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Motivation

Assuming normality, the linear model y = X3 + e has
yi = B'xi + €, e ~ N(0,07)

such that
yi ~ N(pi, o), E(y;) = pi = B'x;.

Various generalizations, including general linear model Y = XB + E (with E normal with flexible error
covariance structures)

But what if normality is not appropriate (e.g., skewed, bounded, discrete)? Transformations or
generalized linear models.



Exponential Dispersion Models

Densities with respect to reference measure m of the form
0 — b(0
f(y]0,¢) = exp (}/Tw +c(y, ¢)>

(alternatively, write a(¢) instead of ¢ in the denominator).

For fixed ¢, this is an exponential family in 6.



Exponential Dispersion Models

Differentiate [ f(y|6,$) dm(y) = 1 with respect to 6 (and assume interchanging integration and
differentiation is justified):

0 = o [rolepame) = [T ang)
_ [y=bO i)~ Eoely) —b'(6)
- / Sy 10.0) dmly) — .
so that

Epo(y) = b'(0)

(which does not depend on ¢!).



Exponential Dispersion Models

Differentiate once more:

0 - ( b"(6 (y el 9>)>f(y|e,¢)dm(y)
B b//(e)
- T + ¢2
so that

Vo.s(y) = ¢b”(0).

(which shows that ¢ is a dispersion parameter).



Exponential Dispersion Models

We can thus write

E(y) = p = b'(0).

If 4w = b'(0) defines a one-to-one relation between p and @ (which it does: can be shown using convex
analysis), we can write b”(68) = V/(u), formally

V(i) = b"((6") (1))

where V is the variance function of the family. Thus:

var(y) = ¢b”(0) = ¢V/(n).



Example: Bernoulli Family

Take y binary with P(y = 1) = p. With m counting measure (on {0,1}),

fly) = p/(1—p)'
ey
exp <y log <1Tpp> +log(1 — p)> .

l.e., exponential dispersion model with ¢ =1 (hence in fact, exponential family) and

0 = log <1Tpp> = logit(p)

(quantile function of standard logistic distribution).



Example: Bernoulli Family

Inverting 8 = logit(p) gives
of

Pmiyes
(probability function of standard logistic distribution) and hence

1
14 ef

1—p=
so that

b(8) = —log(1 — p) = log(1 + €%).
Altogether (note that there is a problem for p € {0,1}):

f(y|0) = exp(y8 — log(1 + €”)), 6 = logit(p).



Example: Bernoulli Family

Differentiation gives:

/ _ _ _
b(e)_ 1_|_ege =pP=H
and
e’(1+e%) —ele? e’ 1
b//(e) = (1 + 69)2 = 1+ e 1 + o0 = p(l - p) = lu’(]' - :U’)

Necessary? We know that E(y) = p and var(y) = p(1 — p). Hence,

6
e



Generalized Linear Models

For i =1,...,n have responses y; from an exponential dispersion family with the same b and covariates
x; such that for E(y;) = u; = b'(6;) we have

g(ui) = B'x; = ni,
where g is the link function and n; is the linear predictor. Alternatively,
pi = h(B'x;) = h(n),

where h is the response function (and g and h are inverses of each other if invertible).

Why useful? General conceptual framework for estimation and inference.



Maximum Likelihood Estimation

Log-likelihood is
" [ yi; — b(6;
(=B =% (YT() 4 c(y,-,¢,-)) ,
i=1 !
where
g(ui) = g(b'(0;)) = B'x:.
Differentiating the latter with respect to 3;:

o IB'xi 8g(b’(«9,-)) / 1 90 %
= o = T w0 0) 5 = £V




Maximum Likelihood Estimation

Hence,
i _ X
op; g (ui)V(ui)
and
o ~yi— b (o) x,,
aﬁj ; ¢i g Z¢/V(Nl)g M,)

MLE typically performed by solving score equations 0¢/08; = 0. For Newton-type algorithms, need the
Hessian H(3) = [0%¢/05;0;].

As pj = b'(0),

Bu,
8,6,

Xij Xij

_b”(a)aﬁ, Vi) G Vi) = gl




Maximum Likelihood Estimation

Hence:
%0 _ 4 iy, i X
Bibk ;Bﬁm, V(ui) g (i)
RN ﬁ<_% I e 8(V(uf)g’(ui))>
— ¢ \ OBk V(ui)g (i) (V(ni)g'(1i))? 9Pk
- _ n XUX,k
B iz_;qﬁ,V(,u,) (ﬂl)2

. (y’ l’L)XUXI
=3 G P GV ()8 )+ V(g (1)



Maximum Likelihood Estimation

Second term looks complicated, but has expectation zero.
Hence, drop and only use first term for “Newton-type” iteration: Fisher scoring algorithm.

