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Motivation

Suppose

■ a sample X1, . . . , Xn is drawn from a normal distribution with mean μX
and variance σ2

■ an independent sample Y1, . . . , Ym is drawn from a normal distribution
with mean μY and variance σ2.

We are interested in μX − μY .

This is “naturally” estimated by X̄ − Ȳ.

Clearly,

E(X̄ − Ȳ) = E(X̄) − E(Ȳ) = μX − μY
and by independence,

vr(X̄ − Ȳ) = vr(X̄) + vr(−Ȳ) = vr(X̄) + vr(Ȳ) =
σ2

n
+
σ2

m
.
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Motivation

Hence by normality of the samples,

X̄ − Ȳ ∼ N
�

μX − μY , σ2
�

1

n
+

1

m

��

If σ2 were known, a confidence interval for μX − μY could be based on

Z =
(X̄ − Ȳ) − (μX − μY)

σ
Ç

1
n +

1
m

which has a standard normal distribution, giving

(X̄ − Ȳ) ± z1−α/2σ

√

√

√
1

n
+

1

m
.
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Motivation

In general, σ2 will not be known and must be estimated, e.g., by using
the pooled sample variance

s2p =
(n − 1)s2X + (m − 1)s

2
Y

m + n − 2

=
1

m + n − 2

 

n
∑

=1

(X − X̄)2 +
m
∑

j=1

(Yj − Ȳ)2
!

.

We then have the following result.
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Two-sample t tests

Theorem. Suppose that X1, . . . , Xn are independent and normally
distributed random variables with mean μX and variance σ2, and that
Y1, . . . , Ym are independent and normally distributed random variables
with mean μY and variance σ2, and that the Yj are independent of the
X. Then the statistic

t =
(X̄ − Ȳ) − (μX − μY)

sp
Ç

1
n +

1
m

follows a t distribution with m + n − 2 degrees of freedom.
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Two-sample t tests

Let

sX̄−Ȳ = sp

√

√

√
1

n
+

1

m

denote the estimated standard deviation of X̄ − Ȳ.

Corollary. Under the above assumptions, a 100(1 − α)% confidence
interval for μX − μY is

(X̄ − Ȳ) ± tm+n−2,1−α/2sX̄−Ȳ .
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sX̄−Ȳ = sp

√

√

√
1

n
+

1

m

denote the estimated standard deviation of X̄ − Ȳ.
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Example: Ice

Two methods, A and B, were used to determine the latent heat of fusion
of ice (Natrella, 1963).

Measurements were obtained for the change in total heat from ice at
−72◦ C to water at 0◦ C in calories per gram of mass:

R> A <- scan("Data/icea.txt")
R> A

[1] 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97 80.05 80.03 80.02
[12] 80.00 80.02

R> B <- scan("Data/iceb.txt")
R> B

[1] 80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97
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Example: Ice

It is fairly obvious that there is a difference between the methods:

R> boxplot(A, B, names = c("Method A", "Method B"))
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Example: Ice

Doing computations by hand:

R> n_A <- length(A); m_A <- mean(A); s_A <- sd(A)
R> c(n_A, m_A, s_A)

[1] 13.00000000 80.02076923 0.02396579

R> n_B <- length(B); m_B <- mean(B); s_B <- sd(B)
R> c(n_B, m_B, s_B)

[1] 8.00000000 79.97875000 0.03136764

R> s_p <- sqrt(((n_A - 1) * s_A^2 + (n_B - 1) * s_B^2) /
+ (n_A + n_B - 2))
R> s_p

[1] 0.02693052
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Example: Ice

This gives the following estimates for X̄ − Ȳ and sX̄−Ȳ :

R> Delta <- m_A - m_B
R> Delta

[1] 0.04201923

R> s_Delta <- s_p * sqrt(1 / n_A + 1 / n_B)
R> s_Delta

[1] 0.01210146
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Example: Ice

With the t quantile

R> q <- qt(0.975, n_A + n_B - 2)

we finally get the confidence interval

R> c(Delta - q * s_Delta, Delta + q * s_Delta)

[1] 0.01669058 0.06734788
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Example: Ice

But because we have R, we can simply use function t.test to obtain
the confidence interval and corresponding hypothesis test:

R> t.test(A, B, var.equal = TRUE)

Two Sample t-test

data: A and B
t = 3.4722, df = 19, p-value = 0.002551
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.01669058 0.06734788

sample estimates:
mean of x mean of y
80.02077 79.97875
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Two-sample t tests

Rice (page 426f) shows that this t test is actually the LRT in the case of
unknown but equal variances in the two samples.

