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The Neyman-Pearson paradigm

Ideally, we would like to make both α and β as small as possible.

But that does not work.

In the Neyman-Pearson paradigm, we thus control for α to be “small
enough”, and then try to find tests which also have small β (which is not
always possible).

What is “small enough”? Social compromise. E.g., if α = 0.05, we falsely
reject the null “only” in one out of 20 cases.

Technically, we say a test is of level α if its size does not exceed the
significance level α.

(The difference between size and level is usually “ignored”.)

Note the asymmetry between H0 and HA: we control the probability of
falsely rejecting H0!
Slide 4



The Neyman-Pearson paradigm

Now that looks a bit strange (but then you’ve seen it before), and it
would seem the first idea is preferable.

However:

■ The Neyman-Pearson paradigm gives decision rules which have
worked rather well for practical decision making

■ In quite a few situations we get the same decision rules anyway.

In particular, for simple against simple we get the same decision rules.
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The Neyman-Pearson lemma

Theorem (Neyman-Pearson lemma). Suppose H0 and HA are simple
hypotheses and that the test that rejects H0 whenever the likelihood
ratio (LR) is less than c has size α. Then any other test whose size does
not exceed α has power not exceeding that of the likelihood ratio test.

Equivalently, any other level α test has a type II error probability β not
below that of the LR test.

So for simple against simple, the LR tests are “best” (which agrees with
our intuition), but the critical values are obtained by controlling α and
not via prior odds!
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The Neyman-Pearson lemma

Before we prove the lemma . . .

Note that the likelihood ratio decision rules are now of the form

reject H0⇔ LR < c.

(So “ties” are broken in favor of H0.)
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The Neyman-Pearson lemma

Before we prove the lemma . . .

Note also the strange formulation: if we use the above decision rule, the
type I error probability is α. Why not start with α and choose the critical
value c appropriately?

Well, this does not work in the discrete case. In our introductory
example, the only α we can exactly get are

R> pbinom(0 : 10, 10, 0.5, lower.tail = FALSE)

[1] 0.9990234375 0.9892578125 0.9453125000 0.8281250000 0.6230468750
[6] 0.3769531250 0.1718750000 0.0546875000 0.0107421875 0.0009765625

[11] 0.0000000000
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The Neyman-Pearson lemma

So what if we wanted a likelihood ratio test with α exactly 0.05?

Well, that’s not possible. Unless we take a random decision when  = 8.

Hard-core N-P theory thus considers “randomized decision rules” which
give the probability of rejecting H0.

But that’s awful, also from a philosophical perspective, so let’s only look
at non-randomized tests/decisions (and take the lemma as formulated).

A (non-randomized) test is then equivalent to its decision function

d() = rejection region() =

¨

1,  ∈ rejection region (i.e., reject H0),
0,  ∈ acceptance region (i.e., accept H0).
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The Neyman-Pearson lemma

Proof of the Neyman-Pearson lemma. Consider any test with
decision function d.

The size is

P(reject H0|H0) = P(d(X) = 1|H0) = E0(d(X)),

the power is

P(reject H0|HA) = P(d(X) = 1|HA) = EA(d(X)).

Write ƒ0 and ƒA for the densities (or pmfs) under H0 and HA, respectively,
and d∗ for the decision function of the likelihood ratio test, i.e.,

d∗() = 1⇔ ƒ0()/ ƒA() < c⇔ cƒA() − ƒ0() > 0.
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The Neyman-Pearson lemma

For all , we have

d()(cƒA() − ƒ0()) ≤ d∗()(cƒA() − ƒ0()).

Why?

If d∗() = 0, cƒA()− ƒ0() ≤ 0, so the LHS above is ≤ 0 and the RHS is 0.
So o.k.

If d∗() = 1, cƒA() − ƒ0() > 0. So

d∗()(cƒA() − ƒ0()) = (cƒA() − ƒ0()) ≥ d()(cƒA() − ƒ0())

is also o.k.
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The Neyman-Pearson lemma

So for all , we have

d()(cƒA() − ƒ0()) ≤ d∗()(cƒA() − ƒ0()).

