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Notation

For random variables X1, . . . , Xn, we write

X̄n =
1

n

n
∑

=1

X

for their arithmetic mean.
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Law of large numbers

Fact: Let X1, . . . , Xn be a sequence of independent random variables
with E(X) = μ and vr(X) = σ2. Then

E(X̄n) = μ, vr(X̄n) =
σ2

n
.

By linearity of expectation,

E(X̄n) = E

�

1

n

n
∑

=1

X

�

=
1

n

n
∑

=1

E(X) =
1

n
nμ = μ

(this obviously does not need independence).
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Law of large numbers

For independent random variables, the variance of the sum is the sum
of the variances. Hence,

vr(X̄n) = vr

�

1

n

n
∑

=1

X

�

=
1

n2
vr

� n
∑

=1

X

�

=
1

n2

n
∑

=1

vr(X)

=
1

n2
nσ2

=
σ2

n
.

Slide 6



Law of large numbers

Theorem (Law of Large Numbers). Let X1, X2, . . . be a sequence of
independent random variables with E(X) = μ and vr(X) = σ2. Then, for
any ε > 0,

P(|X̄n − μ| > ε)→ 0 as n→∞.

To prove, remember Chebyshev’s inequality: If Z is a random variable
and ε > 0,

P(|Z − E(Z)| ≥ ε) ≤
vr(Z)

ε2
.
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Law of large numbers

Now take Z = X̄n and use that E(X̄n) = μ and vr(X̄n) = σ2/n. Thus,

P(|X̄n − μ| > ε) = P(|X̄n − E(X̄n)| > ε) ≤
vr(X̄n)

ε2
=

σ2

nε2

which clearly tends to zero as n→∞.

Congratulations! You just proved a very important theorem.
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Convergence in probability

Definition. A sequence (X1, X2, . . .) of random variables converges in
probability towards the random variable X if for all ε > 0,

lim
n→∞

P(|Xn − X| > ε) = 0.

Often denoted as

Xn
p
→ X.

The LLN we just proved says that under suitable conditions, X̄n → μ in
probability.
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Convergence almost surely

Definition. A sequence (X1, X2, . . .) of random variables converges
almost surely towards the random variable X if

P
�

ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)
�

= 1.

Alternatively, one says that (Xn) converges almost everywhere or
with probability one.

Often denoted as

Xn
a.s.→ X

or

Xn → X a.s.
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Convergence in probability and almost
surely

These definitions look similar, so we should discuss some more.

Convergence in probability first looks at

P (ω ∈ Ω : |Xn(ω) − X(ω)| > ε)

for fixed n (and ε > 0), and then asks what happens when n→∞.

Conversely, convergence almost surely first looks at the sequences

X1(ω), X2(ω), . . . , Xn(ω), . . .

for fixed ω ∈ Ω.

We can then ask: what is the probability that these sequences have a
limit as n→∞? If it is one, we say that we have convergence almost
surely (or “with probability one”).
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Convergence in probability and almost
surely

Equivalently, remember the notions of limit inferior (“liminf”) and
limit superior (“limsup”) of a sequence (n) of real numbers, written as

lim inf
n→∞

n, limsp
n→∞

n.

For all ε > 0, there is an n0 such that for n ≥ n0,

lim inf
n→∞

n − ε < n < limsp
n→∞

n + ε

whereas

n < lim inf
n→∞

n + ε infinitely often,

n > limsp
n→∞

n − ε infinitely often.
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Convergence in probability and almost
surely

Clearly,

lim
n→∞

n exists⇔ lim inf
n→∞

n = limsp
n→∞

n.

Moving from numbers of (real-valued) random variables, write
lim infn→∞ Xn and limspn→∞ Xn for the random variables obtained by
taking the liminf and limsup for fixed ω.

Then (for fixed ω)

lim
n→∞

Xn exists⇔ lim inf
n→∞

Xn = limsp
n→∞

Xn.

Hence, the limit exists with probability one if and only if liminf equals
limsup with probability one!
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Convergence in probability and almost
surely

Clearly, convergence almost surely implies convergence in probability.

The converse is not the case: there may even be situations where we
have convergence in probability, but the probability of convergence is
zero! I.e.,

P
�

lim
n→∞

Xn exists
�

= P
�

lim inf
n→∞

Xn = limsp
n→∞

Xn

�

= 0.

