
Statistics 2 Unit 3

Kurt Hornik

March 14, 2023



Outline

■ Estimation of parameters and fitting of probability
distributions

■ Testing hypotheses and assessing goodness of fit

Slide 2



Outline

■ Estimation of parameters and fitting of probability
distributions
■ The Bayesian Approach to Parameter Estimation

■ Efficiency

■ Sufficiency

■ Testing hypotheses and assessing goodness of fit

Slide 3



Big picture

In the Bayesian approach, the unknown parameter θ is treated as a
random variable with “prior” distribution ƒΘ(θ) representing what we
know about the parameter before observing data.

(For now, we write Θ for the random variable corresponding to the
parameter θ.)

I.e., uncertainty about parameters is also modeled probabilistically.

(Very nice idea, but often the priors have parameters (so-called
hyperparameters) which are also unknown but no longer modeled
probabilistically.)

For a given value Θ = θ, the data have probability distribution ƒX|Θ(|θ).

(We used to write ƒ (|θ): the subscripts now indicate the corresponding
random variables.)
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Big picture

If Θ has a continuous distribution, the joint distribution of X and Θ is

ƒX,Θ(, θ) = ƒX|Θ(|θ)ƒΘ(θ).

The marginal distribution of X is

ƒX() =
∫

ƒX,Θ(, θ)dθ =
∫

ƒX|Θ(|θ)ƒΘ(θ)dθ.

Finally, the distribution of Θ given the data, the so-called posterior
distribution, is

ƒΘ|X(θ|) =
ƒX,Θ(, θ)

ƒX()
=

ƒX,Θ(, θ)
∫

ƒX|Θ(|θ)ƒΘ(θ)dθ
=

ƒX|Θ(|θ)ƒΘ(θ)
∫

ƒX|Θ(|θ)ƒΘ(θ)dθ
.
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Big picture

(This is a bit awkward: in the denominator, θ is integrated out.)

Note that ƒX|Θ(|θ) is the likelihood, and by the above (the denominator
is the marginal density of  and hence a constant for fixed/given )

ƒΘ|X(θ|) ∝ ƒX|Θ(|θ)ƒΘ(θ).

This is useful if we can recognize the posterior from the numerator: we
then do not need to compute the denominator (as we already know it),
see below.

Slide 6



Big picture

In the above, X and  can also be vectors. Alternatively,

ƒΘ|X1,...,Xn(θ|1, . . . , n) ∝ ƒX1,...,Xn |Θ(1, . . . , n|θ) × ƒΘ(θ)

and as usual, if X1, . . . , Xn are i.i.d. given θ,

ƒΘ|X1,...,Xn(θ|1, . . . , n) ∝ ƒX1 |Θ(1|θ) × · · · × ƒXn |Θ(n|θ) × ƒΘ(θ).

After observing 1, . . . , n, the posterior contains all available
information about the parameter, and inference is therefore always
based on the posterior (“likelihood principle”).
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Example: Poisson distribution

Suppose that given Λ = λ, X1, . . . , Xn are i.i.d. Poisson(λ), with Λ having
a prior density ƒΛ(λ).

Then

ƒX1,...,Xn |Λ(1, . . . , n|λ) =
n
∏

=1

ƒX |Λ(|λ) =
n
∏

=1

λ

!
e−λ =

λ1+···+n

1! · · ·n!
e−nλ.

The posterior is thus (terms which only depend on the  cancel out)

ƒΛ|X1,...,Xn(λ|1, . . . , n) =
λ
∑

 e−nλƒΛ(λ)
∫

λ
∑

 e−nλƒΛ(λ)dλ
.

To evaluate this, one needs to specify the prior, and carry out the
integration in the denominator.
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Example: Poisson distribution

Suppose we take the prior as Gamma(α, rate = ν) (we usually write λ for
the rate parameter, but that is already taken):

ƒΛ(λ) =
ναλα−1e−νλ

(α)

Then (canceling out constants)

ƒΛ|X1,...,Xn(λ|1, . . . , n) =
λ
∑

 +α−1e−(n+ν)λ
∫

λ
∑

 +α−1e−(n+ν)λdλ
.

