APPENDIX A

Derivation of the interest rate rule

Recall from Chapter 5 that, in our model, we distinguish between three classes of
variable: the first set consists of the four variables determined contemporaneously
with rf’ (namely, p?, er, rf, and ry); the second set, denoted w; contains output and
inflation, which we shall assume are the variables of direct concern to the mone-
tary authorities; and the third set, denoted q;, consists of the remaining variables.
Hence, we have
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The assumptions discussed in Section 5.1 of the text imposes a structure on the
parameter matrices of (5.2),
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1 In fact, for expositional purposes, we make the further assumption that exchange rates
are determined prior to foreign interest rates in what follows.
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The corresponding reduced form equation, given in (S.1), is
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A.1 The relationship between policy instruments and targets

To derive the monetary authorities’ reaction function, we need an expression that
explains the consequences of changes in the policy instrument, r}’, on the target
variables, Aw;. The policy instrument affects the targets via the market interest
rate, 7, so we first focus attention on the block in the structural model of (A.1)
relating the targets to the market interest rate. This block is given by the rows of
(A.1) concerned with the determination of Aw;:

— ¥ WAL + AweAer + Awr AT} + Apr ATt + Ayw AW: + AygAqy
s-1

= By — G [,fz’zt_1 —byt - 1)] + 3 Tuidzei+ew (A.3)

i=1

Using the reduced form model of (A.2), we can replace the terms involving Ap?,
Aet, Arf, and Aq; in (A.3) to obtain an expression relating the targets to the market
interest rate which involves only lagged information and news becoming available
at time t in the form of structural shocks. Specifically, the reduced form model of
(A.2) provides expressions for the oil price, exchange rate, foreign interest rate and
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variables in q; as follows:
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Substituting (A.4)-(A.7) into (A.3) yields the structural relationship between the
targets and the market rate:
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The ‘quasi’ reduced form linking targets to the market rate, to be used subsequently
in the optimisation problem, is then given by

p-1
AW; = Ty Ar; + T + Tlye [ 8261 = b1t = D]+ 3 Moz iAze i +Vwe, (A9)
i=1

where Myw = Aynaww, Mur = —AgmAur, Mg = Apmatwe, My = A;n}'rwz,i: and
Vwwt = A;,},,eww,t. Expression (A.9) can also be written as

AW; = My Aty + E [Awtlf!t_l, AP = 0] + Veewts (A.10)
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where

p-1
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i=1

and represents the growth in the target variables that would occur in time t in the
absence of any adjustment to the base interest rate Arf’ = O) and in the absence
of any structural innovations to the system (vyw,: = 0).

A.2 Deriving the monetary authority’s reaction function

The first-order condition for the minimisation of (5.6) in the text, subject to (A.9),
is given by

ort OW¢ ! + or B
E[(artb) ( or ) Q(we - wf) +6 (@) Aftlf’:-1] =0. (A11)

Noting from the term structure relationship of (5.4) in the text that ar,/ar{’ =1,
and from (A.9) that
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(A.11) provides
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Rearranging, and noting from (5.4) that E [Ar¢|3;_1] = r}’ —Tt_1+ Ppr—1, We have
(6 + M0 QMur) (7F =101 + pp,-1) = ~T, Q (E[welFpr, AT = 0] - w}),
and the systematic component of the interest rate rule denoted by r? is given by
W =r1=ppe1+ Y (E [wtljt_l, A = o] -w)), (A12)
where
Y = - (6 +1T,,QMy) " 1T, Q,
or, more fully,
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(A.13)
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where

¢° =Y Tyw, ¢7 =TTy,
¢;1. = Tlnwz,i, i=1,2,...,s—1.

Expressions (A.12) and (A.13) are those given for rf in the text.

A.3 Inflation targeting and the base rate reaction function

From equation (5.3) of the text, the relation between the market and base interest
rates is given by

1 =10 = Ppe—1 + e [rf —E (1} | Je-1)] + are [er — E (e | 3¢-1)]
+0r [p? —E(p? 1 3e-1)] +&n. (A.14)

Rearranging and substituting out rf’ from the monetary authorities’ reaction
function in (A.12), we obtain

A=Y (E [Wt | 3¢-1, Arf = O] - WI) + A+ [T’; —E(f; | Jt-l)]
+are[er —E (e | 3e-1)] + ¥r [p? — E (B7 | 3¢-1)] + &nt. (A.15)

Taking this expression back to the quasi-reduced form expression for Aw; in (A.10),
we obtain

wr=(0-A)E [wt | J¢-1, Ar{’ = 0] + Awt'T +vaw,t,
where
A = —I, Y =, (6 + IL,,QM,,) " I,,Q,
and

Viwt = Wy {ame [1f — E(rf | 3-1)] + are [e — E (er | 3e-1)]

+9r [P0 —E (P21 3¢-1)] + &t} + Vww,e-

This shows that the value of the target variables achieved when the authorities
pursue their optimal policy is a weighted average of the level that would be achieved
if the base rate is left unchanged and the desired level, plus a random element
generated by the structural shocks impacting on the p?, e, r; and target variables in
time t. The weights on the expected target variable and the desired target variable
terms are (I — A) and A, respectively. In the simple case where there is only one
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target variable (say inflation), so that A;,,, Ay, and Q are scalars in (A.1) and (5.7),
and equal to ayr, 1, and q respectively then the weights are simply

2 2
(=Ay=1-fnd_ ang p— Tl
Ayrq +0 Awrq + 6
In particular, as /0 — oo, so that the cost of the target deviating from its desired
level rises relative to the cost of changing the base rate in (5.7) in the text, we have

a%.q
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and
— w o
W =W, + V..

Hence, abstracting from the unpredictable structural shocks, the target variable
tracks the desired level precisely.

A.4 Reaction functions and targeting future values of variables

In the text, we consider the case where future values of target variables might be
the concept of interest to monetary authorities. Consider the simple case in which
the monetary authorities care about just one future period, t + h say, and face the
optimisation problem

min {E [C(We.n, 7t) | Ie-1]}, (A.16)
Tt

with
oy § 2
CWepn 1) = % (wt+h - Wt+h) Q (Wt+h - WH.;,) + %9 (re —re-1)”.

