A (2008). *Applied Econometrics with R*. Springer-Verlag, New York. URL http://CRAN.R-project.org/package=AER

Koenker R, Zeileis A (2009). "On Reproducible Econometric Research." *Journal of Applied Econometrics*, **24**(5), 833–847. doi:10.1002/jae.1083

Zeileis A, Koenker R (2008). "Econometrics in R: Past, Present, and Future." *Journal of Statistical Software*, **27**(1), 1–5. URL http://www.jstatsoft.org/v27/i01/