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Motivation

Suppose we want to predict the values of a response variable y from a
vector of predictor variables  using functions of the form ƒβ() with
adjustable parameter(s) β.

Suppose we have n observations y and  of responses and predictors.

How should we choose β?

Basic idea: minimize (in-sample) prediction error.

Typically (but not necessarily!) one uses mean-squared error (MSE):

MSE(β) =
1

n

n
∑

=1

(y − ƒβ())2 →min
β

!

For general ƒβ, this is non-linear regression via non-linear least squares
“estimation”.
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Motivation

If ƒβ is linear, i.e.,

ƒβ() = β′,

we get linear regression via (linear) least squares estimation.

I.e., we find the/a β̂ which solves

MSE(β) =
1

n

n
∑

=1

(y − β′)2 →min
β

!

How can this be achieved?
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Motivation

Write p for the number of predictor variables (i.e., the length of the ).

Write y for the vector of the y.

Write X for the n × p matrix which has ′ as its -th row.

(Note that we have no simple way to refer to the j-th predictor variable.
I personally would write  = (ξ1, . . . , ξp) “if necessary”.)

Take β as a column vector.

Then the -th element of y − Xβ is y − ′β.

Hence,

MSE(β) =
1

n
∥y − Xβ∥22.
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Motivation

Hence, to find the least squares estimates β̂ we can solve

∥y − Xβ∥2 →min
β

!

(dropping the ‘2’ subscript for convenience).

How can this be achieved?
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Orthogonal projection

Suppose for simplicity that the n × p matrix X has full column rank p.

(Note that this implies that n ≥ p.)

Then the p × p matrix X′X has full rank p, and

β̂ = (X′X)−1X′y

is well-defined.

Consider any linear combination Xβ of the columns of X.
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Orthogonal projection

Then

(y − Xβ̂)′Xβ = (y − X(X′X)−1X′y)′Xβ

= y′Xβ − y′X(X′X)−1X′Xβ
= 0.

I.e., y − Xβ̂ is orthogonal to all Xβ, i.e., to all vectors in spn(X), the
column space of X.

Thus,

Xβ̂ = X(X′X)−1X′y

is the orthogonal projection of y onto spn(X).
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Orthogonal projection

Write

PX = X(X′X)−1X′, QX =  − PX =  − X(X′X)−1X′.

Then the predictions

ŷ = PXy = X(X′X)−1X′y = Xβ̂

give the orthogonal projection of y onto spn(X), and the residuals

r = y − ŷ = y − PXy = QXy

give the orthogonal projection of y onto the orthogonal complement of
spn(X).
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Orthogonal projection

Note that PX is symmetric and

P2X = X(X′X)−1X′X(X′X)−1X′ = X(X′X)−1X′ = PX,

i.e., idempotent: these matrices are the ones which give orthogonal
projections.

Clearly (writing p to indicate the dimension)

trce(PX) = trce(X(X′X)−1X′)
= trce((X′X)−1X′X)
= trce(p)
= p
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Orthogonal projection

Similarly, QX is symmetric and

Q2
X = ( − PX)( − PX)

=  − PX − PX + P2X
=  − PX
= QX,

i.e., idempotent, and (writing n to indicate the dimension)

trce(QX) = trce(n) − trce(PX) = n − p.
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Orthogonal projection

All very nice, but how does this help to find the least squares estimate?

Well, by orthogonality, for arbitrary β

∥y − Xβ∥2 = ∥(y − Xβ̂) + X(β̂ − β)∥2

= ∥(y − Xβ̂)∥2 + ∥X(β̂ − β)∥2

which clearly gets minimized if and only if β = β̂, as otherwise,
∥X(β̂ − β)∥2 > 0 (remember that X has full column rank!).

Thus,

β̂ = (X′X)−1X′y

is the least squares estimate!
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Orthogonal projection

Comment 1. If X does not have full rank, one needs the SVD of X. See
the homeworks.

Comment 2. One never uses (X′X)−1X′y for numerical computations!

As you have R, you can use lm.fit().

Or lm() for fitting linear models without having to set up the X matrix
oneself (more on this later).

Comment 3. The above also works if y is a vector of response values,
by taking y as an n × q matrix with row  the -th response vector, and β
a p × q matrix (and the norm the Frobenius norm).
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Linear models

Up to now, the y were numbers. Now we take them as realizations of
underlying random variables.

