9
A long-run structural model of the UK

In this chapter, we describe the estimation and testing of the core long-
run model of the UK economy set out in Chapter 4. This involves the
estimation of a VECM of the form defined in equation (4.46) which for
convenience we reproduce here:

p-1
Ay =ay +aybo —ayB [z; 1 —y(t— D]+ Z TiAz i+ *yoAPlt) + Uy,
i=1

9.1)

where g’y = by in (4.46). In this specification, z; is partitioned as z; =
@,y , wherey; = (e, 17, 1t, Aﬁt, Yo, Pe—pt, he—yt, ¥t ay isan 8 x 1 vector
of fixed intercepts, ey is an 8 x 5 matrix of error correction coefficients (also
known as the loading coefficient matrix), Ty;, i=1,2,...,p— 1, are 8x9
matrices of short-run coefficients, ¥, is an 8 x 1 vector representing the
impact effects of changes in oil prices on Ay, uy is an 8 x 1 vector of
disturbances assumed to be i.i.d.(0, ), with I, being a positive definite
matrix, and by construction uncorrelated with u,, and B (zi_1—-y(t=1))is
an r x 1 vector of error correction terms. The long-run theory suggests that
r = 5, but our approach tests the hypothesis of r = 5 against alternative
values for r.

The above specification embodies the economic theory’s long-run pre-
dictions by construction, in contrast to the more usual approach where
the starting point is an unrestricted VAR model, with some vague priors
about the nature of the long-run relations. By including the trend inside
the error correction term, the deterministic trend properties of the model
do not change with the number of cointegrating vectors, r.

197



A Long-run Model of the UK

9.1 The different stages of estimation and testing

As a general guide to the application of the econometric techniques
described in Chapter 6, and as a precursor to our own analysis of the core
model, we now describe the sequence of steps we followed in our empirical
work. Note that in order to incorporate the long-run relationships into a
suitable model, as defined above, it is important that the variables used
in the empirical analysis can be reasonably argued to be I(1). Hence the
preliminary stage in any analysis is to establish the orders of integration of
the variables in the vector z; and we do this in the next section.! Following
on from this, we can identify five stages of the estimation procedure.

First, a sequence of unrestricted VAR(p), p =0, 1, 2, ..., 6 models are esti-
mated over the same sample period, 1965q1-1999q4. The maximum lag
order, 6, is in some sense arbitrary, but is chosen a priori bearing in mind
the quarterly nature of the observations, and the size of the available sam-
ple (namely, 140 quarterly observations). The order of VAR model to be
used in the analysis is then selected in the light of the Akaike Information
Criterion (AIC) and the Schwarz Bayesian Criterion (SBC).

Second, having established the appropriate order of the VAR model, co-
integration tests are carried out using the trace and the maximum eigen-
value statistics, reviewed in Chapter 6. The results of these tests can be
inconclusive. So the test results need to be carefully interpreted in con-
junction with the theory’s prediction described in Chapter 4, before a
decision is made concerning the number of the cointegrating relations
that are most likely to exist among the variables under investigation.

Third, having decided that there exist, say, r cointegrating vectors among
the variables, we are in a position to estimate an exactly identified set of
long-run relations, in which r? restrictions are imposed on the cointegrat-
ing vectors (r restrictions on each of the 7 vectors). In one sense, the choice
of the exactly identifying restrictions is arbitrary: the maximised value of
the log-likelihood of the system will be the same irrespective of how the
long-run relations are exactly identified. In another sense, however, the
choice of exactly identifying restrictions is crucial, as it provides the basis
for the development of an econometric model with economically mean-
ingful long-run properties. It is therefore important that the cointegrating

! Itis, however, important to note that in testing the rank of the cointegrating space, it is not
necessary that the underlying variables should all be I(1). The problem arises in interpreting
the long-run relations; since an I(0) variable can be viewed trivially as forming a cointegrating
relationship with the other variables using 8 = (0,...,0,1,0,...,0) as a cointegrating vector,
with the non-zero element attached to the I(0) variable in question.
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relations are exactly identified by imposing restrictions that are a subset
of those suggested by economic theory. It is also a good practice to avoid
using doubtful theory restrictions as exact identifying restrictions. Estima-
tion of the parameters of the core model, (9.1), can be carried out using
the long-run structural modelling approach in described in Chapter 6.

The fourth step in the analysis considers the imposition and testing of
over-identifying restrictions on the cointegrating vectors, as predicted by
economic theory. This analysis is carried out along the lines set out in
Pesaran and Shin (2002) and Pesaran, Shin and Smith (2000) and involves
the ML estimation of the model subject to the exactly and over-identifying
restrictions. The tests of over-identifying restrictions will now be in the
form of the familiar x?2 tests with degrees of freedom equal to the num-
ber of the over-identifying restrictions. It is worth noting that this is a
system-estimation procedure, and the likelihood function in terms of the
cointegrating vectors can be quite complicated, so that the existence of
local maxima cannot be ruled out, and the search for the global maximum
might be difficult. To avoid convergence problems, it is often advisable to
impose over-identifying restrictions one-at-a-time and, as far as possible,
in a sequence that can be meaningfully interpreted so that information
can be obtained on which of the restrictions is more or less likely to be
accepted by the data.? Another possibility would be to start from fully spec-
ified long-run relationships and then relax some of the theory restrictions
one at a time.

The fifth step in the analysis concerns the interpretation of the results.
The imposition of long-run, theory-based restrictions yield error correction
terms that can be interpreted as characterising disequilibria in partic-
ular markets, and the associated error correction regressions show the
short-run evolution of the variables in the model in response to devia-
tions from equilibrium and to past changes in the variables of the model.
The error correction regressions are also subjected to diagnostic tests for
residual serial correlation, non-normal errors, functional form misspecifi-
cation, and heteroscedasticity as is usual in the case of standard regression
analysis. The magnitudes of some of the estimated regression coefficients
provide useful information on the dynamics of the system, highlighting
which of the variables have large and statistically significant effects on
each other, although care needs to be exercised in the interpretation of

2 The interpretation of this sequence of restriction tests should also be sensitive to the ffict
that asymptotic critical values of over-identifying restrictions tend to over-reject when applied
to small samples, and in some cases by a large amount, as discussed earlier in Section 6.4.

199



A Long-run Model of the UK

the coefficients on the error correction terms as far as the stability of the
system as a whole is concerned (as discussed in Chapter 6).

As part of assessing the model we would also need to analyse its dynam-
ics. This involves the use of persistence profiles, impulse responses and
probability forecasting which we discuss in Chapters 10 and 11.