Identification of the monetary policy shocks is obtained following the steps
described in the previous section. Hence, derivation of the base rate decision rule
first requires an expression linking the base rate to the target variable. This is read-
ily obtained on the basis of (A.2), from which we can obtain a model of Az; in
terms of z;,p_1, s — 1 lagged values of Az;,, and v;,,. Recursive substitution of
(A.2) can be used to generate a complex expression expressing Az, in terms of
Vieh Vieh—1,-- -, Ve+1, AZt, Z¢—1, and s — 1 lagged values of Az;. Substituting out all
of the elements of Az; other than Ar; using the relevant rows of (A.1), we obtain an
expression relating Az;,j to Ar; along with lagged values of z; and combinations of
structural shocks dated at time f up to time t + h. Finally, we can premultiply Az;
and the corresponding expression involving Ar; by a selection vector choosing the
target variables from within Az; ;. This provides a relationship of the form:

AWy = My Aty + EfWeyp | Je—1, A1 = 0] + Vwwh,t s
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where Iy, is a matrix of parameters capturing the effects of Ar; on the target
variables h periods ahead, E [wt+h | J¢-1, Artb = 0] indicates the value of the target
variables that would occur in time t+h in the absence of any interest rate adjustment
at t and in the absence of any structural innovations to system between t and t +h,
and vy summarises the effects of the structural innovations that do occur.

Given this expression describing the relationship between Awg,; and Ar,
minimisation of (A.16) provides the first-order condition

E [leth (Hw,hAft +E [WH_}, | Je—1, Arf’ = 0] + Vwwn,t — WL_h) + 6Ar: | jt—l] =0,
and this provides a reaction function of the form
t
P =r1-ppe-1+T), (E [wt+h |3¢-1, AT? = 0] - wt+h) ,

where Y}, is a function of the parameters of the econometric model and of the
preference parameters of the monetary authorities (and w: +n 1 assumed known
at time t — 1). Substitution of the reaction function into the quasi-reduced form
expression for Aw;,j, provides an expression for Aw;,j, as a weighted average of
E [wt+;, | 31, Arf’ = Ol and w: +n Plus the effects of structural shocks experienced
between t and t + h. Further, having derived the base rate reaction function, the
structural interest rate equation is derived as in (A.15) above, and monetary policy
shocks are identified as changes in the interest rate not explained by unanticipated
movements in oil prices, exchange rates and foreign interest rates.
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APPENDIX B

Invariance properties of the impulse
responses with respect to monetary policy
shocks

In this appendix, we provide a proof for footnote 4 of Chapter 10 that, once the
position of the monetary policy variable in z; is fixed (in our application as the
fourth element of &), the impulse response functions of the monetary policy shocks
will be invariant to the re-ordering of the variables before and after r; in z;.

Since the proof becomes unduly complicated for the case where there are four or
more variables in 23, we consider the simpler case (without loss of generality) where
there are only three variables in z;;. In particular, we consider the two different
cases: (a) 2% = (z1¢, 221, 23¢)’ and () 2 = (221, 211, 23¢)', Where z3; is fixed at the
last element of z3;, and 2zt = (24, ..., Zmt)'. We then show that the impact impulse
responses of e3; on z3; and zy; are the same under both cases.

Note that the impact impulse responses with respect to the third structural shocks
are given by

00,z ey = EE8) 1 | AECxe) |__1 [ Ajfeur
' V@33 Jw33 | E(ezruz) Vo3 | (t3A11212)
(B.1)
where e1; = (e1r, €2¢,€31)' is @ 3 x 1 vector of structural errors, the reduced form

errors, uy = (u},, “/2z)/ are decomposed conformably with z; = (z},,2,,), @11 =

Cov(ey), £ = Cov(uy) = 2,11 212 ], and 73 = (0,0,1) is a 3 x 1 selection
12 22
vector.
Under this set-up we now have
1 1
T =AjQuAl = (A;llszlzl) (szflA;ll') =PP, (B.2)
where
pu1 O 0
P=1| pn p2 O
P31 P32 P33
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is the 3 x 3 lower-triangular matrix. Using (B.2), then 213, Afll and A11 can be
obtained, respectively, as

on 0 0 P 0 0
2u=| 0 wp 0 |[=| 0 p} O (B.3)
0 0 w3 0 0 p3
-1
pun 0 O 1 0 0
A[l=Px| 0 pp O =& 1 0 (B.4)
0 0 p33 b fz g
1 0 0 1 0 0
A= ay 1 0 |= —% - }& 0 1. (B.5)
221232 31 2
a az 1 pupz ~ pu P2

Then, (B.1) simplifies to

0
1 0
0,z:63) = ——
g 3 J33 033
E (e3zu3;)

Furthermore, in the absence of any over-identifying restrictions on the system of
equations for zy;, E (e3uz;) can be consistently estimated by

T
—1 A Af
T Z £3tUy;,
t=1
where iy are the reduced form residuals associated with zy;, and
&3¢ = az1ilyy + azaflyr + i3,

where iz, fiz;, and u3; are the reduced form residuals associated with zy¢, 22, z3¢
in zy;, respectively. Thus,

T T T
-1 A A — A A — A A
T z &340y, = a3 (T 1 Z ultu’Zt) +asp (T 1 Z uZtu’Zt)
t=1

t=1 t=1
T
+ (T"l > ﬁ3tﬁ'2t) . (B.6)
t=1

Hence to prove that the invariance of the (structural) impulse responses of ¢3; on
z1; and zy; to changing the order of z;¢ and zy; in z;; as well as to changing the order
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of variables in in z;;, we first need to establish that p§3 ’s obtained for cases (a) z; =

(21t 221, 23¢)’ and (b) z1; = (22¢, 211, Z3;)', are identical, and then that ag“l) = agl;) and

ag’z) = ag), where superscripts ‘(a)’ and ‘(b)’ refer to cases (a) and (b), respectively.