Suppose Y1, . . . , Yn are uncorrelated random variables with means
μ = β′ and common variance σ2.

Equivalently, write

Y = β′ + ε

where the errors ε are uncorrelated with mean zero and common
variance σ2.

This is the basic linear regression model.
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Linear models

Usually, this is simply written as

y = β′ + ε

(no capitalization).

Note: the above formulation takes the  as vector of numbers (not
random vectors).

One can also take the  as realizations of random variables.

Then the model is for the conditional distribution of y given .
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Linear models

Suppose we have observations from a linear model.

What can we say about the sampling distribution of the least squares
estimate (LSE) β̂?

(Note: as usual, this is now a random variable, but we do not try to
capitalize to make this clear.)

Write e for the vector of the ε.

(Again, one could write E etc. for the corresponding random variables.
No one does that.)
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Linear models

Then (if β is the underlying parameter) e = y − Xβ and

E(ε) = 0, cov(ε, εj) =

¨

σ2  = j,
0 otherwise.

Equivalently,

E(e) = 0, cov(e) = σ2n

and therefore

E(y) = Xβ, cov(y) = σ2n.
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Linear models

Thus,

E(β̂) = E((X′X)−1X′y)
= (X′X)−1X′E(y)
= (X′X)−1X′Xβ
= β

I.e., the LSE is unbiased.
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Linear models

Also,

cov(β̂) = cov((X′X)−1X′y)
= (X′X)−1X′cov(y)X(X′X)−1

= σ2(X′X)−1.

In particular, with β̂j the j-th element of β,

vr(β̂j) = σ2[(X′X)−1] j,j.

The above is actually the smallest possible.
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Gauss-Markov theorem

Theorem (Gauss-Markov theorem). Assume the linear model
E(y) = Xβ, cov(y) = σ2n. Then β̂ is the minimum variance unbiased
estimator among all linear estimators of β.

Equivalently, β̂ is the best linear unbiased estimator (BLUE) of β.

Proof. A linear estimator is of the form Ay with a p × n matrix A.

Write j for the j-th row of A.

Then the j-th element of the estimate is

[Ay] j = ′jy.
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Gauss-Markov theorem

For an unbiased linear estimator,

E([Ay] j) = E(′jy) = ′jXβ = βj

for all β.

Thus, with ej the j-th Cartesian unit vector, we must have

′jX = e′j

for all j.

Equivalently,

AX = p.
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Gauss-Markov theorem

Next,

vr(′jy) = ′jcov(y)j = σ2′jj.

Thus,

vr(′jy) − vr(β̂j) = σ2′jj − σ
2[(X′X)−1] j,j

= σ2
�

′jj − e
′
j (X
′X)−1ej
�

= σ2
�

′jj − 
′
jX(X

′X)−1X′j
�

= σ2′jQXj

≥ 0.
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Gauss-Markov theorem

As

′jQXj = ′jQ
′
XQXj = ∥QXj∥2,

This shows that the minimum variance linear unbiased predictors need
QXj = 0 for all j, or equivalently

AQX = 0p×n.

But then

A = A(PX + QX) = APX = AX(X′X)−1X′ = p(X′X)−1X′ = (X′X)−1X′.
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Predictions and residuals

As before, write

ŷ = Xβ̂ = PXy

for the (in-sample) predictions (also known as fitted values) and

ê = y − ŷ = y − PXy = QXy

for the residuals.

The squared length of ê is also known as the residual sum of squares
(RSS):

RSS = ∥ê∥2 = ∥y − ŷ∥2 =
∑



(y − ŷ)2.
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Predictions and residuals

Theorem. Assume the linear model E(y) = Xβ, cov(y) = σ2n. Then

E(RSS) = E(ê′ê) = (n − p)σ2.

Thus,

s2 =
RSS

n − p

is an unbiased estimate of σ2.
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Predictions and residuals

Proof. We have QXy = QX(Xβ + e) = QXe and thus

E(RSS) = E∥QXe∥2

= E(e′QXe)
= E(trce(e′QXe))
= E(trce(QXee′))
= trce(QXE(ee′))
= σ2trce(QX)
= σ2(n − p).
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Normal linear models

In the normal linear model we assume that the ε are jointly normally
distributed. In the simplest model,

e ∼ N(0, σ2n)

or equivalently,

y ∼ N(Xβ, σ2n).