9.2 Unit root properties of the core variables

Before the estimation of the model can begin, it is important that the
unit root properties of the variables under investigation are established to
enable sensible interpretation of the long-run relations. The limitations of
the standard tests for unit roots (such as the Dickey and Fuller (1979) or
the Phillips and Perron (1988) tests) are well-known, but they neverthe-
less provide important information on the nature of the persistence of the
time series under investigation. For example, it might be difficult to come
to a clear-cut conclusion over whether the effects of a shock to a particular
variable take a long while to die away (for an I(0) variable) or whether
they will never die away (for an I(1) variable) using existing tests and
given the limited data available. Even such an ambiguous conclusion can
be helpful, however, as it suggests that certain variables are on the border-
line of being I(0)/I(1) or I(1)/I(2). For example, one might assume that a
given variable is I(1), perhaps on the basis of a priori economic reasoning,
and subsequently carry out tests to establish the number of cointegrating
relations between this and other I(1) variables. The knowledge that this
variable is close to being stationary, when considered in isolation, means
that the tests of the number of cointegrating relationships are likely to sup-
port the presence of a higher number of cointegrating relations than would
be the case if the variable in question was clearly I(1).

The results of the Augmented Dickey-Fuller (ADF) and Phillips—Perron
(PP) tests, computed over the sample period for the levels and first
differences of the core variables, are reported in Tables 9.1a and 9.1b.

Both sets of tests provide relatively strong support for the view that y;,
Vet 1¢, e, (he — yp) and p? are I(1) series. The unit root hypothesis is
clearly rejected when applied to the first differences of these variables,
but there is no evidence with which to reject the unit root hypothesis
when the tests are applied to the levels. There is, however, some ambigu-
ity regarding the order of integration of the price variables. Application
of the ADF test to Ap;, Ap; and Ap; yields mixed results: the hypothe-
sis that there is a unit root in the domestic and foreign inflation rates
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Table 9.1a Augmented Dickey—Fuller unit root tests applied to
variables in the core model, 1965q1-1999q4.

Variable ADF(0) ADF(1) ADF(2)  ADF(3) ADF(4)

(i) For the first differences

Ayt -11.94 -8.06 —5.40° 518  —4.81
Ay} —-7.43 ~5.287 —453  —422 —41
Ar —-10.54 -7.79 749 -6.08 —6.30°
Arf -7.06° 619 -489 —485 —4.54
Ae; -9819 -789 —645 552  -539
Athy—y) —1221° 816 -579  -482  -3.13
Apt -3.50° -39 267 244 -243
APt —4.41 -3.05 297 242 223
Ap} —-5.06 -3.47 2739 275 -2.90
Ap? -11.05¢ 871 -6.41  -568 -5.71
A%p, —13.32  -10.74° -880 -7.15 —6.95
A%p, -1737 -1022 -9.48 -8.06 -7.43
AZp: -17.82  -12.75° -8.63 —6.65 —6.43
Apr—-pp  —6.69 -491 3729 3,60 332
(i) For the levels

Ye -2.32 -233 246 -3.14° -3.06
% -3.37 -3.18  -3.229 324 322
It -2.23 -2.57° 265 232 -246
rr -1.24 -247° 246 -2.86 -271
e -1.03 -1.45¢ -132 -1.33 -1.37
h -y 1.41 1.82¢ 2.00 1.83 1.86
pt 2.21 -0.39° 048 076 -0.90
Pt 212 -0.03 -0.61° -0.57 -0.88
p; 1.83 -0.07 —073 -1.20° -1.13
pe -1.43° 153 -138 149 -1.44
pt—p; 0.47 -040 -0.66 -1.019 -0.96

Note: When applied to the first differences, augmented Dickey-Fuller (1979, ADF)
test statistics are computed using ADF regressions with an intercept and p lagged
first differences of dependent variable, while when applied to the levels, ADF statis-
tics are computed using ADF regressions with an intercept, a linear time trend and
p lagged first differences of dependent variable, with the exception of the follow-
ing variables: rrand r} where only an intercept was included in the underlying ADF
regressions. The relevant lower 5% critical values for the ADF tests are —2.88 for the
former and —3.45 for the latter. The symbol ‘a’ denotes the order of augmentation
in the Dickey—-Fuller regressions chosen using the Akaike Information Criterion, with
a maximum lag order of four.

is rejected for low orders of augmentation (namely, for p = 0 and 1),
but not for higher orders. The application of the PP test rejects the unit
root hypothesis when applied to Ap}, Apr and Ap;. Overall the available
data is not informative as to whether domestic and foreign prices are I(1)
or I1(2).

These preliminary results regarding the unit roots properties of the core
variables raise interesting issues concerning the use of economic theory
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Table 9.1b Phillips and Perron unit root tests applied to variables
in the core model, 1965q1-1999q4.

Variable PP(0) PP(5) PP(10) PP(15) PP(20)

(i) For the first differences

Ayt -11.94 -12.00 -12.02 -11.95 -11.98
Ayy —-7.43 -7.68 -7.73 -7.72 -7.80
Arg -10.54 -10.50 -10.51 -10.67 -11.41
Arf -7.06 -7.14 -6.84 -6.43 -6.27
Aet -9.81 -9.75 -9.76 -9.81 -9.73
Athy—y) =12.21 -12.28 -12.55 -12.86 -13.22
Apt -3.05 -3.30 -3.38 —3.64 -3.78
APt —4.41 —4.22 —4.70 -5.04 -5.32
Apf -5.06 -5.07 -5.52 -5.91 -6.16
Ap;’ -11.05 -11.03 -11.03 -11.03 -11.03
A?py -13.32 -5.99 —4.49 —4.03 -2.76
Az’ﬁt -17.37 -19.84 -21.27 —23.83 —25.96
Azp;‘ -17.82 -20.07 -22.92 —24.82 —28.66
Ape—p))  —6.69 -6.96 -7.53 -7.87 -8.01
(ii) For the levels

Yt -2.32 -2.70 -2.84 -2.70 -2.47
124 -3.37 -3.07 -3.08 -3.14 -3.22
re -2.23 —2.45 -2.37 -2.24 -2.02
rt -1.24 -2.13 -2.03 -1.72 -1.54
et -1.03 -1.29 -1.29 -1.35 -1.17
he — vt 1.41 1.90 1.85 1.87 1.83
Pt 2.21 0.43 0.01 -0.22 -0.36
Pt 2.12 0.45 0.02 -0.18 -0.31
p; 1.83 —1.45 -1.43 -1.46 -1.45
p{’ -1.43 —1.45 -1.43 -1.46 -1.45
pt — P} 0.47 -0.43 -0.69 -0.78 -0.79

