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Overview

History: Work on structural change methods since Master’s thesis.

Packages: Methodological work is accompanied by software
implemented in the R system for statistical computing in packages
strucchange and fxregime. Available from the Comprehensive R
Archive Network at http://CRAN.R-project.org/.

Content:

Testing, monitoring, and dating structural changes in linear
regression model.

Score-based tests for structural change in general parametric
models with M-type estimators (least squares, maximum
likelihood, instrumental variables, robust M-estimation, . . . ).

Testing, monitoring, and dating structural changes in Gaussian
regression models (including error variance).

Some more bits and pieces for general parametric models.

http://CRAN.R-project.org/


Example: Seatbelt data

Data: Monthly totals of car drivers in Great Britain killed or seriously
injured from 1969(1) to 1984(12).

Source: Harvey AC, Durbin J (1986). “The Effects of Seat Belt
Legislation on British Road Casualties: A Case Study in Structural Time
Series Modelling.” Journal of the Royal Statistical Society A, 149(3),
187–227.

Intervention: Compulsory wearing of seat belts was introduced on
1983-01-31.

Here: Employ knowledge about intervention only in monitoring
illustration.



Example: Seatbelt data

R> plot(UKDriverDeaths, log = "y")
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Model frame

Generic idea: Consider a regression model for n ordered observations
yi | xi with k -dimensional parameter θ. Ordering is typically with respect
to time in time-series regressions, but could also be with respect to
income, age, etc. in cross-section regressions.

Estimation: To fit the model to observations i = 1, . . . , n an additive
objective function Ψ(y , x , θ) is used such that

θ̂ = argmin
θ

n∑
i=1

Ψ(yi , xi , θ).

This can also be defined implicitly based on the corresponding score
function (or estimating function) ψ(y , x , θ) = ∂Ψ(y , x , θ)/∂θ:

n∑
i=1

ψ(yi , xi , θ̂) = 0.



Model frame

Special cases: (Ordinary) least squares (OLS), maximum likelihood
(ML), instrumental variables, quasi-ML, robust M-estimation, etc.

Central limit theorem: Under parameter stability and some mild
regularity conditions

√
n(θ̂ − θ0)

d−→ N (0,V (θ0)),

where the covariance matrix is

V (θ0) = {A(θ0)}−1B(θ0){A(θ0)}−1

and A and B are the expectation of the derivative of ψ and its variance
respectively.



Model frame

Special case: For the standard linear regression model

yi = x>i β + εi

with coefficients β and error variance σ2 one can either treat σ2 as a
nuisance parameter θ = β or include it as θ = (β, σ2).

In the former case, the estimating functions are ψ = ψβ

ψβ(y , x , β) = (y − x>β) x

and in the latter case, they have an additional component

ψσ2(y , x , β, σ2) = (y − x>β)2 − σ2.

and ψ = (ψβ, ψσ2). Here, focus on β.



Model frame: Seatbelt data

Example: OLS regression for log-deaths with lag and seasonal lag,
roughly corresponding to SARIMA(1, 0, 0)(1, 0, 0)12 model.

R> dd <- log(UKDriverDeaths)
R> dd <- ts.intersect(dd = dd, dd1 = lag(dd, -1), dd12 = lag(dd, -12))
R> coeftest(lm(dd ~ dd1 + dd12, data = dd))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4205 0.3633 1.16 0.25
dd1 0.4310 0.0533 8.09 9.1e-14 ***
dd12 0.5112 0.0565 9.04 2.7e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Model frame: Questions

Testing: Given that a model with parameter θ̂ has been estimated for
these n observations, the question is whether this is appropriate or: Are
the parameters stable or did they change through the sample period
i = 1, . . . , n?

Monitoring: Given that a stable model could be established for these n
observations, the question is whether it remains stable in the future or:
Are incoming observations for i > n still consistent with the established
model or do the parameters change?

Dating: Given that there is evidence for a structural change in
i = 1, . . . , n, it might be possible that stable regression relationships
can be found on subsets of the data. How many segments are in the
data? Where are the breakpoints?



Testing

Null hypothesis: To assess the stability of the fitted model with θ̂, we
want to test

H0 : θi = θ0 (i = 1, . . . , n)

against the alternative that θi varies over “time” i .

Alternative: Various patterns of deviation from H0 are conceivable:
single/multiple break(s), random walks, etc.