One example for this is as follows.
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Convergence in probability and almost
surely

Take Ω = (0,1] and P as the uniform distribution on Ω.

Define random variables (here, just functions on the unit interval) as
follows.

First,

X1(ω) = 1, 0 < ω ≤ 1.

Second,

X2(ω) =

¨

1, 0 < ω ≤ 1/2
0, 1/2 < ω ≤ 1,

X3(ω) =

¨

0, 0 < ω ≤ 1/2
1, 1/2 < ω ≤ 1,

So X2 is the indicator of (0,1/2] and X3 the indicator of (1/2,1]:

X2 = (0,1/2] , X3 = (1/2,1] .

Slide 15



Convergence in probability and almost
surely

Take Ω = (0,1] and P as the uniform distribution on Ω.

Define random variables (here, just functions on the unit interval) as
follows. First,

X1(ω) = 1, 0 < ω ≤ 1.

Second,

X2(ω) =

¨

1, 0 < ω ≤ 1/2
0, 1/2 < ω ≤ 1,

X3(ω) =

¨

0, 0 < ω ≤ 1/2
1, 1/2 < ω ≤ 1,

So X2 is the indicator of (0,1/2] and X3 the indicator of (1/2,1]:

X2 = (0,1/2] , X3 = (1/2,1] .

Slide 15



Convergence in probability and almost
surely

Take Ω = (0,1] and P as the uniform distribution on Ω.

Define random variables (here, just functions on the unit interval) as
follows. First,

X1(ω) = 1, 0 < ω ≤ 1.

Second,

X2(ω) =

¨

1, 0 < ω ≤ 1/2
0, 1/2 < ω ≤ 1,

X3(ω) =

¨

0, 0 < ω ≤ 1/2
1, 1/2 < ω ≤ 1,

So X2 is the indicator of (0,1/2] and X3 the indicator of (1/2,1]:

X2 = (0,1/2] , X3 = (1/2,1] .

Slide 15



Convergence in probability and almost
surely

Third, do

X4 = (0,1/4] , X5 = (1/4,2/4] , X6 = (2/4,3/4] , X7 = (3/4,1] .

Now it should be clear how to continue:

■ X8, . . . , X15 are the indicators from splitting (0,1] into 23 = 8 equal
parts

■ X16, . . . , X31 are the indicators from splitting (0,1] into 24 = 16 equals
parts

■ etc. etc.
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Convergence in probability and almost
surely

Clearly, for 2k ≤ n < 2k+1, Xn is the indicator of one of the intervals
(/2k, ( + 1)/2k] for suitable  (in fact,  = n − 2k).

Hence (remember we use the uniform distribution on (0,1])

P(Xn ̸= 0) = 2−k.

Thus, Xn → 0 in probability.

On the other hand, for all 0 < ω ≤ 1, the sequence

X2k (ω), . . . , X2k+1−1(ω)

is one exactly once, and zero otherwise. Thus, lim infn Xn = 0 and
limspn Xn = 1, and hence indeed

P
�

lim
n→∞

Xn exists
�

= 0.
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Convergence in probability and almost
surely

What we proved above is that (under suitable conditions), X̄n → μ in
probability: this is also called the weak law of large numbers.

If one makes more assumptions, one can also prove that X̄n → μ almost
surely: this is then called a strong law of large numbers.

In particular, if the (Xn) are independent and identically
distributed, symbolically: i.i.d., with finite mean μ and finite variance
σ2, then X̄n → μ almost surely.

Won’t prove this: hope you’re not too disappointed.

In this course, we will often need/want the latter.

Slide 18



Convergence in probability and almost
surely

What we proved above is that (under suitable conditions), X̄n → μ in
probability: this is also called the weak law of large numbers.

If one makes more assumptions, one can also prove that X̄n → μ almost
surely: this is then called a strong law of large numbers.

In particular, if the (Xn) are independent and identically
distributed, symbolically: i.i.d., with finite mean μ and finite variance
σ2, then X̄n → μ almost surely.

Won’t prove this: hope you’re not too disappointed.

In this course, we will often need/want the latter.