First, consider the case (a) with z3; = (21, Z2t, 23;)'. Here we have

) 011 012 013

a

}3(11 =| o012 022 023
013 023 033

Using the relationship in (B.2), it is straightforward to show

(a) e @ 012 @ _ 913 .,
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p33 = . (B.7)

011022 — 6122
Turning to Aj;, and using the above results, we have
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p P3Z 2\ 2
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Second, consider the case (b) of z1; = (22, 21, Z3¢)'. Now we have

022 012 023
012 011 013 |,
023 013 033

A g

and similarly,

by _ %12 (b)) _ 0923 |
=4/022; Ppy = «/T 7 P3q *—@;

o — /011022 - 012 PO = [ 92018 —onons
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022 (011022 — o)
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P33 = 5 . (B.10)
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Therefore, we now have
b
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PP P 11922 = 913
(b)
& _ P33 _ 012023 013022 (B.12)
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Comparing (B.7), (B.8) and (B.9) with (B.10), (B.11) and (B.12), we find that

P = 133" o) = iy af = aff),
as desired.

This result clearly shows that once the order of the particular structural shock is
determined, their impulse responses on the variables in the system are invariant to
reordering of other variables before the specific equation of interest.

Finally, from (B.6) it is trivial to show that the structural impulse responses of
the shocks to ¢3; on the variables in the system are also invariant to reordering of
variables in zy;, since if their order is changed, then all the associated VAR parameter
estimates are changed such that the structural impulse responses are intact.
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Data for the UK model

Here we describe the definitions and sources of the variables used to estimate the
core model of the UK economy. Our intention is to enable the user to use this
appendix in combination with the information provided on the authors’ web pages
(which contains all the necessary files and data used in the estimation and construc-
tion of the core variables) to reproduce our results. The appendix also provides a
brief guide on how to construct the Microfit 4.0 file ukmod.fit, which contains all
the variables used in the estimation and outlines the steps required to be performed
in Microfit 4.0 to reproduce our estimates.

C.1 Definitions and sources of the core model variables

The core UK model variables are as follows:

[1] y¢: the natural logarithm of UK real per capita domestic output, defined as
[?t /(P x POPy)] in Chapter 4, is computed as:

lIl(GDPt/POPt),

where GDP; is real gross domestic product, at 1995 market prices (index numbers,
1995 = 100), seasonally adjusted, source: Office of National Statistics (ONS) Eco-
nomic Trends, code YBEZ. POP; is total UK population in thousands, source: ONS,
Monthly Digest of Statistics, code DYAY, which at the time of collection of the data
was available up to 1998. For the 1999 number we extrapolated the 1998 annual
number using the average annual growth rate for the period 1993-1997. For the
population variable we constructed a quarterly series through linear interpolation
of the annual numbers and then converted the quarterly population series to an
index number.

[2] p:: the natural logarithm of the domestic price level is computed as:
ln(P t);

where P; is the UK Producer Price Index: Output of Manufactured Products (1995 =
100), source: ONS, Economic Trends, code PLLU.
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The data used in the estimation are seasonally adjusted versions of p; or
In(P;), where the adjustment is performed using the Stamp package (see Harvey,
Koopman, Doornik and Shephard, 1995). This involved using a Structural Time
Series approach on the first difference of p;, Ap; (as we observed a seasonal pattern
in the spectral density of Ap; rather p;) and then integrating the seasonally adjusted
first difference up to compute the seasonally adjusted level. We adopted the Stamp
manual’s recommended version (p. 88) of the basic structural model of a stochastic
trend with a stochastic slope, a trigonometric seasonal and an irregular compo-
nent. A cyclical component was not included in the adjustment procedure. It is
worth noting the Stamp manual’s comment (p. 88) that in practice seasonal com-
ponents seem to be insensitive to the specification of the trend and the inclusion of
a cycle.

[3] Ap:: the UK inflation rate is computed as:
InP}) —InPR ),

where P{‘ is the UK Retail Price Index, All Items (1995 = 100, rebased from
1987 = 100), source: ONS, Economic Trends, code CHAW. As with the Producer
Price Index, in the estimation we use a seasonally adjusted version of ln(Pf), where
the adjustment is performed using the Structural Time Series procedure described
above.

[4] rt: the domestic nominal interest rate, measured as a quarterly rate is com-
puted as:

0.25 x In[1 + (R;/100)],

where R; is the 90 day Treasury Bill average discount rate, at an annualised rate,
source: ONS, Financial Statistics, code AJNB.

[5] hs — y;: the natural logarithm of real per capita money stock expressed as a
proportion of real per capita income is computed as:

InHy/Yp),

where f'It is the MO definition of the money stock (end period, £ Million) seasonally
adjusted, source: ONS, Financial Statistics and Bank of England. For the period
19699q2-1999g4 we use MO money stock source: ONS, Financial Statistics, code
AVAE. Prior to this period, where no MO money stock data is available, we project the
AVAE series backwards using the quarterly percentage change (where the quarterly
data is the average of the monthly data) of estimated circulation of notes and coins
with the public as documented in the Bank of England Abstract 1970. Nominal
income 17}, is measured using gross domestic product at market prices (£ Million)
and is seasonally adjusted, source: ONS, Economic Trends, code YBHA. Note that
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ln(ﬁt /?t) = In(h/y:) given that P; and POP; appear in both the numerator and
denominator (see the definitions in Chapter 4).

[6] e;: the natural logarithm of the UK nominal effective exchange rate is com-
puted as:

- ln(Et)r

where E; is the Sterling Effective Exchange Rate (1995 = 100, rebased from 1990 =
100), source: ONS, Financial Statistics, code AJHX. The ONS define E; as the foreign
price of domestic currency (a rise represents a UK currency appreciation) hence
we take minus the logarithm of E; redefining e; as the domestic price of foreign
currency, as defined in the text.

[7] y;: the natural logarithm of real per capita foreign output, defined as [?t* /(PF x
POP})] in Chapter 4 is computed as:

In(GDP; /POP}),

where GDP} is a total OECD Gross Domestic Product Volume Index (1995 = 100), at
1995 market prices, seasonally adjusted, source: OECD, Main Economic Indicators
(MEI), code Q00100319. POP; is total OECD population (adjusted by subtracting
the populations of Mexico, Poland, Hungary and Czech Republic), source: OECD,
Labour Force Statistics, 1967-1987 and 1974-1996. For 1997-1999 we extrapolated
the 1996 annual number using the average annual growth rate for the period 1992-
1996. For the population variable we constructed a quarterly series through linear
interpolation of the annual numbers and then converted the quarterly population
series to an index number.

