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Overview

I Lecture:
I Bayes approach
I Bayesian computation
I Available tools in R
I Example: stochastic volatility model

I Exercises

I Projects
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Deliveries

I Exercises:
I In groups of 3-4 students;
I Solutions handed in by e-mail to rainer.hirk@wu.ac.at in a

.pdf-file together with the original .Rnw-file;
I Deadline: 2021-11-2.

I Projects:
I In groups of 3–4 students;
I Data analysis using Bayesian methods in JAGS and frequentist

estimation and comparison between the two approaches;
I Documentation of the analysis consisting of

(a) Problem description;
(b) Model specification;
(c) Model fitting: estimation and convergence diagnostics;
(d) Interpretation (where available, refer also to cited material).

I Presentation: 2021-12-06 starting from 09:00.
I Report deadline: 2021-12-13.
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Material

I Lecture slides
I Further reading:

I Hoff, P. (2009). A First Course in Bayesian Statistical Methods.
Springer.

I Albert, J. (2007). Bayesian Computation with R. Springer.
I Marin, J. M. and Robert, C. (2014). Bayesian Essentials with R.

Springer. (R package bayess).
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Software tools

I JAGS: Just Another Gibbs Sampler
I Available from sourceforge:

https://sourceforge.net/projects/mcmc-jags/
I Current version: 4.3.0

I Source code and binaries for Windows and Mac available

I R package rjags on CRAN:
I Bayesian graphical models using MCMC with the JAGS library
I Compatible version to JAGS: 4.12

I install.packages("rjags")

I R package coda on CRAN:
I Output analysis and diagnostics for MCMC

I install.packages("coda")

I Software documentation: Plummer, M. (2015) JAGS Version 4.0.0 user manual: https://

sourceforge.net/projects/mcmc-jags/files/Manuals/4.x/jags_user_manual.pdf.

I Alternatively, R package rstan on CRAN: install.packages("rstan"))

I Stan software documentation:http://www.uvm.edu/~bbeckage/Teaching/
DataAnalysis/Manuals/stan-reference-2.8.0.pdf
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Frequentist vs. Bayesian

What is the difference between classical frequentist and Bayesian
statistics?

I To a frequentist, unknown model parameters are fixed and unknown,
and only estimable by replications of data from some experiment.

I A Bayesian thinks of parameters as random, and thus having
distributions for the parameters of interest. So a Bayesian can think
about unknown parameters θ for which no reliable frequentist
experiment exists.
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Updating beliefs I

Bayes’ rule

Event B can be observed directly, while event A cannot be observed
directly. Use the information about the observed event B to adjust the
probability of event A:

Pr(A|B) =
Pr(A ∩ B)

Pr(B)
=

Pr(B|A)Pr(A)

Pr(B)
=

=
Pr(B|A)Pr(A)

Pr(B|A)Pr(A) + Pr(B|AC )Pr(AC )
,
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Updating beliefs II

Bayes’ theorem

p(θ|y) =
p(y,θ)

p(y)
=

p(y,θ)∫
p(y,θ)dθ

=
f (y|θ)π(θ)∫
f (y|θ)π(θ)dθ

p(latent|observed) ∝ f (observed|latent)π(latent)

posterior density ∝ likelihood× prior density
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Bayesian approach

1. Specify a sampling distribution f (y|θ) of the data y in terms of the
unknown parameters θ (likelihood function).

2. Specify a prior distribution π(θ) which is usually chosen to be
“non-informative” compared to the likelihood function.

3. Use Bayes’ theorem to learn about θ given the observed data ⇒
derive the posterior distribution p(θ|y).

4. Inference is based on summaries of the posterior distribution.
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Prior distributions I

I Elicited priors: based on expert knowledge.

I Conjugate priors: lead to a posterior distribution p(θ|y) belonging
to the same distributional family as the prior.
Examples:
I Beta prior for the success probability parameter of a binomial likelihood.
I Gamma prior for the rate parameter of a Poisson likelihood.
I Normal prior for the mean parameter of a normal likelihood with known

variance.
I Gamma prior for the inverse variance (aka precision) of a normal

likelihood with known mean.

See http://en.wikipedia.org/wiki/Conjugate_prior.
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Prior distributions II

I Non-informative priors: do not favor any values of θ if no a-priori
information is available.
Examples:
I Uniform distribution (aka flat prior):

I suitable if the parameter space is discrete and finite.
I leads to improper priors for continuous and infinite parameter space.
I is not (always) invariant under reparameterization.