Slide 18



Convergence in probability and almost
surely

What we proved above is that (under suitable conditions), X̄n → μ in
probability: this is also called the weak law of large numbers.

If one makes more assumptions, one can also prove that X̄n → μ almost
surely: this is then called a strong law of large numbers.

In particular, if the (Xn) are independent and identically
distributed, symbolically: i.i.d., with finite mean μ and finite variance
σ2, then X̄n → μ almost surely.

Won’t prove this: hope you’re not too disappointed.

In this course, we will often need/want the latter.

Slide 18



Application: Monte Carlo integration

Suppose that (X) are i.i.d. with density ƒ , and that g is such that g(X)
has finite mean and variance. Consider

θ̂n =
1

n

n
∑

=1

g(X).

The assumptions imply that (g(X)) is an i.i.d. sequence with finite mean

E(g(X)) =
∫

g()ƒ ()d =: θ

and finite variance.

Hence, by the strong law of large numbers,

θ̂n → θ =
∫

g()ƒ ()d almost surely.
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Outline

■ Limit theorems
■ Law of large numbers

■ Central limit theorem

■ Estimation of parameters and fitting of probability
distributions
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Convergence in distribution

Everyone knows that the standardized binomial distribution, or more
generally the standardized arithmetic means, can be “approximated” by
the standard normal distribution, in the sense that if Zn denotes the
standardized random variable, then as n→∞,

P(Zn ≤ z)→ (z) =
1
p
2π

∫ z

−∞
e−t

2/2 dt,

where the RHS equals P(Z ≤ z) with Z having a standard normal
distribution.

We say that (Zn) converges to Z “in distribution”.
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Convergence in distribution

Definition. Let X1, X2, . . . be a sequence of random variables with
cumulative distribution functions F1, F2, . . ., and let X be a random
variable with cumulative distribution function F. We say that Xn
converges in distribution to X if

lim
n→∞

Fn() = F()

at every continuity point  of F.

Often denoted as

Xn
d→ X.
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Convergence in distribution

Remarks.

■ Restricting to the continuity points is “new” (to most of you), but
necessary.

■ If F is continuous (as for ), then we get the “usual” notion of
convergence to F() for all .

■ This is a strange definition. Clearly, it only involves the distribution
functions of the random variables, and not the random variables
themselves!
One thus also speaks of convergence in distribution of the probability
laws or distributions, and writes the limit law/distribution on the RHS.
E.g.,

Zn
d→ N(0,1), Zn

d→ .
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Characteristic functions

If X is a random variable, the function ϕX, defined by

ϕX(t) = E(etX),

is the characteristic function of X.

Again, this only involves the distribution functions of the random
variables, and not the random variables themselves. See above.

You already learned about this in the probability course. E.g.,

ϕX(0) = 1,

if X has finite mean μ then

ϕ′X(0) = μ.
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Characteristic functions

If X1 and X2 are independent,

ϕX1+X2(t) = E(e
t(X1+X2)) = E(etX1etX2) = E(etX1)E(etX2) = ϕX1(t)ϕX2(t).

Finally, if Z has a standard normal distribution, then

ϕZ(t) = e−t
2/2.
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Example: Poisson distribution

If X has a Poisson distribution with parameter λ, then for k = 0,1, . . . we
have

P(X = k) =
λk

k!
e−λ.

Hence,

ϕX(t) = E(etX) =
∞
∑

k=0

etk
λk

k!
e−λ =

∞
∑

k=0

(λet)k

k!
e−λ = eλ(e

t−1).
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Landau notation

In computing, we looked a lot into orders of growth (in particular,
polynomially fast versus exponentially fast).

Mathematicians like to use special notations that describe the limiting
behavior of a function when the argument tends towards a particular
value or infinity.
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Landau notation

If ƒ and g are two functions, we write that

ƒ () = O(g()) as → 0

(“big-O”) provided that there is a finite M such that for all  sufficiently
close to 0,

|ƒ ()| ≤ Mg().

In essence: ƒ ()/g() remains bounded as → 0

There are also variants for one-sided limits, and 0 = ±∞.