[8] pf: the natural logarithm of the foreign price index is computed as:
P: = ln(P ;) ,

where P} is the total OECD Producer Price Index, 1995 = 100, source: OECD, MEI,
code Q005045k. Data was available on this series from 1982ql. The data prior
to 1982q1 was constructed by backwardly imposing the percentage changes of a
separately constructed weighted average index of OECD consumer and producer
prices on the 1982q1 figure. As with the previous two price measures, in the esti-
mation we used a seasonally adjusted version of the foreign price variable, where
the adjustment is performed using the Structural Time Series procedure described
above.

[9] rf:the foreign nominal interest rate, measured as a quarterly rate is computed as:

rf =0.25 x In[1 + (R}/100)],
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where R? is a weighted average of foreign annualised interest rates computed as:
my
Rt =2 Ry,
=1

where W' are fixed weights and m, = 4. The countries and weights in brackets are
the United States (0.4382), Germany (0.236), Japan (0.2022) and France (0.1236).
The weights are taken from the IMFs International Financial Statistics Yearbook
1998, pages x and xi which report Special Deposits Rights (SDR) weights for five
countries which in 1996 were for the US 0.39, Germany 0.21, France 0.11, Japan
0.18 and the UK 0.11. Excluding the UK we the recompute the weights to get those
reported above.

The annualised interest rates used in the calculation, Ry, are all from the IMFs
International Financial Statistics (IFS). For the US we use the three-month Trea-
sury Bill rate (IFS Code Q11160C), for Germany the Money Market Rate (IFS Code
Q13460B), for Japan the Money Market Rate (IFS Code Q15860B) and for France
the three-month Treasury Bill Rate (IFS Code Q13260C).

[10] p?: the natural logarithm of the oil price is computed as:
In(POIL),

where POIL is the Average Price of Crude Oil, in terms of US Dollars per Barrel,
source: IMF, IFS, code Q00176AAZ, converted into a 1995 = 100 index.

To construct the Microfit 4.0 file ukmod.fit read in the file core.fit into Microfit 4.0
and run core.bat. The resulting file is ukmod.fit, which must be saved, where the
names used in file, which correspond to the model variables defined above, are the
following: y = yr, p = pr, dpr = APy, r =11, hy = (he — Y1), € = ex, ys = Y, PS = P},
s =17, po =P}, pps = (pc — p), dpo = pf — P_y-

All the estimation reported in Chapter 9 is performed in Microfit 4.0 (the impulse
responses, persistence profiles and probability forecasts can be computed using the
Gauss files provided, see the next appendix describing the Gauss files). The results
in the paper may be reproduced, using the file ukmod.fit in Microfit 4.0, through
the execution of the following steps:

(i) Choose the multivariate estimation option, select the cointegrating VAR
menu and choose option 4, unrestricted intercepts restricted trends.

(i) Read in the ukmod.lst, set the period to be 1965q1-1999q4 and the order of
the VAR to be two and estimate.

(iii) Set number of cointegrating vectors to be five (r = 5, option 2) and in the
following menu select option 6, long-run structural modelling.
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(iv) Qhoqse option 4, likelihood ratio test, exactly identify the system by reading
in exiden.equ and then estimate the cointegrating VAR model subject to the
exact identifying restrictions.

(v) Then chpqse to impose and test the over-identifying restrictions. First using
the restrictions contained in oviden1.equ, second using oviden2.equ.
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Gauss programs and result files

Much of the estimation and analysis of the UK core model was carried out using
Pesaran and Pesaran'’s (1997) econometric software package Microfit 4.0, and Microfit
4.11. However, a number of the calculations and computations reported in the book
were conducted using a series of Gauss programs. For users who prefer the flexibility
such programs allow and for those who wish to perform (and adapt) the range
of estimation and computations reported in the book, we are making available,
through our webpages, the Gauss programs we have used in the analysis of the core
model in a sequence of files. The content and operation of these files is described
below. Note that an updated version of microfit, Microfit 5.0 (to be published by
Oxford University Press in 2006), will be able to compute all the impulse responses
and persistence profiles described below.

In total there are eight programs. The first two relate to impulse responses and
persistence profiles:

e GLPS-GIR.g computes Generalised Impulse Responses (GIRs), Orthogonalised
Impulse Responses (OIRs), Persistence Profiles (PPs), and VECM estimation
results (with diagnostics), and examines the stability of the VECM system.

e GLPS-SIR.g computes impulse responses which result from (exogenous) oil
price shocks and (unanticipated) monetary policy shocks, where monetary
policy shocks are defined according to the short-run identification scheme
developed in Chapter 5.

The next five programs compute and evaluate probability event forecasts. Two are
concerned with out-of-sample probability events:

e GLPS-PFS.g computes out-of-sample probability event forecasts, h-steps ahead,
taking into account future uncertainty only.

e GLPS-PFB.g computes out-of-sample probability event forecasts, h-steps ahead,
taking into account future and parameter uncertainty.

The next three programs conduct in-sample forecast evaluation using one-step
ahead recursive probability forecasts of directional-changes and events used in the
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calculation of probability integral transforms over the period 1999q1-2001q1 (nine
quarters).

e GLPS-EVS.g computes in-sample one-step ahead probability event forecasts
taking into account future uncertainty only.

e GLPS-EVB.g computes in-sample one-step ahead probability event forecasts
taking into account future and parameter uncertainty.

o GLPS-EV.g computes forecast evaluation statistics for one-step ahead prob-
ability event forecasts: hit ratios, Kuipers Score, Pesaran-Timmermann,
Kolmogorov-Smirnov test statistics for probability integral transform. To
obtain the results reported in the book, you run this program using as inputs
the files produced by first running the two programs above, GLPS-EVS.g and
GLPS-EVB.g.

Finally the eighth program computes the trend decomposition in cointegrating
VARs described in Section 10.3.

o GLPS-DEC.g computes the permanent and transitory decomposition of all the
endogenous variables in the vector z; using the estimated VECM core model
and estimates of the restricted growth rates, g.