Now integrate this (with respect to the reference measure for the
densities): this gives

cEA(d(X)) − E0(d(X)) ≤ cEA(d∗(X)) − E0(d∗(X))

or equivalently,

EA(d∗(X)) − EA(d(X)) ≥ (E0(d∗(X)) − E0(d(X)))/c.

Thus, E0(d(X)) ≤ E0(d∗(X)) implies that EA(d∗(X)) ≥ EA(d(X)), as
asserted.
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Example: Normal distribution

Let X1, . . . , Xn be a random sample from a normal distribution with
known variance σ2, and consider the simple hypotheses

H0 : μ = μ0 HA : μ = μA.

By the Neyman-Pearson lemma, among all level α tests, the one that
rejects for small values of the likelihood ratio is most powerful.

What does this test look like?
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Example: Normal distribution

We have

ƒ0()

ƒA()
=

n
∏

=1

1
p
2πσ

e−(−μ0)
2/2σ2

n
∏

=1

1
p
2πσ

e−(−μA)
2/2σ2

= exp

�

−
1

2σ2

� n
∑

=1

( − μ0)2 −
n
∑

=1

( − μA)2
��

= exp

�

−
1

2σ2

� n
∑

=1

(2 − 2μ0 + μ20) −
n
∑

=1

(2 − 2μA + μ2A)

��

= exp
�

−
1

2σ2
�

2n̄(μA − μ0) + n(μ20 − μ
2
A)
�

�

.
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Example: Normal distribution

Clearly,

ƒ0()

ƒA()
< c0 ⇔ −

1

2σ2
�

2n̄(μA − μ0) + n(μ20 − μ
2
A)
�

< log(c0)

⇔ 2n̄(μA − μ0) + n(μ20 − μ
2
A) > −2σ

2 log(c0)

⇔ ̄(μA − μ0) >
n(μ2A − μ

2
0) − 2σ

2 log(c)

2n
=: c1.

If μ0 > μA,

ƒ0()

ƒA()
< c0⇔ ̄ <

c1

μA − μ0
.

Thus, the LR is small iff ̄ is small.
Slide 15



Example: Normal distribution

If μ0 < μA,

ƒ0()

ƒA()
< c0⇔ ̄ >

c1

μA − μ0
.

Thus, the LR is small iff ̄ is large.

In this case, the likelihood ratio test (LRT) rejects iff ̄ > c, where c = cα
is determined by controlling the significance level α:

α = P(X̄ > c|H0) = P0

�

X̄ − μ0
σ/
p
n

>
c − μ0
σ/
p
n

�

= 1 − 
�

c − μ0
σ/
p
n

�

.

Thus,

c = μ0 +
σ
p
n
z1−α.
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Example: Normal distribution

Note that we get a very nice result.

Intuitively,

■ By sufficiency, decision rules should only have to look at ̄.

■ If μ0 < μA, then clearly large values of ̄ increasingly favor HA. So
decision rules should be of the form “reject H0 iff ̄ > c”.
(The fact that μ0 < μA determines the shape of the rejection region.)

The critical value is determined by making the size α.

By the Neyman-Pearson lemma, this gives the most powerful test with
significance level α.
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Significance levels and p-values

In the previous example, the decision rules were of the form

reject H0⇔ X̄ > cα

with cα chosen to make the significance level α, i.e.,

P(X̄ > cα|H0) = α.

(Clearly, the above only makes sense if H0 is simple. In general, the size
is defined as the max/sup of the type I errors.)
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Significance levels and p-values

The original N-P idea was

■ fix α in advance (e.g., 5%)
■ determine the corresponding critical value cα
■ when observing 1, . . . , n, report whether ̄ > cα (reject) or not

(accept).

Clearly, this loses some information (e.g., was ̄ close to the critical
value of not?).

Do we really need to fix α in advance?

Alternatively, we could report the smallest significance level at which
the null hypothesis would be rejected: the so-called p-value of the test.
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Significance levels and p-values

In our case,

̄ > cα ⇒ P(X̄ > ̄|H0) ≤ P(X̄ > cα|H0) = α.