(So the “natural” idea can also be obtained from first principles.)

In fact, for hypothesis testing for the two-sample problem, there are
three common alternative hypotheses to H0 : μX = μY :

H1 : μX ̸= μY , H2 : μX < μY , H3 : μX > μY .

The first is a two-sided alternative, the other two are one-sided
alternatives.
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Two-sample t tests

Hypothesis tests for all three alternatives are based on the t statistic

t =
X̄ − Ȳ

sX̄−Ȳ

with rejection regions

H1 : |t| > tm+n−2,1−α/2, H2 : t < tm+n−2,α, H3 : t > tm+n−2,1−α

(and corresponding two- or one sided confidence intervals).
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Example: Ice

E.g., to test against the alternative μA > μB for the ice data,

R> t.test(A, B, alternative = "greater", var.equal = TRUE)

Two Sample t-test

data: A and B
t = 3.4722, df = 19, p-value = 0.001276
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
0.0210942 Inf

sample estimates:
mean of x mean of y
80.02077 79.97875
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Two-sample t tests

If the variances are not known to be equal, a natural estimate of
vr(X̄ − Ȳ) is

s2X
n
+
s2Y
m

If this is used in the denominator of the test statistic, the t distribution
no longer holds exactly, but approximately with

(s2X/n + s
2
Y /m)

2

(s2/n)
2/(n − 1) + (s2Y /m)

2/(m − 1)

degrees of freedom: so-called Welch approximation to the sampling
distribution.
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Two-sample t tests

This is actually the default in R:

R> t.test(A, B)

Welch Two Sample t-test

data: A and B
t = 3.2499, df = 12.027, p-value = 0.006939
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.01385526 0.07018320

sample estimates:
mean of x mean of y
80.02077 79.97875
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Motivation

Nonparametric methods do not assume the data follow a particular
distributional form.

(So we’re moving outside the framework of traditional parametric
inference we considered thus far.)

Often, data are replaced by ranks, making results invariant under
monotonic transformations, and moderating the influence of outliers.

Suppose we have two independent sample X1, . . . , Xn and Y1, . . . , Ym
from probability distributions F and G, respectively, and that it is desired
to test the null hypothesis that F = G.
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Motivation

We will develop the Mann-Whitney test, also known as the Wilcoxon
rank sum test.

This is based on the idea that under the null, assigning the pooled
(sorted) observations to the samples is “random” in the sense that all
assignments are equiprobable.

Consider a simple example. Suppose observations are

X : 1,3 Y : 4,6.

As 1 < 3 < 4 < 6, the corresponding ranks (in the pooled data) are

X : 1,2 Y : 3,4

with rank sums 3 and 7, respectively.
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Motivation

Now, under the null, every assignment of the ranks to the samples is
equally likely. For the ranks of the second group, we have

Ranks {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}
R 3 4 5 5 6 7

and thus

P(R = 7) = 1/6.

In the general case, under the null every possible assignment of the
m + n ranks to the n elements of the second group is equally likely.
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Example: Ice

We compute the ranks for methods A and B:

R> C <- c(A, B)
R> r_A <- rank(C)[seq_along(A)]
R> r_B <- rank(C)[seq_along(B) + length(A)]

Note how ties are handled.

The rank sum of the smaller sample is

R> sum(r_B)

[1] 51
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The Mann-Whitney Test

What about the distribution of the rank sums under the null? We can
use R:

R> wilcox.test(A, B)

Wilcoxon rank sum test with continuity correction

data: A and B
W = 89, p-value = 0.007497
alternative hypothesis: true location shift is not equal to 0

We note 2 things:

■ a warning about exact p-values and ties (not shown here).

■ the value of the test statistic, which is not the sum of the ranks in the
smaller sample as in Rice. What R uses, is the symmetric version of
the test statistic (see below)
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The Mann-Whitney Test

Let TY denote the sum of the ranks of Y1, . . . , Ym.

Theorem. If F = G,

E(TY) =
m(m + n + 1)

2
, vr(TY) =

mn(m + n + 1)

12
.