The likelihood is then given by

lik(β, σ2) =
n
∏

=1

1
p

2πσ2
e−

(y−β
′)

2

2σ2
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Normal linear models

The log-likelihood is thus given by

ℓ(β, σ2) = −
n

2
log(2π) −

n

2
log(σ2) −

1

2σ2
∥y − Xβ∥2.

From what we know, the following is immediate.

Theorem. Consider the normal linear regression model
y ∼ N(Xβ, σ2n). Then the MLEs for β and σ2 are given by

β̂ = (X′X)−1X′y, σ̂2 =
RSS

n
.
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Normal linear models

β̂ is a linear transformation of y.

Hence, if y has a normal distribution, β̂ has a normal distribution, with
parameters

E(β̂) = β, cov(β̂) = σ2(X′X)−1

as already computed.
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Normal linear models

Consider the quadratic function

β 7→ Q(β) = ∥y − Xβ∥2

= (y − Xβ)′(y − Xβ)
= y′y − 2y′Xβ + β′X′Xβ.

The first derivative and the Hessian of Q are given by

∂Q

∂β
= −2y′X + 2β′X′X = −2(y − Xβ)′X

∂2Q

∂β∂β′
= 2X′X.
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Normal linear models

As

ℓ(β, σ2) = const −
n

2
log(σ2) −

Q(β)

2σ2
,

we get

∂ℓ

∂β
=
(y − Xβ)′X

σ2
,

∂2ℓ

∂β∂β′
= −

X′X

σ2
.
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Normal linear models

Next, clearly

d log(t)

dt
= t−1,

d2 log(t)

dt2
= −t−2,

dt−1

dt
= −t−2,

d2t−1

dt2
= 2t−3

from which

∂2ℓ

∂β∂σ2
= −

(y − Xβ)′X

σ4
,

∂2ℓ

∂σ2∂σ2
=

n

2
σ−4 − Q(β)σ−6.
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Normal linear models

Taking expectations,

E

�

∂2ℓ

∂β∂β′

�

= −
X′X

σ2

E

�

∂2ℓ

∂β∂σ2

�

= 0

E

�

∂2ℓ

∂σ2∂σ2

�

=
n

2
σ−4 − nσ2σ6 = −

n

2
σ−4.
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Normal linear models

This finally gives the Fisher information matrix (remember, if things are
nice, the negative of the expected Hessian of the log-likelihood) as

(β, σ2) =

�

X′X
σ2 n

2σ4

�

.

By the Rao-Cramer inequality, any unbiased estimate of β has
covariance matrix at least

[ (β, σ2)−1]β,β = σ2(X′X)−1.

We already know that the MLE β̂ is unbiased and has exactly this
covariance matrix! Thus, it is the (uniformly) minimum variance
unbiased estimate (UMVUE) of β.
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Normal linear models

What about estimating σ2?

Let 1, . . . , n−p be an orthonormal basis of the orthogonal complement
of spn(X) and write U = [1, . . . , n−p].

Clearly, QX = UU′ and

E(U′e) = U′E(e) = 0, cov(U′e) = E(U′ee′U) = σ2U′U = σ2n−p.

Thus,

U′e

σ
∼ N(0, n−p),

RSS

σ2
=
















U′e

σ
















2

∼ χ2n−p.

Slide 35



Normal linear models

The chi-squared distribution with k degrees of freedom has mean k.
Thus,

E(RSS) = σ2(n − p)

and s2 is an unbiased estimate of σ2 (as generally is the case without
normality assumptions).

Using Rao-Blackwell arguments one can show that it is a UMVUE for σ2,
even though it does not attain the Rao-Cramer bound.

(Complicated, so we’ll skip this.)
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Normal linear models

Finally, β̂ = (X′X)−1X′y and QXe = QXy are clearly jointly normal with
covariance matrix

cov(β̂, QXe) = E((X′X)−1X′(y − Xβ), QXe)
= E((X′X)−1X′e,QXe)
= (X′X)−1X′E(ee′)QX

= σ2(X′X)−1X′QX

= 0.