Without computing the integral, we can see that the posterior is
Gamma(
∑

  + α, rate = n + ν)!
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Example: Poisson distribution

In the Bayesian paradigm, all information about Λ is contained in the
posterior.

We can estimate the parameter e.g. by the mean or mode (posterior
mean and posterior mode, respectively) of this distribution.

For a Gamma distribution with shape α and rate ν these are α/ν and
(α − 1)/ν, giving the estimates
∑

  + α

n + ν
,

∑

  + α − 1

n + ν
.
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Example: Poisson distribution

The Bayesian analogue to the confidence interval is the interval from the
α/2 to the 1 − α/2 quantile of the posterior (a 1 − α credible interval).

Alternatively, the high posterior density (HPD) interval is obtained
as a level set

{λ : ƒΛ|X1,...,Xn(λ|1, . . . n) ≥ c}

with c chosen to achieve posterior coverage probability 1 − α.
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Example: Poisson distribution

One could choose other priors, e.g., a uniform prior on [0,100].

Then

ƒΛ|X1,...,Xn(λ|1, . . . , n) =
λ
∑

 e−nλ
∫ 100
0 λ
∑

 e−nλdλ
, 0 ≤ λ ≤ 100.

In this case, the denominator has to be integrated numerically (note the
relation to the distribution function of the Gamma distribution).
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Example: Normal distribution

One conveniently reparametrizes the normal, replacing σ2 by the
precision ξ = 1/σ2.

Writing θ instead of μ (so that we can write Θ for the corresponding
random variable),

ƒX|Θ,(|θ, ξ) =

√

√

√
ξ

2π
e−ξ(−θ)

2/2.

Rice covers several cases (unknown mean and known variance, known
mean and unknown variance, unknown mean and unknown variance).

For the last, one possibly model is to specify independent priors for Θ
and  as

Θ ∼ N(θ0, ξ−1prior),  ∼ Gamma(α, rate = λ).
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Example: Normal distribution

Then (if the X are i.i.d. as usual),

ƒΘ,|X1,...,Xn(θ, ξ|1, . . . , n)
∝ ƒX1,...,Xn |Θ,(1, . . . , n|θ, ξ)ƒΘ(θ)ƒ(ξ)

∝ exp

�

−
ξ

2

∑



( − θ)2
�

exp
�

−
ξprior

2
(θ − θ0)2
�

ξn/2+α−1e−λξ.

which looks rather “messy”.

If the priors are quite flat (i.e., α, λ and ξprior are small), we get
(approximately)

ƒΘ,|X1,...,Xn(θ, ξ|1, . . . , n) ∝ exp

�

−
ξ

2

∑



( − θ)2
�

ξn/2−1.

Slide 14



Example: Normal distribution

The marginal posterior of Θ is obtained by integrating out ξ as

ƒΘ|X1,...,Xn(θ|1, . . . , n) ∝
�∑

( − θ)2
�−n/2

from which after some algebra it can be shown that under the marginal
posterior,

p
n
Θ − ̄

s
∼ tn−1

corresponding to the result from maximum likelihood analysis.
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More on priors

We saw that for the Poisson distribution, using a Gamma prior gave a
Gamma posterior: in general, such priors (families of priors G for which
when the data distribution is in a family H, then the posterior again is in
G) are called conjugate priors (to the family of data distributions).

In many applications, it is desirable to use flat or “non-informative”
priors—but this hard to make precise.

In the Poisson case with Gamma priors, these are flat when α and ν are
small. But taking limits gives

ƒΛ(λ) ∝ λ−1, λ > 0

which is not a valid density!

Such priors are called improper priors, and may result in proper or
improper posteriors.
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More on priors

E.g., in the Poisson case, using the improper prior ƒΛ(λ) ∝ λ−1 results in
the posterior

ƒΛ|X1,...,Xn(λ|1, . . . , n) ∝ λ
∑

−1e−nλ

which is proper iff
∑

  > 0.