What R actually does is compute the rank sum for the first sample
which would have expectation n(m + n + 1)/2 and subtract n(n + 1)/2:

R> sum(r_A) - n_A * (n_A + 1) / 2

[1] 89

which has expectation mn/2 which is symmetric in m and n.
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The Mann-Whitney Test

If the samples are interchanged, R would use

R> sum(r_B) - n_B * (n_B + 1) / 2

[1] 15

as can be verified by inspection:

R> wilcox.test(B, A)$statistic

W
15

Slide 26



The Mann-Whitney Test

The Mann-Whitney (Wilcoxon rank sum) test can also be derived as
follows.

Consider estimating

π = P(X < Y).

(This for simplicity assumes continuous distributions. In general, one
needs

π = P(X < Y) + P(X = Y)/2

with the indicators below modified accordingly.)

A natural estimate would be

π̂ =
1

mn

n
∑

=1

m
∑

j=1

Zj, Zj = 1X<Yj .
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The Mann-Whitney Test

Now note that

n
∑

=1

m
∑

j=1

Zj =
n
∑

=1

m
∑

j=1

Vj, Vj = 1X()<Y(j) .

If the rank of Y(j) in the pooled sample is denoted by RY,j, then the
number of X less than Y(j) is RY,j − j (in the case of no ties), hence

n
∑

=1

m
∑

j=1

Vj =
m
∑

j=1

(RY,j − j) = TY −m(m + 1)/2 = UY .

giving the symmetric version of the test statistic.
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The Mann-Whitney Test

Using this notation, R’s W is really UX. I.e., π̂ is

R> wilcox.test(B, A)$statistic / (n_A * n_B)

W
0.1442308

Slide 29



The Mann-Whitney Test

Note that this is not the same as

R> mean(outer(A, B, `<`))

[1] 0.09615385

as the example actually has ties:

R> c(sum(outer(A, B, `<`)), sum(outer(A, B, `<=`)))

[1] 10 20

Argh. Mutatis mutandis . . .
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The Mann-Whitney Test

Corollary. If F = G,

E(UY) =
mn

2
, vr(UY) =

mn(m + n + 1)

2
.
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The Mann-Whitney Test

The Mann-Whitney test can be inverted to obtain confidence intervals
for location shifts: consider the shift model G() = F( − Δ).

Then for testing the null that the shift parameter is Δ, we can use

UY(Δ) = #{(, j) : X − (Yj − Δ) < 0} = #{(, j) : Yj − X > Δ}.

One can show that the distribution of UY(Δ) is symmetric about mn/2.

A 100(1 − α)% confidence interval for Δ is thus of the form

C = {Δ : k ≤ UY(Δ) ≤mn − k}

which can be rewritten in terms of the ordered X − Yj.

Slide 32



The Mann-Whitney Test

In R, confidence intervals are obtained via conf.int = TRUE:

R> wilcox.test(A, B, conf.int = TRUE)

Wilcoxon rank sum test with continuity correction

data: A and B
W = 89, p-value = 0.007497
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
0.01000082 0.07001754

sample estimates:
difference in location

0.05008264
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The Mann-Whitney Test

Bootstrap for the two-sample problem: suppose again that π = P(X < Y)
is estimated by π̂.

How can the standard error of this be estimated?

(Note that the confidence intervals are computed under the assumption
that F = G.)

If F and G were known, we could generate bootstrap samples and
compute π̂1, . . . , π̂B from these.

As they are not known, one instead uses the empirical distributions Fn
and Gm.

I.e., one repeatedly randomly selects n values from the observed
X1, . . . , Xn with replacement, and m values from the observed Y1, . . . , Ym,
and calculates the resulting π̂, generating a bootstrap sample π̂1, . . . , π̂B.
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The Mann-Whitney Test

This is our first example of a non-parametric bootstrap, which is
based on suitably resampling the observations.
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Motivation

Often, samples are paired, e.g., by matching cases to controls and then
randomly assigning to treatment and control groups, or by taking
“before” and “after” measurements on the same object.

Given pairing, the samples are no longer independent.

Denote pairs as (X, Y) where the X and Y have means μX and μY and
variances σ2X and σ2Y , respectively.

Assume that different pairs are independent with
cov(X, Y) = σXY = ρσXσY , where ρ is the correlation of X and Y.

Then the differences D = X − Y are independent with

E(D) = μX − μY , vr(D) = σ2X + σ
2
Y − 2ρσXσY .
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Motivation

Suppose the parameter of interest is

μX − μY .