Hence, β̂ and QXe and therefore also RSS = ∥QXe∥2 are independent.
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Normal linear models

Summing up, we have the following.

Theorem. Consider the normal linear regression model
y ∼ N(Xβ, σ2n). Then

■ β̂ is the UMVUE of β.
■ β̂ ∼ N(β, σ2(X′X)−1).
■ s2 = RSS/(n − p) is the UMVUE of σ2.
■ σ̂2 = RSS/n is the MLE of σ2.
■ RSS/σ2 ∼ χ2n−p.

■ β̂ and RSS (and hence also s2 and σ̂2) are independent.
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Confidence intervals

Remember: if Z ∼ N(0,1) and V ∼ χ2k and Z and V are independent, then

T =
Z
p

V/k

has a Student t distribution with k degrees of freedom: T ∼ tk.

We already know:

β̂j ∼ N(βj, σ2[(X′X)−1] j,j),
RSS

σ2
∼ χ2n−p

and β̂ and RSS are independent.
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Confidence intervals

Hence,

β̂j − βj

s
q

[(X′X)−1] j,j
=
(β̂j − βj)
�

(σ
q

[(X′X)−1] j,j)
r

RSS
σ2

À

(n − p)
∼ tn−p.

Note that the distribution of the above random variable does not
depend on the parameters β or σ2: it is a pivot.

Thus,

β̂j ± tn−p,α/2s
q

[(X′X)−1] j,j

is a 1 − α confidence interval for βj.

The formula is not so important: R will know it for you.
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Confidence regions

Remember: if V ∼ χ2k and W ∼ χ2 and V and W are independent, then

F =
V/k

W/

has an F distribution with k and  degrees of freedom: F ∼ Fk,.

For a symmetric matrix A with eigendecomposition A = UDU′, we can
easily define the symmetric square root A1/2 as UD1/2U′ (where if
D = dig(δ1, . . . , δn), D1/2 = dig(

p

δ1, . . . ,
p

δn)).
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Confidence regions

The random vector

Z = (X′X)1/2(β̂ − β)/σ

clearly has a normal distribution with mean zero and covariance matrix

E

�

(X′X)1/2
(β̂ − β)

σ

(β̂ − β)′

σ
(X′X)1/2
�

=
1

σ2
(X′X)1/2cov(β̂)(X′X)1/2

= (X′X)1/2(X′X)−1(X′X)1/2

= p
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Confidence regions

Therefore,

Z′Z =
(β̂ − β)′

σ
(X′X)1/2(X′X)1/2

(β̂ − β)

σ
=
(β̂ − β)′(X′X)(β̂ − β)

σ2
∼ χ2p

from which

(β̂ − β)′(X′X)(β̂ − β)/p

s2
=

(β̂−β)′(X′X)(β̂−β)
σ2

.

p

RSS
σ2

À

(n − p)
∼ Fp,n−p.

Thus, the p-dimensional ellipsoid

{β : (β̂ − β)′(X′X)(β̂ − β) ≤ ps2Fp,n−p,1−α}

is a 1 − α confidence region for β.
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Hypothesis tests: significance of a single
predictor

Suppose we want to test

H0 : βj = 0.

We already know: under H0,

T =
β̂j

s
q

[(X′X)−1] j,j
∼ tn−p

and we can “as usual” use this for alternatives

HA : βj ̸= 0, HA : βj < 0, HA : βj > 0.
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Hypothesis tests: significance of a single
predictor

For the two-sided alternative HA : βj ̸= 0, rejecting for large values of |T |
is equivalent to rejecting for large values of T2, which has a χ2n−p
distribution.

For the one-sided alternatives, we reject when T is small for HA : βj < 0,
or when T is large for HA : βj > 0.
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Hypothesis tests: general linear hypothe-
sis

Suppose we want to test

H0 : Aβ = b

against

HA : Aβ ̸= b

for a full rank r × p matrix A.
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Hypothesis tests: general linear hypothe-
sis

This includes:

■ testing the significance of a single predictor:

H0 : βj = 0, HA : βj ̸= 0

(take A = e′j with ej the j-th Cartesian unit vector, and b = 0)

■ testing the significance of a group of predictors:

H0 : βj1 = · · · = βjr = 0, HA : βjk ̸= 0 for at least one 1 ≤ j ≤ r

(take the rows of A as e′j1 , . . . , e
′
jr
, and b = 0).

