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Example: Gamma distribution

For the Gamma (and hence in particular the exponential) distribution,
there are two alternative parametrizations: In R (see also
http://en.wikipedia.org/wiki/Gamma_distribution), the shape
parameter α and the scale parameter s are used, with corresponding
density:

ƒ (t) =
tα−1e−t/s

sα(α)
, t > 0.

In Rice, the rate parameter λ = 1/s is used instead of the scale
parameter s:

ƒ (t) =
λαtα−1e−λt

(α)
, t > 0.
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Example: Gamma distribution

Of course one can simply use s↔ 1/λ to move between the
parametrizations.

When we refer to the parameters of the Gamma distribution, we shall
always explicitly indicate whether the second parameter is scale or rate.
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Example: Gamma distribution

Let us find the method of moment estimates for the shape parameter α
and rate parameter λ of the Gamma distribution.

Substituting  = λt we find in general that

μk =
∫ ∞

0
tk
λαtα−1e−λt

(α)
dt

=
λα

(α)

∫ ∞

0

�

λ

�α+k−1
e−

d



=
1

(α)λk

∫ ∞

0
α+k−1e− d

=
(α + k)

(α)λk
.
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Example: Gamma distribution

Hence,

μk =
(α + k)

(α)λk
=
α × · · · × (α + k − 1)

λk

and in particular,

μ1 =
α

λ
, μ2 =

α(α + 1)

λ2
.

This expresses μ1 and μ2 as functions of α and λ. We need to invert this
relation to express α and λ as functions of μ1 and μ2 (i.e., solve the
system of 2 non-linear equations in 2 variables).

Slide 7



Example: Gamma distribution

From the second equation,

μ2 =
α

λ

�

α

λ
+
1

λ

�

= μ1

�

μ1 +
1

λ

�

.

Thus,

μ2 − μ21
μ1

=
1

λ
⇒ λ =

μ1

μ2 − μ21

and

α = μ1λ =
μ21

μ2 − μ21
.
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Example: Gamma distribution

This gives the MoM estimates

α̂ =
μ̂21

μ̂2 − μ̂21
, λ̂ =

μ̂1

μ̂2 − μ̂21
.

As before, with

μ̂1 = X̄, μ̂2 − μ̂21 =
1

n

n
∑

=1

(X − X̄)2 = σ̂2

we can write the MoM estimates as

α̂ =
X̄2

σ̂2
, λ̂ =

X̄

σ̂2
.

Slide 9



Example: Gamma distribution

What about the sampling distribution of the estimate?

(Again, we estimate two parameters, so this is a bivariate distribution.)

Well, this is not “well known”: it does not have a name, and there are no
ready-made dpqr functions for it.

What can we do?

Easy in theory: use simulation. We’re looking for the distribution of
�

X̄2

σ̂2
,
X̄

σ̂2

�

where X1, . . . , Xn are i.i.d. Gamma with shape α and rate λ.

So we could generate B such samples of size n, and approximate the
underlying distribution by the empirical distribution.
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Example: Gamma distribution

Ahem . . . but we don’t know α and λ, so how can we simulate?

Well, we have the MoM estimates α̂ and λ̂, so perform the simulation
using these parameters.

This gives the following simple bootstrap procedure for approximating
the sampling distribution (in general) and standard errors of the
estimates (in particular).
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Example: Gamma distribution

1. Draw B samples of size n from the Gamma distribution with shape
and rate parameters α̂ and λ̂.

2. In each bootstrap sample, estimate the parameters (using the
method of moments), giving estimates α∗

b and λ∗b .

3. Estimate standard errors as

sα̂ =

√

√

√

√

1

B

B
∑

b=1

(α∗
b − ᾱ)

2

where ᾱ = B−1
∑B

b=1 α
∗
b , and similarly for sλ̂.

(Alternatively, use the standard deviation of α∗
1 , . . . , α

∗
B .)
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2

where ᾱ = B−1
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Consistency

Of course, using these “plug-in” procedures where we substitute a
parameter θ by an estimate θ̂ only makes sense if the latter is close to
the former.

Definition (Consistency). Let θ̂n be an estimate of a parameter θ
based on a sample of size n. Then θ̂n is said to be consistent in
probability if θ̂n converges to θ in probability as n→∞.

Similarly, θ̂n is strongly consistent if θ̂n → θ almost surely as n→∞.