For the natural estimate D̄ = X̄ − Ȳ,

E(D̄) = μX − μY , vr(D̄) =
1

n
(σ2X + σ

2
Y − 2ρσXσY).
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Motivation

Compare to the independent case: if ρ > 0, the variance of D̄ is smaller.

In general, if σ2X = σ
2
Y = σ

2,

vr(D̄) =
1

n
(2σ2 − 2ρσ2) =

2σ2

n
(1 − ρ).

If the X and Y were independent (as previously in the 2-sample case),

vr(X̄ − Ȳ) = vr(X̄) + vr(Ȳ) =
2σ2

n

(corresponding to ρ = 0, of course).
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Paired t test

If the differences have a normal distribution with

E(D) = μD = μX − μY , vr(D) = σ2D,

with σ2D typically unknown, inference will be based on

t =
D̄ − μD
sD̄

which follows a t distribution with n − 1 degrees of freedom.

In particular, if H0 : μD = 0, then under H0,

t =
D̄

sD̄
∼ tn−1.
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Example: Smoking

Levine (1973) drew blood samples from 11 individuals before and after
smoking and measured the extent to which the blood platelets
aggregated.

R> platelet <- read.table("Data/platelet.txt", sep = ",",
+ header = TRUE)
R> B <- platelet$before
R> A <- platelet$after
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Example: Smoking

We can inspect the data via

R> plot(B, A, xlab = "Before", ylab = "After"); abline(0, 1)

30 40 50 60

30
40

50
60

70
80

Before

A
fte

r
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Example: Smoking

Note that

R> cor(B, A)

[1] 0.9012976

so pairing is quite efficient.
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Example: Smoking

Inference can be performed “by hand”, using

R> D <- B - A
R> t <- mean(D) / (sd(D) / sqrt(length(D)))
R> t

[1] -4.271609
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Example: Smoking

In R, we can use t.test() with argument paired = TRUE:

R> t.test(B, A, paired = TRUE)

Paired t-test

data: B and A
t = -4.2716, df = 10, p-value = 0.001633
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
-15.63114 -4.91431

sample estimates:
mean difference

-10.27273
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The signed rank test

The signed rank test (also known as the Wilcoxon signed rank test) is
based on a simple idea.

Compute the differences D = X − Y, rank the absolute values of the D,
and compute the sum of the ranks for which the differences are positive.

In our example,

R> D <- B - A
R> R <- rank(abs(D))
R> sum(R[D > 0])

[1] 1
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The signed rank test

Intuitively, if there was no difference between the paired variables,
about half of the D should be positive, and the signed rank sum should
not be too extreme (small or large).

More precisely, consider the null hypothesis that the distribution of D is
symmetric about 0. If this distribution is continuous, then under H0, all
sign combinations have equal probability 1/2n.

The signed rank sum is then of the form

W+ =
n
∑

k=1

kk,

where k is the indicator that the k-th largest |D| has positive sign.
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The signed rank test

Under H0, the k are i.i.d. Bernoulli with p = 1/2, so E(k) = 1/2,
vr(k) = 1/4,

E(W+) =
1

2

n
∑

k=1

k =
n(n + 1)

4
, vr(W+) =

1

4

n
∑

k=1

k2 =
n(n + 1)(2n + 1)

24
.

In particular,

P(W+ = 1) = P(1 = 1, 2 = · · · = n = 0) = 1/2n.
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The signed rank test

In our example

R> 1 / 2^(length(D))

[1] 0.0004882812

which is the same as

R> dsignrank(1, length(D))

[1] 0.0004882812

and rejecting if W+ is extremely small or large would have p-value

R> 2 * psignrank(1, length(D))

[1] 0.001953125

Slide 49



The signed rank test

In case of ties (as in our case), things are a bit messier, and e.g. the
normal approximation based on the above mean and variance is used.
Compactly:

R> wilcox.test(B, A, paired = TRUE)

Wilcoxon signed rank test with continuity correction

data: B and A
V = 1, p-value = 0.005056
alternative hypothesis: true location shift is not equal to 0
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The signed rank test

One can also invert this test to obtain confidence intervals for the
pseudomedian.

The pseudomedian of a probability distribution F is the median of the
distribution of (U + V)/2, where U and V are independent with
distribution F.

