
Optimization and
Root Finding

Rainer Hirk
2021-11-22



Basics

Root finding and unconstrained smooth optimization are closely related:

I Solving f (x) = 0 can be accomplished via minimizing ‖f (x)‖2

I Unconstrained optima of f must be critical points, i.e., solve ∇f (x) = 0

(Note: f scalar for optimization and typically vector-valued for root finding.)

Linear equations and linear least squares problems can be solved “exactly” using techniques
from numerical linear algebra.

Otherwise: solve “approximately” as limits of iterations xk+1 = g(xk).
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Fixed Point Iteration

Consider iteration xk+1 = g(xk) with limit x∗ and g smooth. Then x∗ = g(x∗) and

xk+1 = g(xk) ≈ g(x∗) + Jg (x∗)(xk − x∗) = x∗ + Jg (x∗)(xk − x∗)

where

Jg (x) =

[
∂gi
∂xj

(x)

]
is the Jacobian of g at x (sometimes also written as (∇g)′(x)). Thus:

xk+1 − x∗ ≈ Jg (x∗)(xk − x∗)
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Fixed Point Iteration

In general, for local convergence it is necessary and sufficient that

ρ(Jg (x∗)) < 1

where

ρ(A) = max{|λ| : λ is an eigenvalue of A}

is the spectral radius of A.

In this case, we get (at least) linear (local) convergence, i.e.,

‖xk+1 − x∗‖ ≤ C‖xk − x∗‖

for some 0 < C < 1 and k sufficiently large.
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Newton’s Method

Suppose we have an approximation xk to x∗ and that in a neighborhood of xk , the linearization

Lk(x) = f (xk) + Jf (xk)(x − xk)

is a good approximation to f .

An obvious candidate for a next approximation is obtained by solving Lk(x) = 0, i.e.,

xk+1 = xk − Jf (xk)−1f (xk) = g(xk), g(x) = x − Jf (x)−1f (x),

This is the “mathematical” form: the computational one is

Solve Jf (xk)sk = −f (xk) for sk ; xk+1 = xk + sk .
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Newton’s Method

Iteration function g has components and partials

gi (x) = xi −
∑
l

[Jf (x)−1]il fl(x),

∂gi
∂xj

(x) = δij −
∑
l

∂[Jf (x)−1]il
∂xj

fl(x)−
∑
l

[Jf (x)−1]il
∂fl
∂xj

(x).

As f (x∗) = 0,

∂gi
∂xj

(x∗) = δij −
∑
l

[Jf (x∗)−1]il
∂fl
∂xj

(x∗) = δij − [Jf (x∗)−1Jf (x∗)]ij = 0

so that Jg (x∗) vanishes! Thus, local convergence is super-linear (and can in fact be shown to
be at least quadratic) in the sense that

‖xk+1 − x∗‖ ≤ αk‖xk − x∗‖, lim
k
αk = 0.
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Newton’s Method: Discussion

Due to super-linear convergence, works very nicely once we get close enough to a root where
the above approximations apply.

However (with n the dimension of the problem):

I In each step, O(n2) derivatives needs to be computed (exactly or numerically), which can
be costly (in particular if function and/or derivative evaluations are costly);

I In each step, an n × n linear system needs to be solved, which takes O(n3) operations.

I For super-linear convergence the exact Jacobian is not needed.
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Super-Linear Convergence

Attractive because “faster than linear”. Also,

|‖xk+1 − xk‖ − ‖xk − x∗‖| ≤ ‖xk+1 − x∗‖

so that with super-linear convergence,∣∣∣∣‖xk+1 − xk‖
‖xk − x∗‖

− 1

∣∣∣∣ ≤ ‖xk+1 − x∗‖
‖xk − x∗‖

= αk → 0.

I.e., relative change in the xk update is a good approximation for the relative error in the
approximation of x∗ by xk (which is commonly used for stopping criteria).
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Super-Linear Convergence

One can show: for sequences

xk+1 = xk − B−1k f (xk)

with suitable non-singular matrices Bk one has super-linear (local) convergence to x∗ with
f (x∗) = 0 if and only if

lim
k→∞

‖(Bk − Jf (x∗))(xk+1 − xk)‖
‖xk+1 − xk‖

= 0,

i.e., if Bk converges to Jf (x∗) along the directions sk = xk+1 − xk of the iterative method.

Suggests investigating iterative “Quasi-Newton” methods with such Bk which are less costly
to compute and/or invert.
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Broyden’s Method

Note that Newton’s method is based on the approximation

f (xk+1) ≈ f (xk) + Jf (xk)(xk+1 − xk).