E.g., if cn is the complexity of an algorithm for inputs of “size” n, then
cn = O(n3) (as n→∞) says we can find an M such that cn ≤ Mn3 (in fact,
for all n).
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Landau notation

If ƒ and g are two functions, we write that

ƒ () = o(g()) as → 0

(“little-o”) provided that for all ε > 0 there is a δ such that

|ƒ ()| ≤ εg() if | − 0| ≤ δ.

In essence: ƒ ()/g() tends to zero as → 0.
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Landau notation

If ƒ is continuous at 0, then as → 0, ƒ () − ƒ (0)→ 0.

Equivalently,

ƒ () − ƒ (0)

1
→ 0 as → 0.

We can write this as

ƒ () − ƒ (0) = o(1) as → 0

or even more cleverly,

ƒ () = ƒ (0) + o(1) as → 0.

Read: as → 0, ƒ () is ƒ (0) plus something that tends to zero.
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Landau notation

If ƒ is differentiable at 0, then as h→ 0,

ƒ (0 + h) − ƒ (0)

h
→ ƒ ′(0).

Equivalently,

ƒ (0 + h) − (ƒ (0) + ƒ ′(0)h)

h
→ 0 as h→ 0.

We can write this as

ƒ (0 + h) = ƒ (0) + ƒ ′(0)h + o(h) as h→ 0.

Old result in new notation!
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Landau notation

If ƒ is twice differentiable at 0,

ƒ (0 + h) = ƒ (0) + ƒ ′(0)h +
ƒ ′′(0)

2
h2 + o(h2).

In particular, for the exponential function exp we have

exp(s) = 1 + s +
s2

2
+ o(s2) as s→ 0.

(We will actually use these for s an imaginary/complex number. No
worries.)
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Lévy’s continuity theorem

The following is a variant of Theorem A in Rice, using characteristic
functions instead of moment generating functions.

Theorem (Lévy’s continuity theorem). A sequence (Xn) of random
variables converges in distribution to a random variable X if and only if
the sequence (ϕXn) of the characteristic functions converges pointwise
to a function ϕ which is continuous at the origin. Then ϕ is the
characteristic function of X.

Remarks:

■ Again, a bit strange from going between random variables and their
distributions.

■ Won’t prove this, sorry. But we’ll prove two theorems now.
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■ Won’t prove this, sorry. But we’ll prove two theorems now.
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Standardization

If X is a random variable with finite mean μ and variance σ2,

Z =
X − μ

σ

is the standardized random variable obtained from X.

Clearly,

E(Z) =
E(X) − μ

σ
= 0, vr(Z) = E(Z2) =

vr(X)

σ2
= 1

(which is what “standardized” is about).

For the characteristic functions,

ϕZ(t) = E(et(X−μ)/σ) = E
�

e−tμ/σe(t/σ)X
�

= e−tμ/σϕX(t/σ).
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Normal Approximation of the Poisson
Distribution

Suppose Xn has a Poisson distribution with parameter λn.

We know that

E(Xn) = vr(Xn) = λn.

Let

Zn =
Xn − λn
p

λn

be the corresponding standardized random variable.

What can we say about the distribution of Zn when λn gets large?

(I.e., if limn λn =∞.)
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Normal Approximation of the Poisson
Distribution

We can answer this question by putting pieces together.

For the characteristic function of Zn we obtain that

ϕZn(t) = exp(−t
p

λn)ϕXn(t/
p

λn) = exp
�

−t
p

λn + λn(et/
p
λn − 1)
�

.

This looks like a monster, but now the Landau part comes in: write

s = t/
p

λn

so that

s2 = −
t2

λn
.
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Normal Approximation of the Poisson
Distribution

As n→∞, λn →∞ and hence s→ 0 and hence

et/
p
λn = es

= 1 + s +
s2

2
+ o(s2)

= 1 +
t
p

λn
−

t2

2λn
+ o(1/λn).
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Normal Approximation of the Poisson
Distribution

Hence, as n→∞

log(ϕZn(t))

= −t
p

λn + λn(et/
p
λn − 1)

= −t
p

λn + λn

��

1 +
t
p

λn
−

t2

2λn
+ o(1/λn)

�

− 1
�

= −
t2

2
+ λno(1/λn)

= −
t2

2
+ o(1).
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Normal Approximation of the Poisson
Distribution

Hence, as n→∞,

log(ϕZn(t))→ −t
2/2, ϕZn(t)→ e−t

2/2.