So clearly,

inf{α : ̄ > cα} = P(X̄ > ̄|H0).

I.e., the p-value is the probability (under the null) of observing
something “more extreme” than we observed.

This recovers Fisher’s approach to testing (older than N-P) by reporting
“fiducial values”, interpreted as the null probability of observing
something more extreme (in a sense, less fitting with the null) than
what was actually observed.
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Significance levels and p-values

Can easily be generalized: if T is the test statistic and we reject for large
values of T (“large values are significant”), i.e., use decision rules of the
form

reject H0⇔ T > tα

then when observing tobs = t(1, . . . , n),

p = P(T > tobs|H0).

(Similarly when rejecting for ≥ instead of >.)
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Significance levels and p-values

But note:

p = P(T > tobs|H0) = P(T > t(1, . . . , n)|H0) = p(1, . . . , n).

So p-values depend on the observations!

They are observations of random variables and not probabilities (“the
probability that H0 is true”).

In fact, under the null the p-value has a standard uniform distribution
(see the homeworks).
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Significance levels and p-values

Modern statistical software always reports p-values (i.e., the smallest α
for which the null would be rejected) and not the binary decision for a
fixed α.

One can easily recover the binary decision by comparing p and a target
signficance level α, as

reject H0 at level α⇔ p ≤ α.

Often, software “helps” to see the binary decision by adding
“significance stars” (e.g., in R for linear regression modeling).
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Roles of H0 and HA

By prescribing a significance level to control the size (probability of
type I error), one introduces a fundamental asymmetry between H0 and
HA.

One only rejects H0 when the data provides significant evidence against
it.

In some sense, one can only (significantly) “falsify” H0, but not “verify”
it.

To have the data provide significant evidence for something, one has to
put that into HA!

(This is what typically happens in statistical modeling.)
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Uniformly most powerful tests

Consider again the situation where X1, . . . , Xn are i.i.d. normal with
unknown mean μ and known variance σ2, and we want to test

H0 : μ = μ0 against HA : μ = μA

where μ0 < μA.

We found that the most powerful level α test is of the form

reject H0⇔ X̄ > cα

where cα is determined by

P(X̄ > cα|H0) = P(N(μ0, σ2/n) > cα) = α ⇒ cα = μ0 + z1−ασ/
p
n.

I.e., cα depends on μ0, but not μA! (Only μ0 < μA matters).
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Uniformly most powerful tests

Thus, for all μA > μ0 we get the same test!

The test is thus uniformly most powerful (UMP) for

H0 : μ = μ0 against HA : μ > μ0

where HA is now a one-sided composite hypothesis.

So also in this case, there is a “best” test. This is good.

One can argue that the test is also UMP for H0 : μ ≤ μ0 against
HA : μ > μ0 (among all tests with size spμ∈H0

α(μ)).

But it is not UMP for testing H0 : μ = μ0 against HA : μ ̸= μ0 (as for
alternatives > μ0 and < μ0, the UMP tests reject for large and small
values of X̄, respectively).

In fact, there clearly cannot be a UMP test for this problem. This is bad.
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Example: Normal distribution

Consider again the situation where X1, . . . , Xn are i.i.d. normal with
unknown mean μ and known variance σ2. Suppose we want to test

H0 : μ = μ0 against HA : μ ̸= μ0

The “obvious” level α test is

reject H0⇔|X̄ − μ0| > cα

with cα determined from

α = P(|X̄ − μ0| > cα|μ0) = P(−cα < X̄ − μ0 < cα|μ0)

from which

cα = z1−α/2σX̄ = z1−α/2
σ
p
n
.
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Example: Normal distribution

The test accepts if

|X̄ − μ0| ≤ cα ⇔ −cα ≤ X̄ − μ0 ≤ cα ⇔ X̄ − cα ≤ μ0 ≤ X̄ + cα.

As the acceptance probability is 1 − α, the above gives the (already
known) 100(1 − α)% confidence interval for μ.