Suggests considering approximations Bk+1 which exactly satisfy the secant equation

f (xk+1) = f (xk) + Bk+1(xk+1 − xk).

Of all such Bk+1, the one with the least change to Bk seems particularly attractive. I.e.,
solutions to

‖B − Bk‖F → min, yk = f (xk+1)− f (xk) = Bsk

(where ‖ · ‖F is the Frobenius norm).
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Broyden’s Method

We have

‖B − Bk‖2F = ‖vec(B)− vec(Bk)‖2, vec(Bsk − yk) = (s ′k ⊗ I )vec(B)− yk .

Thus, writing

b = vec(B), bk = vec(Bk), Ak = s ′k ⊗ I ,

optimization problem is

‖b − bk‖2 → min, Akb = yk .

Convex quadratic optimzation problem with linear constraints: can solve using geometric ideas
(orthogonal projections on affine subspaces) or using Lagrange’s method.
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Broyden’s Method

Lagrangian:

L(b, λ) =
1

2
‖b − bk‖2 + λ′(Akb − yk).

For critical point:

∇bL = b − bk + A′kλ = 0, ∇λL = Akb − yk = 0.

Thus b = bk − A′kλ with yk = Akb = Ak(bk − A′kλ), so λ = (AkA
′
k)−1(Akbk − yk) and

b = bk − A′k(AkA
′
k)−1(Akbk − yk).
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Broyden’s Method

As AkA
′
k = (s ′k ⊗ I )(sk ⊗ I ) = s ′ksk I and Akbk = (s ′k ⊗ I )vec(Bk) = vec(Bksk),

A′k(AkA
′
k)−1(Akbk − yk) =

1

s ′ksk
(sk ⊗ I )(Akbk − yk) =

1

s ′ksk
vec((Akbk − yk)s ′k)

and hence

vec(B) = b = vec(Bk)− vec

(
(Akbk − yk)s ′k

s ′ksk

)
= vec

(
Bk −

(Bksk − yk)s ′k
s ′ksk

)
and thus

B = Bk +
(yk − Bksk)s ′k

s ′ksk
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Broyden’s Method

Based on a suitable guess x0 and a suitable full rank approximation B0 for the Jacobian (e.g.,
I ), iterate using

Solve Bksk = −f (xk) for sk

xk+1 = xk + sk

yk = f (xk+1)− f (xk)

Bk+1 = Bk + (yk − Bksk)s ′k/(s ′ksk).

Again, this is the mathematical form.

Computationally, can improve!

Note that iteration for Bk performs rank-one updates of the form Bk+1 = Bk + ukv
′
k , and all

we need is the inverse Hk = B−1k !
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Broyden’s Method

Remember Sherman-Morrison formula for inverse of rank-one update:

(A + uv ′)−1 = A−1 − (1/σ)A−1uv ′A−1, σ = 1 + v ′A−1u 6= 0.

Thus,

Hk+1 = B−1k+1 = (Bk + ukv
′
k)−1 = Hk −

1

1 + v ′kHkuk
Hkukv

′
kHk

with uk = (yk − Bksk) and vk = sk/(s ′ksk) so that

Hkuk = B−1k uk = B−1k yk − sk = Hkyk − sk

and

1 + v ′kHkuk = 1 +
s ′k(Hkyk − sk)

s ′ksk
=

s ′kHkyk
s ′ksk

.
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Broyden’s Method

Computational form: based on suitable guess x0 and a suitable full rank approximation H0 for
the inverse of the Jacobian (e.g., I ), iterate using

sk = −Hk f (xk)

xk+1 = xk + sk

yk = f (xk+1)− f (xk)

Hk+1 = Hk −
(Hkyk − sk)s ′kHk

s ′kHkyk

(of course needs that s ′kHkyk 6= 0).
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Spectral Methods

Used for very large n. E.g., Barzilai-Borwein methods.

One variant (DF-SANE) based on idea to use very simple Bk or Hk proportional to the identity
matrix.