Again, note that we do not know the underlying parameter θ!
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Consistency

In the above cases, we can use LLNs to establish that sample moments
converge to (population) moments.

Hence, if

θ = (θ1, . . . , θm) = h(μ1, . . . , μm)

with h continuous, we will have

θ̂MoM = h(μ̂1, . . . , μ̂m)→ θ

as n→∞, in probability or almost surely.
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Consistency

Similarly, if the standard errors are of the form

σθ̂ = h(θ)/
p
n,

and h is continuous, then for the plug-in estimate

sθ̂ = h(θ̂)/
p
n

we will have

σθ̂/sθ̂ → 1

as n→∞, in probability or almost surely.
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Outline

■ Estimation of parameters and fitting of probability
distributions
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Motivation

Suppose you observe a sample 1, . . . , n from a discrete distribution
with unknown parameter θ.

Consider the probability mass function (called frequency function in
Rice)

P(X1 = 1, . . . , Xn = n|θ),

where the “conditioning” on θ is used to explicitly indicate that the
probability is computed for a specific value θ of the unknown parameter.

The above gives the “likelihood” (probability) of observing what you
observed.

When estimating θ, would you rather take θ to make the above large or
small?
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Motivation

Well, the smaller, the more unlikely is observing what we observed.

In extremis, observing what we observed becomes impossible. Strange.

So clearly, it makes much more sense to choose θ so that the likelihood
is large, perhaps even as large as possible.

This is the principle of maximum likelihood estimation (MLE).
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The method of maximum likelihood

In general, suppose random variables X1, . . . , Xn have a joint density

ƒ (1, . . . , n|θ).

(One can consider the usual densities as “with respect to Lebesgue
measure” and probability mass functions as densities “with respect to
counting measure”.)

The maximum likelihood estimate of θ is the (if unique) value of θ that
maximizes ƒ (1, . . . , n|θ), thus making the observed 1, . . . , n “most
likely”.
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The method of maximum likelihood

More formally, write

lik(θ|1, . . . , n) = ƒ (1, . . . , n|θ)

to express the fact that the likelihood function is a function of the
unknown parameter for fixed observations 1, . . . , n.

Often (as in Rice) one simply writes lik(θ) omitting the dependence on
the observations.

The MLE is obtained by maximizing lik(θ|1, . . . , n) over θ, ideally
finding

θ̂MLE(1, . . . , n) = rgmx
θ

lik(θ|1, . . . , n).
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The method of maximum likelihood

Typically, it is more convenient to work with the (natural) logarithm of
the likelihood, the so-called log-likelihood ℓ = log(lik).

As log is increasing, maximizing the likelihood is equivalent to
maximizing the log-likelihood.

(Notation follows Rice. Not my favorite notation: I would write L and LL
for likelihood and log-likelihood, respectively.)
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The method of maximum likelihood

If the X are i.i.d., the joint density is the product of the marginal
densities:

lik(θ|1, . . . , n) =
n
∏

=1

ƒ (|θ)

and the log-likelihood becomes the sum of the marginal log-densities:

ℓ(θ|1, . . . , n) =
n
∑

=1

log(ƒ (|θ).
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Example: Poisson distribution

If X1, . . . , Xn are i.i.d. Poisson(λ), the log-likelihood is

ℓ(λ|1, . . . , n) =
n
∑

=1

log (P(X = |λ))

=
n
∑

=1

log
�

λ

!
e−λ

�

=
n
∑

=1

( log(λ) − log(!) − λ)

= log(λ)
n
∑

=1

 − nλ −
n
∑

=1

log(!).
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Example: Poisson distribution

To maximize with respect to λ, compute the derivative and set it to zero:

ℓ′(λ) =
1

λ

n
∑

=1

 − n = 0

from which the MLE for the sample 1, . . . , n is obtained as

λ̂ =
1

n

n
∑

=1

 = ̄.

(One can easily verify that the critical point indeed gives the maximum.)

The MLE agrees with the MoM estimate, and thus has the same
sampling distribution.
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Example: Normal distribution

If X1, . . . , Xn are i.i.d. N(μ, σ2),

ƒ (1, . . . , n|μ, σ2) =
n
∏

=1

1
p
2πσ

exp(−( − μ)2/(2σ2))

The log-likelihood for θ = (μ, σ2) is thus

ℓ(μ, σ2|1, . . . , n) =
n
∑

=1

�

−
1

2
log(2πσ2) −

( − μ)2

2σ2

�

= −
n

2
log(σ2) −

n

2
log(2π) −

1

2σ2

n
∑

=1

( − μ)2.
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Example: Normal distribution

To maximize with respect to μ and σ2, compute the partial derivatives
and set these to zero.