Note: PP(¢) represents Phillips and Perron (1988) unit root statistic based on the Bartlett
window of size £. In the first difference equations, PP test statistics are obtained includ-
ing only an intercept in the underlying DF regressions; in the levels equations, PP test
statistics are obtained including an intercept and a time trend in the underlying DF
regressions, with the exception of the following variables; r; and r; where no trend
is included. The relevant lower 5% critical values are —2.88 for the first difference
equations, and —3.45 for the levels equations.

and statistical evidence in macroeconometric modelling. Starting from the
long-run theory set out in Chapter 4, the validity of the Fisher equation
requires that inflation and interest rates have the same order of inte-
gration. The theoretical literature generally assumes that these series are
1(0), but as we have seen above the empirical evidence is mixed with the
interest rate behaving as an I(1) variable and the inflation rate being a
borderline case.3 There is, therefore, a trade-off between the demands of

3 In this book we are confining the modelling exercise to log-linear specifications and a more
complicated non-linear model might be needed for interest rates and inflation, as argued,
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theory and econometrics. Our approach to this dilemma is a pragmatic
one, aiming to adequately capture the statistical properties of the data
in a modelling framework which, at the same time, is coherent with our
underlying analytic account of how the economy operates. For these rea-
sons, in our work, we treat r, rf, Apy, Aﬁt and Apf as I(1) variables.
This allows the empirical model to adequately represent the statistical
features of the series over the sample period and provides the scope for
accommodating in the model the long-run relationships described in
Chapter 4.

Of course, domestic and foreign prices appear in their level in the PPP
relationship of (4.35) and this raises the potential difficulty of mixing I(1)
and 1(2) variables. Haldrup’s (1998) review of the econometric analysis
of I(2) variables warns of the dangers of the inappropriate application of
econometric methods designed for use with I(1) variables and suggests
that it is often useful to transform time series a priori to obtain variables
that are unambiguously I(1) rather than dealing with mixtures of I(1) and
I(2) variables directly. In the case of the core variables under consideration,
this is achieved by working with the relative price variables p; — p rather
than the two price levels p; and p} separately. As shown in Table 9.1a,
the relative price term is unambiguously I(1) according to the ADF
statistics.

The decision to include domestic prices in the model in two forms,
(pt — p?) and Ap; does not create difficulties of inconsistency either alge-
braically or economically (and would not do so even if we used Ap; in
place of Ap; in the model). Ignoring the distinction between p; and p;
for the moment, we note that the associated structural model of (5.2)
contains nine equations in eight endogenous variables. One of the nine
equations corresponds to the determination of domestic prices p; and one
corresponds to the determination of foreign prices p; and this is entirely
consistent with the fact that the domestic price variable influences the
relative price variable and the inflation variable when the model is esti-
mated. Further, there is considerable evidence, both on the basis of our
own analysis and elsewhere, that the various alternative measures of infla-
tion that are available are pairwise cointegrated with a cointegrating vector
of (1,-1) and a zero constant. The use of two measures of prices, p;
and py, in the analysis has no impact on the long-run properties of the

for example, in Pesaran, Timmermann and Pettenuzzo (2004). Such an approach is worth
considering but lies outside the scope of the present work.
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model, therefore, but is likely to capture the short-run dynamics more
accurately.

In summary, then, we can say that it seems appropriate to view all nine
variables of z; = (p?, e, 1},1t, ADt Ve Pt — Ph b — Yt y;*)’ as approximately
I(1) on the basis of the unit root statistics reported. We therefore con-
ducted our analysis on this basis, although the ambiguity regarding the
Apy variable needs to be borne in mind in interpreting the subsequent
results.

9.3 Testing and estimating of the long-run relations

The first stage of our modelling sequence is to select the order of the
underlying VAR using AIC and SBC reported in Table 9.2.

Here we find that a VAR of order two appears to be appropriate when
using the AIC as the model selection criterion, but not surprisingly that the
SBC favours a VAR of order one. We proceed with the cointegration analysis
using a VAR(2), on the grounds that the consequences of overestimation
of the order of the VAR are much less serious than underestimating it; see
Kilian (2002).4

Using a VAR(2) model with unrestricted intercepts and restricted trend
coefficients, and treating the oil price variable, p?, as a weakly exoge-
nous I(1), or long-run forcing, variable, we computed Johansen's ‘trace’

Table 9.2 Akaike and Schwarz Information
Criteria for lag order selection.

Lag length  Log likelihood AIC SBC

6 4641.2 4155.2  3440.4
5 4538.7 4133.7 3538.0
4 4459.0 4135.0 36584
3 4389.0 4146.0 3788.5
2 4326.0 4164.0 3925.7
1 4222.3 4141.3 4022.2
0 1775.6 1775.6 1775.6

4 Note that, if the dimension of the VAR is large, then a relatively low lag order can be
selected and still accommodate rich dynamic specifications at the level of individual series.
Specifically, if the m x 1 vector z; follows a p-order autoregression, then in general the indi-
vidual elements follow an ARMA (mp, mp — p) process. See Hamilton (1994, p. 349). In our
application where m = 9 and p = 2, the univariate representation of the individual series
could be ARMA(18, 16).
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Table 9.3 Cointegration rank test statistics for the core model,
(pt - p?: e, e, rt*’ Yt y;l ht - Yt Apt:p?)'

Ho Hy Test statistic  95% Critical values  90% Critical values

(a) Trace statistic

r=0 r=1 324.75 199.12 192.80
r<i =2 221.16 163.01 157.02
r<2 =3 161.88 128.79 123.33
r<3 r=4 116.14 97.83 93.13
r<4 r=5 78.94 72.10 68.04
r<5 r==6 48.71 49.36 46.00
r<é6 r=7 22.46 30.77 27.96
r<7 r=8 6.70 15.44 13.31

(b) Maximum eigenvalue statistic

r=0 r=1 103.59 58.08 55.25
r<1 r=2 59.27 52.62 49.70
r<2 r=3 45.75 46.97 44.01
r<3 r=4 37.20 40.89 37.92
r<4 r=5 30.23 34.70 32.12
r<5 r=6 26.25 28.72 26.10
r<6 r=7 15.76 22.16 19.79
r<7 r=8 6.70 15.44 13.31

Note: The underlying VAR model is of order 2 and contains unrestricted intercepts and
restricted trend coefficients, with p{ treated as an exogenous /(1) variable. The statistics
refer to Johansen's log-likelihood-based trace and maximal eigenvalue statistics and are
computed using 140 observations for the period 1965q1-1999g4. The asymptotic
critical values are taken from Pesaran, Shin and Smith (2000).

and ‘maximal eigenvalue’ statistics.® These statistics, together with their
associated 90% and 95% critical values, are reported in Table 9.3.