We recognize the limit as the characteristic function of the standard
normal distribution.

We can now apply Lévy’s continuity theorem:

■ As n→∞, ϕZn(t)→ ϕ(t) = e−t
2/2, which is clearly continuous at t = 0.

Hence, we have convergence in distribution.
■ In fact, ϕ is the characteristic function of the standard normal.
■ Altogether: Zn converges to N(0,1) in distribution.

Could formulate this as a theorem.
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Central limit theorem

Theorem (Central Limit Theorem). Let X1, X2, . . . be a sequence of
independent identically distributed random variables having mean μ,
variance σ2 and finite third moments. Let Sn =

∑n
=1 X. Then

lim
n→∞

P

�

Sn − nμ

σ
p
n
≤ 
�

= (), −∞ <  <∞.

I.e., the standardized Sn converge to N(0,1) in distribution.

Clearly,

Sn − nμ

σ
p
n
=
(Sn − nμ)/n

σ
p
n/n

=
X̄n − μ

σ/
p
n
.
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Central limit theorem

Clearly,

Zn =
Sn − nμ

σ
p
n
=

1
p
n

n
∑

=1

X − μ

σ
.

So Zn will always be standardized, and without loss of generality we can
take the X to already be standardized, i.e., assume that μ = 0 and
σ = 1, in which case

Zn =
Sn
p
n
.
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Central limit theorem

From what we know about characteristic functions,

ϕZn(t) = ϕ(X1+···+Xn)/
p
n(t) = ϕX1(t/

p
n) · · ·ϕXn(t/

p
n) =
�

ϕX(t/
p
n)
�n
,

where ϕX is the characteristic function for the common distribution of
the X.

As before, we can see that as n→∞, t/
p
n→ 0, so maybe we can again

do a Taylor expansion of ϕX(s) at s = 0 as we just did for the Poisson
distribution?

Intuitively, as s→ 0

E(esX) = E

�

1 + sX −
s2

2
X2 + o(s2X2)

�
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Central limit theorem

One can show that if X has finite third moments, this can be re-arranged
as

E(esX) = 1 + sE(X) −
s2

2
E(X2) + o(s2)

as s→ 0.

In particular, if X is standardized,

E(X) = 0, E(X2) = vr(X) + (E(X))2 = 1 + 0 = 1

such that as s→ 0,

ϕX(s) = E(esX) = 1 −
s2

2
+ o(s2).
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Central limit theorem

Thus with s = t/
p
n,

ϕZn(t) =
�

ϕX(t/
p
n)
�n
=

�

1 −
t2

2n
+ o(1/n)

�n

→ e−t
2/2.

To see the limit: everyone knows that
�

1 +


n

�n

→ e

and one can also show that (e.g., use the Taylor expansion for the log
function)
�

1 +
 + o(1)

n

�n

→ e.
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Central limit theorem

And now argue as before:

■ As n→∞, ϕZn(t)→ ϕ(t) = e−t
2/2, which is clearly continuous at t = 0.

Hence, by Lévy’s continuity theorem we have convergence in
distribution.

■ In fact, ϕ is the characteristic function of the standard normal.
■ Altogether: Zn converges to N(0,1) in distribution.
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Central limit theorem
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Outline

■ Limit theorems

■ Estimation of parameters and fitting of probability
distributions
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Notation

In what follows, for random variables X1, . . . , Xn, we write

X̄ =
1

n

n
∑

=1

X, S2 =
1

n − 1

n
∑

=1

(X − X̄)2

and call these, respectively, the sample mean and sample variance.
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Outline

■ Limit theorems

■ Estimation of parameters and fitting of probability
distributions
■ Statistical inference

■ The method of moments
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The big picture

This course is about statistical inference.

Statistical inference is a method of induction.

We take data we’ve already seen to reason about data we have not
seen yet (“learning from the data”).

How can this work if there is uncertainty about the data we have not
seen yet?

The trick is to model this uncertainty probabilistically, i.e., use
probabilistic models for the data generating process.

We can then use results from probability theory (which were obtained
via deduction) to substantiate our inference about the model
characteristics of interest.
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The big picture

For example, suppose we have observed counts 1, . . . , n.