How can we test such a general linear hypothesis? Before we begin . . .
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Useful facts about multivariate normal
distributions

Lemma. Let  ∼ N(μ,).

(a) If  = L +m, then  ∼ N(Lμ +m,LL′).
(b) If  is an r × r matrix of rank r and z = −1/2( − μ), then

z ∼ N(0, p), ∥z∥2 = z′z ∼ χ2r .

Note: if −1/2 = (−1)1/2. So if  has eigendecomposition
 = Udig(δ1, . . . , δr)U′, then −1/2 = Udig(δ−1/21 , . . . , δ−1/2r )U′.

Proof. Part (a) is “trivial”. For part (b), take (a) with L = −1/2, then the
covariance matrix of z is

−1/2−1/2 = r .

The rest is “trivial” again.
Slide 48



Hypothesis tests: general linear hypothe-
sis

So again: how can we test the general linear hypothesis H0 : Aβ = b?

Simple idea: consider Aβ̂ − b.

In general, this is normal with mean

E(Aβ̂ − b) = Aβ − b

and covariance matrix

Acov(β̂)A′ = σ2A(X′X)−1A′.

Under H0, Aβ − b = 0 and thus by the previous lemma,

(Aβ̂ − b)′(A(X′X)−1A′)−1(Aβ̂ − b)

σ2
∼ χ2r .
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Hypothesis tests: general linear hypothe-
sis

Well, but we don’t know σ2.

If we estimate it by s2, then asymptotically we get a χ2r distribution.

Maybe non-asymptotically we can relate to the F distribution again? The
answer is YES!.

Hmm, this is nice but maybe a bit ad-hoc. What if we did a generalized
LRT instead? The answer is we get exactly the same test.

Let us formally state both facts, and then prove.
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Hypothesis tests: general linear hypothe-
sis

Theorem. Consider the normal linear regression model
y ∼ N(Xβ, σ2n).

The generalized LRT for

H0 : Aβ = b against HA : Aβ ̸= b

rejects H0 for large values of

F =
(Aβ̂ − b)′(A(X′X)−1A′)−1(Aβ̂ − b)/ r

s2
,

and F has an F distribution with r and n − p degrees of freedom.

I.e., a level α test is obtained for rejecting H0 iff F > Fr,n−p;1−α.
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Hypothesis tests: general linear hypothe-
sis

For the generalized LRT, we need to find the constrained MLEs.

As the log-likelihood is

−
n

2
log(2π) −

n

2
log(σ2) −

1

2σ2
∥y − Xβ∥2,

clearly for fixed β this minimized over σ2 for

σ2(β) =
∥y − Xβ∥2

n
.

To find the constrained MLE β̂0 of β under H0, we need to minimize
∥y − Xβ∥2 under the constraint Aβ = b.
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Hypothesis tests: general linear hypothe-
sis

Lagrange function (squeezing in a 1/2 to make things nicer):

L(β,) =
1

2
∥y − Xβ∥2 + ′(Aβ − b)

=
1

2
(y′y − 2β′X′y + β′X′Xβ) + β′A′ − ′b.

Gradient with respect to β:

∇βL = −X′y + X′Xβ + A′.

Setting to zero gives

β̂0 = (X′X)−1(X′y − A′) = β̂ − (X′X)−1A′,
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Hypothesis tests: general linear hypothe-
sis

where  needs to be chosen such that Aβ̂0 = b, i.e.,

b = A(β̂ − (X′X)−1A′) = Aβ̂ − A(X′X)−1A′

from which

 = (A(X′X)−1A′)−1(Aβ̂ − b).

(Hmm . . . looks somewhat familiar?)
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Hypothesis tests: general linear hypothe-
sis

We already know that for all β,

∥y − Xβ∥2 = ∥QXy∥2 + ∥X(β̂ − β)∥2.

For β = β̂0, this gives

∥y − Xβ̂0∥2 = ∥QXy∥2 + ∥X(X′X)−1A′∥2

= ∥QXy∥2 + ′A(X′X)−1X′X(X′X)−1A′
= ∥QXy∥2 + ′A(X′X)−1A′
= ∥QXy∥2 + (Aβ̂ − b)′(A(X′X)−1A′)−1(Aβ̂ − b).