The maximal eigenvalue statistic indicates the presence of just two co-
integrating relationships at the 5% significance level, which does not sup-
port our a priori expectations of five cointegrating vectors. However, as
shown by Cheung and Lai (1993), the maximum eigenvalue test is gener-
ally less robust to the presence of skewness and excess kurtosis in the errors
than the trace test. Given that we have evidence of non-normality in the
residuals of the VAR model used to compute the test statistics, we there-
fore believe it is more appropriate to base our cointegration tests on the
trace statistics. As it happens the trace statistics reject the null hypothe-
ses that r = 0,1,2,3 and 4 at the 5% level of significance but cannot
reject the null hypothesis that r=35. This is in line with our a priori expec-
tations based on the long-run theory of Chapter 4, which suggests the

S An account of the algorithms used for the computation of cointegration test statistics in
the presence of I(1) exogenous variables can be found, for example, in Pesaran, Shin and Smith
(2000).
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existence of five possible long-run relations, reproduced below for ease of
exposition:

Pt —pi —er =bio+ b1t + 61,011 (9.2)
e —r1f = by +&2,t11 9.3
Ye—yi =b3o+&t1 9.4)

ht —yt = bao + bart + Baatt + Paeyt + Eat11 9.5)

1t — Apr = bso +&s,¢41- (9.6)

Proceeding under the assumption that there are five cointegrating vec-
tors, the five long-run relations of the core model, (9.2)-(9.6), can be
written more compactly as

§ = Bryzi—1 —bo—b1(t - 1), 9.7)
where
bo = (b10, b20, b30,P10, bs0)',
bl = (bllr 0/ Or b4lr O)/r
& = (611, E21) E3t, Bat E5t))
and
0O -1 O 0 0 0 1 0 O
0O 0 -1 1 0 0 00 O
By=l0 0 o o o0 1 00 -1 (9.8)
0 0 O —Baa O —B 01 O
0 O 0 1 -1 0 00 O

The matrix ﬁ'TH, as described in equation (9.8), imposes all the restrictions
necessary to correspond to the long-run relationships and as such is over-
identified. However, the first step in the estimation is to exactly identify
the long run, which with five cointegrating relations requires five restric-
tions on each relationship. In view of the underlying long-run theory as
encapsulated in the relations (9.2)—(9.6), we impose 25 exactly identifying
restrictions on the cointegrating matrix (in the form of five restrictions
on each of the five cointegrating vectors) so that the exactly identified
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cointegrating matrix is given by:

Bi1 B2 0 O Bis O 1 pg O
B21 0 B2z 1 B2s O 0 0 B2
Bex=1] B1 0 O O 0 1 B37 Bss B3 |- (99
Bs1 O 0O  —Bag Pas —Bss O 1 O
Bs1 0 0O Bsg -1 O 0 Bsg Bs9

The first vector (the first row of By) relates to the purchasing power parity
(PPP) relationship defined by (9.2) and is normalised on p; — p}; the second
relates to the interest rate parity (IRP) relationship defined by (9.3) and is
normalised on r;; the third relates to the ‘output gap’ (OG) relationship
defined by (9.4) and is normalised on y;;® the fourth is the money market
equilibrium condition (MME) defined by (9.5) and is normalised on ht —y;.;
and the fifth is the real interest rate relationship (FIP) defined by (9.6),
normalised on Ap;.

Having exactly identified the long-run relations, we then tested the over-
identifying restrictions predicted by the long-run theory. There are 20
unrestricted parameters in (9.9) and, based on the theory restrictions as
set out in (9.8), there are 18 theory-based over-identifying restrictions that
could be tested. Note that the theory does not restrict two of the para-
meters of the money demand equation (844 and B4¢) in the fourth row of
Bty defined by (9.8). In addition, working with a cointegrating VAR with
restricted trend coefficients (as described in Sections 6.2.1 and 6.2.3), there
are potentially five further parameters on the trend terms in the five co-
integrating relationships. There is no economic rationale for including
time trends in the IRP, FIP or OG relationships, and the imposition of
zeros on the trend coefficients in these relationships provides a further
three over-identifying restrictions. The absence of a trend in the PPP rela-
tionship is also consistent with the theory of Chapter 4, as is the restriction
that B46 = O (so that equation (9.5) is effectively a relationship explaining
the velocity of circulation of money). Hence, once the long-run theory is
fully imposed, there are just two parameters to be freely estimated in the
cointegrating relationships, and there are a total of 23 over-identifying
restrictions on which the core model is based and with which the validity
of the long-run economic theory can be tested.

6 Qur use of the term ‘output gap relationship’ to describe (9.4) should not be confused
with the more usual use of the term which relates more specifically to the difference between
a country’s actual and potential output levels (although clearly the two uses of the term are
related and, for some open economies, the foreign output variable might provide a good proxy
for potential output).
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9.3.1 Small sample properties of the tests of restrictions on the
cointegrating vectors

When testing the linear restrictions implied by our long-run theory, we
need to take account of the relatively small sample size available. This issue
arises in our example despite having 140 quarterly observations as we are
investigating the properties of a large dimensioned VARX model subjecttoa
large number of over-identifying restrictions. In order to deal with the small
sample bias, we apply the methods described in Section 6.4. These methods
involve a bootstrapping exercise to investigate and accommodate the small
sample properties of the log-likelihood ratio (LR) test of over-identifying
restrictions, generating a simulated distribution for the test statistic when
only a small sample is available and using this to derive appropriate critical
values against which to compare the estimated test statistic.

