

strucchange: Model-Based Testing, Monitoring, and Dating of Structural Changes in R

Achim Zeileis

http://eeecon.uibk.ac.at/~zeileis/

Overview

- Example: Seatbelt data
- Structural change methods
 - Model frame
 - Testing
 - Monitoring
 - Dating
- Beyond the linear regression model
- Challenges/wishlist
- Summary

Overview

History: Work on structural change methods since Master's thesis.

Packages: Methodological work is accompanied by software implemented in the R system for statistical computing in packages *strucchange* and *fxregime*. Available from the Comprehensive R Archive Network at http://CRAN.R-project.org/.

Content:

- Testing, monitoring, and dating structural changes in linear regression model.
- Score-based tests for structural change in general parametric models with M-type estimators (least squares, maximum likelihood, instrumental variables, robust M-estimation, ...).
- Testing, monitoring, and dating structural changes in Gaussian regression models (including error variance).
- Some more bits and pieces for general parametric models.

Example: Seatbelt data

Data: Monthly totals of car drivers in Great Britain killed or seriously injured from 1969(1) to 1984(12).

Source: Harvey AC, Durbin J (1986). "The Effects of Seat Belt Legislation on British Road Casualties: A Case Study in Structural Time Series Modelling." *Journal of the Royal Statistical Society A*, **149**(3), 187–227.

Intervention: Compulsory wearing of seat belts was introduced on 1983-01-31.

Here: Employ knowledge about intervention only in monitoring illustration.

Example: Seatbelt data

R> plot(UKDriverDeaths, log = "y")

Model frame

Generic idea: Consider a regression model for *n* ordered observations $y_i | x_i$ with *k*-dimensional parameter θ . Ordering is typically with respect to time in time-series regressions, but could also be with respect to income, age, etc. in cross-section regressions.

Estimation: To fit the model to observations i = 1, ..., n an additive objective function $\Psi(y, x, \theta)$ is used such that

$$\widehat{\theta} = \operatorname{argmin}_{\theta} \sum_{i=1}^{n} \Psi(y_i, x_i, \theta).$$

This can also be defined implicitly based on the corresponding score function (or estimating function) $\psi(y, x, \theta) = \partial \Psi(y, x, \theta) / \partial \theta$:

$$\sum_{i=1}^{n} \psi(\mathbf{y}_i, \mathbf{x}_i, \widehat{\theta}) = \mathbf{0}.$$

Model frame

Special cases: (Ordinary) least squares (OLS), maximum likelihood (ML), instrumental variables, quasi-ML, robust M-estimation, etc.

Central limit theorem: Under parameter stability and some mild regularity conditions

$$\sqrt{n}(\widehat{\theta} - \theta_0) \stackrel{d}{\longrightarrow} \mathcal{N}(0, V(\theta_0)),$$

where the covariance matrix is

$$V(\theta_0) = \{A(\theta_0)\}^{-1}B(\theta_0)\{A(\theta_0)\}^{-1}$$

and A and B are the expectation of the derivative of ψ and its variance respectively.

Model frame

Special case: For the standard linear regression model

$$\mathbf{x}_i = \mathbf{x}_i^\top \boldsymbol{\beta} + \boldsymbol{\varepsilon}_i$$

with coefficients β and error variance σ^2 one can either treat σ^2 as a nuisance parameter $\theta = \beta$ or include it as $\theta = (\beta, \sigma^2)$.

In the former case, the estimating functions are $\psi=\psi_{eta}$

$$\psi_{\beta}(\boldsymbol{y},\boldsymbol{x},\beta) = (\boldsymbol{y} - \boldsymbol{x}^{\top}\beta) \boldsymbol{x}$$

and in the latter case, they have an additional component

$$\psi_{\sigma^2}(\mathbf{y}, \mathbf{x}, \beta, \sigma^2) = (\mathbf{y} - \mathbf{x}^\top \beta)^2 - \sigma^2.$$

and $\psi = (\psi_{\beta}, \psi_{\sigma^2})$. Here, focus on β .