If F is symmetric, then median and pseudomedian coincide.
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The signed rank test

In our example, this gives

R> wilcox.test(B, A, paired = TRUE, conf.int = TRUE)

Wilcoxon signed rank test with continuity correction

data: B and A
V = 1, p-value = 0.005056
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-15.499990 -4.000002

sample estimates:
(pseudo)median

-9.500014
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Outline

■ Comparing two samples

■ Analysis of categorical data

■ Summary
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Motivation

Rosen and Jordan (1974) experiment with male bank supervisors
attending a management institute. In one experiment, supervisors were
given a personnel file and had to decide whether to promote the
employee or to hold the file and interview additional candidates. By
random selection, 24 supervisors examined files labeled as from a male
and 24 files labeled as from a female employee; files were otherwise
identical.

Results were as follows.
Male Female

Promote 21 14
Hold File 3 10

Is there evidence for a gender bias?
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Motivation

A visual comparison of the frequencies:

male female

pr
om

ot
e

ho
ld
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Fisher’s exact test

Under the null of no bias, the observed “differences” would be due only
to the random assignment of supervisors to files. We denote the counts
in the table and the margins as follows:

N11 N12 n1·
N21 N22 n2·
n·1 n·2 n··

The dots are hard to see/read at first encouter: they simply indicate
summing out (taking margins).

According to the null hypothesis, the margins are fixed: the process of
randomization determines the random fluctuation of the cell counts in
the interior of the table subject to the constraints of the margin.
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Fisher’s exact test

With these constraints, there is in fact only 1 degree of freedom in the
interior.

Consider the count N11.

Under H0, this is distributed as the number of successes in 24 draws
without replacement from a population of 35 successes and 13 failures,
i.e., it has a hypergeometric distribution

P(N11 = n11) =

�n1·
n11

��n2·
n21

�

�n··
n·1

� .
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Fisher’s exact test

In our case, the number of successes must be between 11 and 24:

R> round(dhyper(11:24, 35, 13, 24), 4)

[1] 0.0000 0.0003 0.0036 0.0206 0.0720 0.1620 0.2415 0.2415 0.1620
[10] 0.0720 0.0206 0.0036 0.0003 0.0000

The null would be rejected for small or large values of n11, e.g., for
significance level α = 0.05:

R> round(phyper(11:24, 35, 13, 24), 4)

[1] 0.0000 0.0003 0.0039 0.0245 0.0965 0.2585 0.5000 0.7415 0.9035
[10] 0.9755 0.9961 0.9997 1.0000 1.0000

suggests rejecting when n11 ≤ 14 or n11 ≥ 21.

In our case, n11 = 21 so the null of no bias is rejected at the 5% level.
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Fisher’s exact test

This is Fisher’s exact test. In R,

R> tab <- matrix(c(21, 14, 3, 10), nrow = 2, byrow = TRUE)
R> fisher.test(tab)

Fisher's Exact Test for Count Data

data: tab
p-value = 0.04899
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.00557 32.20580

sample estimates:
odds ratio

4.83119
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Fisher’s exact test

Note that this is formulated in terms of the odds ratio corresponding to
the table (but that the sample estimate is not the sample odds ratio).

R also provides suitable generalizations of Fisher’s exact test to general
r × c contingency tables.

Alternatively, function r2dtable() can be used for efficient generation
of tables with given row and column margins, and hence for bootstrap
versions of the test for independence of rows and columns given the
margins.
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Outline

■ Comparing two samples
■ Methods based on the normal distribution

■ A nonparametric method: The Mann-Whitney test

■ Methods based on the normal distribution

■ A nonparametric method: The signed rank test

■ Analysis of categorical data
■ Fisher’s exact test

■ The chi-squared test of homogeneity

■ The chi-squared test of independence

■ Matched-pairs designs

■ Summary
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Motivation

Suppose we have independent observations from J multinomial
distributions with  cells each, and want to test the null that the cell
probabilities of the multinomials are equal—i.e., test the homogeneity of
the multinomial distributions.

Consider the following example from stylometry given in Morton (1978).