I Jeffrey’s prior: invariant under reparameterization:

π(θ) ∝ |I (θ)|1/2 Iij(θ) = −Eθ

[
∂2 log f (y|θ)

∂θi∂θj

]
,

where I (θ) is the Fisher information matrix.

I Note: Conjugate priors can be non-informative by choosing the
appropriate hyperparameters.
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Parameter estimation

I Point estimation: given a prior ditribution, what is the best
estimator of θ? Each of these estimators may be derived as an
optimal estimators with respect to a certain loss function R(θ̂(y),θ),
which quantifies the loss made when estimating a parameter θ by an
estimate θ̂(y).
I Posterior mode (aka generalized ML estimate) is optimal with

respect to the 0/1 loss:

R(θ̂(y),θ) =

{
0, θ̂(y) = θ

1, θ̂(y) 6= θ

I Posterior mean is optimal with respect to the quadratic loss function
R(θ̂(y),θ) = (θ̂(y)− θ)′(θ̂(y)− θ).

I In a single parameter problem, the posterior median is optimal for the
absolute loss function R(θ̂(y),θ) = |θ̂(y)− θ|.

I . . .
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Measuring uncertainty

I Interval estimation:

Definition

A 100× (1− α)% credible region for θ is a subset C(1−α) of Ω such that

1− α =

∫
C(1−α)

p(θ|y)dθ.

The probability that θ lies in C(1−α) given the observed data y is (1− α).

Examples: quantile based - credible region, highest posterior
density (HPD) region (region which, for a given α, occupies the
smallest possible volume in the parameter space).
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Bayesian hypothesis testing I

I Classical hypothesis testing:
I Likelihood ratio test, p-values . . .
I After determining an appropriate test statistic T (y) the p-value is the

probability of observing a more extreme value under the null.
I H0 must be a simplification of (nested in) HA.
I We can only offer evidence against the null hypothesis.

I Bayesian hypothesis testing: use Bayes factors!
I It requires some prior knowledge.
I Based on the data y, one applies Bayes’ theorem and computes the

posterior probability that the first hypothesis is correct.

Bayes approach 14 / 63



Bayesian hypothesis testing II

I Bayes factors:

Definition (Bayes factor)

The Bayes factor BF is the ratio of the posterior odds of hypothesis H1 to
the prior odds of H1:

BF =
Pr(H1|y)/Pr(H2|y)

Pr(H1)/Pr(H2)

=
p(y|H1)

p(y|H2)
=

∫
f (y|θ1,H1)π(θ1|H1)dθ1∫
f (y|θ2,H2)π(θ2|H2)dθ2

i.e., the ratio of the observed marginal densities for the two models.
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Bayesian hypothesis testing III

I BF captures the change in the odds in favor of hypothesis H1 as we
move from prior to posterior.

I Jeffrey’s scale for interpretation:

BF Strength of evidence

< 1 Negative (support of H2)
1–3 Barely worth mentioning
3–10 Substantial

10–30 Strong
30–100 Very strong
> 100 Decisive

A fun reference: Lavine, M (1999). What is Bayesian Statistics and
Why Everything Else is Wrong.
The Journal of Undergraduate Mathematics and Its Applications 20,
165–174, www.math.umass.edu/~lavine/whatisbayes.pdf
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Example: Sleep study

Description: A researcher is interested in the sleeping habits of college
students. 27 students are interviewed and in this group 11 record they
slept more than 8 hours the previous night.

1. What is the proportion θ of students who sleep more than 8 hours per
night?

2. Is the majority of college students getting enough sleep?

Bayesian analysis: we need two components: likelihood and prior!
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Example: Sleep study – likelihood

I We assume that the 27 interviewed students are independent and that
the probability θ of sleeping more than 8 hours per night is constant
over the students.

I Their answers form a sequence of Bernoulli trials.

I Let Y denote the number of students that recorded sleeping at least 8
hours the previous night.

Y |θ ∼ Bin(n, θ),

which, for n = 27 is equivalent to

f (y |θ) =

(
27

y

)
θy (1− θ)27−y .

I Q: what is the MLE of θ?
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Example: Sleep study – prior

Conjugate prior: The Beta distribution is a conjugate family for the
binomial distribution.