Idea: Assess fluctuation in measures of model deviation or test
statistics against a (single) break alternative.



Testing

Testing procedure:

Empirical fluctuation processes captures fluctuation in (partial
sums of)

residuals (e.g., OLS, recursive),
scores,
parameter estimates (e.g., recursive, rolling), or
test statistics for a (single) break alternative.

Theoretical limiting process is obtained through functional central
limit theorem (typically functional of Brownian motion/bridge).

Choose boundaries which are crossed by the limiting process (or
some transformation of it) only with a known probability α.

If the empirical fluctuation process crosses the theoretical
boundaries the fluctuation is improbably large⇒ reject the null
hypothesis.



Testing: Software

For the linear regression model:

efp() computes various CUSUM or MOSUM processes based on
recursive or OLS residuals, parameter estimates, or scores.

Fstats() compute the sequence of F statistics (LR/Wald) for all
single break alternatives (given trimming).

Significance tests can be performed graphically by plot() method
while statistic and p value are computed by sctest() method.

For general models: Object-oriented implementation.

gefp() computes CUSUM process from scores of model object.

Relies on estfun() method (from sandwich package) for
extracting the empirical scores (aka estimating functions).

efpFunctional() simulates critical values for functionals of
Brownian bridges and set up visualization functions.

Methods for plot() and sctest() perform the significance tests.



Testing: Seatbelt data

R> ocus <- efp(dd ~ dd1 + dd12, data = dd, type = "OLS-CUSUM")
R> plot(ocus)

OLS−based CUSUM test
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Testing: Seatbelt data

R> re <- efp(dd ~ dd1 + dd12, data = dd, type = "RE")
R> plot(re)

RE test (recursive estimates test)
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Testing: Seatbelt data

R> fs <- Fstats(dd ~ dd1 + dd12, data = dd, from = 0.1)
R> plot(fs)
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Testing: Seatbelt data

R> sctest(ocus)

OLS-based CUSUM test

data: ocus
S0 = 1.487, p-value = 0.02407

R> sctest(re)

RE test (recursive estimates test)

data: re
RE = 1.691, p-value = 0.01956

R> sctest(fs)

supF test

data: fs
sup.F = 19.33, p-value = 0.006721



Monitoring

Idea: Fluctuation tests can be applied sequentially to monitor models.

More formally: Sequentially test the null hypothesis

H0 : θi = θ0 (i > n)

against the alternative that θi changes at some time in the future i > n.

Basic assumption: The model parameters are stable θi = θ0 in the
history period i = 1, . . . , n.

Test statistics: Update the fluctuation process and re-compute the
associated test statistic in the monitoring period i > n.

Critical values: For sequential testing not only a single critical value is
needed, but a full boundary function. This can direct power to early or
late changes or try to spread the power evenly.



Monitoring: Software

For the linear regression model:

mefp() initializes a monitoring fluctuation process based on
various types of CUSUM or MOSUM for recursive or OLS
residuals or parameter estimates.

monitor() conducts monitoring as new data becomes available.

Results can be inspected by print() or plot() methods.

fxmonitor() from fxregime computes CUSUM process of scores
(including error variance), again accompanied by suitable
methods.

For general models: Object-oriented implementation.

Various general techniques available in literature.

None implemented yet in strucchange.



Monitoring: Seatbelt data

Initialization: Select 1976(1) until 1982(12) as the history period, fit
OLS regression, and compute MOSUM process of OLS residuals (with
bandwidth n/4).

R> mdd <- window(dd, start = c(1976, 1), end = c(1982, 12))
R> mcus <- mefp(dd ~ dd1 + dd12, data = mdd,
+ type = "OLS-MOSUM", h = 0.25)

Monitoring: Make monitoring period data available, i.e., all data since
1976(1) until 1984(12) and conduct monitoring.

R> mdd <- window(dd, start = c(1976, 1))
R> mcus <- monitor(mcus)

Break detected at observation # 92



Monitoring: Seatbelt data

R> plot(mcus, functional = NULL)

Monitoring with OLS−based MOSUM test
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Monitoring: Seatbelt data

R> mcus

Monitoring with OLS-based MOSUM test

Initial call:
mefp.formula(formula = dd ~ dd1 + dd12, type = "OLS-MOSUM", data = mdd, h = 0.25)

Last call:
monitor(obj = mcus)

Significance level : 0.05
Critical value : 1.342
History size : 84
Last point evaluated : 108
Structural break at : 92

Parameter estimate on history :
(Intercept) dd1 dd12

1.1451 0.1317 0.7134



Dating

Segmented regression model: A stable model with parameter vector
θ(j) holds for the observations in i = ij−1 + 1, . . . , ij . The segment index
is j = 1, . . . ,m + 1.