When Jane Austen died, she left the novel Sanditon only partially
completed. A highly literate admirer finished the work based on the
summary of the remainder, attempting to emulate Austen’s style.
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Motivation

The following table gives word counts obtained by Morton for Chapters
from Sense and Sensibility, Emma, and Sanditon written by Austen
(Sanditon I) and her admirer (Sanditon II):

Sense and
Word Sensibility Emma Sanditon I Sanditon II
a 147 186 101 83
an 25 26 11 29
this 32 39 15 15
that 94 105 37 22
with 59 74 28 43
without 18 10 10 4
Total 375 440 202 196
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Motivation

R> tab <-
+ matrix(c(147, 186, 101, 83,
+ 25, 26, 11, 29,
+ 32, 39, 15, 15,
+ 94, 105, 37, 22,
+ 59, 74, 28, 43,
+ 18, 10, 10, 4),
+ ncol = 4, byrow = TRUE)
R> rownames(tab) <- c("a", "an", "this", "that", "with", "without")
R> colnames(tab) <- c("S&S", "Emma", "SandI", "SandII")
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Motivation

R> tab

S&S Emma SandI SandII
a 147 186 101 83
an 25 26 11 29
this 32 39 15 15
that 94 105 37 22
with 59 74 28 43
without 18 10 10 4
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Motivation

A visual comparison of the frequencies:

R> mosaicplot(t(tab), main = "")

S&S Emma SandI SandII
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Motivation

We will use the following stochastic model:

■ the counts for Sense and Sensibility will be modeled as a multinomial
random variable with unknown cell probabilities and total count 375.

■ the counts for Emma as multinomial with unknown cell probabilities
and total count 440.

■ etc.

Write πj for the probability of category  in multinomial j. Then the null
hypothesis is

H0 : π1 = · · · = πJ,  = 1, . . . , .

Write nj for the observed cell counts.
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The chi-squared test of homogeneity

Theorem. Under H0 and independent multinomial sampling, the MLEs
of the common cell probabilities π are

π̂ = n·/n··.

Proof. By independence,

lik(π1, . . . , π) =
J
∏

j=1

n·j!

n1j! · · ·nj!
π
n1j
1 · · ·π

nj
 = π

n1·
1 · · ·π

n·


J
∏

j=1

n·j!

n1j! · · ·nj!
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The chi-squared test of homogeneity

To maximize, we use the Lagrangian

L(π1, . . . , π , λ) =

∑

=1

n· log(π) + λ

� 
∑

=1

π − 1
�

.

This has partials

∂L

∂π
=
n·

π
+ λ.

Setting these to zero gives π = −n·/λ and thus the assertion by using
the constraint.

(We already did this.)
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The chi-squared test of homogeneity

For multinomial j, the expected counts (under the null) are

Ej = π̂n·j =
n·n·j

n··
.

Pearson’s chi-squared statistic is therefore

X2 =

∑

=1

J
∑

j=1

(Oj − Ej)2

Ej
=


∑

=1

J
∑

j=1

(nj − n·n·j/n··)2

n·n·j/n··
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The chi-squared test of homogeneity

For large sample size, this approximately has a χ2 distribution with

J( − 1) − ( − 1) = ( − 1)(J − 1)

degrees of freedom, as

■ each of the J multinomials has  − 1 parameters
■ under the null  − 1 parameters are estimated.

This is the chi-squared test of homogeneity.
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Example: Austen

Using R, we first compare the frequencies for Austen’s writings.

R> chisq.test(tab[, 1 : 3])

Pearson's Chi-squared test

data: tab[, 1:3]
X-squared = 12.271, df = 10, p-value = 0.2673

We can thus aggregate the Austen counts to one Austen “meta-novel”:

R> tab <- cbind(Aus = rowSums(tab[, 1:3]), Imi = tab[, 4])
R> t(tab)

a an this that with without
Aus 434 62 86 236 161 38
Imi 83 29 15 22 43 4
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Example: Austen

A visual comparison of the frequencies:

R> mosaicplot(t(tab), main = "")

Aus Imi
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Example: Austen

We now test whether these counts follow the same frequency
distribution:

R> cst <- chisq.test(tab)
R> cst

Pearson's Chi-squared test

data: tab
X-squared = 32.81, df = 5, p-value = 4.106e-06

So the imitator was significantly unsuccessful!
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Example: Austen

To see why, one can look at the contributions to the test statistic (the
squared so-called Pearson residuals).

We can get these residuals with

R> res <- cst$residuals

Note that

R> sum(res^2)

[1] 32.80959

gives the X2 test statistic.