Specifically, the LR test for jointly testing the 23 over-identifying restric-
tions described above and implied by our long-run theory takes the value
71.49. To compute appropriate small sample critical values, we adopt a
bootstrap procedure based on 3000 replications of the LR statistic testing
the 23 restrictions. For each replication, an artificial dataset is generated
(of the same length as the original dataset) on the assumption that the
estimated version of the core model is the true data-generating process,
using the observed initial values of each variable, the estimated model,
and a set of random innovations. These innovations can be obtained
as draws from a multivariate normal distribution chosen to match the
observed correlation of the estimated reduced form errors (termed a ‘para-
metric bootstrap’) or by re-sampling with replacement from the estimated
residuals (a ‘non-parametric bootstrap’). In the light of the evidence of
non-normality of residuals that we found in estimation, we apply the non-
parametric bootstrap in this exercise (see Chapter 7 for further details).
For each simulated dataset, the cointegrating VAR is estimated first sub-
ject to the exactly identifying restrictions of (9.9) and then subject to the
over-identifying restrictions of (9.8).” The LR test of the over-identifying

7 Given the complexity of the likelihood in the over-identified case, the choice of the opti-
misation algorithm to be used in maximising the likelihood may be important in this exercise.
We found the Simulated Annealing routine by Goffe et al. (1994) to be useful. The simulated
annealing algorithm explores a function’s entire surface and tries to optimise the function
while moving both uphill and downhill. It is therefore largely independent of starting val-
ues, and it can escape local minima and go on to find the global optimum by the uphill and
downhill moves. Simulated annealing also makes less stringent assumptions on the form of the
function than conventional algorithms and can therefore deal more easily with functions that
have ridges and plateaux. Hence it is less likely to fail on difficult functions and is more robust
than conventional Newton-Raphson and David-Fletcher-Powell uphill-only algorithms.
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Figure 9.1 Asymptotic and empirical distribution generated by the simulated
annealing algorithm of the test of the long-run over-identifying restrictions.

restrictions is carried out on each of the replicated datasets and the
empirical distribution of the test statistic is derived across all replications.

Figure 9.1 illustrates the empirical distribution obtained in this way,
plotting this alongside the corresponding asymptotic X223 distribution. The
figure shows the empirical distribution of the test statistic lies substantially
to the right of its asymptotic counterpart, demonstrating clearly the need
for taking into account the small sample in this instance.

The bootstrapped critical values for the joint tests of the 23 over-
identifying restrictions are 67.51 at the 10% significance level and 73.19
at the 5% level. Using these bootstrapped critical values, the 23 theory
restrictions cannot be rejected at the conventional 5% level. Moreover, it
is worth noting that the simulation is used to find the probability of rejec-
tion for one point in Hy, taking the estimated parameters of the core model
as given. The classical significance level is the maximum of the rejection
probabilities over Hy. So, by using a single point, the observed critical val-
ues potentially understate the true rejection level. The fact that we (almost)
fail to reject at the 5% level might provide more compelling evidence to
support the validity of the restrictions than it first appears therefore.

9.4 The vector error correction model

9.4.1 The long-run estimates

The estimates of the long-run relations and the reduced form error correc-
tion specification are provided in Table 9.4 below. The long-run relations,
which incorporate all the restrictions suggested by the theory in Chapter 4,
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are summarised below:

(e —p) — € = 4.588 + 81 141 (9.10)
re — 1 = 0.0058 + E2,41 (9.11)
ye—yi=—0.0377 + 8311 9.12)

56.0975 0.0073

- t+E 9.13
(222844 "~ (0.0012) [T O13)

ht —-yt= —0.0538 —

7t — APt = 0.0036 + &5 ¢.41. (9.14)

The bracketed figures are asymptotic standard errors. The first equation,
(9.10), describes the PPP relationship and the failure to reject this in the
context of our core model provides an interesting empirical finding. Of
course, there has been considerable interest in the literature examining
the co-movements of exchange rates and relative prices, and the empirical
evidence on PPP appears to be sensitive to the dataset used and the way in
which the analysis is conducted. For example, the evidence of a unit root in
the real exchange rate found by Darby (1983) and Huizinga (1988) contra-
dicts PPP as a long-run relationship, while Grilli and Kaminsky (1991) and
Lothian and Taylor (1996) have obtained evidence in favour of rejecting
the unit root hypothesis in real exchange rates using longer annual series.
In work investigating PPP using cointegration analysis, the results seem to
be sensitive to whether the model is a trivariate one (including e, pr and
py in the VAR as separate variables) or a bivariate one (including e; and
(p: — p¥) as two separate variables). The null of no cointegration is rejected
more frequently in trivariate than in bivariate analyses.? The finding here
that PPP can be readily incorporated into the model is a useful contribu-
tion to this literature, indicating that the empirical evidence to support
the relationship is stronger in a more complete model of the macroecon-
omy incorporating feedbacks and interactions omitted from more partial
analyses.

The second cointegrating relation, defined by (9.11), is the IRP condi-
tion. This includes an intercept, which can be interpreted as the deter-
ministic component of the risk premia associated with bonds and foreign
exchange uncertainties. Its value is estimated at 0.0058, implying a risk
premium of approximately 2.3% per annum. The empirical support we
find for the IRP condition is in accordance with the results obtained in the
literature, and is compatible with UIP, defined by (4.14). However, under

8 See Taylor (1988) and Mark (1990) for illustrations of further work in this area, and Froot
and Rogoff (1995) and MacDonald (1995) for a review of the literature.
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the UIP hypothesis it is also required that a regression of re—rfon Aln(Eryq)
has a unit coefficient, but this is not supported by the data.

The third long-run relationship, given by (9.12), is the OG relationship
with per capita domestic and foreign output (measured by the total OECD
output) levels moving in tandem in the long run. It is noteworthy that
the co-trending hypothesis cannot be rejected; i.e. the coefficient of the
deterministic trend in the output gap equation is zero. This suggests that
average long-run growth rate for the UK is the same as that in the rest of
the OECD. This finding seems, in the first instance, to contradict some of
the results obtained in the literature on the cointegrating properties of real
output across countries. Campbell and Mankiw (1989), Cogley (1990) and
Bernard and Durlauf (1995), for example, consider cointegration among
international output series and find little evidence that outputs of different
pairs of countries are cointegrated. However, our empirical analysis, being
based on a single foreign output index, does not necessarily contradict this
literature, which focuses on pairwise cointegration of output levels. The
hypothesis advanced here, that y; and y} are cointegrated, is much less
restrictive than the hypothesis considered in the literature that all pairs of
output variables in the OECD are cointegrated.’

For the MME condition, given by (9.13), we could not reject the hypo-
thesis that the elasticity of real money balances with respect to real output
is equal to unity, and therefore (9.13) in fact represents an MO velocity
equation. The MME condition, however, contains a deterministic down-
ward trend, representing the steady decline in the money-income ratio
experienced in the UK over most of the period 1965-1999, arising pri-
marily from the technological innovations in financial intermediation.
There is also strong statistical evidence of a negative interest rate effect on
real money balances. This long-run specification is comparable to recent
research on the determinants of the UK narrow money velocity reported
in, for example, Breedon and Fisher (1996).