(Hmm . . . looks rather familiar.)
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Hypothesis tests: general linear hypothe-
sis

So writing

RSS0 = ∥y − Xβ̂0∥2,

we have

RSS0 = RSS + (Aβ̂ − b)′(A(X′X)−1A′)−1(Aβ̂ − b).
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Hypothesis tests: general linear hypothe-
sis

The generalized LRT rejects when

�

σ2(β̂)

σ2(β̂0)

�n/2

=
�

RSS

RSS0

�n/2

is small, or equivalently if

RSS0

RSS
= 1 +

(Aβ̂ − b)′(A(X′X)−1A′)−1(Aβ̂ − b)

RSS

is large.

Now we’re done if we can show that the numerator and the
denominator in the above ratio are independent.
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Hypothesis tests: general linear hypothe-
sis

But the numerator is

∥X(β̂ − β̂0)∥2

and the denominator is

∥QXy∥2.

Clearly, QXy and X(β̂ − β̂0) are jointly normal. But they are orthogonal,
hence uncorrelated and thus independent.

Clearly, the squared lengths are then independent too, and we’re done.
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Hypothesis tests: significance of a group
of predictors

Consider again

H0 : βj = 0, j ∈ J

where is a (non-empty) subset of {1, . . . , p} of size r.

The corresponding A has rows e′j1 , . . . , e
′
jr
.

Hence,

Aβ̂ = [ β̂j] j∈J, A(X′X)−1A′ = [[(X′X)−1] j,k] j∈J,k∈J

(i.e., the elements of β̂j with index in J, and the elements of (X′X)−1 with
row and column index in J).
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Hypothesis tests: significance of a group
of predictors

Let us more compactly denote these by

β̂J, [(X′X)−1] J,J.

Then the generalized LRT statistic becomes

F =
β̂′J [(X

′X)−1]−1J,J β̂J/ r

s2
∼ Fr,n−p.

Very nice and “intuitive”!

And of course agrees with the two-sided test for r = 1.
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To intercept or not

Everybody knows that a linear functions of a single variable looks like

η = intercept + slope × ξ.

Similarly for several variables:

η = intercept + β2ξ2 + · · · + βpξp.

We can include intercepts in our linear models by including a constant
regressor, e.g. the first one: ξ1 ≡ 1.

Then if  = (1, ξ2, . . . , ξp)′,

β′ = β1 + β2ξ2 + · · · + βpξp

with β1 the intercept.
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To intercept or not

I.e., if we include a constant regressor—equivalently, if the X matrix
has one column of all ones—the linear model has an intercept.

This is typically (but not necessarily) done, and what R does by default
(more on this later).
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To intercept or not

Write 1n for the column vector of n ones. Then

1′n1n = n

and if  is a vector of length n

̄ = n−1
n
∑

=1

 = (1′n1n)
−11′n, [ − ̄] =  − 1n̄ = Q1n.

For vectors  and  of length n write

covn(,) =
1

n − 1

n
∑

=1

( − ̄)( − ̄) =
(Q1n)′(Q1n)

n − 1
=
′Q1n

n − 1

for their sample covariance.
Slide 63



To intercept or not

Similarly, write vrn and corn for the sample variance and correlation.

Then clearly

corn(,) =
′Q1n

∥Q1n∥∥Q1n∥
.
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To intercept or not

Suppose the linear model has an intercept.

Then 1n ∈ spn(X) and thus

1′nê = 1
′
nQXy = 0

and

1′nŷ = 1
′
n(ŷ − y) + 1

′
ny = 1

′
ny

so that

men(ê) = 0, men(ŷ) =men(y).
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Goodness of fit

Suppose the linear model has an intercept.