Estimation: Given the number of breakpoints m, these can be
estimated by minimizing the segmented objective function

m+1∑
j=1

ij∑
i=ij−1+1

Ψ(yi , xi , θ̂
(j)).

with respect to i1, . . . , im. θ̂(j) is the segment-specific estimate of the
parameters and i0 = 0, im+1 = n

Model selection: If m is unknown, it can be selected by means of
information criteria (AIC, BIC, LWZ, MDL, etc.) or sequential tests.



Dating: Software

For the linear regression model:

breakpoints() minimizes residual sum of squares for all m using
dynamic programming algorithm (exploiting recursive residuals).

plot(), summary(), AIC() methods for selection of m.

breakpoints() and breakdates() methods can extract
estimated breakpoints (for any m).

confint() computes the associated confidence intervals.

coef() extracts estimated regression coefficients (for any m) or
breakfactor() can be leveraged for reestimation.

For general models: Object-oriented implementation.

fxregimes() in fxregime optimizes Gaussian negative
log-likelihood of linear regression model (i.e., including variance).

Employs unexported gbreakpoints() for optimizing additive
objective functions via dynamic programming (extremely slow).



Dating: Seatbelt data

R> bp <- breakpoints(dd ~ dd1 + dd12, data = dd, h = 0.1, breaks = 5)
R> summary(bp)

Optimal (m+1)-segment partition:

Call:
breakpoints.formula(formula = dd ~ dd1 + dd12, h = 0.1, breaks = 5,

data = dd)

Breakpoints at observation number:

m = 1 46
m = 2 46 157
m = 3 46 70 157
m = 4 46 70 108 157
m = 5 46 70 120 141 160



Dating: Seatbelt data

Corresponding to breakdates:

m = 1 1973(10)
m = 2 1973(10) 1983(1)
m = 3 1973(10) 1975(10) 1983(1)
m = 4 1973(10) 1975(10) 1978(12) 1983(1)
m = 5 1973(10) 1975(10) 1979(12) 1981(9) 1983(4)

Fit:

m 0 1 2 3 4 5
RSS 1.748 1.573 1.419 1.293 1.270 1.229
BIC -302.609 -300.802 -298.652 -294.626 -277.039 -262.236

R> coef(bp, breaks = 2)

(Intercept) dd1 dd12
1970(1) - 1973(10) 1.458 0.1173 0.6945
1973(11) - 1983(1) 1.534 0.2182 0.5723
1983(2) - 1984(12) 1.687 0.5486 0.2142



Dating: Seatbelt data

R> plot(bp)
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Dating: Seatbelt data

R> plot(log(UKDriverDeaths))
R> lines(fitted(bp, breaks = 2), col = 4)
R> lines(confint(bp, breaks = 2))

Time

lo
g(

U
K

D
riv

er
D

ea
th

s)

1970 1975 1980 1985

7.
0

7.
2

7.
4

7.
6

7.
8



Beyond the linear regression model

Question: Why all this fuzz about object orientation?

Answer: Many possible models of interest (e.g., GLMs or other ML
models). Avoid recoding of workhorse functions.

Example: Cross-section data fitted by ML model. Assess parameter
stability along ordering by a numeric covariate.

Here: Bradley-Terry model for paired comparison data.



Topmodel data

Questions: Which of these
women is more attractive?
How does the answer depend
on the viewer’s age?
(And gender and the familiarity
with the associated TV show
Germany’s Next Topmodel?)



Topmodel data

Data: Paired comparisons of attractiveness from 192 survey
participants for Germany’s Next Topmodel 2007 finalists: Barbara, Anni,
Hana, Fiona, Mandy, Anja.

Model: Bradley-Terry paired comparison P(i > j) = ai/(ai + aj).

Task: Assess stability of attractiveness parameters from Bradley-Terry
model along the age of the respondents.

In R: Load data, break ties randomly, set up simple formula interface.