Model frame: Seatbelt data

Example: OLS regression for log-deaths with lag and seasonal lag, roughly corresponding to SARIMA $(1, 0, 0)(1, 0, 0)_{12}$ model.

Model frame: Questions

Testing: Given that a model with parameter $\hat{\theta}$ has been estimated for these *n* observations, the question is whether this is appropriate or: Are the parameters stable or did they change through the sample period i = 1, ..., n?

Monitoring: Given that a stable model could be established for these *n* observations, the question is whether it remains stable in the future or: Are incoming observations for i > n still consistent with the established model or do the parameters change?

Dating: Given that there is evidence for a structural change in i = 1, ..., n, it might be possible that stable regression relationships can be found on subsets of the data. *How many segments are in the data? Where are the breakpoints?*

Testing

Null hypothesis: To assess the stability of the fitted model with $\hat{\theta}$, we want to test

 $H_0: \theta_i = \theta_0 \qquad (i = 1, \ldots, n)$

against the alternative that θ_i varies over "time" *i*.

Alternative: Various patterns of deviation from H_0 are conceivable: single/multiple break(s), random walks, etc.

Idea: Assess fluctuation in measures of model deviation or test statistics against a (single) break alternative.

Testing

Testing procedure:

- Empirical fluctuation processes captures fluctuation in (partial sums of)
 - residuals (e.g., OLS, recursive),
 - scores,
 - parameter estimates (e.g., recursive, rolling), or
 - test statistics for a (single) break alternative.
- Theoretical limiting process is obtained through functional central limit theorem (typically functional of Brownian motion/bridge).
- Choose boundaries which are crossed by the limiting process (or some transformation of it) only with a known probability α .
- If the empirical fluctuation process crosses the theoretical boundaries the fluctuation is improbably large ⇒ reject the null hypothesis.

Testing: Software

For the linear regression model:

- efp() computes various CUSUM or MOSUM processes based on recursive or OLS residuals, parameter estimates, or scores.
- Fstats() compute the sequence of *F* statistics (LR/Wald) for all single break alternatives (given trimming).
- Significance tests can be performed graphically by plot() method while statistic and *p* value are computed by sctest() method.

For general models: Object-oriented implementation.

- gefp() computes CUSUM process from scores of model object.
- Relies on estfun() method (from *sandwich* package) for extracting the empirical scores (aka estimating functions).
- efpFunctional() simulates critical values for functionals of Brownian bridges and set up visualization functions.
- Methods for plot() and sctest() perform the significance tests.

R> ocus <- efp(dd ~ dd1 + dd12, data = dd, type = "OLS-CUSUM")
R> plot(ocus)

1.5 1.0 Empirical fluctuation process 0.5 0.0 -0.5 -1.0 1970 1975 1980 1985

OLS-based CUSUM test

R> re <- efp(dd ~ dd1 + dd12, data = dd, type = "RE")
R> plot(re)

ŝ Empirical fluctuation process 1.0 0.5 0.0 1970 1975 1980 1985

RE test (recursive estimates test)

R> fs <- Fstats(dd \sim dd1 + dd12, data = dd, from = 0.1) R> plot(fs)


```
R> sctest(ocus)
```

OLS-based CUSUM test

data: ocus S0 = 1.487, p-value = 0.02407

R> sctest(re)

RE test (recursive estimates test)

```
data: re
RE = 1.691, p-value = 0.01956
R> sctest(fs)
supF test
data: fs
sup.F = 19.33, p-value = 0.006721
```

Monitoring

Idea: Fluctuation tests can be applied sequentially to monitor models.

More formally: Sequentially test the null hypothesis

$$H_0: \ \theta_i = \theta_0 \qquad (i > n)$$

against the alternative that θ_i changes at some time in the future i > n.

Basic assumption: The model parameters are stable $\theta_i = \theta_0$ in the history period i = 1, ..., n.

Test statistics: Update the fluctuation process and re-compute the associated test statistic in the monitoring period i > n.

Critical values: For sequential testing not only a single critical value is needed, but a full boundary function. This can direct power to early or late changes or try to spread the power evenly.