In which case it is a Gamma distribution with shape
∑

  and rate n, as
obtained by taking limits in the posterior.
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More on priors

E.g., in the normal case with unknown mean and precision, one can take

ƒΘ(θ) ∝ 1, ƒ(ξ) ∝ ξ−1,

This gives the joint posterior

ƒΘ,|X1,...,Xn(θ, ξ|1, . . . , n)

∝ ξn/2−1 exp

�

−
ξ

2

∑



( − θ)2
�

∝ ξn/2−1 exp
�

−
ξ

2
(n − 1)s2
�

exp
�

−
nξ

2
(θ − ̄)2
�

.

Conditional on ξ, Θ is normal with mean ̄ and precision nξ.
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Computational aspects

Bayesian inference typically requires considerable computational power,
e.g., for computing the normalizing constants.

In high dimensional problems, difficulties arise, and one can use
sophisticated methods such as Gibbs sampling.

Consider inference for a normal with unknown mean and variance and
an improper prior (α→ 0, λ→ 0, ξprior → 0. Then (as before)

ƒΘ,|X1,...,Xn(θ, ξ|1, . . . , n)

∝ ξn/2−1 exp
�

−
ξ

2
(n − 1)s2
�

exp
�

−
nξ

2
(θ − ̄)2
�

.

To study the posterior by Monte Carlo, one would draw many pairs
(θk, ξk) from this joint density—but how?
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Computational aspects

Gibbs sampling alternates between simulating from the conditional
distribution of one parameter given the others.

In our case, we note that

■ given ξ, Θ is normal with mean ̄ and precision nξ
■ given θ,  has a Gamma distribution.
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Computational aspects

One would then proceed as follows:

1. Choose an initial value θ0, e.g., ̄.

2. Generate ξ0 from a Gamma density with parameters n/2 and
n(θ0 − ̄)2/2 (which will not work, as the latter is zero, so one really
needs another initial value).

3. Generate θ1 from a normal distribution with mean ̄ and precision
nξ0.

4. Generate ξ1 from a Gamma density with parameters n/2 and
n(θ1 − ̄)2/2.

5. etc.

After a “burn-in” period of a several hundred steps, one obtains pairs
which approximately have the posterior distribution (but are not
independent of one another).
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Outline

■ Estimation of parameters and fitting of probability
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Efficiency

Given a variety of possible parameter estimates, which one should we
use?

Ideally, the one whose sampling distribution was most concentrated
about the underlying value.

One possible concentration measure is the mean squared error

MSE(θ̂) = Eθ(θ̂ − θ)2 = vrθ(θ̂) + (Eθ(θ̂) − θ)2.

Clearly, the above implicitly assumes that the parameter is real-valued.
In the vector-valued case, we could use

MSE(θ̂) = Eθ∥θ̂ − θ∥2.

Let’s KISS and (mostly) do real-valued in this section.
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Efficiency

Note: this is a function of the underlying parameter θ, although this is
not made explicit by the notation.

Note: not a good measure for skewed or multi-modal distributions!

Reasonable for distributions which are approximately normal (such as
the sampling distributions for MLEs from large enough samples).
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Efficiency

Remember: we say that an estimate θ̂ is unbiased if

Eθ(θ̂) = θ.

For unbiased estimates, the mean squared error equals the variance,
and hence comparison of MSEs reduces to comparing the variances or
standard errors, respectively.

For two unbiased estimates θ̂ and θ̃, the (relative) efficiency of θ̂
relative to θ̃ is defined as

eff(θ̂, θ̃) =
vrθ(θ̃)

vrθ(θ̂)
.

(Again, this is a function of θ.)
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Cramér-Rao Inequality

Theorem (Cramér-Rao inequality). Let X1, . . . , Xn be i.i.d. with
density function ƒ (|θ). Let T = t(X1, . . . , Xn) be an unbiased estimate of
the real-valued θ. Then under suitable smoothness assumptions on
ƒ (|θ),

vrθ(T) ≥
1

n(θ)
.