π(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1.
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Beta(.5, .5)  (Jeffrey's prior)
Beta(1, 1)  (uniform prior)
Beta(2, 2)  (skeptical prior)
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Example: Sleep study – posterior I

Due to conjugacy, the posterior distribution for θ is

p(θ|y) ∝ f (y |θ)π(θ) ∝ θy+α−1(1− θ)27−y+β−1

∝ Beta(y + α, 27− y + β).

For Beta(α, β), the expected value is α/(α + β). Hence,

E(θ|y) =
y + α

y + α + 27− y + β
.

Assume the uniform prior Beta(1, 1). The expected value is 0.4.

Bayes approach 20 / 63



Example: Sleep study – posterior II

I Compute 95% credible intervals for θ:

> c(0, round(qbeta(0.95, 12, 17) ,digits = 3))

[1] 0.000 0.565

> round(qbeta(c(0.025, 0.975), 12, 17), digits = 3)

[1] 0.245 0.594

> c(round(qbeta(0.05, 12, 17) ,digits = 3), 1)

[1] 0.269 1.000

I HPD region? (coda::HPDinterval)

lower upper

var1 0.2357 0.5839

attr(,"Probability")

[1] 0.95

I Frequentist 95% confidence interval:

θ̂ − 1.96

√
θ̂(1 − θ̂)

n
≤ θ ≤ θ̂ + 1.96

√
θ̂(1 − θ̂)

n

0.222 ≤ θ ≤ 0.593.
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Example: Sleep study – posterior III
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Example: Sleep study – hypothesis testing I

I We return to the researcher’s question whether the majority of college
students are getting enough sleep and compare the hypotheses:
H1 : θ ≥ 0.5 H2 : θ < 0.5.

I Using the uniform prior Beta(1, 1), the prior probability Pr(θ ≥ 0.5) of
H1 is:
> (prior.p1 <- round(pbeta(0.5, 1, 1,

+ lower.tail = FALSE), digits = 3))

[1] 0.5

I From the posterior we compute the posterior probabilty Pr(θ ≥ 0.5|y)
of H1:
> (post.p1 <- round(pbeta(0.5, 12, 17,

+ lower.tail = FALSE), digits = 3))

[1] 0.172
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Example: Sleep study – hypothesis testing II

I The Bayes factor is then given by

BF =
0.172/(1− 0.172)

0.5/(1− 0.5)
=

0.172/0.828

0.5/0.5
= 0.2.

and implies a negative preference for H1 (support of H2).
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Bayesian computation

I For many advanced problems, the posterior distribution is rather
complex and does not belong to a well-known distribution family.

I For such problems computational aspects form a central part of
Bayesian statistical modeling.

I Approximate methods:
I Asymptotic methods

I Noniterative Monte Carlo methods

I Markov chain Monte Carlo methods
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Normal approximation

Theorem (Bayesian Central Limit Theorem)

Suppose Y1, . . . ,Yn
iid∼ fi (yi |θ) and that the prior π(θ) and the likelihood f (y|θ)

are positive and twice differentiable near θ̂π, the posterior mode of θ.
Then for large n

p(θ|y)
.∼ N(θ̂π, [Iπ(y)]−1),

where [Iπ(y)]−1 is the “generalized” observed Fisher information matrix for θ with

Iπij (y) = −
[

∂2

∂θi∂θj
log(f (y|θ)π(θ))

]
θ=θ̂π

When n is large, f (y|θ) will be quite peaked relative to π(θ), and so
p(θ|y) will be approximately normal.
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Example cont.: Sleep study I

Using a flat prior on θ, i.e., π(θ) ∝ 1, we have

`(θ) = log(f (y |θ)π(θ)) = y log θ + (n − y) log(1− θ) + C .

The first derivative is given by

∂`(θ)

∂θ
=

y

θ
− n − y

1− θ
.

Equating to zero and solving for θ gives the posterior mode by

θ̂π =
y

n
.

The second derivative is given by

∂2`(θ)

∂θ2
= − y

θ2
− n − y

(1− θ)2
.
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Example cont.: Sleep study II

Evaluating at the estimate θ̂π gives

∂2`(θ)

∂θ2

∣∣∣∣
θ=θ̂π

= − n

θ̂π(1− θ̂π)
.