Monitoring: Software

For the linear regression model:

- mefp() initializes a monitoring fluctuation process based on various types of CUSUM or MOSUM for recursive or OLS residuals or parameter estimates.
- monitor() conducts monitoring as new data becomes available.
- Results can be inspected by print() or plot() methods.
- fxmonitor() from *fxregime* computes CUSUM process of scores (including error variance), again accompanied by suitable methods.

For general models: Object-oriented implementation.

- Various general techniques available in literature.
- None implemented yet in *strucchange*.

Monitoring: Seatbelt data

Initialization: Select 1976(1) until 1982(12) as the history period, fit OLS regression, and compute MOSUM process of OLS residuals (with bandwidth n/4).

```
R> mdd <- window(dd, start = c(1976, 1), end = c(1982, 12))
R> mcus <- mefp(dd ~ dd1 + dd12, data = mdd,
+ type = "OLS-MOSUM", h = 0.25)</pre>
```

Monitoring: Make monitoring period data available, i.e., all data since 1976(1) until 1984(12) and conduct monitoring.

```
R> mdd <- window(dd, start = c(1976, 1))
R> mcus <- monitor(mcus)</pre>
```

Break detected at observation # 92

Monitoring: Seatbelt data

R> plot(mcus, functional = NULL)

Monitoring with OLS-based MOSUM test

Monitoring: Seatbelt data

```
R> mcus
```

```
Monitoring with OLS-based MOSUM test
```

```
Initial call:
  mefp.formula(formula = dd ~ dd1 + dd12, type = "OLS-MOSUM", data = mdd
```

```
Last call:
  monitor(obj = mcus)
```

```
Significance level : 0.05
Critical value : 1.342
History size : 84
Last point evaluated : 108
Structural break at : 92
```

Parameter estimate on history : (Intercept) dd1 dd12 1.1451 0.1317 0.7134

Dating

Segmented regression model: A stable model with parameter vector $\theta^{(j)}$ holds for the observations in $i = i_{j-1} + 1, \dots, i_j$. The segment index is $j = 1, \dots, m+1$.

Estimation: Given the number of breakpoints *m*, these can be estimated by minimizing the segmented objective function

$$\sum_{j=1}^{m+1}\sum_{i=i_{j-1}+1}^{i_j}\Psi(y_i,x_i,\widehat{\theta}^{(j)}).$$

with respect to i_1, \ldots, i_m . $\hat{\theta}^{(j)}$ is the segment-specific estimate of the parameters and $i_0 = 0$, $i_{m+1} = n$

Model selection: If *m* is unknown, it can be selected by means of information criteria (AIC, BIC, LWZ, MDL, etc.) or sequential tests.

Dating: Software

For the linear regression model:

- breakpoints() minimizes residual sum of squares for all *m* using dynamic programming algorithm (exploiting recursive residuals).
- plot(), summary(), AIC() methods for selection of *m*.
- breakpoints() and breakdates() methods can extract estimated breakpoints (for any *m*).
- confint() computes the associated confidence intervals.
- coef() extracts estimated regression coefficients (for any *m*) or breakfactor() can be leveraged for reestimation.

For general models: Object-oriented implementation.

- fxregimes() in *fxregime* optimizes Gaussian negative log-likelihood of linear regression model (i.e., including variance).
- Employs unexported gbreakpoints() for optimizing additive objective functions via dynamic programming (extremely slow).

```
R> bp <- breakpoints(dd ~ dd1 + dd12, data = dd, h = 0.1, breaks = 5)
R> summary(bp)
```

```
Optimal (m+1)-segment partition:
```

Breakpoints at observation number:

m	=	1	46				
m	=	2	46				157
m	=	3	46	70			157
m	=	4	46	70	108		157
m	=	5	46	70	120	141	160

```
Corresponding to breakdates:
```

Fit:

m 0 1 2 3 4 5 RSS 1.748 1.573 1.419 1.293 1.270 1.229 BIC -302.609 -300.802 -298.652 -294.626 -277.039 -262.236

```
R> coef(bp, breaks = 2)
```

(Intercept) dd1 dd12 1970(1) - 1973(10) 1.458 0.1173 0.6945 1973(11) - 1983(1) 1.534 0.2182 0.5723 1983(2) - 1984(12) 1.687 0.5486 0.2142

R> plot(bp)

BIC and Residual Sum of Squares


```
R> plot(log(UKDriverDeaths))
```

- R> lines(fitted(bp, breaks = 2), col = 4)
- R> lines(confint(bp, breaks = 2))

Beyond the linear regression model

Question: Why all this fuzz about object orientation?