Then Q1n ê = ê from which

e′Q1nX = (Q1ne)
′X = e′X = 0.

and thus also

ê′Q1n ŷ = ê′Q1nXβ̂ = 0

(i.e., the residuals are uncorrelated with the regressors and the fitted
values).
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Goodness of fit

Therefore, the sample correlation of y and ŷ (the so-called coefficient
of multiple correlation is

corn(y, ŷ) =
y′Q1n ŷ

∥Q1ny∥∥Q1n ŷ∥

=
(ŷ + ê)′Q1n ŷ

∥Q1ny∥∥Q1n ŷ∥

=
ŷ′Q1n ŷ

∥Q1ny∥∥Q1n ŷ∥

=
∥Q1n ŷ∥

∥Q1ny∥
.
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Goodness of fit

Clearly, the higher corn(y, ŷ) (the closer to one), the better the linear
model fits the data.

For linear models with an intercept, one thus measures goodness of fit
via the coefficient of determination

R2 = (corn(y, ŷ))2 =
∥Q1n ŷ∥2

∥Q1ny∥2
=

∑n
=1(ŷ − ȳ)

2

∑n
=1(y − ȳ)

2
.

Thus, R2 is the square of the coefficient of multiple correlation.

(I.e, R = corn(y, ŷ).)

For models without an intercept, R2 = ∥ŷ∥2/∥y∥2 (not so nicely
interpretable).
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Linear models in R

Function lm() fits linear models using a formula interface.

E.g., for the German data, suppose we want to model Amount as a linear
function of Duration.

R> load("german.rda")
R> m <- lm(Amount ~ Duration, data = german)
R> m

Call:
lm(formula = Amount ~ Duration, data = german)

Coefficients:
(Intercept) Duration

213.2 146.3
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Linear models in R

The model formula puts the response on the left hand side and a
specification of the predictors to be used on the right hand side.

The tilde can be read as “is modeled by” or “is explained by”.

One can add predictors via ‘+’, and drop via ‘-’.

E.g., to drop the intercept:

R> lm(Amount ~ Duration - 1, data = german)

Call:
lm(formula = Amount ~ Duration - 1, data = german)

Coefficients:
Duration

154
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Linear models in R

And to add another (numeric) predictor:

R> lm(Amount ~ Duration + Age, data = german)

Call:
lm(formula = Amount ~ Duration + Age, data = german)

Coefficients:
(Intercept) Duration Age

-284.99 146.77 13.74

More on this later or eventually.
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Linear models in R

Back to our initial model:

R> m <- lm(Amount ~ Duration, data = german)
R> m

Call:
lm(formula = Amount ~ Duration, data = german)

Coefficients:
(Intercept) Duration

213.2 146.3

Printing clearly shows the fitted model

Amount = 213.2 + 146.3 × Duration

via the fitted regression coefficients β̂.
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Linear models in R

We can extract the fitted regression coefficients via coef():

R> coef(m)

(Intercept) Duration
213.2160 146.2968

Similarly, we can extract the fitted values ŷ and residuals ê via
fitted() and residuals(), respectively.

E.g.,

R> mean(residuals(m))

[1] 6.200196e-14

(So pretty much zero. Why?)
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Linear models in R

We can use abline() to add the fitted model to a scatterplot:

R> plot(Amount ~ Duration, data = german); abline(m, col = "red")
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Linear models in R

We can plot() the fitted model:

R> op <- par(mfcol = c(2, 2)); plot(m); par(op)
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Linear models in R

More on these diagnostic plots in the next course.

But the Q-Q plot strongly suggests that the data does not come from a
normal distribution.

Finally, we can use summary() to summarize the model fit (including
performing basic statistical inference for the fitted regression
coefficients under normality).
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Linear models in R

R> summary(m)

Call:
lm(formula = Amount ~ Duration, data = german)

Residuals:
Min 1Q Median 3Q Max

-5151.6 -1260.0 -432.9 653.2 13805.0

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 213.216 139.569 1.528 0.127
Duration 146.297 5.784 25.292 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2205 on 998 degrees of freedom
Multiple R-squared: 0.3906, Adjusted R-squared: 0.39
F-statistic: 639.7 on 1 and 998 DF, p-value: < 2.2e-16
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Linear models in R

This has four parts.

1. The call for the model.
2. A five point summary of the residuals (remembers, these should “look

normal”.
3. The fitted regression coefficients β̂j along the the p-values for testing

H0 : βj = 0 against HA : βj ̸= 0.