D.1 General comments on the Gauss programs

All the programs presuppose that certain results have been obtained already (e.g. by
Microfit, as described at the end of Appendix C). Specifically, they take as inputs: the
ML estimates of the long-run cointegrating relationships subject to general linear
non-homogeneous restrictions (and their rank); and the estimation results for the
exogenous I(1) variable(s) (here an oil price equation).

The initial step in each program loads and defines the data. It also specifies
some initial information which is needed for the rest of the program, such as
the VAR lag order, the rank and the estimates of cointegrating vectors. Given
the estimates of the cointegrating vectors, the program estimates the dynamic
short-run parameters. It then combines these results with the estimation results for
the exogenous I(1) variable(s), to provide the full system VAR estimation results.
These form the basis for an analysis of further short-run dynamics such as impulse
responses and forecasts. For the underlying econometric theory, see Chapters 6
and 7 and the related papers by Pesaran, Shin and Smith (2000) and Pesaran and
Shin (2002).

D.2 Impulse response and persistence profile programs

The impulse response results for the UK described in Chapter 10 were obtained
using the two programs GLPS-GIR.g and GLPS-SIR.g and reading in the UK dataset
given in ukmod99.dat. The dataset has the dimension of 148 x 10 and the variables
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are saved in the column order: yy, yf, 1, 17, €, bt — yt, pl, Ap}, Ap: and p; — Pf (see
Appendix C for details). The full data period is 1963q1-1999q4 (148 observations),
but the program estimates the cointegrating VAR(2) model over the period 1965q1-
1999q4 (140 observations) using the Cointegrating VAR Option 4 with unrestricted
intercepts and restricted trends.

GLPS-GIR.g

This program computes GIRs, OIRs, PPs, and the estimation results, and analyses
stability of the VECM. It also provides an option to compute the empirical confi-
dence intervals for PPs, GIRs and OIRs with respect to reduced form errors, based
on the bootstrap re-sampling techniques. In our work, we employ non-parametric
re-sampling methods with 2000 replications to allow for parameter uncertainty (see
Section 6.4 for further details).

The estimation results in Sections 10.2.2 and 10.2.3, and also those reported in
Garratt, Lee, Pesaran and Shin (2000) can be generated using this program. The
results reported in Figures 10.3, 10.4, 10.5, 10.6, 10.9 and 10.10 are also computed
using this file. The program requires the user to select the shock (to an equation) by
specifying the number defining the order of the variable in the z; vector (see below
for the order). The program assumes the size of the shock is equal to the standard
deviation of the selected equation error, and that all the results (except for OIR) are
invariant to re-ordering of the variables in the VAR.

After running the program, you will obtain the following five Gauss data files
(with an fint extension) which contain the results for PPs, GIRs and OIRs. The saved
files are: PPOUT.fint, GIRZOUT.fint, OIRZOUT.fint, GIROUT.fint, and OIROUT.fmt,
respectively.

PPOUT.fmt contains the results for the scaled PPs of the cointegrating relations,
which take the value of unity on impact of the shock and tend to zero as the time
horizon tends to infinity. The dimensions are (h + 1) by 7r, where h is the number
of horizon and r is the number of cointegrating vectors (= S in the case of the core
UK model). The first 7 columns (1 to r) are point estimates of the PPsof the 1,...,r
cointegrating vectors; the next r columns (r+1 to 2r) are empirical means; the next
r columns (27 + 1 to 3r) are empirical medians; the next r columns (3r + 1 to 4r)
are empirical 90% lower confidence intervals (Cls); the next r columns (4r + 1 to
5r) are empirical 90% upper CIs; and finally, the next r columns (5r + 1 to 6r) are
empirical 95% lower Cls, whereas the final r columns (67+1 to 7r) are empirical 95%
upper Cls. Note the order of the cointegrating relations for each block (containing
r columns) is PPP, IRP, OG, MME and FIP.

GIRZOUT fint (OIRZOUT.fimt) contains the GIRs (OIRs) of the r cointegrating rela-
tions with respect to selected shocks, referred to as PPs in the text. These are the
files which contain the results, when the foreign interest rate, foreign output and
domestic interest rate are selected, which are plotted in Figures 10.3, 10.5 and 10.9,
respectively. The dimensions and ordering of these result files are exactly the same
as those of PPOUT.fmt.
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The files GIROUT.fint (OIROUT.fmt) contain results for GIRs (OIRs) of the m exoge-
nous and endogenous I(1) variables in the system with respect to selected shocks
(m = 9 in the core UK model). The dimensions are (h + 1) by 7m, where m is num-
ber of variables. The first m columns (1 to m) are point estimates of GIRs (OIRs)
of 1, ..., m variables; the next m columns (m + 1 to 2m) are empirical means; the
next m columns (2m+ 1 to 3m) are empirical medians; the next m columns 3m+1
to 4m) are empirical 90% lower Cls; and the next m columns (4m + 1 to Sm) are
empirical 90% upper Cls. T he next m columns (5m + 1 to 6m) are empirical 95%
lower Cls, whereas the final m columns (6m + 1 to 7m) are empirical 95% upper
CIs. Note the order of the variables for each block (containing m columns) is: Pl e
I, TE, APty Ve Pt — Pt e =yt and y; (the numbering for the selection of the shock
follows this order).

GLPS-SIR.g
This program computes the Structural Impulse Responses and PPs reported in
Figures 10.1, 10.2, 10.7, 10.8, 12.3 and 12.4. For this purpose we decompose vari-

ablesasz; = (z1t, 2z¢), wherezie = (P, et 17, re)and zpr = (Apt, yt, pr — Pi he — Vs ¥i)-

Note the position of the variable, r;, determined by the short-run identification
scheme, is important for an analysis of monetary policy shocks. Once its position
is determined, the impulse responses are invariant to the change of ordering of
other variables in the system before and after r¢; see Appendix B for a proof.

As an additional option the program can examine the impact of an (exogenous)
intercept shift in the interest rate equation, as an alternative autonomous ot exoge-
nous monetary policy shock. The program also provides the empirical mean and
confidence intervals for generalised impulse response functions with respect to
structural shocks to the oil price, exchange rate, foreign interest rate and domestic
interest rate equations as well as an intercept shift in the interest rate equation,
based on the bootstrap re-sampling techniques with 2000 replications to allow for
parameter uncertainty (see Section 6.4 for further details). In all cases the size of
the shock is equal to the standard deviation of the selected equation error. For the
case of the intercept shift in the domestic interest equation, the size of the shock
is equal to the standard deviation of the domestic interest equation error.