However: when Bk = βk I , secant condition Bk+1sk = yk typically cannot be achieved exactly.
Instead, determine βk+1 to solve

‖yk − Bk+1sk‖2 = ‖yk − βk+1sk‖2 → min

with solution βk+1 = y ′ksk/s
′
ksk . Gives iteration

xk+1 = xk − f (xk)/βk , βk+1 = y ′ksk/s
′
ksk

or equivalently (with sk and yk as before),

xk+1 = xk − αk f (xk), αk+1 = s ′ksk/y
′
ksk .
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Spectral Methods

Alternatively, when using Hk = αk I , the exact secant condition would be Hk+1yk = sk , and
one determines αk+1 to solve

‖sk − Hk+1yk‖2 = ‖sk − αk+1yk‖2 → min

with solution αk+1 = s ′kyk/y
′
kyk . Gives iteration

xk+1 = xk − αk f (xk), αk+1 =
s ′kyk
y ′kyk

.
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Root Finding with R

Methods only only available in add-on packages.

I Package nleqslv has function nleqslv() providing the Newton and Broyden methods
with a variety of global strategies.

I Package BB has function BBsolve() providing Barzilai-Borwein solvers, and and
multiStart() for starting solvers from multiple starting values.

I ???
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Examples

System

x21 + x22 = 2, ex1−1 + x32 = 2

Has one solution at x1 = x2 = 1.
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Theory

Consider unconstrained minimization problem with objective function f . If f is smooth:

f (x∗ + s) = f (x∗) +∇f (x∗)′s +
1

2
s ′Hf (x∗ + αs)s

for some 0 < α < 1, with Hf (x) =
[

∂2f
∂xi∂xj

(x)
]

the Hessian of f at x . Hence:

I x∗ local minimum =⇒ ∇f (x∗) = 0 (x∗ is a critical point of f ) and Hf (x∗) non-negative
definite (necessary first and second order conditions)

I x∗ a critical point of f and Hf (x∗) positive definite (sufficient second order condition)
=⇒ x∗ local minimum
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Steepest Descent

Linear approximation

f (x + αs) ≈ f (x) + α∇f (x)′s

suggests looking for good α along the steepest descent direction s = −∇f (x).

Typically performed as

sk = −∇f (xk)
Choose αk to minimize f (xk + αsk)
xk+1 = xk + αksk .

(method of steepest descent [with line search]).
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Newton’s Method

Use local quadratic approximation

f (x + s) ≈ f (x) +∇f (x)′s +
1

2
s ′Hf (x)s

(equivalently, linear approximation for ∇f ) and minimize RHS over s to obtain Newton’s
method

xk+1 = xk − Hf (xk)−1∇f (xk)

with computational form

Solve Hf (xk)sk = −∇f (xk) for sk ; xk+1 = xk + sk .
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Quasi-Newton Methods

Similarly to the root-finding case, there are many modifications of the basic scheme, the
general form

xk+1 = xk − αkB
−1
k ∇f (xk)

referred to as quasi-Newton methods: adding the αk allows to improve the global performance
by controlling the step size.

(Note however that away from a critical point, the Newton direction s does not necessarily
result in a local decrease of the objective function.)
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Quasi-Newton Methods

Similar to the root-finding case, one can look for simple updating rules for Hessian
approximations Bk subject to the secant constraint

Bksk = yk = ∇f (xk+1)−∇f (xk),

additionally taking into account that the Bk should be symmetric (as approximations to the
Hessians). This motivates solving

‖B − Bk‖F → min, B symmetric, yk = Bsk .

which can easily be shown to have the unique solution

Bk +
(yk − Bksk)(yk − Bksk)′

(yk − Bksk)′sk
.

Symmetric rank-one (SR1) update formula (Davidon, 1959).

Unconstrained Optimization 27 / 56



Quasi-Newton Methods

SR1 has numerical difficulties: one thus considers similar problems with different norms, such
as weighted Frobenius norms

‖B − Bk‖F ,W = ‖W 1/2(B − Bk)W 1/2‖F .

One can show: for any (symmetric) W for which Wyk = sk (such as the inverse of the average

Hessian
∫ 1
0 Hf (xk + τsk) dτ featuring in Taylor’s theorem) which makes the approximation

problem non-dimensional,

‖B − Bk‖F ,W → min, B symmetric, yk = Bsk

has the the unique solution

(I − ρkyks ′k)Bk(I − ρksky ′k) + ρkyky
′
k , ρk = 1/y ′ksk .