One possible model for such counts is independent observations from a
Poisson distribution with parameter λ.

I.e., we take the observations as realizations of i.i.d. random variables
which are Poisson(λ):

1 = X1(ω), . . . , n = Xn(ω), (X1, . . . , Xn) i.i.d. ∼ Poisson(λ).

What we still don’t know is the parameter λ.

We could try to estimate this parameter from the observations.

As we know that E(X) = λ, i.e., λ is the population mean, we could try
estimating via the sample mean ̄: λ̂ = ̄.
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The big picture

Is this a good idea?

Well, we already know: if X1, . . . , Xn, . . . are drawn i.i.d. from a Poisson
distribution with parameter λ, then

X̄→ λ almost surely.

So with probability one, the estimate λ̂ should converge to the
underlying λ when the sample size tends to ∞.

I.e., with probability one, we should be getting observations which allow
us to estimate the unknown λ arbitrarily well, provided the sample sizes
are large enough.

(Shows why we prefer strong LLNs to back up our inference.)
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The big picture

The Poisson example easily generalizes to arbitrary fully parametric
models:

■ We take observations 1, . . . , n as realizations of random variables
X1, . . . , Xn:

1 = X1(ω), . . . , n = Xn(ω).

We assume that the joint distribution of (X1, . . . , Xn) is known up to an
unknown (possibly vector-valued) parameter θ:

(X1, . . . , Xn) ∼ ƒ (1, . . . , n|θ)

■ Usually the X will be modeled as i.i.d., in which case their joint
density is ƒ (1|θ) · · · ƒ (n|θ).
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The big picture

■ We use the observations 1, . . . , n to estimate the unknown
parameter θ by computing a suitable function t of the observations:

θ̂ = t(1, . . . , n).

This estimate is a realization of the random variable

t(X1, . . . , Xn).

The probability distribution of this random variable is called the
sampling distribution of the estimate.

■ The variability of this distribution will most frequently be assessed
through its standard deviation, commonly called the standard error
(of the estimate).
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The big picture warning sign

For starters, it is very important to distinguish between the observations
and the underlying random variables.

Traditionally, one uses case to help distinguish.

However, for parameter estimates there is no such distinction: an
estimate θ̂ can be meant as either

θ̂ = t(1, . . . , n),

the estimate computed from the observations, or as the corresponding
random variable

θ̂ = t(X1, . . . , Xn).

What is meant needs to be explicit or implicit from the context.
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Outline

■ Limit theorems

■ Estimation of parameters and fitting of probability
distributions
■ Statistical inference

■ The method of moments
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Moments

The k-th moment of a probability law is defined as

μk = E(Xk)

(where X is a random variable following that probability law and the
corresponding expectation exists).

If X1, . . . , Xn are i.i.d. random variables from this law, the k-th sample
moment is defined as

μ̂k =
1

n

n
∑

=1

Xk


Under suitable moment assumptions, the sample moments converge to
the population ones. (Just do LLN for Xk instead of X.)
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The method of moments

An “obvious” idea for parameter estimation is to estimate k-th moments
by the corresponding sample moments.

More generally, if a parameter θ of interest can be written as a function
of moments, then one could estimate it by the same function of the
corresponding sample moments.

This is the idea of the method of moments:

Express the parameters in terms of the (lowest possible order)
moments, and then substitute the sample moments into the
expressions.
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The method of moments

Typically, one performs the following steps:

1. Find expressions of suitable low order moments in terms of the
parameters.

2. Invert the expressions, obtaining expressions for the parameters in
terms of the low order moments.

3. Insert the sample moments into these expressions, obtaining
estimates of the parameters in terms of the sample moments.

The following examples will make this clear(er).
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Example: Poisson distribution

If X ∼ Poisson(λ),

μ1 = E(X) = λ.

The steps for MoM estimation:

■ Express moments in terms of the parameters: μ1 = λ.
■ Invert to express parameters in terms of moments: λ = μ1.
■ To estimate, replace moments by sample moments: λ̂ = μ̂1.

Thus, for (X1, . . . , Xn) i.i.d. Poisson(λ), the MoM estimate of λ is given by

λ̂ = μ̂1 = X̄.
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Example: Poisson distribution

What can we say about the sampling distribution of this estimate?