Answer: Many possible models of interest (e.g., GLMs or other ML models). Avoid recoding of workhorse functions.

Example: Cross-section data fitted by ML model. Assess parameter stability along ordering by a numeric covariate.

Here: Bradley-Terry model for paired comparison data.

Data: Paired comparisons of attractiveness from 192 survey participants for *Germany's Next Topmodel 2007* finalists: Barbara, Anni, Hana, Fiona, Mandy, Anja.

Model: Bradley-Terry paired comparison $P(i > j) = a_i/(a_i + a_j)$.

Task: Assess stability of attractiveness parameters from Bradley-Terry model along the age of the respondents.

In R: Load data, break ties randomly, set up simple formula interface.

```
R> library("psychotree")
R> data("Topmodel2007", package = "psychotree")
R> set.seed(2007)
R> tm <- transform(Topmodel2007,
+ age2 = age + runif(length(age), -0.1, 0.1))
R> names(tm)[1] <- "pref"
R> bt <- function(formula, data, ...)
+ btReg.fit(model.response(model.frame(formula, data, ...)))</pre>
```

R> m <- bt(pref ~ 1, data = tm)
R> plot(m)

Objects

```
R> scus <- gefp(pref ~ 1, data = tm, fit = bt, order.by = ~ age2)
R> plot(scus, functional = supLM(0.1))
```

M-fluctuation test

age2

```
R> sctest(scus, functional = supLM(0.1))
```

```
M-fluctuation test
```

```
data: scus
f(efp) = 32.36, p-value = 0.0001607
R> gbp <- fxregime:::gbreakpoints(pref ~ 1, data = tm,
+ fit = bt, order.by = tm$age2, ic = "BIC")
R> breakpoints(gbp)
Optimal 2-segment partition for `bt' fit:
Call:
breakpoints.gbreakpointsfull(obj = gbp)
Breakpoints at observation number:
161
```

```
Corresponding to breakdates: 52.0700112714432
```

R> plot(gbp)

BIC and Negative Log-Likelihood

Number of breakpoints

Segmented model: Manually refit the Bradley-Terry model for each segment.

```
R> m1 <- bt(pref ~ 1, data = tm, subset = age <= 52)
R> m2 <- bt(pref ~ 1, data = tm, subset = age > 52)
```

Alternatively: Recursively repeat the procedure in each segment. Include further covariates gender and three questions (yes/no) that assess familiarity with the TV show.

```
R> mb <- bttree(preference ~ gender + age + q1 + q2 + q3,
+ data = Topmodel2007)
```

```
R> plot(m2)
R> lines(worth(m1), col = 2, lty = 2, type = "b")
R> legend("topright", legend = c(expression(age <= 52),
+ expression(age > 52)), lty = 2, col = 2:1, bty = "n")
```



```
R> sctest(mb, node = 1)
```

gender age q1 q2 q3 statistic 17.08798 3.236e+01 12.6320 19.839222 6.7586 p.value 0.02168 7.915e-04 0.1283 0.006698 0.7452

```
R> sctest(mb, node = 7)
```

gender age q1 q2 q3 statistic 3.3498 7.8686 8.0524 0 4.7728 p.value 0.9843 0.9593 0.4862 NA 0.9046

Challenges/wishlist

Basic building blocks:

- Distributions (p/q functions) for functionals of (multivariate) Brownian motions/bridges.
- Faster optimizers for (penalized) additive objective functions.