This is the DFP (Davidon-Fletcher-Powell) update formula.
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Quasi-Newton Methods

Average Hessian: we have

∇f (x + s)−∇f (x) = ∇f (x + τs)
∣∣∣1
0

=

∫ 1

0

d

dτ
∇f (x + τs) dτ

=

(∫ 1

0
Hf (x + τs) dτ

)
s

and hence (ignoring αk for simplicity)

yk = ∇f (xk + sk)−∇f (xk) =

(∫ 1

0
Hf (xk + τsk) dτ

)
sk .
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Quasi-Newton Methods

Most effective quasi-Newton formula is obtained by applying the corresponding approximation
argument to Hk = B−1k , i.e., by using the unique solution to

‖H − Hk‖F ,W → min H symmetric, sk = Hyk .

with W any matrix satisfying Wsk = yk (such as the average Hessian matrix), which is given
by

(I − ρksky ′k)Hk(I − ρkyks ′k) + ρksks
′
k , ρk =

1

y ′ksk
.

This is the BFGS (Broyden-Fletcher-Goldfarb-Shanno) update formula.
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Quasi-Newton Methods

Using Sherman-Morrison-Woodbury formula
(A+UV ′)−1 = A−1−A−1U(I +V ′A−1U)−1V ′A−1 and lengthy computations, one can show:

I BFGS update for Hk corresponds to

Bk+1 = Bk +
yky
′
k

y ′ksk
−

Bksks
′
kBk

s ′kBksk

I DFP update for Bk corresponds to

Hk+1 = Hk +
sks
′
k

s ′kyk
−

Hkyky
′
kHk

y ′kHkyk

Rank-two updates. (Note the symmetry.)
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Conjugate Gradient Methods

Alternative to quasi-Newton methods. Have the form

xk+1 = xk + αksk , sk+1 = −∇f (xk+1) + βk+1sk

where the β are chosen such that sk+1 and sk are suitably conjugate.

E.g., the Fletcher-Reeves variant uses

βk+1 =
g ′k+1gk+1

g ′kgk
, gk+1 = ∇f (xk+1).

Advantage: require no matrix storage (uses only gradients) and are faster than steepest
descent, hence suitable for large-scale optimization problems.
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Gauss-Newton Method

Minimizing objective functions of the form

φ(x) =
1

2

∑
i

ri (x)2 = ‖r(x)‖2/2,

is known (roughly) as non-linear least squares problems, corresponding to minimizing the sum
of squares of residuals ri (x) = ti − f (ei , x) (in statistics, we usually write xi and yi for the
inputs and targets, and θ instead of x for the unknown parameter). Clearly,

∇φ(x) = Jr (x)′r(x), Hφ(x) = Jr (x)′Jr (x) +
∑
i

ri (x)Hri (x).
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Gauss-Newton Method

Straightforward Newton method typically replaced by the Gauss-Newton method

(Jr (xk)′Jr (xk))sk = −Jr (xk)′r(xk)

which drops the terms involving the Hri from the Hessian based on the idea that in the
minimum the residuals ri should be “small”.

Replaces a non-linear least squares problem by a sequence of linear least-squares problems with
the right limit.

However, simplification may lead to ill-conditioned or rank deficient linear problems: if so, the
Levenberg-Marquardt method

(Jr (xk)′Jr (xk) + µk I )sk = −Jr (xk)′r(xk)

with suitably chosen µk > 0 can be employed.
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Theory

Local optima are relative to neighborhoods in feasible set X .

A suitably “interior” point x∗ in X is a local minimum iff t 7→ f (x(t)) has a local minimum at
t = 0 for all smooth curves t 7→ x(t) in X defined in some open interval containing 0 with
x(0) = x∗.

(Alternatively, if Jg (x∗) has full column rank, use the implicit mapping theorem to obtain a
local parametrization x = x(s) of the feasible set with, say, x(0) = x∗, and consider the
conditions for f (x(s)) to have an unconstrained local minimum at s = 0.)
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Theory

We have

df (x(t))

dt
=

∑
j

∂f

∂xj
(x(t))ẋj(t)

d2f (x(t))

dt2
=

∑
j ,k

∂2f

∂xj∂xk
(x(t))ẋj(t)ẋk(t) +

∑
j

∂f

∂xj
(x(t))ẍj(t)

From the first: for local minimum necessarily

〈∇f (x∗), s〉 = 0

for all feasible directions s at x∗.
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Theory

Suppose that X is defined by equality constraints g(x) = [g1(x), . . . , gm(x)]′ = 0. Then
gi (x(t)) ≡ 0 and hence∑

j

∂gi
∂xj

(x(t))ẋj(t) = 0.

Hence: set of feasible directions at x∗ is given by Null(Jg (x∗)).