Proof. Let

Z =
n
∑

=1

∂ log(ƒ (X|θ))

∂θ
=

n
∑

=1

1

ƒ (X|θ)

∂ƒ (X|θ)

∂θ

We already know that Eθ(Z) = 0 and vrθ(Z) = n(θ).
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Cramér-Rao Inequality

Next,

log(g)′ =
g′

g
⇒ g′ = g × log(g)′.

If g = g1 × · · · × gn,

(g1 × · · · × gn)′ = (g1 × · · · × gn) × log(g1 × · · · × gn)′

= (g1 × · · · × gn) × (log(g1)′ + · · · + log(gn)′)

= (g1 × · · · × gn) ×
�

g′1
g1
+ · · · +

g′n
gn

�

.

(Product rule for differentiation of a product with arbitrarily many
factors.)
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Cramér-Rao Inequality

Since Z has mean zero,

covθ(T,Z) = Eθ(TZ)

=
∫

·
∫

t(1, . . . , n)

� n
∑

=1

1

ƒ (|θ)

∂ƒ (|θ)

∂θ

� n
∏

j=1

ƒ (j|θ)dj

=
∫

·
∫

t(1, . . . , n)
∂

∂θ

n
∏

=1

ƒ (|θ)d

=
∂

∂θ

∫

·
∫

t(1, . . . , n)
n
∏

=1

ƒ (|θ)d

=
∂

∂θ
Eθ(T).
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Cramér-Rao Inequality

Thus if T is unbiased,

covθ(T,Z) =
∂

∂θ
Eθ(T) =

∂

∂θ
θ = 1.

Using the Cauchy-Schwarz inequality,

vrθ(T)vrθ(Z) ≥ covθ(T,Z)2 = 1

from which

vrθ(T) ≥
1

vrθ(Z)
=

1

n(θ)
.

Yes!
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Cramér-Rao Inequality

If θ is vector-valued, it still holds that if T is unbiased,

vrθ(T) ≥ (n(θ))−1

where the inequality is now understood with respect to the half-order on
symmetric non-negative definite matrices, i.e.,

vrθ(T) − (n(θ))−1 is non-negative definite.
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Example: Poisson distribution

We know that (λ) = 1/λ.

Hence, for any unbiased estimator of λ,

vrλ(T) ≥ λ/n.

On the other hand, the MLE X̄ = S/n is unbiased with variance λ/n,
hence attains the bound. Hence, it is “most efficient” in the sense of
having the smallest possible variance (MSE) among all unbiased
estimators!

We say that the MLE is a MVUE (minimum variance unbiased estimator).
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MLE in general

We have shown that for large enough i.i.d. samples, the MLE is
approximately N(0, (n(θ))−1, so that

■ it is asymptotically unbiased
■ it asymptotically attains the Cramér-Rao bound.

Thus (with a bit of hand-waiving), it is asymptotically efficient!

A bit more convincingly, the bias-corrected MLE asymptotically attains
the Cramér-Rao bound, and hence is asymptotically efficient.

(Traditional statistical inference loves the notion of unbiasedness.)
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Outline

■ Estimation of parameters and fitting of probability
distributions
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Motivation

The notion of sufficiency arises as an attempt to answer the following
question:

for a sample X1, . . . , Xn from the density ƒ (|θ), is there a statistic
T = t(X1, . . . , Xn) which contains all information in the sample about
θ?

Think of Bernoulli experiments: we have the feeling that only the
number of successes matters.

The official definition is:

Definition. A statistic T = t(X1, . . . , Xn) is said to be sufficient for θ if
the conditional distribution of X1, . . . , Xn given T = t does not depend on
θ, for any value of t.
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Example: Bernoulli experiment

Let X1, . . . , Xn be a sequence of independent Bernoulli random variables
with success probability Pθ(X = 1) = θ, and let T = X1 + · · · + Xn.

Thus if  ∈ {0,1}, we can readily verify that

Pθ(X = ) = θ(1 − θ)1−

(this is very useful to remember!)