I.e.,

μ0 is in the confidence interval for μ ⇔ hypothesis test accepts.

This duality between confidence regions (for parameter estimation) and
acceptance regions (for hypothesis testing) holds quite generally.
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Duality of confidence regions and hypoth-
esis tests

Let θ be a (real-valued) parameter of a family of probability
distributions, and Θ be the set of all possible values of θ.

Theorem. Suppose for every θ0 in Θ there is a level α test of the
hypothesis H0 : θ = θ0. Denote the acceptance region of this test by
A(θ0). Then the set

C(X) = {θ : X ∈ A(θ)}

is a 100(1 − α)% confidence region for θ.

(Note “confidence region”, as we don’t necessarily get intervals.)
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Duality of confidence regions and hypoth-
esis tests

Proof. We have

θ0 ∈ C(X)⇔X ∈ A(θ0).

Hence, for every θ0 ∈ Θ,

P(θ0 ∈ C(X)|θ0) = P(X ∈ A(θ0)|θ0) = 1 − α.

Slide 31



Duality of confidence regions and hypoth-
esis tests

Theorem. Suppose that C(X) is a 100(1− α)% confidence region for θ,
i.e., for every θ0,

P(θ0 ∈ C(X)|θ0) = 1 − α.

Then

A(θ0) = {X : θ0 ∈ C(X)}

defines an acceptance region for a level α test of the null hypothesis
H0 : θ = θ0.

Slide 32



Duality of confidence regions and hypoth-
esis tests

Proof.

P(X ∈ A(θ0)|θ0) = P(θ0 ∈ C(X)|θ0) = 1 − α.
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Introduction

Consider a general hypothesis testing problem of the form

H0 : θ ∈ Θ0 against HA : θ ∈ ΘA.

If both Θ0 and ΘA were simple, we know (N-P lemma!) that the
likelihood ratio test is optimal (UMP).

In the general case, we do not know (and UMP tests usually do not
exist), but it still seems a good idea to base a test on the ratio of the
(maximal) likelihoods under the null and alternative.
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Introduction

This gives the generalized likelihood ratio test statistic

Λ∗ =
spθ∈Θ0

lik(θ)

spθ∈ΘA
lik(θ)

or the usually preferred

Λ =
spθ∈Θ0

lik(θ)

spθ∈Θ0∪ΘA
lik(θ)

Both Likelihood ratio tests (LRTs) reject for small values of the test
statistic. I.e.,

reject H0⇔Λ∗ < c, reject H0⇔Λ < c.
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Introduction

Note: finding

sp
θ∈Θ0

lik(θ)

gives the constrained MLE under the null (i.e., the MLE under the
constraint that θ ∈ Θ0).

Finding

sp
θ∈ΘA

lik(θ)

gives the constrained MLE under the alternative.
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Introduction

Finding

sp
θ∈Θ0∪ΘA

lik(θ)

gives the “usual” (unconstrained) MLE, provided that Θ0 ∪ΘA gives the
whole parameter space Θ.
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Example: Normal distribution

Consider again the situation where X1, . . . , Xn are i.i.d. normal with
unknown mean μ and known variance σ2. Suppose we want to test

H0 : μ = μ0 against HA : μ ̸= μ0

The likelihood for μ (remember σ is known) is

lik(μ) =
n
∏

=1

1
p
2πσ

e−(−μ)
2/2σ2 = (2πσ2)−n/2 exp

�

−
1

2σ2

n
∑

=1

( − μ)2
�

.

Under H0, μ = μ0 (constrained MLE under the null).

The unconstrained MLE is μ̂ = ̄.
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Example: Normal distribution

Thus, the LRT statistic is

Λ =
lik(μ0)

lik(μ̂)
= exp

�

−
1

2σ2

� n
∑

=1

( − μ0)2 −
n
∑

=1

( − ̄)2
��

and the LRT does

reject H0 ⇔ Λ < c0 ⇔ −2 log(Λ) > −2 log(c0) := c1.