After running the program, you will obtain 10 Gauss result files (with an fmt
extension). The saved files are POGIR.fint, POGIRZ.fmt, EXGIR.fint, EXGIRZ.fmt,
RSGIR.fint, RSGIRZ.fmt, MPGIR.fmt, MPGIRZ.fint, INTIR.fint and INTIRZ.fmt, respec-
tively. We have then provided estimation results in Sections 10.2.1 and 10.2.4.

The files POGIRZ.fint, EXGIRZ.fmt, RSGIRZ.fmt and MPGIRZ.fmt contain the
results for the GIRs of the r cointegrating relations with respect to oil price shocks,
exchange rate shocks, foreign interest rate shocks and monetary policy shocks,
respectively. The file INTIRZ.fmt contains the results for impulse responses of the r
cointegrating relations with respect to the autonomous intercept shift in the domes-
tic interest equation. Their dimensions are (h+1) by 7r. The first 7 (= 5 here)
columns (1 to r) are point estimates of the GIRs of 1,...,r cointegrating vectors;
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the next r columns (r + 1 to 2r) are empirical means; the next r columns (2,

to 3r) are empirical medians; the next r columns (37 + 1 to 4r) are empiricilgggz
lower ClIs; the next r columns (47 + 1 to 5r) are empirical 90% upper Cls; the next
columns (57 + 1 to 6r) are empirical 95% lower CIs; and the final r colux;ms (6r + ;
to 7r) are empirical 95% upper ClIs. Note the order of the cointegrating relations
for each block (containing r columns) is PPP, IRP, OG, MME and FIP.

POGIR.fmt, EXGIR.fint, RSGIR.fint and MPGIR.fint contain the results for the GIRs
of the m variables with respect to oil price shocks, exchange rate shocks, foreign
interest rate shocks and monetary policy shocks, respectively. The file INTIR.fmnt
contains the results for the impulse responses of the m variables with respect to the
autonomous intercept shift in the domestic interest equation. Their dimensions
are (h + 1) by 7m. The first m columns (1 to m) are the empirical means of the GIRs
of 1,...,m variables; the next m columns (m + 1 to 2m) are the empirical means;
the next m columns (2m+ 1 to 3m) are the empirical medians; the next m column;
(3m + 1 to 4m) are the empirical 90% lower CIs; the next m columns (4m + 1 to
5m) are the empirical 90% upper CIs; the next m columns (5m + 1 to 6m) are the
empirical 95% lower Cls; and the final m columns (6m + 1 to 7m) are the empirical
95% upper Cls. Note the order of the impulse responses for each block (containing
m columns) is: p°, e, r*, 7, Ap, y, p — p*, h—y and y*.

D.3 Programs for computing probability forecasts

The probability forecast programs use the data file, ukmod01.dat. This isa 153 x 9 file
which contains data for the extended period 1963q1-2001q1 (153 observations)
saved in the column order of y, r, r*, ¢, h — y, p°, Ap, p — p*, y* (the change in oii
prices, Ap®, is defined in the program). We estimate the ML cointegrating vectors
for the period 1965q1-2001q1, but estimate the short-run dynamic parameters of
the vector error correction model over the shorter sample 1985q1-2001q1.

We allow for future and parameter uncertainty separately and jointly and in
addition we allow for model uncertainty. We focus on uncertainty regarding the
rank of the cointegrating vectors, so we consider the six cases with rank=0,1,2,3,4,5
where we use exactly identified cointegrating vectors. We also consider our core
model, i.e. the case where we have five cointegrating relationships which impose
the theory based over-identifying restrictions described and tested in Chapter 9.
This makes for seven models. For each of the seven models, we examine exogenous
uncertainty through the consideration of two different oil price equations, based
on (A) the simple random walk with a drift model and (B) the unrestricted VAR(2)
specification. Hence in total 14 models are considered.

These models are denoted by OV5A and OVS5B for the five cointegrating vec-
tors obtained subject to the theory based over-identifying restrictions, combined
with the oil price equations A and B, respectively. Similarly we denote EXSA and
EXS5B as being five cointegrating vectors obtained subject to the exactly identifying
restrictions combined with an oil price equations A and B, respectively. Following
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this use of notation the remaining 10 models are denoted: EX4A, EX4B, EX3A,
EX3B, EX2A, EX2B, EX1A, EX1B, EX0A, EXOB. Note that the models, EX0A and
EXOB, have zero cointegrating relations.

The program computes the weights for these models according to the AIC weight
scheme described in Chapter 7, but also considers weights based on SBC, HQ, and
equal weights of 1/14. See Section 7.3 for more details.

D.3.1 Programs for computing out-of-sample probability event forecasts

The two programs, GLPS-PFS.g and GLPS-PFB.g, compute out-of-sample probabil-
ity event forecasts based on the h-step ahead forecasts of the nine variables in z;
and their four-quarter moving averages with h=1,...,24. Note that the computa-
tion algorithms for GLPS-PFS.g and GLPS-PFB.g are basically the same, where only
future uncertainty is allowed for in GLPS-PFS.g, whereas both future and parameter
uncertainties are allowed for in GLPS-PFB.g.

In our UK application, we consider the following seven events:

E1: A single event: Pr(four-quarter moving average of inflation < a%), where
a is per cent per annum and we use 10 threshold values of a= (0, 0.5,1,1.5,
2,2.5,3,3.5,4,5).

E2: A single event: Pr(four-quarter moving average of the gross output growth
< a%), where gross output growth is the sum of output growth and deterministic
population growth, a is per cent per annum and we use 10 threshold values of
a=(-15,0,05,1,1.5,2,25,3,3.5,5).

E3: A single event: BofE target met, Pr(1.5% < four-quarter moving average of
inflation < 3.5%).

E4: A single event: recession, Pr(quarterly output growths < 0% for two
consecutive quarters).