Thus the posterior can be approximated by

p(θ|y)
.∼ N(θ̂π,

θ̂π(1− θ̂π)

n
).
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Example cont.: Sleep study III
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Similar modes, but different tail behavior.
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Asymptotic methods

I Advantages:
I Deterministic, noniterative algorithm.
I Use differentiation instead of integration.
I Facilitates studies of Bayesian robustness.

I Disadvantages:
I Requires well-parameterized, unimodal posterior.
I θ must be of at most moderate dimension.
I n must be large, but is beyond our control.
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Noniterative Monte Carlo methods

I Direct sampling

I Indirect methods (e.g., importance sampling, rejection sampling)
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Monte Carlo method and direct sampling

Remember the most basic definition of Monte Carlo integration:

I Suppose θ ∼ f (θ) and we want to compute

γ := E[g(θ)] =

∫
g(θ)f (θ)dθ.

I Then if θ1, . . . , θn
iid∼ f (θ), we have

γ̂n =
1

n

n∑
j=1

g(θj),

which converges to E[g(θ)] with probability 1 as n→∞ and

V(γ̂n) =
V(g(θ))

n
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Direct sampling

I Using Monte Carlo integration, the computation of posterior
expectations requires only a sample size of n from the posterior.

I The joint posterior density for the parameters is analytically converted
into a product of conditional and marginal densities from which draws
can be made yielding a draw from the joint density.

I Assume we want to estimate a vector θ = (θ1, θ2) of parameters:

p(θ1, θ2|y) = p(θ1|y)p(θ2|θ1, y).

Then θ1 can be drawn from p(θ1|y) and substituted in p(θ2|θ1, y) and
a draw θ2 is made from p(θ2|θ1, y).

I Repeating this procedure many times provides a large sample from the
joint density from which moments, intervals, etc., can be computed.
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Importance sampling

I Often we are interested in the expectation of a function h(θ) with
respect to the posterior density, Suppose we wish to approximate

E[h(θ)|y] =

∫
h(θ)p(θ|y)dθ =

∫
h(θ)

f (y|θ)π(θ)dθ∫
f (y|θ)π(θ)dθ

.

I Suppose we can roughly approximate the normalized likelihood times
prior, cf (y|θ)π(θ), by some importance density g(θ) from which we
can easily sample.

I Then defining the weight function w(θ) = f (y|θ)π(θ)/g(θ),

E[h(θ)|y] =

∫
h(θ)w(θ)g(θ)dθ∫

w(θ)g(θ)dθ
≈

1
n

∑n
j=1 h(θj)w(θj)

1
n

∑n
j=1 w(θj)

,

where θj
iid∼ g(θ).
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Rejection sampling I

I Instead of trying to approximate the posterior

p(θ|y) =
f (y|θ)π(θ)∫
f (y|θ)π(θ)dθ

,

we try to find a majorizing function.

I Suppose there exists a constant M > 0 and a smooth density g(θ),
called the envelope function, such that f (y|θ)π(θ) < Mg(θ) for all θ.

I The algorithm proceeds as follows:

(i) Generate θj ∼ g(θ).
(ii) Generate U ∼ Unif(0, 1).
(iii) If MUg(θj) < f (y|θj)π(θj), accept θj . Otherwise reject θj .
(iv) Return to step (i) and repeat, until the desired sample size is obtained.

I The final sample consists of random draws from p(θ|y).
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Rejection sampling II
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I Need to choose M as small as possible (efficiency), and avoid
“envelope violations”!
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Markov chain Monte Carlo methods I

I Such iterative MC methods are useful when it is difficult or impossible
to find a feasible importance or envelope density.

I Complex models have intractable posteriors.

I Combine Markov chains and Monte Carlo integration.

I Idea: to obtain samples from a distribution without this distribution
being explicitly available, i.e., a sample from p(θ|y) is obtained
indirectly by generating a realization of a Markov chain θ(m),
m = 1, 2, . . . , based on some starting value θ(0).

I Aim: constructing an irreducible, aperiodic Markov chain with the
posterior as stationary distribution in order to acquire samples from
that distribution. Plug sampled values into the Monte Carlo
integration.
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Markov chains

I A Markov chain θ(m) is a random variable, with the conditional
distribution depending on the past states of the Markov chain.

I The key quantity for characterizing the probabilistic behavior of the
Markov chain is the transition kernel k(θnew |θold), which is the
density of the conditional probability distribution of θ(m) given
θ(m−1) = θold :

θ(m)|(θ(m−1) = θold) ∼ k(θnew |θold).