Now remember that

n
∑

=1

( − μ0)2 =
n
∑

=1

( − ̄)2 + n(̄ − μ0)2.
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Example: Normal distribution

Therefore,

−2 log(Λ) =
1

σ2

� n
∑

=1

( − μ0)2 −
n
∑

=1

( − ̄)2
�

=
1

σ2

� n
∑

=1

( − ̄)2 + n(̄ − μ0)2 −
n
∑

=1

( − ̄)2
�

=
1

σ2
n(̄ − μ0)2

=
�

̄ − μ0
σ/
p
n

�2

.
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Example: Normal distribution

The LRT is thus

reject H0 ⇔
�

̄ − μ0
σ/
p
n

�2

> c1 ⇔
�

�

�

�

̄ − μ0
σ/
p
n

�

�

�

�

> c2

with c1 and c2 determined to give a level α test.

Note that we again get the “obvious” test. This is nice.

Under H0, clearly X̄ ∼ N(μ0, σ2/n), and thus c2 = z1−α/2. Alternatively,

X̄ − μ0
σ/
p
n
∼ N(0,1)⇒

�

X̄ − μ0
σ/
p
n

�2

∼ χ21,

from which c1 = Qχ21
(1 − α).

The latter holds more generally, approximately for large samples.
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Example: Normal distribution

The LRT is thus

reject H0 ⇔
�

̄ − μ0
σ/
p
n

�2

> c1 ⇔
�

�

�

�

̄ − μ0
σ/
p
n

�

�

�

�

> c2

with c1 and c2 determined to give a level α test.

Note that we again get the “obvious” test. This is nice.

Under H0, clearly X̄ ∼ N(μ0, σ2/n), and thus c2 = z1−α/2. Alternatively,

X̄ − μ0
σ/
p
n
∼ N(0,1)⇒

�

X̄ − μ0
σ/
p
n

�2

∼ χ21,

from which c1 = Qχ21
(1 − α).

The latter holds more generally, approximately for large samples.
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Asymptotic null distribution of the LRT
statistic

Theorem. Under smoothness conditions on the density (or pmf)
functions involved, the null distribution of −2 log(Λ) tends to a
chi-squared distribution with dim(Θ0 ∪ΘA) − dim(Θ0) degrees of
freedom as the sample size tends to infinity.

In the above, the dimensions are the numbers of free parameters.

(We won’t prove the theorem, sorry.)
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Example: Normal distribution

In the previous example,

■ Θ0 is simple and hence has no free parameters,
■ ΘA specifies σ2 but has μ as free parameter.

So

dim(Θ0 ∪ΘA) − dim(Θ0) = dim(R) − dim({μ0}) = 1 − 0 = 1

and the theorem says that under the null,

−2 log(Λ) d→ χ21.

In fact, we showed that under the null,

−2 log(Λ) d
= χ21
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Outline

■ Testing hypotheses and assessing goodness of fit
■ The Neyman-Pearson paradigm

■ Duality of confidence regions and hypothesis tests

■ Generalized likelihood ratio tests

■ Likelihood ratio tests for the multinomial distribution

■ Assessing goodness of fit
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Introduction

This is always very confusing at first encounter.

Suppose we have observations from a discrete distribution which attains
possible values 1, . . . , m with (unknown) probabilities p1, . . . , pm.

With p = (p1, . . . , pm),

P(X = j|p) = pj.

We can also write this as

P(X = |p) = p(=1)1 × · · ·×p(=m)m =
m
∏

j=1

p
(=j)
j ,  ∈ {1, . . . , m}.

(We already encountered this in the Bernoulli experiment example in
the section on sufficiency.)
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Introduction

Thus, if X1, . . . , Xn are i.i.d. from this discrete distribution, the pmf is

P(X1 = 1, . . . , Xn = n|p) =
n
∏

=1

P(X = |p)

=
n
∏

=1

 

m
∏

j=1

p
(=j)
j

!

=
m
∏

j=1

p
∑n

=1 (=j)
j .
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Introduction

If we write

nj = nj(1, . . . , n) =
n
∑

=1

( = j)

for the absolute frequency of j in the observations 1, . . . , n,

P(X1 = 1, . . . , Xn = n|p) =
m
∏

j=1

p
nj
j .