Necessary first order condition translates into:

∇f (x∗) ∈ (Null(Jg (x∗)))⊥ = Range(Jg (x∗)′),

i.e., there exist Lagrange multipliers λ such that

∇f (x∗) = −Jg (x∗)′λ.

Constrained Optimization 38 / 56



Theory

Differentiating once more,∑
j ,k

∂2gi
∂xj∂xk

(x(t))ẋj(t)ẋk(t) +
∑
j

∂gi
∂xj

(x(t))ẍj(t) = 0.

Multiply by λi from above and add to expression for d2f (x(t))/dt2 at t = 0:

d2f (x(t))

dt2

∣∣∣∣
t=0

=
∑
j ,k

(
∂2f

∂xj∂xk
(x∗) +

∑
i

λi
∂2gi
∂xj∂xk

(x∗)

)
sjsk

+
∑
j

(
∂f

∂xj
(x∗) +

∑
i

λi
∂gi
∂xj

(x∗)

)
ẍj(0)

= s ′
(
Hf (x∗) +

∑
i
λiHgi (x

∗)
)
s

= s ′B(x∗, λ)s
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Theory

For local minimum, must thus also have s ′B(x∗, λ)s ≥ 0 for all feasible directions s at x∗, or
equivalently, for all s ∈ Null(Jg (x∗).

Let Z be a basis for Null(Jg (x∗). Then:

I x∗ constrained local minimum =⇒ ∇f (x∗) = −Jg (x∗)′λ and projected (reduced) Hessian
Z ′B(x∗, λ)Z non-negative definite

I ∇f (x∗) = −Jg (x∗)′λ and Z ′B(x∗, λ)Z positive definite =⇒ x∗ constrained local
minimum
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Theory

Lagrangian

L(x , λ) = f (x) + λ′g(x)

has

∇L(x , λ) =

[
∇f (x) + Jg (x)′λ

g(x)

]
, HL(x , λ) =

[
B(x , λ) Jg (x)′

Jg (x) O

]
Above first-order conditions conveniently translate into (x∗, λ) being a critical point of L.

However, saddle point: HL cannot be positive definite. Need to check Z ′B(x∗, λ)Z as
discussed above.

If also inequality constraints hk(x) ≤ 0: corresponding λk ≥ 0 and hk(x∗)λk = 0 (k with
λk > 0 give active set where hk(x∗) = 0).
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Sequential Quadratic Programming

Consider minimization problem with equality constraints. Suppose we use Newton’s method to
determine the critical points of the Lagrange function, i.e., to solve

∇L(x , λ) =

[
∇f (x) + Jg (x)′λ

g(x)

]
= 0.

Gives the system[
B(xk , λk) Jg (xk)′

Jg (xk) O

] [
sk
δk

]
= −

[
∇f (xk) + Jg (xk)′λk

g(xk).

]
which are the first-order conditions for the constrained optimization problem

min
s

1

2
s ′B(xk , λk)s + s ′(f (xk) + Jg (xk)′λk), Jg (xk)s + g(xk) = 0.

Constrained Optimization 42 / 56



Sequential Quadratic Programming

Why? Dropping arguments, want to solve

1

2
s ′Bs + s ′u → min, Js + v = 0.

Lagrangian is L(s, δ) = 1
2s
′Bs + s ′u + δ′(Js + v) for which the first-order conditions are

Bs + u + J ′δ = 0, Js + v = 0

Equivalently,[
B J ′

J O

] [
s
δ

]
= −

[
u
v

]
.
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Sequential Quadratic Programming

I.e., when using Newton’s method to determine the critical points of the Lagrange function,
each Newton step amounts to solving a quadratic optimization problem under linear
constraints: hence, method known as Sequential Quadratic Programming.

One does not necessarily solve the linear system directly (remember that the Hessian is
symmetric but indefinite, so Choleski factorization is not possible).
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Penalty Methods

Idea: convert the constrained problem into a sequence of unconstrained problems featuring a
penalty function to achieve (approximate) feasibility.

E.g., for the equality-constrained problem

f (x)→ min, g(x) = 0

one considers

φρ(x) = f (x) + ρ‖g(x)‖2/2→ min;

Under appropriate conditions it can be shown that the solutions x∗(ρ) converge to the solution
x∗ of the original problem for ρ→∞.
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Augmented Lagrangian Methods

For penalty method, letting ρ increase without bounds often leads to problems, which
motivates to instead use an augmented Lagrangian function

Lρ(x , λ) = f (x) + λ′g(x) + ρ‖g(x)‖2/2

for which the Lagrange multiplier estimates can be manipulated in ways to keep them bounded
while converging to the constrained optimum: augmented Lagrangian methods.