This first gives

∂ℓ

∂μ
= −

1

2σ2

n
∑

=1

( − μ) × (−2) =
1

σ2

� n
∑

=1

 − nμ
�

and

∂ℓ

∂σ2
= −

n

2

1

σ2
+

1

2σ4

n
∑

=1

( − μ)2 =
1

2σ2

�

−n +
1

σ2

n
∑

=1

( − μ)2
�

.
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Example: Normal distribution

Setting the partials to zero then yields

μ̂ =
1

n

n
∑

=1

 = ̄, σ̂2 =
1

n

n
∑

=1

( − ̄)2.

(Again, one can easily verify that the critical point indeed gives the
maximum.)

Again, the MLE agrees with the MoM estimate, and thus has the same
sampling distribution.

Note that the MLE of the variance again is not the sample variance.
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Example: Gamma distribution

If X ∼ Gamma(α, rate = λ), the density is

ƒ (|α,λ) =
λαα−1e−λ

(α)
,  > 0.

Thus, the log-likelihood for observations 1, . . . , n from from X1, . . . , Xn
i.i.d. Gamma(α, rate = λ) is

ℓ(α,λ|1, . . . , n)

=
n
∑

=1

log

�

λαα−1 e−λ

(α)

�

= nα log(λ) + (α − 1)
n
∑

=1

log() − λ
n
∑

=1

 − n log((α)).
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Example: Gamma distribution

To maximize with respect to α and λ, we could again try to compute the
partial derivatives and set these to zero. For the partials, we get

∂ℓ

∂α
=

∂ℓ

∂α

�

nα log(λ) + (α − 1)
n
∑

=1

log() − λ
n
∑

=1

 − n log((α))
�

= n log(λ) +
n
∑

=1

log() − n
′(α)

(α)

and

∂ℓ

∂λ
=
nα

λ
−

n
∑

=1

.
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Example: Gamma distribution

Setting ∂ℓ/∂λ = 0 gives

λ̂ =
nα̂

∑n
=1 

=
α̂

̄
.

Substituting into ∂ℓ/∂α = 0 gives

n log
�

α̂

̄

�

+
n
∑

=1

log() − n
′(α̂)

(α̂)
= 0

This is a non-linear equation for the MLE of α which we cannot solve
“explicitly”.
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Example: Gamma distribution

With R, we can simply compute the MLEs via numerical optimization
(remember the examples for Poisson and normal in the last unit of
Computing).

To approximate the sampling distributions, we can again use the
bootstrap.

Comparing with the approximation for the MoM estimates would show
that the distributions for the MLE are substantially less dispersed.
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Consistency of the MLE

Theorem (Consistency of the MLE). Under appropriate smoothness
conditions on ƒ , the MLE from i.i.d. samples from ƒ is consistent.

Proof/sketch. Consider maximizing

ℓn(θ)

n
=
1

n

n
∑

=1

log(ƒ (X|θ)).

If θ0 is the underlying parameter, i.e., if X1, . . . , Xn are i.i.d. with density
ƒ (|θ0), then as n→∞, by the law of large numbers:

ℓn(θ)

n
→ Eθ0 log(ƒ (X|θ)) =

∫

log(ƒ (|θ))ƒ (|θ0)d.
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Consistency of the MLE

Suppose we can show that as n→∞, the θ maximizing ℓn(θ)/n
converges to the θ maximizing limn→∞ ℓn(θ)/n.

(This is far from being straightforward, and needs ƒ to be nice enough.)

Then what remains to be shown is that the limit is maximized at θ0.

Consider the function

h(t) = t log(t) − t + 1

for t ≥ 0. Then

h′(t) = log(t) + t ×
1

t
− 1 = log(t), h′′(t) =

1

t

so that h has its minimum at t = 1 with value h(1) = 0.
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Consistency of the MLE

Hence, for all t ≥ 0,

h(t) = t log(t) − t + 1 ≥ 0

with equality iff t = 1, and thus for all , ≥ 0,

h
�



�

= 
�


log

�



�

−



+ 1

�

=  log
�



�

−  +  ≥ 0

with equality iff  = .

