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1 S&P Rating Data

On the homepage of this course you can find a time series for Standard & Poors default data in
the different rating categories. The data set is available as spdata.df.rda and consists of the
yearly default data as well as the number of companies at risk for the five rating categories (A,
BBB, BB, B, CCC) over the years 1981–2000.
We propose the following random-effects model.

> library("lme4")

> load(file.path("..", "../data/spdata.df.rda"))

> glmer(cbind(defaults, firms-defaults) ~ 0 + rating + (1 | year),

+ family=binomial(probit), data=spdata.df)

Generalized linear mixed model fit by maximum likelihood (Laplace

Approximation) [glmerMod]

Family: binomial ( probit )

Formula: cbind(defaults, firms - defaults) ~ 0 + rating + (1 | year)

Data: spdata.df

AIC BIC logLik deviance df.resid

404.338 419.969 -196.169 392.338 94

Random effects:

Groups Name Std.Dev.

year (Intercept) 0.2415

Number of obs: 100, groups: year, 20

Fixed Effects:

ratingA ratingBBB ratingBB ratingB ratingC

-3.4318 -2.9185 -2.4039 -1.6895 -0.8378

Reproduce the analysis using Bayesian methods in JAGS.

References

[1] Alexander J McNeil, Rüdiger Frey, and Paul Embrechts. Quantitative risk management: con-
cepts, techniques, and tools. Princeton university press, 2010 (Chapter 8).
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2 Quarterly growth rate of U.S. real GNP

In package FinTS the quarterly growth rate data of the U.S. real gross national product which is
seasonally adjusted is available from the second quarter of 1947 to the first quarter of 1991. ML
estimation is used to fit an autoregressive model (AR(p)).
An AR(p) process can be fitted using arima function in R by ML estimation. For p = 1 one has

> data("q.gnp4791", package = "FinTS")

> p <- 1

> (m <- arima(q.gnp4791, order = c(p, 0, 0),

+ method = "ML"))

Call:

arima(x = q.gnp4791, order = c(p, 0, 0), method = "ML")

Coefficients:

ar1 intercept

0.3786 0.0077

s.e. 0.0698 0.0012

sigma^2 estimated as 9.801e-05: log likelihood = 562.47, aic = -1118.94

1. After inspecting the ACF plot, choose the optimal p of the AR(p) model by using a suitable
information criterion (e.g., AIC).

2. After identifying the best model, use it to make 2-steps ahead predictions (predict(m,
n.ahead = 2)).

3. Reproduce this analysis for the chosen model using Bayesian methods in JAGS including
model fitting and prediction.

References

[1] Ruey S Tsay. Analysis of financial time series, Volume 543. John Wiley & Sons, 2005.
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3 Home mortgage disclosure act data

The Boston HMDA data set in the AER was collected by researchers at the Federal Reserve Bank of
Boston and combines information from mortgage applications and a follow-up survey of the banks
and other lending institutions that received these mortgage applications. The data pertain to mort-
gage applications made in 1990 in the greater Boston metropolitan area. In the following a subset of
the original data is used by restricting the observations only to single-family residences (thereby ex-
cluding data on multi-family homes) and to black and white applicants (thereby excluding data on
applicants from other minority groups). This leaves 2380 observations. Documentation for the data
can be found at http://artax.karlin.mff.cuni.cz/r-help/library/AER/html/HMDA.html.
We fit two generalized linear models using the glm function:

> data("HMDA", package = "AER")
> hmda_probit <- glm(deny ~ pirat + lvrat + chist + phist +
+ selfemp + insurance + afam + single + hschool,
+ data = HMDA, family = binomial("probit"))
> summary(hmda_probit)

Call:
glm(formula = deny ~ pirat + lvrat + chist + phist + selfemp +

insurance + afam + single + hschool, family = binomial("probit"),
data = HMDA)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.8048 -0.4357 -0.2970 -0.2089 3.2101