R> library("psychotree")
R> data("Topmodel2007", package = "psychotree")
R> set.seed(2007)
R> tm <- transform(Topmodel2007,
+ age2 = age + runif(length(age), -0.1, 0.1))
R> names(tm)[1] <- "pref"
R> bt <- function(formula, data, ...)
+ btReg.fit(model.response(model.frame(formula, data, ...)))



Topmodel data

R> m <- bt(pref ~ 1, data = tm)
R> plot(m)
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Topmodel data

R> scus <- gefp(pref ~ 1, data = tm, fit = bt, order.by = ~ age2)
R> plot(scus, functional = supLM(0.1))
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Topmodel data

R> sctest(scus, functional = supLM(0.1))

M-fluctuation test

data: scus
f(efp) = 32.36, p-value = 0.0001607

R> gbp <- fxregime:::gbreakpoints(pref ~ 1, data = tm,
+ fit = bt, order.by = tm$age2, ic = "BIC")
R> breakpoints(gbp)

Optimal 2-segment partition for `bt' fit:

Call:
breakpoints.gbreakpointsfull(obj = gbp)

Breakpoints at observation number:
161

Corresponding to breakdates:
52.0700112714432



Topmodel data

R> plot(gbp)
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Topmodel data

Segmented model: Manually refit the Bradley-Terry model for each
segment.

R> m1 <- bt(pref ~ 1, data = tm, subset = age <= 52)
R> m2 <- bt(pref ~ 1, data = tm, subset = age > 52)

Alternatively: Recursively repeat the procedure in each segment.
Include further covariates gender and three questions (yes/no) that
assess familiarity with the TV show.

R> mb <- bttree(preference ~ gender + age + q1 + q2 + q3,
+ data = Topmodel2007)



Topmodel data

R> plot(m2)
R> lines(worth(m1), col = 2, lty = 2, type = "b")
R> legend("topright", legend = c(expression(age <= 52),
+ expression(age > 52)), lty = 2, col = 2:1, bty = "n")
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Topmodel data
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Topmodel data

R> sctest(mb, node = 1)

gender age q1 q2 q3
statistic 17.08798 3.236e+01 12.6320 19.839222 6.7586
p.value 0.02168 7.915e-04 0.1283 0.006698 0.7452

R> sctest(mb, node = 7)

gender age q1 q2 q3
statistic 3.3498 7.8686 8.0524 0 4.7728
p.value 0.9843 0.9593 0.4862 NA 0.9046



Challenges/wishlist

Basic building blocks:

Distributions (p/q functions) for functionals of (multivariate)
Brownian motions/bridges.

Faster optimizers for (penalized) additive objective functions.

Object orientation:

More infrastructure for general orderings (in particular “zoo”,
“xts”, etc.).

More tests, e.g., LR- or Wald-based tests.

Sequential monitoring techniques.

Better interface to dating algorithm.



Summary

Extensive toolbox for testing, monitoring, and dating structural
changes in linear regression models.

Object-oriented implementation of score-based structural change
tests for general models and arbitrary orderings.

Emphasis on visualization along with formal modeling.

Capture workflow by suite of methods to generic functions.

More object-oriented tools desirable for general models, especially
monitoring and (better) dating functions.



Summary: strucchange

Classical structural change tools for OLS regression:

Time ordering: Regular (via “ts”).

Testing: efp(), Fstats(), sctest().

Monitoring: mefp(), monitor().

Dating: breakpoints().

Vignette: "strucchange-intro".

Object-oriented structural change tools:

Time ordering: Arbitrary (via “zoo”).

Testing: gefp(), efpFunctional().

Monitoring: Still to do.

Dating: Some currently unexported support in gbreakpoints()

in fxregime.

Vignette: None, but CSDA paper.



Summary: fxregime

Structural change tools for Gaussian regression estimated by
(quasi-)ML, specifically for exchange rate regression:

Time ordering: “zoo”.

Data: FXRatesCHF (“zoo” series with US Federal Reserve
exchange rates in CHF for various currencies).

Preprocessing: fxreturns().

Model fitting: fxlm().

Testing: gefp() from strucchange.

Monitoring: fxmonitor().

Dating: fxregimes() based on currently unexported
gbreakpoints(); refit() method for fitting segmented
regression.

Vignettes: "CNY", "INR".
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