Now take  = ƒ (|θ0) and  = ƒ (|θ). Then for all ,

0 ≤ ƒ (|θ0) log
�

ƒ (|θ0)

ƒ (|θ)

�

− ƒ (|θ0) + ƒ (|θ).

Hence,

Slide 34



Consistency of the MLE

Hence, for all t ≥ 0,

h(t) = t log(t) − t + 1 ≥ 0

with equality iff t = 1, and thus for all , ≥ 0,

h
�



�

= 
�


log

�



�

−



+ 1

�

=  log
�



�

−  +  ≥ 0

with equality iff  = .

Now take  = ƒ (|θ0) and  = ƒ (|θ). Then for all ,

0 ≤ ƒ (|θ0) log
�

ƒ (|θ0)

ƒ (|θ)

�

− ƒ (|θ0) + ƒ (|θ).

Hence,
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Consistency of the MLE

0 ≤
∫ �

ƒ (|θ0) log
�

ƒ (|θ0)

ƒ (|θ)

�

− ƒ (|θ0) + ƒ (|θ)
�

d

=
∫

log(ƒ (|θ0))ƒ (|θ0)d −
∫

log(ƒ (|θ))ƒ (|θ0)d

−
∫

ƒ (|θ0)d +
∫

ƒ (|θ)d.

As densities integrate to 1, this yields
∫

log(ƒ (|θ))ƒ (|θ0)d ≤
∫

log(ƒ (|θ0))ƒ (|θ0)d

with strict inequality unless the densities agree.
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Consistency of the MLE

Hence, unless densities could agree for different parameters, the
underlying parameter is the unique maximizer.
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Fisher information

Suppose that ƒ is nice enough (more below) and consider the random
variable

s(θ) = ∇θ log(ƒ (X|θ)) =
�

∂ log(ƒ (X|θ))

∂θj

�′

.

This is the gradient of the log-density, which connaisseurs call the score
function.
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Fisher information

Clearly,
∫

ƒ (|θ)d = 1 =⇒
∂

∂θj

∫

ƒ (|θ)d = 0

Now assume that we may change integration and differentiation (which
in particular needs the support of ƒ to not depend on θ), and remember
that

∂ log(ƒ (|θ))

∂θj
=

1

ƒ (|θ)

∂ƒ (|θ)

∂θj
=⇒

∂ƒ (|θ)

∂θj
=
∂ log(ƒ (|θ))

∂θj
ƒ (|θ).
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Fisher information

Then,

0 =
∂

∂θj

∫

ƒ (|θ)d

=
∫

∂ƒ (|θ)

∂θj
d

=
∫

∂ log(ƒ (|θ))

∂θj
ƒ (|θ)d

= Eθ
∂ log(ƒ (X|θ))

∂θj
.

Thus, the score has mean zero:

Eθ(s(θ)) = 0.
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Fisher information

The covariance matrix of s(θ) is called the Fisher information matrix:

(θ) = covθ(s(θ)) = Eθ(s(θ)s(θ)′).

Explicitly, the (j, k) element of (θ) is

[ (θ)] j,k = Eθ

�

∂ log(ƒ (X|θ))

∂θj

∂ log(ƒ (X|θ))

∂θk

�

.
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Fisher information

Under appropriate smoothness conditions on ƒ , (θ) may also be
expressed as

(θ) = −Eθ

�

∂2 log(ƒ (X|θ))

∂θ∂θ′

�

= −Eθ (Hθ(log(ƒ (X|θ))))

where Hθ denotes the Hessian with respect to θ.

Explicitly, the (j, k) element of (θ) is

[ (θ)] j,k = −Eθ

�

∂2 log(ƒ (X|θ))

∂θj∂θk

�

.
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Fisher information

To see why, take the above

0 =
∫

∂ log(ƒ (|θ))

∂θj
ƒ (|θ)d

and differentiate once more with respect to θk.
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Fisher information

Then

0 =
∂

∂θk

�∫

∂ log(ƒ (|θ))

∂θj
ƒ (|θ)d

�

=
∫

∂

∂θk

�

∂ log(ƒ (|θ))

∂θj
ƒ (|θ)

�

d

=
∫

�

∂2 log(ƒ (|θ))

∂θj∂θk
ƒ (|θ) +

∂ log(ƒ (|θ))

∂θj

∂ƒ (|θ)

∂θk

�

d

=
∫

�

∂2 log(ƒ (|θ))

∂θj∂θk
ƒ (|θ) +

∂ log(ƒ (|θ))