ES5: A single event: low growth, Pr(four-quarter moving average of gross output
growth < 1%)

E6: A joint event: Pr(no recession and BofE target met).

E7: A joint event: Pr(high growth and BofE target met).

GLPS-PFS.g (with future uncertainty only)

After running the program, you will obtain the following 18 Gauss result files (with
an fmt extension). They contain the results of the Probability Event Forecasts based
on future uncertainty only, which we have used in obtaining the tables and figures
reported in Chapter 11 and Garratt, Lee, Pesaran and Shin (2003, Journal of American
Statistical Association).

The saved files are OVSASPE.fint, OVSBSPE.fmt, EXSASPE.fmt, EXSBSPE.fmt,
EX4ASPE.fint, EX4BSPE.fmt, EX3ASPE.fmt, EX3BSPE.fint, EX2ASPE.fint, EX2BSPE.fmt,
EX1ASPE.fint, EX1BSPE.fmt, EXOASPE.fmt, EXOBSPE.fmt, AVGSPE.fmt, AICSPE.fmt,
SBCSPE.fmtand HQSPE.fmt, respectively.

The dimensions of these Gauss result files is the number of horizons (= 24 here)
by 25. The first 10 columns (1 to 10) are probability forecasts for event E1 for the
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10 thresholds; the next 10 columns (11 to 20) are probability forecasts for event E2
with 10 thresholds; the 21st column is probability forecasts for event E3; the 22nd
column is the probability forecasts for event E4; the 23rd column is the probability
forecasts for event ES; the 24th column is the probability forecasts for event E6;
and, finally, the 25th column is the probability forecasts for event E7. '

GLPS-PFB.g (with future and parameter uncertainty)

This program is as above but where the Probability Event Forecasts are based on
both future and parameter uncertainty. The saved files are OVSABPE.fmt
OVSBBPE.fint, EXSABPE.fmt, EX5BBPE.fint, EX4ABPE.fint, EX4BBPE.fmt, EX3AL3PE,
fmt, EX3BBPE.fint, EX2ABPE.fmt, EX2BBPE.fint, EXI1ABPE.fmt, EX1BBPE fmt.
EXOABPE.fmt, EXOBBPE.fint, AVGBPE.fint, AICBPE.fmt, SBCBPE.fmt and HQBPE: fmtt

D.3.2 Programs for computing in-sample probability event forecast evaluation

The three programs, GLPS-EVS.g, GLPS-EVB.g and GLPS-EV.g, are used to evaluate
the probability event forecasts. They compute in-sample forecast evaluation using
one-step ahead probability forecasts of directional-change and events used in cal-
culating probability integral transforms, which are obtained using recursive point
forecasts over 1999q1-2001q1 (nine quarters).

To replicate the results reported in Chapter 11, first run the programs GLPS-EVS.g
and GLPS-EVB.g and save the output Gauss results files. Then run the program GLP:?-
EV.g. The algorithms used in GLPS-EVS.g and GLPS-EVB.g are essentially the same
although only future uncertainty is allowed in GLPS-EVS.g whereas both future anci
parameter uncertainties are allowed in GLPS-EVB.g.

Here we consider the following nine single event probability of directional
changes:

El1:Pr §A2p‘7’-+1 > O) E2:Pr(Aeryq > 0)
E3: Pr(arf,, > 0) E4:Pr(Arp4; > 0)
ES:Pr(A%priq > 0) E6: Pr(A%yry1 > 0)

E7:Pr EAWH —ph) > 0) E8: Pr(A2(hry1 — yr41) > 0)
E9: Pr (A%, > 0).

We also consider the following nine single events for the probability integral
transform, which will be used in computing the Kolmogorov-Smirnov test statistic:

I1:Pr (forecast of A%pS._, > actual Azp‘;.+1)
I12: Pr (forecast of Aery; > actual Aeryq)
I3: Pr (forecast of Ary ; > actual Ary. +1)

I4: Pr (forecast of Arry1 > actual Arriq)
15: Pr (forecast of A2pr.q > actual A%pr.q)
16: Pr (forecast of A%y, > actual A2yr.)
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I7:Pr (forecast of A(Pr41 — Phyp) > actual AQpryr — P}H))
I8: Pr (forecast of A%(hr41 — yr+1) > actual A2(h741 — YT4+1))
19:Pr (forecast of AZy%. | > actual A%y} +1) .

GLPS-EVS.g (with future uncertainty only)

After running the program, you will obtain the following 50 Gauss data files (with
an fmt extension). They contain the results for (i) the one-step ahead central fore-
casts (18 files), (ii) root mean square errors (RMSEs) (14 files), (iii) the in-sample
Probability Event Forecasts (18 files):

(i) The 18 files for one-step ahead central forecasts with no future and no para-
meter uncertainties are: OVSAFOR.fint, OVSBFOR. fmt, EXSAFOR.fimt, EXSBFOR.fmt,
EX4AFOR .fint, EX4BFOR.fmt, EX3AFOR. fint, EX3BFOR.fmt, EX2AFOR.fmt, EX2BFOR.
fmt, EX1AFOR.fmt, EX1BFOR.fmt, EXOAFOR.fmt, EXOBFOR.fmt, AVGFOR.fmt,
AICFOR.fint, SBCFOR.fint and HQFOR.fmt. Here the first four letters refer to indi-
vidual models, and AVG, AIC, SBC and HQ indicate the equal weights, the AIC
weights, the SBC weights and the HQ weights, respectively, used in pooling the
forecasts.

The dimensions of all the above Gauss result matrices are the same, the number of

in-sample horizons (here nine quarters over 1999q1-2001q1) by 54. The first nine
columns (1 to 9) are one-step ahead central forecasts of the level of the nine variables
(in the order of p°, e, 1*,7, Ap, ¥, p— p*, h—y, y*); the nextnine columns (10 to 18) are
one-step ahead central forecasts of the four-quarter moving averages of the levels of
the nine variables; the columns from 19 to 27 are one-step ahead central forecasts
of the first differences; the next nine columns (28 to 36) are one-step ahead central
forecasts of the four-quarter moving average of the first differences; columns 37 to
45 are one-step ahead central forecasts of the second differences; and the next nine
columns (46 to 54) are one-step ahead central forecasts of the four-quarter moving
average of the second differences.
(ii) The 14 files for RMSEs of the one-step ahead central forecasts with no future and
no parameter uncertainties are: OVSARMSE.fint, OVSBRMSE.fmt, EXSARMSE.fmt,
EX5BRMSE.fmt, EX4ARMSE.fmt, EX4BRMSE.fimt, EX3ARMSE.fmt, EX3BRMSE.fmt,
EX2ARMSE.fint, EX2BRMSE.fmt, EX1ARMSE.fint, EX1BRMSE.fmnt, EXOARMSE.fmt
and EXOBRMSE.fint.