Finally, the fifth equation, (9.14), defines the FIP relationship, where the
estimated constant implies an annual real rate of return of approximately
1.44%. While the presence of this relationship might appear relatively
uncontentious, there is empirical work in which the relationship does
not seem to be supported by the empirical evidence; see, for example
MacDonald and Murphy (1989) and Mishkin (1992). In La Cour and

9 See Lee (1998) for further discussion of cross-country interdependence in growth dynam-
ics. Pesaran (2004a) also provides an analysis of pairwise output gaps, showing that output
convergence is not generally supported by the time series observations.
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MacDonald (2000), evidence of a cointegrating relationship between inter-
est rates and inflation was obtained in an analysis of financial data series
from the euro area and US. However, the FIP relationship itself, with coef-
ficients of (1, —1) on the interest rate and inflation, was observed in the
two zones only when the financial variables were incorporated into a larger
macrosystem. Our results support the FIP relationship and again highlight
the important role played by the FIP relationship in a model of the macroe-
conomy which can incorporate interactions between variables omitted
from more partial analyses.

9.4.2 Error correction specifications

The short-run dynamics of the model are characterised by the eight error
correction specifications given in Table 9.4.

The estimates of the error correction coefficients show that the long-run
relations make an important contribution in most equations and that the
error correction terms provide for a complex and statistically significant
set of interactions and feedbacks across commodity, money and foreign
exchange markets. The results in Table 9.4 also show that the core model
fits the historical data well and has satisfactory diagnostic statistics. The
diagnostic statistics of the equations in Table 9.4 are generally satisfactory
as far as the tests of the residual serial correlation, functional form and
heteroscedasticity are concerned. The assumption of normally distributed
errors is rejected in all the error correction equations which is understand-
able if we consider the three major hikes in oil prices experienced during
the estimation period and the special events that have afflicted the UK
economy such as the three-day week, coal miners’ strikes, the stock market
crash of 1987 just to mention a few.

Figures 9.2a-9.2h plot the actual and fitted values for the reduced form
error correction equations reported in Table 9.4.

These figures illustrate the extent to which the model fit the historical
series. As might be expected, the exchange rate and domestic interest rate
equations appear to have least explanatory power, with R 0£0.07 and 0.12
respectively, and the model struggles to fit the observations of variables
associated with the unusual events described above and during the volatile
periods of the 1970s. But significant equilibrating pressures are found even
in the Ae; and Ar; equations and, by-and-large, the fitted values seem to
perform well in terms of tracking the main movements of all the dependent
variables, reflecting the fact that the remaining R are relatively high and
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Table 9.4 Reduced form error correction specification for the core model.

Equation Apr—pf)  Aet Ar Arf Ayt Ay;  Athe—y) AAPy
B -0.015"  0.060' 0.002 0002 0.017f 0.021% -0.024* -0.005
_ 0.007)  (0.029) (0.002) (0.001) (0.008) (0.004) (0.013) (0.004)
Eat —0.840" 1.42 0.049 0.130* 1.34" 0.891" -0.721 —0.811F
R 0.301) (1.28) (0.107) (0.043) (0.353) (0.181) (0.576) (0.297)
&3¢ 0.062" —0.210* —0.013 —0.006 —0.165" —0.021  0.106*  0.034
~ 0.029) (0.121) (0.010) (0.004) (0.034) (0.017) (0.055) (0.028)
Eat 0.018" —0.029 —0.003* —0.001* -0.027f —0.016" -0.003 0.009*
R (0.005)  (0.020) (0.002) (0.001) (0.005) (0.003) (0.009) (0.005)
Est —-0.149* —0.244 —0.054* —0.024" -0.099 -0.119" 0.408"  0.451%

(0.083) (0.353) (0.028) (0.012) (0.098) (0.050) (0.159)  (0.082)
APt-1 = P}_y) 0.459"  0.150 -0.039 -0.028' -0.136 —0.013  0.046  0.436'
(0.095)  (0.404) (0.032) (0.014) (0.111) (0.057) (0.182)  (0.094)

Aet_q 0.0517  0.216" —0.005 —0.001 0.021 0.013  0.007 —0.022
0.022) (0.092) (0.007) (0.003) (0.025) (0.013) (0.042) (0.021)
N 0.416" —1.31 0.125 -0.067 0.467 0.204 —0.677 0.974%
0.294) (1.25) (0.098) (0.042) (0.345) (0.177) (0.562)  (0.290)
Ary —0.810 275 -0.606" 0.430" 0.306 0573 -0.267 0.166
0.617) (2.62) (0.205) (0.088) (0.723) (0.371) (1.18)  (0.606)
Ay 0.083  0.072 0.017 0.015 -0.044 0.031 —0.168 0.356'
0.089) (0.381) (0.030) (0.013) (0.105) (0.053) (0.172) (0.089)
Ay; 0.010 -0.630 —0.050 0.040* —0.073 0.069  0.602* —0.010

(0.161)  (0.683) (0.054) (0.023) (0.188) (0.097) (0.307) (0.158)
Ahty = ye-1) 0.116 0.331  0.026 0.006 0.069 —0.014 —0.253" 0.140%
(0.054) (0.228) (0.018) (0.008) (0.063) (0.032) (0.103) (0.053)

A(APe-1) -0.151" 0321 0016 0.010  0.125 —0.082* 0.012 —0.244"
(0.073) (0.302) (0.024) (0.011) (0.086) (0.044) (0.140) (0.072)
Ap? -0.018" —-0.024 0.001 0.001" -0.010" 0.0001 0.024"  0.003
(0.004) (0.018) (0.001) (0.0005) (0.005) (0.002) (0.008)  (0.004)
Ape 0.010" -0.013 -0.002 -0.0001 0.006 0.002 -0.011  0.016"
(0.005)  (0.019) (0.002) (0.0001) (0.005) (0.003) (0.009)  (0.004)
7 0.484 0070 0.115 0345 0260 0367 0257  0.445
Benchmark B 0316  0.026 0.007 0.213  0.022 0.194  0.00 0.191
& 0.007  0.032 0.002 0.001 0.009 0.004 0014  0.007
xZ 4] 2.79 096 243 17137 671 079 837"  5.63
x&( 857t 013 434t 670t 004 528" 0033 001
x3(2) 12.53F  13.98t 17157 19.9" 11247 1084  31.45"7 11891
XA 613t 197 4537 521 088  0.93 0.19 4.557

Note: The five error correction terms are given by

B,e01 =Pt — P — e — 4.588,
Ee41 =1 — rf —0.0058,
Ben1 =y -y +0.0377,

56.0975 0.0073

Earpn=h —ye + (22.2844) re+ 0.0012) t +0.05379,

Es001 = 1t — APy — 0.0036.

