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Motivation

Assuming normality, the linear model y = Xβ + e has

yi = β′xi + εi , εi ∼ N(0, σ2)

such that

yi ∼ N(µi , σ
2), E(yi ) = µi = β′xi .

Various generalizations, including general linear model Y = XB + E (with E normal with flexible error
covariance structures)

But what if normality is not appropriate (e.g., skewed, bounded, discrete)? Transformations or
generalized linear models.
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Exponential Dispersion Models

Densities with respect to reference measure m of the form

f (y |θ, φ) = exp

(
yθ − b(θ)

φ
+ c(y , φ)

)
(alternatively, write a(φ) instead of φ in the denominator).

For fixed φ, this is an exponential family in θ.
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Exponential Dispersion Models

Differentiate
∫
f (y |θ, φ) dm(y) = 1 with respect to θ (and assume interchanging integration and

differentiation is justified):

0 =
∂

∂θ

∫
f (y |θ, φ) dm(y) =

∫
∂f (y |θ, φ)

∂θ
dm(y)

=

∫
y − b′(θ)

φ
f (y |θ, φ) dm(y) =

Eθ,φ(y)− b′(θ)

φ

so that

Eθ,φ(y) = b′(θ)

(which does not depend on φ!).
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Exponential Dispersion Models

Differentiate once more:

0 =

∫ (
−b′′(θ)

φ
+

(
y − b′(θ)

φ

)2
)
f (y |θ, φ) dm(y)

= −b′′(θ)

φ
+

Vθ,φ(y)

φ2

so that

Vθ,φ(y) = φb′′(θ).

(which shows that φ is a dispersion parameter).

5 / 23



Exponential Dispersion Models

We can thus write

E(y) = µ = b′(θ).

If µ = b′(θ) defines a one-to-one relation between µ and θ (which it does: can be shown using convex
analysis), we can write b′′(θ) = V (µ), formally

V (µ) = b′′((b′)−1(µ))

where V is the variance function of the family. Thus:

var(y) = φb′′(θ) = φV (µ).
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Example: Bernoulli Family

Take y binary with P(y = 1) = p. With m counting measure (on {0, 1}),

f (y) = py (1− p)1−y

=

(
p

1− p

)y

(1− p)

= exp

(
y log

(
p

1− p

)
+ log(1− p)

)
.

I.e., exponential dispersion model with φ = 1 (hence in fact, exponential family) and

θ = log

(
p

1− p

)
= logit(p)

(quantile function of standard logistic distribution).
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Example: Bernoulli Family

Inverting θ = logit(p) gives

p =
eθ

1 + eθ

(probability function of standard logistic distribution) and hence

1− p =
1

1 + eθ

so that

b(θ) = − log(1− p) = log(1 + eθ).

Altogether (note that there is a problem for p ∈ {0, 1}):

f (y |θ) = exp(yθ − log(1 + eθ)), θ = logit(p).
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Example: Bernoulli Family

Differentiation gives:

b′(θ) =
1

1 + eθ
eθ = p = µ

and

b′′(θ) =
eθ(1 + eθ)− eθeθ

(1 + eθ)2
=

eθ

1 + eθ
1

1 + eθ
= p(1− p) = µ(1− µ).

Necessary? We know that E(y) = p and var(y) = p(1− p). Hence,

b′(θ) = p =
eθ

1 + eθ
=⇒ b(θ) = log(1 + eθ).

9 / 23



Generalized Linear Models

For i = 1, . . . , n have responses yi from an exponential dispersion family with the same b and covariates
xi such that for E(yi ) = µi = b′(θi ) we have

g(µi ) = β′xi = ηi ,

where g is the link function and ηi is the linear predictor. Alternatively,

µi = h(β′xi ) = h(ηi ),

where h is the response function (and g and h are inverses of each other if invertible).

Why useful? General conceptual framework for estimation and inference.
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Maximum Likelihood Estimation

Log-likelihood is

` = `(β) =
n∑

i=1

(
yiθi − b(θi )

φi
+ c(yi , φi )

)
,

where

g(µi ) = g(b′(θi )) = β′xi .