We know that T has a binomial distribution with parameters n and θ.
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Example: Bernoulli experiment

Thus if t = 1 + · · · + n with all  ∈ {0,1},

Pθ(X1 = 1, . . . , Xn = n|T = t)

=
Pθ(X1 = 1, . . . , Xn = n)

Pθ(T = t)

=

∏n
=1 θ

(1 − θ)1−

Pθ(T = t)

=
θt(1 − θ)n−t
�n
t

�

θt(1 − θ)n−t

=
1
�n
t

� .
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Example: Bernoulli experiment

We see that indeed,

Pθ(X1 = 1, . . . , Xn = n|T = t) =
1
�n
t

�

does not depend on θ!

So (by definition), T = X1 + · · · + Xn is sufficient for the Bernoulli
experiment (X1, . . . , Xn) (as it should be).
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Factorization theorem

Theorem. A necessary and sufficient condition for t(X1, . . . , Xn) to be
sufficient for a parameter θ is that the joint probability function factors
in the form

ƒ (1, . . . , n|θ) = g(t(1, . . . , n), θ)h(1, . . . , n).

In words: sufficiency if and only if the joint density can be written as the
product of a function of t(1, . . . , n) and θ, and a function which
depends on 1, . . . , n but not θ.
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Factorization theorem

Proof. We give a proof for the discrete case.

Let X = (X1, . . . , Xn) and  = (1, . . . , n).

Suppose the pmf factors as given in the theorem. I.e.,

Pθ(X = ) = g(t(), θ)h().

Then

Pθ(T = t) =
∑

:t()=t

Pθ(X = )

=
∑

:t()=t

g(t(), θ)h()

= g(t, θ)
∑

:t()=t

h().
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Factorization theorem

Hence, if t = t(),

Pθ(X = |T = t) =
Pθ(X = , T = t)

Pθ(T = t)

=
Pθ(X = )

Pθ(T = t)

=
g(t, θ)h()

g(t, θ)
∑

:t()=t h()

=
h()
∑

:t()=t h()

does not depend on θ, as was to be shown.
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Factorization theorem

Conversely, suppose the conditional distribution of X given T does not
depend on θ.

Clearly,

Pθ(X = ) = Pθ(T = t)Pθ(X = |T = t) = g(t, θ)h()

where

g(t, θ) := Pθ(T = t)

and by assumption,

h() := Pθ(X = |T = t)

does not depend on θ.
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Factorization theorem

The factorization theorem (and in fact, also the definition) implies that
sufficient statistics are unique only up to invertible transformations.

If s is invertible and t(X) is sufficient,

ƒ (|θ) = g(t(), θ)h()
= g(s−1(s(t()), θ)h()
= gs(s(t()), θ)h(),

where gs(, θ) := g(s−1(), θ).

Hence, s(t(X)) is sufficient too.
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Example: Bernoulli experiment

We have

ƒ (1, . . . , n|θ) =
n
∏

=1

θ(1 − θ)1−

= θ
∑

 (1 − θ)
∑

(1−)

So writing t =
∑

 ,

ƒ (1, . . . , n|θ) = θt(1 − θ)n−t =
�

θ

1 − θ

�t

(1 − θ)n

which gives g(t, θ), and we can take h(1, . . . , n) = 1.
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Example: Normal distribution

For a random sample from the normal distribution with unknown mean
and variance, we have

ƒ (1, . . . , n|μ, σ2)

=
n
∏

=1

1
p
2πσ

exp
�

−
1

2σ2
( − μ)2
�

=
1

σn(2π)n/2
exp

�

−
1

2σ2

n
∑

=1

( − μ)2
�

=
1

σn(2π)n/2
exp

�

−
1

2σ2

� n
∑

=1

2 − 2μ
n
∑

=1

 + nμ2
��

.
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Example: Normal distribution

Clearly, this depends on 1, . . . , n only through
∑n

=1  and
∑n

=1 
2
 .

Hence,

T = t(X1, . . . , Xn) =

� n
∑

=1

X,
n
∑

=1

X2


�

is sufficient for θ = (μ, σ2).

Now clearly
∑n

=1  = n̄ and we established that

n
∑

=1

2 =
n
∑

=1

( − ̄)2 + n̄2.

So (X̄, σ̂2) and (X̄, S2) are sufficient too.
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Sufficiency and MLE

Theorem. If T is sufficient for θ, the MLE of θ is a function of T.