Standard errors are given in parentheses. ‘+’ indicates significance at the 10% level, and '}’ indicates significance
at the 5% level. The diagnostics are chi-squared statistics for serial correlation (SC), functional form (FF), normality

(N) and heteroscedasticity (H). The benchmark T(z statistics are computed based on univariate ARMA(s, @),
5,g=0,1,...,4 specifications with the s and g orders selected by AIC; see text for details.
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Figure 9.2a Actual and fitted values for the A (p;—py) reduced form ECM equation. Figure 9.2c Actual and fitted values for the Ar; reduced form ECM equation.
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Figure 9.2b Actual and fitted values for the Ae; reduced form ECM equation. Figure 9.2d Actual and fitted values for the Ar; reduced form ECM equation.
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Figure 9.2f Actual and fitted values for the Ay} reduced form ECM equation. Figure 9.2h Actual and fitted values for the A(Ap;) reduced form ECM equation.
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lie in the range [0.25, 0.49]. Generally speaking, then, the equations of
Table 9.4 appear to capture well the time series properties of the main
macroeconomic aggregates in the UK over the period since the mid-1960s.

9.4.3 Comparing the core model with benchmark univariate models

In order to evaluate the in-sample fit of the individual equations in the
core long-run structural model a little more rigorously, we can compare the
ECM specifications in Table 9.4 with a set of ‘benchmark’ univariate time
series representations. To this end, and in view of the unit root properties
of the variables, we estimate ARMA(p, q) specifications applied to the first
differences of each of the eight core endogenous variables in turn. These
benchmark models are selected following the Box-Jenkins methodology
and allow us to address the question of how much, if at all, the explanatory
power and potential forecasting ability of the model has improved by the
adoption of the long-run structural modelling approach. !0

We examine a range of ARMA models for each core endogenous variable.
For example, in the case of the real output variable, y;, the ARMA(p, 9)
specification can be written as:

P q
Ayr=a+) Bidyei+ ) vie-ite, t=1,..,T. (9.15)

i=1 i=1

The first requirement in the construction of the benchmark model is the
selection of an a priori maximum lag order for the autoregressive and mov-
ing average processes, p and g, respectively. Here we choose 4, in light of
the quarterly nature of the data, the number of available observations (140
observations for the sample period 1965q1-1999g4) and considering that
the degree of serial correlation in the first difference of the macrovariables
is not very high. We then examine the full set of model combinations that
are spanned by allp=0,1,...,4and g =0, 1,...,4, providing 25 differ-
ent combinations. Our preferred benchmark model is then selected on the
basis of the Akaike Information Criterion (AIC).

The choice of AIC for model selection, compared with the Schwarz
Bayesian Criterion (SBC) for example, relates to various practical and theo-
retical issues involved in the use of AIC and SBC. For example, choosing
the SBC over AIC as a tool of model selection may be reasonable if we are

10 Of course, these comparisons do not measure the usefulness of the more structural inter-
pretation and understanding which the use of a long-run structural model, based on economic
theory, can entail.
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confident that the true model lies in the set of models under consideration.
Only in these circumstances (and assuming certain other regularity con-
ditions are met) is SBC a consistent model selection criterion. In contrast,
AIC is a more appropriate selection criterion if the aim is to select the best
approximating model (in the information-theoretic sense), as we believe to
be the case in our particular application. We certainly do not claim that the
‘true model’ lies in the set of models that we are considering (univariate or
vector error correcting), so this suggests the use of AIC in model selection.
Moreover, the theoretical grounds for the use of SBC in the case of models
involving unit roots and cointegration has not been fully developed; there
remains no clear practical guidance on how one would allocate degrees of
freedom across the equations in a cointegrating system in calculating SBC;
and there is evidence that SBC can seriously underestimate the lag order
in these circumstances. Moreover, the AIC is designed for minimising the
forecast error variance (see Liitkepohl (1991), Chapter 4). This is a feature
that might be thought to be important since one of the key uses of our
model will be in probability event forecasting (see Chapter 11).11

The results of the estimation and selection of the univariate ARMA mod-
els are summarised in Table 9.5, providing details of the AIC, SBC and 1_22
statistics calculated for different models estimated for each of the eight
endogenous variables.

The first two columns of Table 9.5 relate to the unrestricted ‘ARMA(4, 4)’
specifications for each variable and to the error correction specification
of the core model discussed above and reported in Table 9.4 (described as
‘unrestricted’ in the sense that the short-run dynamics are unconstrained).
The third column relates to our preferred benchmark ARMA model chosen
by AIC, and imposing restrictions on the short-run dynamics as discussed
above. Comparison across these three columns show that the error correc-
tion specifications of our core model outperform the preferred ARMA(p, q)
model for 7/8 of the variables, Ae; being the exception, in terms of the
AIC (and in all eight in terms of the estimated 1_22'5). For example, the
preferred benchmark ARMA model selected for the relative price variable,
A(pr — py), in the third column is the ARMA(4, 3) process. This model
explains as much as 31.6% of the total variation in A(p; — p;) but this
compares unfavourably with the error correction specification for this
variable in the core model, which explains 48.4% of the variation. The
preferred benchmark ARMA model for the change in domestic inflation

11 Note that the use of the same criterion for model selection and model evaluation can lead
to misleading results. For model evaluation, we prefer to use out-of-sample forecast evaluation
procedures as illustrated in Chapter 11.
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Table 9.5 Model selection criteria for the core model and alternative time series
specifications.