Differentiating the latter with respect to βj :

xij =
∂β′xi
∂βj

=
∂g(b′(θi ))

∂βj
= g ′(b′(θi ))b′′(θi )

∂θi
∂βj

= g ′(µi )V (µi )
∂θi
∂βj
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Maximum Likelihood Estimation

Hence,

∂θi
∂βj

=
xij

g ′(µi )V (µi )

and

∂`

∂βj
=

n∑
i=1

yi − b′(θi )

φi

xij
g ′(µi )V (µi )

=
n∑

i=1

yi − µi

φiV (µi )

xij
g ′(µi )

.

MLE typically performed by solving score equations ∂`/∂βj = 0. For Newton-type algorithms, need the
Hessian H(β) = [∂2`/∂βj∂βj ].

As µi = b′(θi ),

∂µi

∂βj
= b′′(θi )

∂θi
∂βj

= V (µi )
xij

g ′(µi )V (µi )
=

xij
g ′(µi )
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Maximum Likelihood Estimation

Hence:

∂2`

∂βjβk
=

n∑
i=1

∂

∂βk

yi − µi

φiV (µi )

xij
g ′(µi )

=
n∑

i=1

xij
φi

(
− ∂µi

∂βk

1

V (µi )g ′(µi )
− yi − µi

(V (µi )g ′(µi ))2
∂(V (µi )g

′(µi ))

∂βk

)

= −
n∑

i=1

xijxik
φiV (µi )g ′(µi )2

−
n∑

i=1

(yi − µi )xijxik
φiV (µi )2g ′(µi )3

(V ′(µi )g
′(µi ) + V (µi )g

′′(µi ))
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Maximum Likelihood Estimation

Second term looks complicated, but has expectation zero.

Hence, drop and only use first term for “Newton-type” iteration: Fisher scoring algorithm.

Equivalently, replace observed information matrix (negative Hessian of log-likelihood) by its expectation
(Fisher information matrix).

Next problem: what about φi? Assume that

φi = φ/ai

with known case weights ai .
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Maximum Likelihood Estimation

Then Fisher information matrix is

1

φ

n∑
i=1

ai
V (µi )g ′(µi )2

xijxik =
X ′W (β)X

φ
,

where X is the usual regressor matrix (with x ′i as row i) and

W (β) = diag

(
ai

V (µi )g ′(µi )2

)
, g(µi ) = x ′i β.

Similarly, score function is

1

φ

n∑
i=1

ai
V (µi )g ′(µi )2

g ′(µi )(yi − µi )xij =
X ′W (β)r(β)

φ
,

where r(β) has elements g ′(µi )(yi − µi ): so-called working residuals.
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Maximum Likelihood Estimation

Remember: Newton updates for minimizing `(β) are βnew ← β − (H(`)(β))−1∇`(β). Thus, Fisher
scoring update (with approximation for H) uses

βnew ← β + (X ′W (β)X )−1X ′W (β)r(β)

= (X ′W (β)X )−1X ′W (β)(Xβ + r(β))

= (X ′W (β)X )−1X ′W (β)z(β)

where working response z(β) has elements β′xi + g ′(µi )(yi − µi ), g(µi ) = x ′i β.

I.e., update computed by weighted least squares regression of z(β) on X (weights: square roots of
W (β)): Fisher scoring algorithm for obtaining the MLEs is an iterative weighted least squares (IWLS)
algorithm.