Illustration where fixed ρ > 0 suffices: convex minimization with linear constraints.
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Augmented Lagrangian Methods

Primal problem

f (x)→ min, Ax = b.

with f convex. Duality theory: with Lagrangian L(x , λ) = f (x) + λ′(Ax − b), dual function is
infx L(x , λ) = −f ∗(−A′λ)− b′λ (where f ∗ is the convex conjugate), and optimality conditions
are

Ax − b = 0, ∇f (x) + A′λ = 0

(primal and dual feasibility).
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Augmented Lagrangian Methods

Consider augmented Lagrangian

Lρ(x , λ) = f (x) + λ′(Ax − b) + (ρ/2)‖Ax − b‖2.

Can be viewed as unaugmented Lagrangian for

f (x) + (ρ/2)‖Ax − b‖2 → min, Ax = b.

Consider iteration

xk+1 = argminxLρ(x , λk), λk+1 = λk + ρ(Axk+1 − b).
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Augmented Lagrangian Methods

By definition, xk+1 minimizes Lρ(x , λk), hence

0 = ∇xLρ(xk+1, λk)

= ∇x f (xk+1) + A′(λk + ρ(Axk+1 − b))

= ∇x f (xk+1) + A′λk+1.

Thus, iteration ensures dual feasibility, convergence implies primal feasibility, hence altogether
optimality.

General case uses the same idea, but may need increasing ρ = ρk .

(For additional inequality constraints, add slack variables and use bound constraints.)
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Barrier Methods

Also known as interior point methods.

Use barrier functions which ensure feasibility and increasingly penalize feasible points as they
increase the boundary of the feasible set.

E.g., with constraints h(x) ≤ 0,

φµ(x) = f (x)− µ
∑
i

1

hi (x)
, φµ(x) = f (x)− µ

∑
i

log(−hi (x))

are the inverse and logarithmic barrier functions, respectively.

Idea: for µ > 0, unconstrained minimum x∗µ of φµ is necessarily feasible; as µ→ 0, x∗µ → x∗

(the constrained minimum).

Need starting values and keep all approximations in the interior of the feasible set, but allow
convergence to points on the boundary.
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Optimization with R: Base Packages

I nlm() does a “Newton-type algorithm” for unconstrained minimization.

I optim() provides several methods, including the Nelder-Mead simplex algorithm (default:
derivative-free but slow, not discussed above), quasi-Newton (BFGS), conjugate gradient
as well as simulated annealing (a stochastic global optimization method, not discussed
above).
The quasi-Newton method can also handle box constrains of the form li ≤ xi ≤ ui (where
li and ri may be −∞ and ∞, respectively), known as L-BFGS-B.

I nlminb(), now documented to be “for historical compatibility”, provides code from the
PORT library by Gay for unconstrained or box-constrained optimization using trust region
methods.
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Optimization with R: Base Packages

I constrOptim() performs minimization under linear inequality constraints using an
adaptive (logarithmic) barrier algorithm in combination with the Nelder-Mead or BFGS
minimizers. Note that this is an interior point method, so there must be interior points!
I.e., linear equality constraints cannot be handled.
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Optimization with R: Contributed Packages

I Several add-on packages perform linear programming.

I Package quadprog performs quadratic programming (strictly convex case with linear
equality and/or inequality constrains).

I Package BB provides BBoptim() which itself wraps around spg(), which implements the
spectral projected gradient method for large-scale optimization with convex constraints.
Needs a function for projecting on the feasible set.

I Package nloptr provides an interface to NLopt (http://ab-initio.mit.edu/nlopt), a
general purpose open source library for non-linear unconstrained and constrained
optimization. One needs to consult the NLopt web page to learn about available methods
(see http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms).
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Optimization with R: Contributed Packages

I Package alabama provides auglag(), an Augmented Lagrangian routine for smooth
constrained optimization, which conveniently does not require feasible starting values.
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Example

Rosenbrock banana function

f (x) = 100(x2 − x21 )2 + (1− x1)2.

Clearly has a global minimum at x∗ = (1, 1).

Multi-dimensional generalization (e.g.,
http://en.wikipedia.org/wiki/Rosenbrock_function): extended Rosenbrock function

2n∑
i=1

(100(x2i − x22i−1)2 + (1− x2i−1)2

(sum of n uncoupled 2-d Rosenbrock functions).
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