Slide 76



Example: Austen

Looking at the residuals

R> round(res, 2)

Aus Imi
a 0.03 -0.06
an -1.64 3.73
this 0.14 -0.33
that 1.34 -3.05
with -0.77 1.75
without 0.47 -1.07

we see that Austen used an much less and that much more frequently
than her imitator.
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Outline

■ Comparing two samples
■ Methods based on the normal distribution

■ A nonparametric method: The Mann-Whitney test

■ Methods based on the normal distribution

■ A nonparametric method: The signed rank test

■ Analysis of categorical data
■ Fisher’s exact test

■ The chi-squared test of homogeneity

■ The chi-squared test of independence

■ Matched-pairs designs

■ Summary
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Motivation

In a demographic study of women listed in Who’s Who, Kiser and
Schaefer (1949) compiled the following table for 1436 women who were
married at least once:

Married once Married more Total
College 550 61 611
No College 681 144 825
Total 1231 205 1436

Is there a relationship between marital status and level of education?

Slide 79



Motivation

R> tab <- matrix(c(550, 61, 681, 144), nrow = 2, byrow = TRUE)
R> rownames(tab) <- c("College", "No College")
R> colnames(tab) <- c("Once", "More")
R> tab

Once More
College 550 61
No College 681 144
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Motivation

A mosaic plot:

R> mosaicplot(tab, main = "")

College No College
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The chi-squared test of independence

We model the data as coming from a sample of size n cross-classified in
a table with  rows and J columns, a contingency table, with the joint
distribution of the cell counts nj a multinomial with cell probabilities πj.

Note the difference to the previous section!

If the row and column classifications are independent,

πj = π·π·j.

We thus consider testing

H0 : πj = π·π·j,  = 1, . . . , , j = 1, . . . , J

versus the alternatives that the πj are free (apart from being
non-negative with sum one).
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The chi-squared test of independence

For cell probability matrix [πj], the likelihood is

lik([πj]) = n!
∏

,j

π
nj
j

nj!
.

Under H0, the log-likelihood is thus

ℓ = log(n!) +
∑

,j

�

nj log(π·π·j) − log(nj!)
�
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The chi-squared test of independence

To find the MLEs under H0, we can use the Lagrangian

L =
∑

,j

nj
�

log(π·) + log(π·j)
�

+ λ

�

∑



π· − 1
�

+ μ

 

∑

j

π·j − 1

!

.

This has partials

∂L

∂π·
=
∑

j

nj

π·
+ λ =

n·

π·
+ λ,

∂L

∂π·j
=
∑



nj

π·j
+ μ =

n·j

π·j
+ μ.

By the usual computations, setting these to zero gives

π̂· =
n·

n
, π̂·j =

n·j

n
.
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The chi-squared test of independence

Under H0, the MLEs for the πj are thus

π̂j = π̂·π̂·j =
n·

n

n·j

n
.

Under HA, the MLEs are simply

π̂j =
nj

n
.
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The chi-squared test of independence

These MLEs can be used to form an LRT or the asymptotically equivalent
Pearson’s chi-squared test

X2 =

∑

=1

J
∑

j=1

(Oj − Ej)2

Ej

where

Ej = nπ̂j =
n·n·j

n

are the counts expected under the null, giving (again!)

X2 =

∑

=1

J
∑

j=1

(nj − n·n·j/n··)2

n·n·j/n··
.
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The chi-squared test of independence

For the degrees of freedom, we see that

■ under H0, there are ( − 1) + (J − 1) free parameters,
■ under HA, there are and J − 1 free parameters.

So the asymptotic χ2 distribution has (again!)

(J − 1) − (( − 1) + (J − 1)) = J −  − J + 1 = ( − 1)(J − 1)

degrees of freedom.

This is the chi-squared statistics for independence.
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The chi-squared test of independence

Note that the chi-squared statistics for homogeneity and independence
are identical in form and degrees of freedom: however, the underlying
hypotheses and sampling schemes are different.

(Consider performing bootstrap variants of the tests instead.)
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Example: Marriage

For the marriage data,

R> chisq.test(tab)

Pearson's Chi-squared test with Yates' continuity correction

data: tab
X-squared = 15.405, df = 1, p-value = 8.675e-05

Note that to reproduce the results in Rice one needs

R> chisq.test(tab, correct = FALSE)

Pearson's Chi-squared test

data: tab
X-squared = 16.01, df = 1, p-value = 6.302e-05
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Outline

■ Comparing two samples
■ Methods based on the normal distribution

■ A nonparametric method: The Mann-Whitney test

■ Methods based on the normal distribution

■ A nonparametric method: The signed rank test
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Motivation

Does the use of cell phones while driving cause accidents?