Note: common dispersion parameter φ not used!
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Canonical Links

The canonical link is given by g = (b′)−1 so that

ηi = g(µi ) = g(b′(θi )) = θi ,

g ′(µ) =
d

dµ
(b′)−1(µ) =

1

b′′((b′)−1(µ))
=

1

V (µ)
,

so that g ′(µ)V (µ) ≡ 1, and hence

∂`

∂βj
=

1

φ

n∑
i=1

ai (yi − µi )xij ,
∂2`

∂βj∂βk
= − 1

φ

n∑
i=1

aiV (µi )xijxik

Thus: observed and expected information coincide, IWLS Fisher scoring algorithm is the same as
Newton’s algorithm.
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Inference

Under suitable conditions, MLE β̂ asymptotically

N(β, I (β)−1)

with expected Fisher information matrix

I (β) =
1

φ
X ′W (β)X .

Thus, standard errors can be computed as square roots of diagonal elements of

ĉov(β̂) = φ(X ′W (β̂)X )−1

where X ′W (β̂)X is a by-product of the final IWLS iteration.
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Inference

This needs an estimate of φ (unless known).

Estimation by MLE is practically difficult: hence, usually estimated by method of moments.

Remember var(yi ) = φiV (µi ) = φV (µi )/ai .

Hence: if β was known, unbiased estimate of φ would be

1

n

n∑
i=1

ai (yi − µi )
2

V (µi )
.

Taking into account that β is estimated, estimate is

φ̂ =
1

n − p

n∑
i=1

ai (yi − µ̂i )
2

V (µ̂i )

(where p is the number of β parameters).
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Deviance

A quality-of-fit statistic for model fitting achieved by ML, generalizing the idea of using the sum of
squares of residuals in ordinary least squares:

D = 2φ(`sat − `mod)

(assuming a common φ, perhaps after taking out weights), where the saturated model uses separate
parameters for each observation so that the data is fitted exactly. For GLMs: yi = µ∗i = b′(θ∗i ) achieves
zero scores.

Contribution of observation i to `sat − `mod is

yiθ
∗
i − b′(θ∗i )

φi
− yi θ̂i − b′(θ̂i )

φi
=

yiθ − b(θ)

φi

∣∣∣∣θ∗i
θ̂i

,

where θ̂i is obtained from the fitted model (i.e., g(b′(θ̂i )) = β̂′xi ).
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Deviance

We can write

(yiθ − b(θ))
∣∣∣θ∗i
θ̂i

=

∫ θ∗i

θ̂i

d

dθ
(yiθ − b(θ)) dθ =

∫ θ∗i

θ̂i

(yi − b′(θ)) dθ.

Substituting µ = b′(θ): dµ = b′′(θ) dθ, i.e., dθ = V (µ)−1 dµ, so that∫ θ∗i

θ̂i

(yi − b′(θ)) dθ =

∫ yi

µ̂i

yi − µ
V (µ)

dµ

and the deviance contribution of observation i is

2φi
yiθ − b(θ)

φi

∣∣∣∣θ∗i
θ̂i

= 2

∫ yi

µ̂i

yi − µ
V (µ)

dµ.

Can be taken to define deviance and introduce quasi-likelihood models.
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Residuals

Several kinds of residuals can be defined for GLMs:

response yi − µ̂i

working from working response in IWLS, i.e., g ′(µ̂i )(yi − µ̂i )

Pearson

rPi =
yi − µ̂i

V (µ̂i )

so that
∑

i (r
P
i )2 equals the generalized Pearson statistic.

deviance so that
∑

i (r
D
i )2 equals the deviance (see above).

(All definitions equivalent for the Gaussian family.)
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Generalized Linear Mixed Models

Augment the linear predictor by (unknown) random effects bi :

ηi = x ′i β + z ′i bi

where the bi come from a suitable family of distributions and the zi (as well as the xi , of course) are
known covariates. Typically, bi ∼ N(0,G (ϑ)). Conditionally on bi , yi is taken to follow an exponential
dispersion model with

g(E(yi |bi )) = ηi = x ′i β + z ′i bi .

Marginal likelihood function is observed yi obtained by integrating out the joint likelihood of the yi and
bi with respect to the marginal distribution of the bi . If bi are independent across observation units,

L(β, φ, ϑ) =
n∏

i=1

∫
f (yi |β, φ, ϑ, bi )f (bi |ϑ) dbi
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