I Under certain regularity conditions the unconditional distribution
converges to an invariant distribution. For the invariant distribution
to be the posterior, the transition kernel k(θnew |θold) must fulfill the
integral equation:

p(θnew |y) =

∫
k(θnew |θold)p(θold |y)dθ(old)
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Markov chain Monte Carlo methods

There are many ways of constructing a Markov chain with the stationary
distribution being equal to a specific posterior density p(θ|y). The most
widely used are

I Gibbs sampler - most commonly used,

I Metropolis-Hastings algorithm - most universal sampling scheme

Classical Monte Carlo integration uses a sample of independent draws from
the density p(θ|y). In MCMC we have dependent draws, hence
performance evaluation is needed:

I Convergence monitoring and diagnostics

I Variance estimation
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Gibbs sampling I

I Suppose the joint distribution of θ = (θ1, . . . , θK ) is uniquely
determined by the full conditional distributions,
{pi (θi |θj 6=i ), i = 1, . . . ,K}.

I Given an arbitrary set of starting values {θ(0)
1 , . . . , θ

(0)
K },

Draw θ
(1)
1 ∼ p1(θ1|θ(0)

2 , θ
(0)
3 , . . . , θ

(0)
K ),

Draw θ
(1)
2 ∼ p2(θ2|θ(1)

1 , θ
(0)
3 , . . . , θ

(0)
K ),

...

Draw θ
(1)
K ∼ pK (θK |θ

(1)
1 , θ

(1)
2 , . . . , θ

(1)
K−1).

I Under mild conditions,

(θ
(t)
1 , . . . , θ

(t)
K )

d→ (θ1, . . . , θK ) ∼ p as t →∞.
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Gibbs sampling II

I For T sufficiently large (say, bigger than t0), {θ(t)}Tt=t0+1 is a
(correlated) sample from the true posterior.

I We might use a sample mean to estimate the posterior mean

E(θi |y) ≈ 1

T − to

T∑
t=t0+1

θ
(t)
i .

I The time from t = 0 to t = t0 is commonly known as the burn-in
period.

I We may also run m parallel Gibbs sampling chains and obtain

E(θi |y) ≈ 1

m(T − to)

m∑
j=1

T∑
t=t0+1

θ
(j ,t)
i ,

where the index j indicates chain number.
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Metropolis Hastings algorithm I

I What happens if the full conditional {pi (θi |θj 6=i )} is not available in
closed form?

I Typically, the normalizing constant (denominator in Bayes’ theorem)
is hard to compute.

I Suppose the true joint posterior for θ has unnormalized density p(θ).

I Choose a proposal density (also called jumping or candidate density)
q(θnew |θold) that is a valid density function for every possible value of
the conditioning variable θold .
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Metropolis Hastings algorithm II

I Given a starting value θ(0) at iteration t = 0, the algorithm proceeds
as follows.
For t = 1, . . . ,T repeat:

1. Propose θnew for θ(t) from q(·|θold = θ(t−1)).
2. Compute the ratio

r =
p(θnew )q(θold |θnew )

p(θold)q(θnew |θold)
.

3. If r ≥ 1, set θ(t) = θnew ;

If r < 1, set θ(t) =

{
θnew with probability r
θold with probability 1− r

.

I Then a draw θ(t) converges in distribution to a draw from the true
posterior density p(θ|y).
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Metropolis Hastings algorithm III

I How to choose the proposal density?

I The random walk proposal density: the usual approach (after θ has
been transformed to have support RK , if necessary) is to set

θnew ∼ N(θold , Σ̃).

The scale of a random walk proposal density has to be chosen with
some care:
I Very small Σ̃ will generate small steps θnew − θold with generally high

acceptance rates, but also high auto-correlation.
I Large Σ̃ will generate large moves θnew − θold and will often propose a

value far out in the tails of the distribution, giving generally small
acceptance rates.
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Convergence assessment

When is it safe to stop and summarize MCMC output?

I We would like to ensure that
∫
|p̂t(θ)− p(θ)|dθ < ε.

But all we can hope to see is
∫
|p̂t(θ)− p̂t+k(θ)|dθ < ε.

I One can never “prove” convergence of a MCMC algorithm using only
a finite realization from the chain.