Object orientation:

- More infrastructure for general orderings (in particular "zoo", "xts", etc.).
- More tests, e.g., LR- or Wald-based tests.
- Sequential monitoring techniques.
- Better interface to dating algorithm.

Summary

- Extensive toolbox for testing, monitoring, and dating structural changes in linear regression models.
- Object-oriented implementation of score-based structural change tests for general models and arbitrary orderings.
- Emphasis on visualization along with formal modeling.
- Capture workflow by suite of methods to generic functions.
- More object-oriented tools desirable for general models, especially monitoring and (better) dating functions.

Summary: strucchange

Classical structural change tools for OLS regression:

- Time ordering: Regular (via "ts").
- Testing: efp(), Fstats(), sctest().
- Monitoring: mefp(), monitor().
- Dating: breakpoints().
- Vignette: "strucchange-intro".

Object-oriented structural change tools:

- Time ordering: Arbitrary (via "zoo").
- Testing: gefp(), efpFunctional().
- Monitoring: Still to do.
- Dating: Some currently unexported support in gbreakpoints() in *fxregime*.
- Vignette: None, but CSDA paper.

Summary: fxregime

Structural change tools for Gaussian regression estimated by (quasi-)ML, specifically for exchange rate regression:

- Time ordering: "zoo".
- Data: FXRatesCHF ("zoo" series with US Federal Reserve exchange rates in CHF for various currencies).
- Preprocessing: fxreturns().
- Model fitting: fxlm().
- Testing: gefp() from *strucchange*.
- Monitoring: fxmonitor().
- Dating: fxregimes() based on currently unexported gbreakpoints(); refit() method for fitting segmented regression.
- Vignettes: "CNY", "INR".

References: Methods

Zeileis A, Shah A, Patnaik I (2010). "Testing, Monitoring, and Dating Structural Changes in Exchange Rate Regimes." *Computational Statistics & Data Analysis*, **54**(6), 1696–1706. doi:10.1016/j.csda.2009.12.005.

Zeileis A, Hothorn T, Hornik K (2008). "Model-Based Recursive Partitioning." *Journal of Computational and Graphical Statistics*, **17**(2), 492–514. doi:10.1198/106186008X319331

Zeileis A, Hornik K (2007). "Generalized M-Fluctuation Tests for Parameter Instability." *Statistica Neerlandica*, **61**(4), 488–508. doi:10.1111/j.1467-9574.2007.00371.x

Zeileis A (2005). "A Unified Approach to Structural Change Tests Based on ML Scores, *F* Statistics, and OLS Residuals." *Econometric Reviews*, **24**(4), 445–466. doi:10.1080/07474930500406053

Zeileis A, Leisch F, Kleiber C, Hornik K (2005). "Monitoring Structural Change in Dynamic Econometric Models." *Journal of Applied Econometrics*, **20**(1), 99–121. doi:10.1002/jae.776

References: Software

Zeileis A (2006). "Implementing a Class of Structural Change Tests: An Econometric Computing Approach". *Computational Statistics & Data Analysis*, **50**(11), 2987–3008. doi:10.1016/j.csda.2005.07.001

Zeileis A (2006). "Object-Oriented Computation of Sandwich Estimators." *Journal of Statistical Software*, **16**(9), 1–16. URL http://www.jstatsoft.org/v16/i09/.

Zeileis A, Grothendieck G (2005). "*zoo*: S3 Infrastructure for Regular and Irregular Time Series." *Journal of Statistical Software*, **14**(6), 1–27. URL http://www.jstatsoft.org/v14/i06/.

Zeileis A, Kleiber C, Krämer W, Hornik K, (2003). "Testing and Dating of Structural Changes in Practice." *Computational Statistics & Data Analysis*, **44**(1–2), 109–123. doi:10.1016/S0167-9473(03)00030-6

Zeileis A, Leisch F, Hornik K, Kleiber C (2002). "*strucchange*: An R Package for Testing for Structural Change in Linear Regression Models." *Journal of Statistical Software*, **7**(2), 1–38. URL http://www.jstatsoft.org/v07/i02/.