Proof. Because

ƒ (1, . . . , n|θ) = g(t(1, . . . , n), θ)h(1, . . . , n).

the MLE is found by maximizing g(t(1, . . . , n), θ), i.e., a function of
t(1, . . . , n).
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Rao-Blackwell theorem

Theorem (Rao-Blackwell theorem). Let θ̂ be an estimate of θ with
Eθ(θ̂2) <∞ for all θ. Suppose that T is sufficient for θ, and let θ̃ = E(θ̂|T)
(which does not depend on θ).

Then, for all θ,

Eθ((θ̃ − θ)2) ≤ Eθ((θ̂ − θ)2)

and the inequality is strict unless θ̃ = θ̂ (almost surely under Pθ).

Proof. By the theorem of iterated conditional expectation,

Eθ(θ̃) = Eθ(E(θ̂|T)) = Eθ(θ̂).

Thus, to compare the MSEs we only need to compare the variances.
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Rao-Blackwell theorem

Now using a result on conditional expectations,

vrθ(θ̂) = vrθ(E(θ̂|T)) + Eθ(vr(θ̂|T))
= vrθ(θ̃) + Eθ(vr(θ̂|T)).

Thus, vrθ(θ̂) > vrθ(θ̃) unless Eθ(vr(θ̂|T)) = 0, in which case θ̂ must
be a function of T, which would imply θ̂ = θ̃. Done!

The Rao-Blackwell theorem gives a strong rationale for basing
estimators on sufficient statistics if they exist: if they are not functions
of the sufficient statistics, their variance can be reduced without
changing their bias.

Slide 48



Rao-Blackwell theorem

Now using a result on conditional expectations,

vrθ(θ̂) = vrθ(E(θ̂|T)) + Eθ(vr(θ̂|T))
= vrθ(θ̃) + Eθ(vr(θ̂|T)).

Thus, vrθ(θ̂) > vrθ(θ̃) unless Eθ(vr(θ̂|T)) = 0, in which case θ̂ must
be a function of T, which would imply θ̂ = θ̃. Done!

The Rao-Blackwell theorem gives a strong rationale for basing
estimators on sufficient statistics if they exist: if they are not functions
of the sufficient statistics, their variance can be reduced without
changing their bias.

Slide 48



Outline

■ Estimation of parameters and fitting of probability
distributions

■ Testing hypotheses and assessing goodness of fit
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Introduction

Suppose we have two coins: with H denoting “head” (traditionally, the
head of the monarch, now the nice graphic; conversely, “tail” shows the
denomination)

P0(H) = 0.5, P1(H) = 0.7.

Suppose one of these coins is chosen, tossed 10 times, and the number
of heads reported, without telling which coin was chosen.

How should we decide which one it was?

Natural idea: find out which coin makes the observations more likely.

Technically, we specify two hypotheses:

H0 : coin 0 was tossed, H1 : coin 1 was tossed.
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Introduction

If we observed 2 heads, the likelihood ratio P0(2)/P1(2) is

R> dbinom(2, 10, 0.5) / dbinom(2, 10, 0.7)

[1] 30.37623

(as the number of heads is binomial with n = 10 and probability 0.5 or
0.7, respectively).

This strongly favors coin 0, so we would decide for H0.

If we observed 8 heads,

R> dbinom(8, 10, 0.5) / dbinom(8, 10, 0.7)

[1] 0.1882232

would favor coin 1, so we would decide for H1.
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Introduction

If we have prior “beliefs” about the hypotheses, we can easily extend
the above idea to a Bayesian approach:

We need to specify prior probabilities P(H0) and P(H1).

In the “basic” case of no a priori preference for either hypothesis,

P(H0) = P(H1) = 1/2.
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Introduction

After observing the data we can compute the posterior probabilities

P(H0|) =
P(H0, )

P()
=
P(|H0)P(H0)

P()
, P(H1|) =

P(|H1)P(H1)

P()
.

The corresponding ratio of posterior probabilities is

P(H0|)

P(H1|)
=
P(H0)

P(H1)

P(|H0)

P(|H1)
.