I A slowly converging sampler may be indistinguishable from one that
will never converge (e.g., due to nonidentifiability)!

I Does the eventual mixing of “initially overdispersed” parallel sampling
chains provide worthwhile information on convergence?

I YES! Poor mixing of parallel chains can help discover extreme forms
of nonconvergence.
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Convergence diagnostics

Various summaries of MCMC output, such as
I Sample auto-correlations in one or more chains:

I Close to 0 indicates near-independence → Chain should quickly
traverse the entire parameter space.

I Close to 1 indicates that the sampler is “stuck”.

I Diagnostic tests requiring several chains include for example Gelman
& Rubin’s shrink factor.

I Other tests for convergence requiring only one chain include among
others Heidelberger & Welch’s, Raftery & Lewis’s and Geweke’s
diagnostics.
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(Possible) Convergence diagnostics strategy

I Run a few (3 to 5) parallel chains, with starting points believed to be
overdispersed.
I E.g., covering ±3 prior standard deviations from the prior mean.

I Overlay the resulting sample traces for the parameters or a
representative subset (if there are many parameters or a hierarchical
model is fitted).

I Annotate each plot with lag 1 sample autocorrelations and perhaps
Gelman & Rubin’s diagnostics.

I Look at convergence diagnostic tests output.

I Investigate bivariate plots and crosscorrelations among parameters
suspected of being confounded, just as one might do regarding
collinearity in linear regression.
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Variance estimation I

How good is our MCMC estimate once we get it?

I Suppose we have a single long chain of (post-convergence) MCMC
samples {θ(t)}Tt=1. Let

θ̂T = Ê[θ|y] =
1

T

T∑
t=1

θ(t).

I Then by the CLT, under iid sampling we could take

V̂iid[θ̂T ] =
s2
θ

T
=

1

T (T − 1)

T∑
t=1

(θ(t) − θ̂T )2.

But this is likely an underestimate due to positive autocorrelation in
the MCMC samples.
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Variance estimation II

I To avoid wasteful parallel sampling or “thinning”, compute the
effective sample size,

ESS =
T

κ(θ)
,

where κ(θ) = 1 + 2
∑∞

k=1 ρk(θ) is the autocorrelation time, and we
cut off the sum when ρk(θ) < ε.
Then

V̂ESS(θ̂T ) =
s2
θ

ESS(θ)
.

Note: κ(θ) ≥ 1, so ESS(θ) ≤ T , and so we have that V̂ESS ≥ V̂iid as
expected.
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Available tools for estimation

I General purpose estimation tools are provided by the BUGS family:

1. (WinBUGS)
2. (OpenBUGS)
3. JAGS

I Models are specified via variants of the BUGS language.
I The software parses the model and determines the samplers

automatically to generate draws from the posterior.

I Other major general purpose estimation tool: STAN.
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Available tools in R

I Estimation:
I rjags provides an interface to the JAGS library.
I rstan provides an interface to the STAN library.

I Post-processing, convergence diagnostics:
I coda (Convergence Diagnosis and Output Analysis):

I contains a suite of functions that can be used to summarize, plot, and
and diagnose convergence from MCMC samples.

I can easily import MCMC output from JAGS or from plain matrices.
I provides the Gelman & Rubin, Geweke, Heidelberger & Welch, and

Raftery & Lewis diagnostics.

For more information see the CRAN Task View: Bayesian Inference.
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Data I

I The data consists of a time series of daily USD/EUR exchange rates {xt}
from 2000/01/03 to 2012/04/04. We have this data available in package
stochvol in R.

> data(exrates, package = "stochvol")

> Garch <- exrates[, c("date", "USD")]

> x <- Garch$USD

I The series of interest are the daily mean-corrected returns times hundred,
{yt} for t = 1, . . . , n.

yt = 100

[
log xt − log xt−1 −

1

n

n∑
i=1

(log xt − log xt−1)

]
,

> y <- 100 * diff(log(x))

> y <- y - mean(y)
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Data II
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Model I

I Heteroscedasticity can be observed. What can be done?

I GARCH(1,1): yt ∼ N(0, σ2
t ) with σ2

t = ω0 + ω1ε
2
t−1 + λ1σ

2
t−1.

I In a stochastic volatility model the variance of a stochastic process is
itself randomly distributed and it can be written in the form of a
nonlinear state-space model.