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.70630 0.33580 -8.059 7.67e-16 ***
pirat 2.34503 0.41529 5.647 1.64e-08 ***
lvrat 0.81771 0.25269 3.236 0.001212 **
chist2 0.32649 0.10568 3.089 0.002005 **
chist3 0.43286 0.16162 2.678 0.007400 **
chist4 0.77480 0.18140 4.271 1.94e-05 ***
chist5 0.62071 0.13015 4.769 1.85e-06 ***
chist6 0.83035 0.12331 6.734 1.66e-11 ***
phistyes 0.72652 0.11940 6.084 1.17e-09 ***
selfempyes 0.34538 0.11191 3.086 0.002028 **
insuranceyes 2.57596 0.28208 9.132 < 2e-16 ***
afamyes 0.37070 0.09710 3.818 0.000135 ***
singleyes 0.24705 0.07881 3.135 0.001721 **
hschoolyes -0.61472 0.24005 -2.561 0.010443 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1744.2 on 2379 degrees of freedom
Residual deviance: 1270.2 on 2366 degrees of freedom
AIC: 1298.2

Number of Fisher Scoring iterations: 6

> data("HMDA", package = "AER")
> hmda_logit <- glm(deny ~ pirat + lvrat + chist + phist +
+ selfemp + insurance + afam + single + hschool,
+ data = HMDA, family = binomial("logit"))
> summary(hmda_logit)

Call:
glm(formula = deny ~ pirat + lvrat + chist + phist + selfemp +

insurance + afam + single + hschool, family = binomial("logit"),
data = HMDA)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.9179 -0.4296 -0.2986 -0.2166 3.0928

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.3607 0.6377 -8.407 < 2e-16 ***
pirat 4.6272 0.7800 5.932 2.99e-09 ***
lvrat 1.9166 0.5010 3.826 0.000130 ***
chist2 0.7157 0.2113 3.388 0.000705 ***
chist3 0.8446 0.3093 2.730 0.006328 **
chist4 1.5343 0.3298 4.653 3.28e-06 ***
chist5 1.2459 0.2437 5.112 3.19e-07 ***
chist6 1.5819 0.2274 6.957 3.48e-12 ***
phistyes 1.2743 0.2072 6.151 7.72e-10 ***
selfempyes 0.6602 0.2109 3.130 0.001749 **
insuranceyes 4.6072 0.5570 8.272 < 2e-16 ***
afamyes 0.6513 0.1771 3.678 0.000235 ***
singleyes 0.4402 0.1519 2.898 0.003753 **
hschoolyes -1.1260 0.4257 -2.645 0.008166 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1744.2 on 2379 degrees of freedom
Residual deviance: 1265.6 on 2366 degrees of freedom
AIC: 1293.6

Number of Fisher Scoring iterations: 6

Choose the suitable link function. For this model, reproduce the analysis using Bayesian methods
in JAGS.

References

[1] Alicia H Munnell, Geoffrey MB Tootell, Lynn E Browne, and James McEneaney. Mortgage
lending in Boston: Interpreting HMDA data. The American Economic Review, pages 25–53,
1996.
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4 Compustat financial ratios and credit scores

The compRatios dataset contains financial ratios computed from annual balance sheet information
from Compustat North America between the years 2009 and 2013, for 447 companies in the US
and Canada. In addition, a credit score is constructed from rating data and is monotonically
decreasing with creditworthiness (the higher the score the closer to default a firm is). The dataset
compRatios.rda can be found on the webpage of this course. The documentation for the variables,
including formula and category for each financial ratio can be found in Table 1.

Table 1: Documentation
Code Description Category
R1 interest expenses / assets interest coverage
R2 interest expenses / debt interest coverage
R3 cash / liabilities liquidity
R4 debt / EBITDA leverage
R5 retained earnings / assets profitability
R6 EBIT / assets profitability
R7 cash-flow / equity cash-flow
R8 sales / assets efficiency

We fit the following mixed effects model using the lmer function in the lme4 package:

> load(file.path("..", "../data/compRatios.rda"))

> m <- lmer(score ~ year + R1 + R2 + R3 + R4 + R5 + R6 + R7 + R8 +

+ (1|company), data = compRat)

> print(summary(m), correlation = FALSE)

Linear mixed model fit by REML ['lmerMod']
Formula:

score ~ year + R1 + R2 + R3 + R4 + R5 + R6 + R7 + R8 + (1 | company)

Data: compRat

REML criterion at convergence: -597.2

Scaled residuals:

Min 1Q Median 3Q Max

-4.8632 -0.3334 -0.0169 0.3112 7.4203

Random effects:

Groups Name Variance Std.Dev.

company (Intercept) 0.09414 0.3068

Residual 0.01709 0.1307

Number of obs: 1645, groups: company, 447

Fixed effects:

Estimate Std. Error t value

(Intercept) -2.478009 0.016445 -150.680

year2010 -0.243512 0.009529 -25.554

year2011 -0.461407 0.009833 -46.924

year2012 -0.570582 0.010000 -57.057

year2013 -0.682234 0.025580 -26.671

R1 0.096592 0.013755 7.022

R2 0.038381 0.009059 4.237

R3 0.014425 0.008224 1.754

R4 0.104043 0.009948 10.459

R5 -0.104538 0.012281 -8.512

R6 -0.039846 0.010211 -3.902

R7 0.001224 0.007243 0.169

R8 0.087840 0.013548 6.484

Reproduce the analysis using using Bayesian methods in JAGS.
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5 Volatility modelling of Microsoft log-returns

We consider the Microsoft (MSFT) daily adjusted prices and the corresponding log-returns for the
period 1997-2000. The data can be downloaded using the quantmod package in R. Figure 1 shows
the time series of raw log-returns. We estimate a GARCH(1,1) model with a leverage effect using
the R package fGarch. A constant mean term is used for modelling the conditional mean, i.e., the
equation for the conditional mean has the following form:

yt = µ+ εt.

The conditional variance is given by:

σ2
t = ω + α1(yt−1 − γ1|yt−1|)2 + β1σ

2
t−1 ω > 0, α1 ≥ 0, β1 ≥ 0, α1 + β1 < 1, γ1 ∈ [−1, 1].

The conditional distribution of the innovations εt can be assumed to follow, e.g., a normal distri-
bution εt ∼ N(0, σ2

t ) or a Student t-distribution εt ∼ tν(0, σ2
t ).

Figure 1: Microsoft – raw log-returns
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1. Fit the model in R and use a conditional normal distribution and a conditional Student
t-distribution for the innovations:

> library(fGarch)

> fitNormal <- garchFit(~ garch(1,1), data = y,

+ cond.dist = "norm", leverage = TRUE)

> fitStudentT <- garchFit(~ garch(1,1), data = y,

+ cond.dist = "std", leverage = TRUE)

>

Inspect the residuals of the two models (e.g., by using Q-Q plots). Explain which model you
consider more appropriate and why.

2. Reproduce the analysis for the chosen model using Bayesian methods in JAGS.

References

[1] Alexander J McNeil, Rüdiger Frey, and Paul Embrechts. Quantitative Risk Management:
Concepts, Techniques and Tools (Revised Edition). Princeton university press, 2015 (Chapter
4, Example 4.24).
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6 Airline data

The data consists of monthly airline passenger numbers (in thousands) from 1949–1960. This data
set is also referred to as the classic Box & Jenkins airline data.
A seasonal ARIMA process with a periodicity of 12 months is fitted to the time series after taking
log10. It is assumed that for the nonseasonal as well as the seasonal part the time series follows
an MA(1) process after taking the first difference of the series and the first seasonal difference.

> data("AirPassengers", package = "datasets")

> AirPassengers <- log10(AirPassengers)

> (air_arima <- arima(AirPassengers, c(0, 1, 1),

+ seasonal = list(order = c(0, 1, 1), period = 12),

+ method = "ML"))

Call:

arima(x = AirPassengers, order = c(0, 1, 1), seasonal = list(order = c(0, 1,

1), period = 12), method = "ML")

Coefficients:

ma1 sma1

-0.4018 -0.5569

s.e. 0.0896 0.0731

sigma^2 estimated as 0.0002543: log likelihood = 353.96, aic = -701.92

> pred <- predict(air_arima, n.ahead = 2)

> 10^pred$pred

Jan Feb

1961 450.4224 425.7172

> 10^cbind(LB = pred$pred - 1.96 * pred$se,

+ UB = pred$pred + 1.96 * pred$se)

LB UB

Jan 1961 419.1476 484.0307

Feb 1961 391.4747 462.9550

Reproduce this analysis using Bayesian methods in JAGS including model fitting and prediction.
Please note that the proposed model implies

(1− L12)(1− L) log10(AirPassengerst) = (1 + α1L)(1 + α2L
12)εt,

where L denotes the lag operator, i.e, shifts the time series one step such that Lxt = xt−1. This
is equivalent to

dlogAirPassengerst = (1 + α1L+ α2L
12 + α1α2L

13)εt

where dlogAirPassengerst = (1− L12)(1− L) log10(AirPassengerst).

References

[1] Ruey S Tsay. Analysis of financial time series, Volume 543. John Wiley & Sons, 2005.
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