We know from probability that

X1 ∼ Poisson(λ1), . . . , Xn ∼ Poisson(λm) independent
⇒ X1 + · · · + Xn ∼ Poisson(λ1 + · · · + λn).

Hence in our case,

nλ̂ ∼ Poisson(nλ)

so that

E(λ̂) =
nλ

n
= λ, vr(λ̂) =

nλ

n2
=
λ

n
.
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Example: Poisson distribution

The above expressions are as we write them in probability.

In statistical inference, we sometimes/often want/need to indicate the
value of the parameter(s) used for computing distributions or functions
of these. (The need will become clearer when we learn about the
method of maximum likelihood.)

One then re-writes the above as

Eλ(λ̂) = λ

where the λ subscript indicates that the (unknown in the context of
statistical inference) parameter of the Poisson distribution(s).

Traditionally, one spoke of the “true” parameter, which is somewhat
deprecated in the light of Bayesian thinking (I will usually speak of the
“underlying” parameter).
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Example: Poisson distribution

We found that

Eλ(λ̂) = λ

so that the sampling distribution is centered at λ.

Such estimates are called unbiased.
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Example: Poisson distribution

What about the precision of the estimate?

A common measure for this is the standard error of the estimate,
defined as the standard deviation of the sampling distribution. From the
above,

σλ̂ =
p

λ/n.

But of course, we do not know the underlying λ! (Which is why we
estimate it.)

An approximation for the standard error can be obtained by substituting
λ̂ for λ, giving the estimated standard error

sλ̂ =
q

λ̂/n.
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Example: Poisson distribution

The same holds true for the sampling distribution itself.

We know that

nλ̂ ∼ Poisson(nλ)

which is a distribution we already “know” well, and we can work with
theoretically, assuming we know λ.

However, in the context of parameter estimation, we do not know λ
(which is why we estimate it)!
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Example: Normal distribution

The normal distribution has two parameters: the mean μ and either the
variance σ2 or the standard deviation σ (remember that in R, the
parametrization is by μ and σ!).

The steps for MoM estimation of the parameters:

■ Express moments in terms of the parameters:

μ1 = μ, μ2 = E(X2) = vr(X) + (E(X))2 = σ2 + μ2.

■ Invert to express parameters in terms of moments:

μ = μ1, σ2 = μ2 − μ21.

■ To estimate, replace moments by sample moments:

μ̂ = μ̂1, σ̂2 = μ̂2 − (μ̂1)2.
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■ Invert to express parameters in terms of moments:

μ = μ1, σ2 = μ2 − μ21.

■ To estimate, replace moments by sample moments:

μ̂ = μ̂1, σ̂2 = μ̂2 − (μ̂1)2.Slide 65



Example: Normal distribution

Clearly, μ̂ = μ̂1 = X̄ is the sample mean, but what about σ̂2?

If 1, . . . , n are numbers and ̄ is their mean,

n
∑

=1

( − ̄)2 =
n
∑

=1

(2 − 2̄ + ̄2)

=
n
∑

=1

2 − 2
n
∑

=1

̄ + n̄2

=
n
∑

=1

2 − 2n̄̄ + n̄2

=
n
∑

=1

2 − n̄
2.
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Example: Normal distribution

Equivalently,

1

n

n
∑

=1

2 − ̄
2 =

1

n

n
∑

=1

( − ̄)2.

Thus,

σ̂2 = μ̂2 − (μ̂1)2 =
1

n

n
∑

=1

X2
 − X̄

2 =
1

n

n
∑

=1

(X − X̄)2.

This is not quite the sample variance, which uses division by n − 1
instead of n!
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Example: Normal distribution

What about the sampling distribution of the estimate?

(As we now estimate two parameters, this is a bivariate distribution.)

By a classic classic result (see Section 6.3 in Rice):

X̄ ∼ N(μ, σ2/n), nσ̂2/σ2 ∼ χ2n−1

and X̄ and σ̂2 are independent (more on this later).

In the above, χ2n−1 denotes the chi-squared distribution with n − 1
degrees of freedom.

Again, these distributions are “well known” in the sense that they have
been named and studied (and we have ready-made R code for them).

Well, again known if we know the parameters, which in the context of
parameter estimation we don’t.
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