4. The s and R2 for the model, and the results of the F test that any
non-intercept predictor is significant.
I.e., if the intercept comes first, H0 : β2 = · · · = βp = 0.
We know that the corresponding F statistic has r = p − 1 and n − p
degrees of freedom. Here, n = 1000 and p = 2, which indeed gives

r = 1, n − p = 998.
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Linear models in R

Remember that

s2 =
RSS

n − p
=
∥ê∥2

n − p
.

So the residual standard error s is

R> sqrt(sum(residuals(m)^2) / (NROW(german) - 2))

[1] 2204.638

Indeed!
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Linear models in R

Remember that

R2 = (cor(y, ŷ))2.

which in our case is

R> cor(german$Amount, fitted(m))^2

[1] 0.3906052

Indeed!

(Extracting the response from the fitted model is also possible, but not
entirely straightforward.)
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Linear models in R

Note that summary() computes an R object with all relevant information:

R> s <- summary(m)
R> names(s)

[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

In particular:

R> s$r.squared

[1] 0.3906052
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Linear models in R

The coefficient table is available via

R> coef(s)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 213.2160 139.568636 1.527679 1.269092e-01
Duration 146.2968 5.784287 25.292104 1.862851e-109

In particular, we can get the p-values of the t tests as

R> coef(s)[, 4]

(Intercept) Duration
1.269092e-01 1.862851e-109
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Linear models in R

The p-value of the F test needs a bit of do-it-yourself:

R> (F <- s$fstatistic)

value numdf dendf
639.6905 1.0000 998.0000

So

R> pf(F[1], F[2], F[3], lower.tail = FALSE)

value
1.862851e-109

(Here, same as before “of course”. Why?)
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Linear models in R

Clearly, up to now all predictors in the linear model were numeric.

But what if we want to include a factor as well?

Let’s see what R does:

R> (m <- lm(Amount ~ Duration + Status_of_checking_account,
+ data = german))

Call:
lm(formula = Amount ~ Duration + Status_of_checking_account,

data = german)

Coefficients:
(Intercept) Duration

90.69 144.55
Status_of_checking_accountp_lo Status_of_checking_accountp_hi

458.52 -420.80
Status_of_checking_accountnone

158.09
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Linear models in R

Interesting. We get 3 more regression coefficients.

But Status_of_checking_account is a (nominal) factor with 4 levels:

R> with(german, levels(Status_of_checking_account))

[1] "neg" "p_lo" "p_hi" "none"

We only see coefficients for the last three of these.

These are the coefficients for the indicators of these levels.

So with D = Duration and S = Status_of_checking_account, the
model used is

Amount = β1 + β2D + β3p_lo(S) + β4p_hi(S) + β5none(S).
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Linear models in R

So R has created 3 dummy variables which encode the difference
relative to the first or baseline level.

This is the encoding of nominal factors via treatment contrasts, which
is R’s default.

For ordinal factors, by default polynomial contrasts are used. See the
next course and ? contrasts . And see

R> contrasts(german$Status_of_checking_account)

p_lo p_hi none
neg 0 0 0
p_lo 1 0 0
p_hi 0 1 0
none 0 0 1
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Linear models in R

If one has R, the nice thing is that one only needs to specify the
appropriate model formula.

R will encode the terms as necessary and set up the appropriate model
matrix itself.

But one must be able to interpret the model fitting results accordingly!

E.g., for customers with negative balance (S = neg) the model is

AMOUNT = β1 + β2D.

For customers with no checking account (S = none) the model is

AMOUNT = β1 + β2D + β5.
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Linear models in R

We can also nicely see this with R: to get the predictions with D = 36 (3
years), we can do

R> vals <- as.factor(levels(german$Status_of_checking_account))
R> yhat <- predict(m, data.frame(Duration = 36,
+ Status_of_checking_account = vals,
+ row.names = vals))
R> yhat

neg p_lo p_hi none
5294.348 5752.871 4873.549 5452.441

So we can use predict() to make predictions from the model. This
needs a data frame with all the variables used as predictors.
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Linear models in R

Now compare

R> yhat[-1] - yhat[1]

p_lo p_hi none
458.5233 -420.7993 158.0934

to

R> coef(m)[3 : 5]

Status_of_checking_accountp_lo Status_of_checking_accountp_hi
458.5233 -420.7993

Status_of_checking_accountnone
158.0934

That’s all, folks . . .
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