Equivalently, replace observed information matrix (negative Hessian of log-likelihood) by its expectation
(Fisher information matrix).

Next problem: what about ¢;? Assume that
o =d/aj

with known case weights a;.



Maximum Likelihood Estimation

Then Fisher information matrix is

I o X'WEX
¢ ,Z; V()g G2 " o

where X is the usual regressor matrix (with x/ as row i) and

. aj ’
W(B) = diag (W) ) g(pi) = xiB.
Similarly, score function is
IS~ a e XWB)(B)
5 2 Ve Gu® 10— = =57

where r(3) has elements g’(u;)(yi — pi): so-called working residuals.



Maximum Likelihood Estimation

Remember: Newton updates for minimizing ¢(3) are Bnew < 8 — (H(£)(8))"*V(B). Thus, Fisher
scoring update (with approximation for H) uses

Brew < B4 (X'W(B)X) X' W(B)r(B)
= (X'W(B)X) X' W(B)(XB + r(B))
= (X'W(B)X) X' W(B)z(B)

where working response z(3) has elements 3'x; + g’ (ui)(yi — i), g(ui) = x!.

l.e., update computed by weighted least squares regression of z(3) on X (weights: square roots of
W(B)): Fisher scoring algorithm for obtaining the MLEs is an iterative weighted least squares (IWLS)
algorithm.

Note: common dispersion parameter ¢ not used!



Canonical Links

The canonical link is given by g = (b’)~! so that

ni = g(wi) = g(b'(6i)) = 0;,

oo 1 !
800 = g0 = ) ~ Vi
so that g’(u)V(u) = 1, and hence

Z (.yl I Xij s 8ﬁ aIBk Zal ,LLI Xij Xik

Thus: observed and expected information coincide, IWLS Fisher scoring algorithm is the same as
Newton's algorithm.



Inference

Under suitable conditions, MLE /3 asymptotically

N(B.1(8)7)
with expected Fisher information matrix

1) = SXW(B)X.

Thus, standard errors can be computed as square roots of diagonal elements of
cov(B) = (X' W(B)X)

where X' W(3)X is a by-product of the final IWLS iteration.



Inference

This needs an estimate of ¢ (unless known).

Estimation by MLE is practically difficult: hence, usually estimated by method of moments.
Remember var(y;) = ¢; V(1) = oV (i)/ ;.

Hence: if 8 was known, unbiased estimate of ¢ would be

15 ailyi — wi)?
nh= V(i)

Taking into account that 3 is estimated, estimate is

-1 aily )
b= p
n—p ; V(i)

(where p is the number of 8 parameters).



Deviance

A quality-of-fit statistic for model fitting achieved by ML, generalizing the idea of using the sum of
squares of residuals in ordinary least squares:

D= 2¢(€sat - gmod)

(assuming a common ¢, perhaps after taking out weights), where the saturated model uses separate
parameters for each observation so that the data is fitted exactly. For GLMs: y; = u¥ = b/(0?¥) achieves
Zero scores.

Contribution of observation i to lssr — £mod 1S

ity = 0;)  yilbi—b(B)  yib —b(0)|"
Pi i bi P

i

where 0; is obtained from the fitted model (i.e., g(b'(4;)) = 3'x:).



Deviance

We can write

(vif — b(0))

or 0" o or
P a 0 _ _ Y
A (L O L RO

i

Substituting pu = b/'(0): du = b"(0)db, ie., dd = V(u)~* du, so that

0;F Vi .
/ (i — b/(6)) df = / i~ b g
19,‘ ﬂi

V()
and the deviance contribution of observation i is
0 )
yitl — b(6) |" /y' Yi—
20 ——=| =2 ——du.
i b; i V(k)

Can be taken to define deviance and introduce quasi-likelihood models.



Residuals

Several kinds of residuals can be defined for GLMs:

response y; — fi;
working from working response in IWLS, i.e., g’(2:)(y; — fii)

Pearson

P Vil
L V()

so that >_,(rF)? equals the generalized Pearson statistic.

deviance so that >_;(rP?)? equals the deviance (see above).

(All definitions equivalent for the Gaussian family.)

N
N
N
w



Generalized Linear Mixed Models

Augment the linear predictor by (unknown) random effects b;:
ni = x; B+ zjb;

where the b; come from a suitable family of distributions and the z; (as well as the x;, of course) are
known covariates. Typically, b; ~ N(0, G(¢)). Conditionally on b;, y; is taken to follow an exponential
dispersion model with

g(E(yi|bi)) = ni = x/ 8 + z{b;.

Marginal likelihood function is observed y; obtained by integrating out the joint likelihood of the y; and
b; with respect to the marginal distribution of the b;. If b; are independent across observation units,

L(B,6,9) H/ (v118,6,0, b)F (bi]9) db