∂θj

∂ log(ƒ (|θ))

∂θk
ƒ (|θ)

�

d.
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Fisher information

I.e.,
∫

∂2 log(ƒ (|θ))

∂θj∂θk
ƒ (|θ)d = −

∫

∂ log(ƒ (|θ))

∂θj

∂ log(ƒ (|θ))

∂θk
ƒ (|θ)d

or equivalently,

Eθ

�

∂2 log(ƒ (X|θ))

∂θj∂θk

�

= −Eθ
�

∂ log(ƒ (X|θ))

∂θj

∂ log(ƒ (X|θ))

∂θk

�

.
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Asymptotic normality of the MLE

Theorem (Asymptotic normality of the MLE). Under appropriate
smoothness conditions on ƒ , the MLE θ̂ from i.i.d. samples from ƒ
satisfies

p
n(θ̂ − θ0)

d→ N(0, (θ0)−1).

(The RHS is a multivariate normal distribution with mean zero and
covariance the inverse of the Fisher information matrix (θ0).)
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Asymptotic normality of the MLE

Proof/sketch. From a Taylor series expansion,

0 = ∇ℓ(θ̂) ≈ ∇θℓ(θ0) + Hθℓ(θ0)(θ̂ − θ0)

from which

Hθℓ(θ0)(θ̂ − θ0) ≈ −∇θℓ(θ0) =⇒
θ̂ − θ0 ≈ −(Hθℓ(θ0))−1∇θℓ(θ0).

and thus

p
n(θ̂ − θ0) ≈ −

�

Hθℓ(θ0)

n

�−1 ∇θℓ(θ0)
p
n

.

We now show that the 1st fraction satisfies an LLN and the 2nd a CLT.
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Asymptotic normality of the MLE

As X1, . . . , Xn are i.i.d.,

ℓ(θ) =
n
∑

=1

log(ƒ (X|θ)).

By what we just established, if θ0 is the underlying parameter,

■ the random variables ∇θ log(ƒ (X1|θ0)), . . . ,∇θ log(ƒ (Xn|θ0)) are i.i.d.
with mean zero and covariance matrix (θ0)

■ the random variables Hθ log(ƒ (X1|θ0)), . . . , Hθ log(ƒ (Xn|θ0)) are i.i.d.
with mean −(θ0).
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Asymptotic normality of the MLE

Hence, by the LLN (actually, the “obvious” multivariate generalization),

Hθℓ(θ0)

n
=
1

n

n
∑

=1

Hθ log(ƒ (X|θ0))→ Eθ0 (Hθ log(ƒ (X|θ0))) = −(θ0).

And by the CLT (actually, an “obvious” multivariate generalization),

∇θℓ(θ0)
p
n

=
1
p
n

n
∑

=1

∇θ log(ƒ (X|θ0))
d→ N(0, (θ0)).
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Asymptotic normality of the MLE
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Asymptotic normality of the MLE

Combining both,

p
n(θ̂ − θ0) ≈ −

�

Hθℓ(θ0)

n

�−1 ∇θℓ(θ0)
p
n

d→ ((θ0))−1N(0, (θ0)).

Now if A is a matrix and Y has a multivariate normal distribution with
mean 0 and covariance , then AY has a multivariate normal
distribution with mean zero and covariance AA′.

Thus, with A = ((θ0))−1 and  = (θ0),

((θ0))−1N(0, (θ0))
d
= N(0, ((θ0))−1(θ0)((θ0))−1)
= N(0, (θ0)−1).
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Asymptotic normality of the MLE

Combining both,

p
n(θ̂ − θ0) ≈ −

�

Hθℓ(θ0)

n

�−1 ∇θℓ(θ0)
p
n
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Asymptotic normality of the MLE

The lecture notes explicitly handle the case where we have a single
parameter only. But this has always been confusing, so now we do the
real thing(s).

If there is a single parameter, (θ) is a number. In this case, we can also
write the result as

Æ

n(θ0)(θ̂ − θ0)
d→ N(0,1).

(If one write S1/2 for the symmetric square root of a positive definite
symmetric matrix, one can also generally write

(n(θ0))1/2(θ̂ − θ0)
d→ N(0, m)

with m the m ×m identity matrix.)
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Confidence intervals

A confidence interval for a population parameter θ is a random
interval which contains θ with some specified (coverage) probability.