I A state-space model specifies the conditional distributions of the
observations given unknown states, here the underlying log variances,
θt , in the observation equations for t = 1, . . . , n

yt |θt
iid∼ N(0, exp (θt)).
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Model II

I The unknown states are assumed to follow a Markovian transition
over time given by the state equations for t = 1, . . . , n

θt |θt−1, µ, φ, τ
2 = µ+ φ(θt−1 − µ) + νt , νt

iid∼ N(0, τ2).

with θ0 ∼ N(µ, τ2).

I The state θt determines the amount of log variance on day t.

I φ measures the autocorrelation present in the θt ’s and is restricted to
be −1 < φ < 1. It can be interpreted as the persistence in the log
variance.

I µ can be seen as the level of the log variance.

I τ2 is the variance of log-variances.
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Model III

The full Bayesian model consists of

I a prior for the unobservables
I 3 parameters: µ, φ, τ 2

I unknown states: θ0, . . . , θn

p(µ, φ, τ2, θ0, . . . , θn) = p(µ, φ, τ2)p(θ0|µ, τ2)
n∏

t=1

p(θt |θt−1, µ, φ, τ
2),

I a joint distribution for the observables y1, . . . , yn

p(y1, . . . , yn|µ, φ, τ2, θ0, . . . , θn) =
n∏

t=1

p(yt |θt).
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Model specification in BUGS

model {

for (t in 1:length(y)) {

y[t] ~ dnorm(0, 1/exp(theta[t]));

}

theta0 ~ dnorm(mu, itau2);

theta[1] ~ dnorm(mu + phi * (theta0 - mu), itau2);

for (t in 2:length(y)) {

theta[t] ~ dnorm(mu + phi * (theta[t-1] - mu), itau2);

}

## prior

mu ~ dnorm(0, 0.1);

phistar ~ dbeta(20, 1.5);

itau2 ~ dgamma(2.5, 0.025);

## transform

tau <- sqrt(1/itau2);

phi <- 2 * phistar - 1

}
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Estimation with JAGS I

I Remark: For Bayesian estimation the parameterization of the normal
distribution is in general with respect to mean µ and precision λ, i.e.,

y ∼ dnorm(µ, λ),

where λ = σ−2, i.e., the precision is the inverse of the variance. The
conjugate prior for the precision is the Gamma distribution
(Gamma(0.001, 0.001) is a noninformative conjugate prior for the
precision).

I Given the model specification a graphical model is constructed to
determine the parents and direct children of each variable/node.

I Based on these relationships, suitable samplers are selected.
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Estimation with JAGS II

> library("rjags")

> initials <-

+ list(list(phistar = 0.975, mu = 10, itau2 = 300),

+ list(phistar = 0.5, mu = 0, itau2 = 50),

+ list(phistar = 0.025, mu = -10, itau2 = 1))

> initials <- lapply(initials, "c",

+ list(.RNG.name = "base::Wichmann-Hill",

+ .RNG.seed = 2207))

> model <- jags.model("volatility.bug", data = list(y = y),

+ inits = initials, n.chains = 3)

> update(model, n.iter = 10000)

> draws <- coda.samples(model, c("phi", "tau", "mu", "theta"),

+ n.iter = 100000, thin = 20)

> effectiveSize(draws[, 1:3])

mu phi tau

6916.7 1283.9 827.3

> summary(draws[, 1:3])
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Estimation with JAGS III

Iterations = 11020:111000

Thinning interval = 20

Number of chains = 3

Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

mu -0.935 0.0946 7.72e-04 0.001145

phi 0.967 0.0079 6.45e-05 0.000220

tau 0.162 0.0156 1.27e-04 0.000539

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

mu -1.116 -0.999 -0.939 -0.875 -0.737

phi 0.950 0.962 0.968 0.973 0.981

tau 0.134 0.151 0.161 0.171 0.195
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Estimation with JAGS IV
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SV model
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Diagnostics with coda

I Auto- and crosscorrelation: autocorr.diag, autocorr.plot,
crosscorr

I Gelman and Rubin diagnostics: gelman.diag

I Heidelberger and Welch diagnostics: heidel.diag

I Geweke diagnostics: geweke.diag, geweke.plot

I Raftery and Lewis diagnostics: raftery.diag

For more information see the CODA manual at
http://www.stat.ufl.edu/system/man/BUGS/cdaman03/.
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