Thus, the frequencies are sufficient for p, and it makes sense to base
inference on the sufficient statistics.
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Introduction

Now as we know, the corresponding random variables

(N1, . . . , Nm) = (n1(X1, . . . , Xn), . . . , nm(X1, . . . , Xn))

have a multinomial distribution with parameters n and p1, . . . , pm:

P(N1 = n1, . . . , Nm = nm|p) =
n!

n1! · · ·nm!
pn11 · · ·p

nm
m .

One thus typically presents inference for the params of discrete
distributions (with finite support of size m) as inference for the params
of the corresponding m-dimensional multinomial distributions.

Which can be confusing at first encounter, in particular because as the
m observed counts (which sum to n) correspond to a sample of size n!
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LRT for the multinomial distribution

Now suppose we have a parametric model

p1 = p1(θ), . . . , pm = pm(θ)

and want to test whether this model “works”.

I.e., we want to perform a goodness-of-fit test for the appropriateness
of the model.

E.g., test whether the binomial distribution is appropriate.

We can write this as

H0 : p1 = p1(θ), . . . , pm = pm(θ) for some θ ∈ Θ

against

HA : there is no θ such that p1 = p1(θ), . . . , pm = pm(θ).
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LRT for the multinomial distribution

Using the multinomial for the observed frequencies,

lik(p) =
n!

n1! · · ·nm!
pn11 · · ·p

nm
m .

Under H0, we need to find

mx
θ∈Θ

lik(p(θ)).

Write θ̂ for the maximizer (which gives the restricted MLE).

Under H0 or HA, p is “unconstrained”, i.e., the only constraints are

p1 ≥ 0, . . . , pm ≥ 0, p1 + · · · + pm = 1.
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LRT for the multinomial distribution

To maximize lik(p) over the set of all probability vectors p, we can use
the Lagrangian method. The Lagrangian for the log-likelihood is

L(p) = log
�

n!

n1! · · ·nm!
pn11 · · ·p

nm
m

�

+ λ

 

m
∑

j=1

pj − 1

!

= log(n!) −
m
∑

j=1

log(nj!) +
m
∑

j=1

nj log(pj) + λ

 

m
∑

j=1

pj − 1

!

.

Setting the partials with respect to p1, . . . , pm and λ to zero gives

n1

p1
+ λ = 0, . . . ,

nm

pm
+ λ = 0,

m
∑

j=1

pj = 1.
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LRT for the multinomial distribution

So

p1 = −
n1

λ
, . . . , pm = −

nm

λ

where λ can be determined from

1 =
∑

pj =
m
∑

j=1

�

−
nj

λ

�

= −
1

λ

m
∑

j=1

nj = −
n

λ

from which λ = −n and

p̂1 =
n1

n
, . . . , p̂m =

nm

n

(“as expected”).
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LRT for the multinomial distribution

The LRT statistic is thus

Λ =
lik(p(θ̂))

lik(p̂)

=

n!

n1! · · ·nm!
p1(θ̂)n1 · · ·pm(θ̂)nm

n!

n1! · · ·nm!
p̂n11 · · · p̂

nm
m

=
m
∏

j=1

�

pj(θ̂)

p̂j

�nj

.
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LRT for the multinomial distribution

Therefore, using p̂j = nj/n,

−2 log(Λ) = −2
m
∑

j=1

nj log

�

pj(θ̂)

p̂j

�

= 2
m
∑

j=1

nj log

�

nj

npj(θ̂)

�

which is commonly written as

−2 log(Λ) = 2
m
∑

j=1

Oj log
�

Oj

Ej

�

with

Oj = nj . . . observed count, Ej = njpj(θ̂) . . . expected count.
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LRT for the multinomial distribution

Under H0 or HA, there are m − 1 free parameters (as p1, . . . , pm sum to
one).

Thus if Θ has k free parameters, our theorem yields that under H0,

−2 log(Λ) = 2
m
∑

j=1

Oj log
�

Oj

Ej

�

d→ χ2m−k−1.