This is hard to study empirically (if usage is hazardous, it would be
unethical to deliberately expose drivers to risk, etc.).

Redelmaier and Tibshirani (1997) conducted the following clever study.

699 drivers who owned cell phones and had been involved in motor
vehicle collisions were identified. Then, billing records were used to
determine whether each individual used a cell phone during the 10
minutes preceding the collision and also at the same time during the
previous week. Hence, each person serves as its own control.
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Motivation

Results were as follows:
Before Collision

At Collision On Phone Not On Phone Total
On Phone 13 157 170
Not On Phone 24 505 529
Total 37 662 699

R> tab <- matrix(c(13, 157, 24, 505), nrow = 2, byrow = TRUE)
R> dimnames(tab) <- list(c("A_y", "A_n"), c("B_y", "B_n"))
R> tab

B_y B_n
A_y 13 157
A_n 24 505
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Motivation

A visual comparison of the frequencies:

R> mosaicplot(t(tab), main = "")

B_y B_n

A
_y

A
_n
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McNemar’s test

We can model the data as a sample of size 699 from a multinomial
distribution with four cells and respective cell probabilities πj.

The null hypothesis is that of marginal symmetry (distributions are the
same at collision and before collision):

π11 + π21 = π·1 = π1· = π11 + π12, π12 + π22 = π·2 = π2· = π21 + π22,

or equivalently,

H0 : π12 = π21.
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McNemar’s test

The MLEs of the relevant cell probabilities under H0 are

π̂12 = π̂21 =
n12 + n21

2n
.

Under HA, as before,

π̂12 =
n12

n
, π̂21 =

n21

n
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McNemar’s test

These MLEs can be used to form an LRT or the asymptotically equivalent
Pearson’s chi-squared test

X2 =
(n12 − (n12 + n21)/2)2

(n12 + n21)/2
+
(n21 − (n12 + n21)/2)2

(n12 + n21)/2
=
(n12 − n21)2

n12 + n21

with 2 − 1 = 1 (or 3 − 2 = 1) degree of freedom.

This is the McNemar test.

Slide 96



McNemar’s test

These MLEs can be used to form an LRT or the asymptotically equivalent
Pearson’s chi-squared test

X2 =
(n12 − (n12 + n21)/2)2

(n12 + n21)/2
+
(n21 − (n12 + n21)/2)2

(n12 + n21)/2
=
(n12 − n21)2

n12 + n21

with 2 − 1 = 1 (or 3 − 2 = 1) degree of freedom.

This is the McNemar test.

Slide 96



Example: Phones

By hand,

R> n12 <- tab[1, 2]
R> n21 <- tab[2, 1]
R> Xsq <- (n12 - n21)^2 / (n12 + n21)
R> Xsq

[1] 97.72928

Using a built-in classical test function:

R> mcnemar.test(tab)

McNemar's Chi-squared test with continuity correction

data: tab
McNemar's chi-squared = 96.265, df = 1, p-value < 2.2e-16
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Outline

■ Comparing two samples

■ Analysis of categorical data

■ Summary
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Summary

Observe the correspondences of the classical test problems for metric
and categorical data:

■ Testing the null F1 = · · · = FK that the distributions of J independent
samples are the same: the K-sample problem. We covered K = 2 for
numeric variables (t test for independent samples; Mann-Whitney aka
Wilcoxon rank sum test) and the general case (e.g., chi-squared test
for homogeneity) for categorical data.

■ For pairs (X, Y) of observations, test the null of independence of X and
Y, the so-called independence problem (or contingency
problem). We covered only the categorical case (e.g., chi-squared
test for independence); see e.g. cor.test for variants for numeric
data.
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Summary

■ For pairs (X, Y) of (not necessarily independent) observations, test the
null FX = FY : the symmetry problem. We covered both the numeric
(t test for paired samples; (Wilcoxon) signed rank test) and the
categorical case (McNemar test).

Observe also that in many cases, there are modern conditional
(permutation based) tests as (preferable) alternatives to the classical
unconditional tests.
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