The dimensions of all the above Gauss result files are the same, the number of
in-sample horizon (here nine quarters over 1999q1-2001q1) by 27. The first nine
columns (1 to 9) are RMSEs of the one-step ahead central forecasts of the level of
the nine variables (in the order of p°, e, r*, 1, Ap, y, P — p*, h—y, y*); the next 9
columns (10 to 18) are RMSEs of the one-step ahead central forecasts of the first
diferences; and the next columns from 19 to 27 are RMSEs of the one-step ahead
central forecasts of the second differences.

(iii) The 18 files for the probabilities of directional changes and probability
integral transform with future uncertainty only are: OVSASPR.fint, OVSBSPR.fint,
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EXS5ASPR.fint, EXSBSPR.fit, EX4ASPR.fmt, EX4BSPR.fmt, EX3ASPR.fint, EX3BSPR.
fint, EX2ASPR.fmt, EX2BSPR.fmt, EXIASPR.fmt, EXIBSPR.fmt, EXOASPR.fint,
EXOBSPR.fmt, AVGSPR.fint, AICSPR.fint, SBCSPR.fint and HQSPR.fint.

The dimensions of all the above Gauss data files are the same: the number of
in-sample horizon (here nine quarters over 1999q1-2001q1) by 36. The first nine
columns (1 to 9) are the probabilities of directional changes (see definitions of the
events given above and denoted by E1, ..., E9) for the nine variables (in the order
of p°, e, r*, 1, Ap, y, p— p*, h —y, y*), using one-step ahead central forecasts of the
first and second differences; the next nine columns (10 to 18) are the probabilities
of directional changes for the nine variables using one-step ahead central forecasts
of the four-quarter moving average of the first and second differences; the nine
columns (19 to 27) are the probabilities of integral transforms (see definitions of
the events given above and denoted by I1, ... ., I9) for the nine variables, using one-
step ahead central forecasts of the first and second differences; and the final nine
columns (28 to 36) are the probabilities of integral transforms for the nine variables
using one-step ahead central forecasts of the four-quarter moving average of the
first and second differences.

Finally, we have also saved the two additional data files, actdat.fimt and
adactdat.fint, which contain in-sample actual data observations for the first differ-
ences and the second differences of the data, and which will be used for comparison
with one-step ahead forecasts of directional changes in the program GLPS-EV.g.

GLPS-EVB.g (with both future and parameter uncertainties)

After running the program, you will obtain the following 18 Gauss result files
(with an fmt extension). They contain the results for Probability Event Forecasts
for directional changes and probability integral transform with both future and
parameter uncertainties. These will be used in the companion file GLPS-EV.g to
compute various test statistics reported in the tables of Chapter 11.

The 18 files are OVSABPR.fint, OVSBBPR.fint, EX5ABPR.fit, EX5SBBPR.fmt,
EX4ABPR.fmt, EX4BBPR.fimt, EX3ABPR.fmt, EX3BBPR.fint, EX2ABPR.fint, EX2BBPR.
fmt, EXIABPR.fint, EX1BBPR.fint, EXOABPR.fit, EXOBBPR.fmt, AVGBPR.fmt,
AICBPR.fint, SBCBPR.fimt and HQBPR.fint. The dimensions and ordering of the Gauss
result files are as described in probability event matrices for GLPS-EVS.g.

GLPS-EV.g

This program computes the in-sample forecast evaluation test statistics using the
Gauss result files saved after running the companion programs, GLPS-EVS.g and
GLPS-EVB.g. The program computes the following statistics:

(i) UD, DD, DU and UU, where the first letter denotes the direction of forecasts
(D for down, U for up) and the second the direction of actual outcome.

(ii) The hit ratio defined as: (DD + UU) / (UD + DD + DU + UU).
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(iii) The Kuipers Score statistic given by H — F, where H = UU/ (UU + UD)
is the proportion of ups that were correctly predicted to occur, and F =
DU/ (DU + DD) is the proportion of downs that were incorrectly predicted.

(iv) The Pesaran-Timmerman, test statistic.
(v) The Kolmogorov-Smirnov test statistic.

D.4 Program for computing the decomposition of trends in
cointegrating VARs

GLPS-DEC.g

This program provides the decomposition of the underlying I(1) variables into
permanent and transitory components as described in Section 10.3. This decom-
position can be viewed as a (generalised) multivariate BN decomposition but has an
advantage that it is characterised fully in terms of observables and estimated para-
meters. See also Garratt, Robertson and Wright (2005). The program also computes
the more conventional multivariate Beveridge-Nelson trends of the system.

As in the case of the programs for GIRs and PPs, we use the data file, ukmod99.dat
and the ML estimates of the cointegrating VAR(2) model over 1965q1-1999g4 (140
observations) using the Cointegrating VAR Option 4 with unrestricted intercepts
and restricted trends. The program requires as an input estimates of the vector g,
the trend growth rates (these are computed using a restricted SURE procedure in
Chapter 10; see Section 10.3). After running the program, you will obtain nine
ASCII files with txt extensions: po.txt, ex.txt, rs.txt, r.txt, dp.txt, y.txt, pps.txt, hy.txt
and ys.txt. They contain summary results for each of the variables (in the order of
p°, e, 1,1, Ap,y, p—p*, h—y, y*). These files can be easily be read into the Excel pro-
gram for constructing tables and figures. The dimensions of the result files are 140
(the sample size) by 6. In each case, the first column contains the actual data, the
second column the permanent component, the third column the transitory com-
ponent, the fourth column the de-trended data, the fifth column the deterministic
(permanent) trend and the sixth column the stochastic (permanent) trends.
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