A 100(1 − α) percent confidence interval contains θ with probability (at
least) 1 − α; if we took many random samples and formed confidence
intervals from each one, 100(1 − α) percent of these would contain θ.

Confidence intervals are frequently used in conjunction with point
estimates to convey information about the uncertainty of the estimates.
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Example: Normal distribution

The MLEs of μ and σ2 from an i.i.d. normal sample are

μ̂ = X̄, σ̂2 =
1

n

n
∑

=1

(X − X̄)2.

A confidence interval for μ is based on the fact that
p
n(X̄ − μ)

S
∼ tn−1

where S2 is the sample variance and tn−1 the (Student) t distribution
with n − 1 degrees of freedom.
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Example: Normal distribution

Write QF(α) for the α quantile of distribution F.

Then

P

�

Qtn−1(α/2) ≤
p
n(X̄ − μ)

S
≤ Qtn−1(1 − α/2)

�

= 1 − α

and rearranging and using the symmetry of the t distribution gives

P

�

X̄ −
S
p
n
Qtn−1(1 − α/2) ≤ μ ≤ X̄ +

S
p
n
Qtn−1(1 − α/2)

�

= 1 − α.
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Example: Normal distribution

To obtain a confidence interval for σ2, note that

nσ̂2

σ2
=

1

σ2

n
∑

=1

(X − X̄)2 ∼ χ2n−1

where χ2n−1 denotes the chi-squared distribution with n − 1 degrees of
freedom.

Thus,

P

�

Qχ2n−1
(α/2) ≤

nσ̂2

σ2
≤ Qχ2n−1

(1 − α/2)
�

= 1 − α,

and rearranging gives

P

 

nσ̂2

Qχ2n−1
(1 − α/2)

≤ σ2 ≤
nσ̂2

Qχ2n−1
(α/2)

!

= 1 − α.
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Approximate confidence intervals

Where exact intervals cannot be obtained, we can use the fact that in
general,

p
n(θ̂ − θ0) approximately has an N(0, ((θ0))−1) distribution.

The unknown (θ0) can be approximated by the plug-in estimate (θ̂).

If θ is a single parameter, we have

(θ̂)/ (θ0)→ 1

and hence

q

n(θ̂)(θ̂ − θ0) =

√

√

√ (θ̂)

(θ0)

Æ

n(θ0)(θ̂ − θ0)
d→ N(0,1).
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Approximate confidence intervals

Therefore

P
�

zα/2 ≤
q

n(θ̂)(θ̂ − θ0) ≤ z1−α/2
�

≈ 1 − α,

and hence an approximate 100(1 − α) percent confidence interval is

θ̂ ± zα/2/
q

n(θ̂).
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Example: Poisson distribution

The MLE of the parameter λ from a sample from a Poisson distribution is
λ̂ = X̄.

The sampling distribution is known, but depends on the unknown
parameter.

Approximate confidence intervals can be obtained from the above.

We have

log(ƒ (|λ)) = log
�

λ

!
e−λ

�

=  log(λ) − log(!) − λ

so that the Fisher information is given by

Eλ

�

∂ log(ƒ (|λ))

∂λ

�2

= Eλ

�

X

λ
− 1

�2

= Eλ
(X − λ)2

λ2
=
vrλ(X)

λ2
=
1

λ
.
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Example: Poisson distribution

Thus, an approximate 100(1 − α) percent confidence interval for λ is
given by

λ̂ ± zα/2/
q

n(λ̂) = λ̂ ± zα/2/
q

n/λ̂ = X̄ ± zα/2
Æ

X̄/n.
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Bootstrap confidence intervals

If the distribution of Δ = θ̂− θ0 was known, confidence intervals could be
obtained via

P(QΔ(α/2) ≤ θ̂ − θ0 ≤ QΔ(1 − α/2)) = 1 − α

as

P(θ̂ − QΔ(1 − α/2) ≤ θ0 ≤ θ̂ − QΔ(α/2)) = 1 − α.

But since θ0 is not known, we use θ̂ in its place.
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Bootstrap confidence intervals

We generate B bootstrap samples from the distribution with value θ̂,
and compute the respective MLEs θ∗b .

The distribution of θ̂ − θ0 is then approximated by that of θ∗ − θ̂ and the
quantiles of this are used to form the approximate confidence interval.

I.e., the quantiles QΔ are approximated by the empirical quantiles of
(θ∗1 − θ̂, . . . , θ

∗
B − θ̂).
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