Very confusingly, statistical software typically does not use/report
−2 log(Λ) but instead an asymptotically equivalent chi-squared statistic.

In R, chisq.test().
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LRT for the multinomial distribution

To see why/how, note that when n is large and H0 is true, p̂j ≈ pj(θ̂).

Consider the function

h() =  log
�



0

�

=  log() −  log(0)

for  ≈ 0. We have

h′() = log() + 1 − log(0), h′′() = 1/

so that

h(0) = 0, h′(0) = 1, h′′(0) = 1/0

for a Taylor series expansion of

 log
�



0

�

= ( − 0) +
1

20
( − 0)2 + · · ·
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LRT for the multinomial distribution

Therefore, taking  = p̂j and 0 = pj(θ̂),

−2 log(Λ) = 2n
m
∑

j=1

p̂j log

�

p̂j

pj(θ̂)

�

≈ 2n
m
∑

j=1

�

(p̂j − pj(θ̂)) +
1

2pj(θ̂)
(p̂j − pj(θ̂))2

�

.

Since probabilities sum to one,

−2 log(Λ) ≈ n
m
∑

j=1

(p̂j − pj(θ̂))2

pj(θ̂)
=

m
∑

j=1

(np̂j − npj(θ̂))2

npj(θ̂)
=

m
∑

j=1

(Oj − Ej)2

Ej
.
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LRT for the multinomial distribution

This is the typically encountered chi-squared approximation:

−2 log(Λ) ≈ X2 =
m
∑

j=1

(Oj − Ej)2

Ej

d→ χ2m−k−1.

Note: the X is an upper-case χ.
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LRT for the multinomial distribution

If H0 completely specifies the probabilities, i.e.,

H0 : p1 = p1,0, . . . , pm = pm,0,

clearly k = 0 and Ej = npj,0, and (under H0),

−2 log(Λ) = 2
m
∑

j=1

Oj log
�

Oj

npj,0

�

≈ X2 =
m
∑

j=1

(Oj − npj,0)2

npj,0

d→ χ2m−1

(“chi-squared goodness of fit test for given probabilities”).
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LRT for the multinomial distribution

Note: clearly, if (N1, . . . , Nm) has a multinomial distribution with
parameters n and p1, . . . , pm, each Nj has a binomial distribution with
parameters n and pj.

By the CLT,

Nj − npj
Æ

npj(1 − pj)
d→ N(0,1)⇒

(Nj − npj)2

npj(1 − pj)
d→ χ21.

But the Nj are not independent (as they sum to n), and interestingly,
their asymptotic covariance turns out to be such that

m
∑

j=1

(Nj − npj)2

npj

d→ χ2m−1.
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Outline

■ Testing hypotheses and assessing goodness of fit
■ The Neyman-Pearson paradigm

■ Duality of confidence regions and hypothesis tests

■ Generalized likelihood ratio tests

■ Likelihood ratio tests for the multinomial distribution

■ Assessing goodness of fit
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Assessing goodness of fit

We already know from Statistics 1 that goodness of fit can be judged via
probability or preferably quantile plots, which graphically illustrate the
goodness of fit of data to suitable families of probability distributions.

There is also a huge variety of goodness of fit hypothesis tests for nulls
that the probability distribution comes from a family of distributions
against, e.g., the alternative that it does not.

For discrete distributions (with finite support), these can be based on
the likelihood ratio or chi-squared tests for the multinomial distribution
discussed above.
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Assessing goodness of fit

A very popular problem is testing for normality, either against the
general alternative of non-normality, or against departures which take
the form of asymmetry (skewness) or non-normal kurtosis, or jointly
(Jarque-Bera test, implemented in package tseries).

For departures against symmetry, goodness-of-fit tests can be based on
the sample coefficient of skewness

b1 =
1
n

∑n
=1(X − X̄)3

s3

which rejects for large values of |b1|. Under the null of normality, this is
asymptotically normal with mean 0 and variance 6/n.
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