I.e., the ratio of posteriors is the product of the ratio of the priors and
the likelihood ratio.
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Introduction

How to decide?

Reasonably, choose the hypothesis with higher
posterior probability.

I.e., choose H0 if

P(H0|)

P(H1|)
=
P(H0)

P(H1)

P(|H0)

P(|H1)
> 1 ⇔

P(|H0)

P(|H1)
>
P(H1)

P(H0)
.

(Clearly, it is not clear what to do when the posterior probabilities are
the same. More on this later.)
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Introduction

I.e., we get decision rules of the form

likelihood ratio =
P(|H0)

P(|H1)
> c

where the critical value c depends upon the prior probabilities.
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Introduction

In our case, the likelihood ratios for the possible values  = 0, . . . ,10 are

R> x <- 0 : 10
R> dbinom(x, 10, 0.5) / dbinom(x, 10, 0.7)

[1] 165.38171688 70.87787866 30.37623371 13.01838588 5.57930823
[6] 2.39113210 1.02477090 0.43918753 0.18822323 0.08066710

[11] 0.03457161

If e.g. c = 1, P(H0) = P(H1), and we choose H0 as long as X ≤ 6.

If e.g. c = 0.1, P(H0) = 10P(H1), and we choose H0 as long as X ≤ 8.
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Introduction

When deciding for H0 or H1, we can make two errors:

■ choose H1 when H0 is “true”
■ choose H0 when H1 is “true”.
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Introduction

If c = 1, the corresponding error probabilities are

P(choose H1|H0) = P(X > 6|H0), P(choose H0|H1) = P(X ≤ 6|H1)

with corresponding values

R> pbinom(6, 10, 0.5, lower.tail = FALSE)

[1] 0.171875

R> pbinom(6, 10, 0.7)

[1] 0.3503893

respectively.
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Introduction

If c = 10, the corresponding error probabilities are

P(choose H1|H0) = P(X > 8|H0), P(choose H0|H1) = P(X ≤ 8|H1)

with corresponding values

R> pbinom(8, 10, 0.5, lower.tail = FALSE)

[1] 0.01074219

R> pbinom(8, 10, 0.7)

[1] 0.8506917

respectively.
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Introduction

In our introductory example, both hypotheses completely specified the
probability distribution of the data (number of heads) as binomial with
parameters 10 and 0.5 or 0.7, respectively: such hypotheses are called
simple hypotheses.

Hypotheses which are not simple are called composite.

What we’ve seen is that for choosing between two simple hypotheses, it
is reasonable to look at the likelihood ratio P(|H0)/P(|H1) and use
decision rules of the form

■ choose H0 if the likelihood ratio is large (enough)
■ choose H1 if the likelihood ratio is small (enough)

This can be generalized to Bayesian hypothesis testing.
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Outline

■ Estimation of parameters and fitting of probability
distributions

■ Testing hypotheses and assessing goodness of fit
■ Introduction
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The Neyman-Pearson paradigm

The Neyman and Pearson approach to hypothesis testing is also
formulated in the framework of (binary) decision problems.

However, it bypasses the necessity of specifying prior probabilities, and
introduces a fundamental asymmetry between the two hypotheses, now
referred to as

■ the null hypothesis H0
■ the alternative hypothesis HA.

The decisions now become

accept H0 (“choose H0”), reject H0 (“choose HA”).
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The Neyman-Pearson paradigm

Terminology:

■ Rejecting H0 when it is true is a type I error.

■ Probability of a type I error: size of the test, often denoted by α.
■ Accepting H0 when it is false is a type II error.
■ Probability of a type II error is typically denoted by β.
■ The probability of rejecting H0 when it is false: power of the test,

equals 1 − β.
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The Neyman-Pearson paradigm

Terminology:

■ Testing is based on a test statistic (e.g., the likelihood ratio)
computed from the data.

■ Sets of values leading to acceptance or rejection of H0: acceptance
region and rejection region, respectively.

■ Probability distribution of the test statistic when H0 is true: null
distribution.
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