Variable Unrestricted Restricted
ARMA(4,4) ECM ARMA(p,q) ARMA(p,q) ECM with
order selected order selected short-run
by AIC by SBC restrictions
AP-p)
AIC 416.62 479.27 463.43 462.37 480.67
SBC 448.38 455.74 453.43 457.96 460.08
7 0.308 0.484 0.316 0.277 0.487
@9 - - 4,3) amn -
x2(m) - - - - 1.18(2)
Ae
AIC 276.37 276.45 280.03 280.03 282.54
SBC 263.13 253.21 277.09 277.09 270.00
7 0.028 0.070 0.026 0.026 0.098
(X)) - - o, ((A)] -
x2m) - - - - 4.35(8)
Ar*
AIC 741.36 750.80 744.56 744.46 754.29
SBC 728.12 727.27 741.52 741.52 738.11
7 0.218 0.345 0.213 0.213 0.356
@9 - - (1,0 1,0 -
x%(m) - - - - 3.00 (5)
Ar
AIC 632.37 63317 631.67 631.66 638.55
SBC 619.14 609.63 628.73 630.19 625.31
7 0.090 0.115 0.007 0.000 0.142
@9 - - Q1,0 (0,0 -
. x3m - - - - 3.20 (7)
Ay
AIC 442.80 456.97 442.95 442.85 460.72
SBC 429.54 433.44 437.07 441.38 444,54
7 —0.130 0.260 0.022 0.000 0.276
@9 - - 3,0 (0,0) -
x2(m) - - - - 2.47 (5)
Ay*
AIC 540.46 550.45 539.70 538.71 555.17
SBC 527.22 526.92 535.29 535.77 540.46
7 0.102 0.367 0.194 0.178 0.385
@9 - - amn 1,0 -
x2(m) - - - - 0.38 (6)
Ath-y)
AIC 379.53 388.49 374.68 374.68 393.73
SBC 366.29 364.96 373.22 373.22 379.02
7 0.186 0.257 0.000 0.000 0.284
@ - - 0,0 0,0 -
x2(m) - - - - 2.51 (8)
A?p
AIC 456.05 481.16 458.88 457.94 484.53
SBC 422.81 457.63 448.59 454.99 468.35
7 0.199 0.445 0.191 0.152 0.454
@9 - - 33 ((A)] -
x2(m) - - - - 3.23(5)

Note: The unrestricted ECM equations are those reported in Table 9.4. The restricted ARMA(p, ) models are obtained
using AIC and SBC searching over all possible orders p, g =0, 1, 2, 3, 4. The restricted ECM equations are obtained using a
general-to-specific search procedure that begins with the unrestricted single equation ECM and takes the form of dropping,
one at a time, the lagged change and cointegrating terms, starting with the variable with the largest p-value (assuming it
is greater than 0.25). The search process ends when all the terms that remain in the equation have p-values of 0.25 or less.
The XZ (m) statistic is the Lagrange multiplier joint test of m zero restrictions on coefficients of the deleted variables.
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is an ARMA(3, 3) process which explains 19.1% of the total variation in
AZp;. But this compares with 44.5% for the long-run structural error cor-
rection specification. The preferred ARMA benchmark model for domestic
output growth is an ARMA(3, 0) process, whose explanatory power is low
and accounts for 2.2% of the movement in Ay;. This compares with 26%
for the long-run structural error correction specification. This pattern is
repeated for all variables as far as the R’ is concerned.

The conclusion to be drawn from these results is that the error correc-
tion model of the core model does indeed perform well in comparison
to univariate time series models chosen according to our preferred AIC.
For completion, though, the table also provides details of the SBC statis-
tics, including in the fourth column of Table 9.5 details of the ARMA
specification that would be chosen according to this criterion. The SBC
statistic places greater weight on parsimony in model selection, and this is
reflected by the fact that relatively simple models are chosen in the fourth
column. Moreover, comparison of the SBC of the error correction speci-
fications of the core model and that of the ARMA models of the fourth
column suggests that the ARMA models outperform the core model (since
the SBC shows the ARMA(p, q) model to be preferred for 7/8 variables by
this criterion). However, this is not an even-handed comparison. The error
correction specifications of the core model were obtained without impos-
ing restrictions on the short-run dynamics and are bound to be disadvan-
taged relative to the ARMA models when parsimony is given more weight.
For a more balanced comparison, therefore, we calculated the SBC statis-
tics associated with a ‘restricted ECM’ in which a specification search was
conducted, starting from the ‘unrestricted’ ECMs of the core model but
dropping terms when the p-values of the estimates coefficient were greater
than 0.25. As the results in the final column of Table 9.5 shows, the resul-
tant ‘restricted’ ECM model outperforms the restricted univariate model
in 8/8 cases according to AIC and in 5/8 of the cases according to SBC. So
any criticism of our model for not adopting SBC as a selection mechanism
for a benchmark comparison effectively disappears when the criteria are
employed in a comparable manner.

9.5 An alternative model specification
The core model presented in the sections above fits the short-run

dynamics well and embodies the economic theory’s long-run relations in
a transparent manner and in a way that is consistent with the data. Before
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moving on to discuss the use of the model, however, it is worth checking its
robustness to alternative specifications. This also allows us to illustrate the
types of choices typically encountered when performing empirical work of
this sort. In what follows, we comment on one possible alternative model,
which is similar in many respects to our preferred core model, but which
is based on a different interpretation of the preliminary statistical analysis
and one that places emphasis on the different aspects of the theoretical
arguments.

Specifically, recall from the earlier discussion on the tests of unit roots in
the variables that there is some ambiguity in the data regarding the order
of integration of the price variables. The application of the ADF(s) tests
to Ap: and Apj yields mixed results. The hypothesis that there is a unit
root in the domestic and foreign inflation rates is rejected for low orders of
augmentation (namely, for p = 0 and 1), but not for higher orders. Overall
the available data is not informative as to whether domestic and foreign
prices are I(1) or I(2).

In our preferred model described in the previous section, we chose to
follow Haldrup’s (1998) advice on the analysis of I(2) variables by work-
ing with the inflation series Ap; and the relative price variable p; — py
rather than the price levels p; and p; separately. The statistical evidence
supports the view that p; — p} is I(1) and, on balance, the same is true for
Ap:. So we have some reassurance that our empirical work is statistically
sound. However, this is not the only choice available. Investigation shows
that the transformed series p; — p? and pf — p{ are also unambiguously
I(1) according to the tests available. An alternative model might therefore
be obtained employing exactly our modelling procedure, working instead
with the vector of variables z/LT = (py — p?, e, 17, 1t, ye, pi — P9, he — ye, vi)
and in which the long-run relationships suggested by economic theory are
captured by the vector

1 -1 0 O 0 -10 O

, o o -1 1 0 0 0 O
Barr = 0 0 0 O 1 0 0 -1
0 0 0 -B% -B% 0O 1 O

The vector B4, incorporates the PPP, IRP, OG, and MME relationships of
our preferred model (but not FIP) and, in terms of its treatment of the
ambiguity on the order of integration of the price variables, the model
is as justifiable as our preferred model. As shown in the empirical exer-
cise of Garratt et al. (2000), this alternative model also performs well in
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terms of the fit of the data, with the associated test of the long-run rela-
tions accepted and with satisfactory diagnostics for the associated error
correction equations.

In these circumstances, the judgement on which of the two models is
preferred has to be based on economic as well as statistical analysis. The use
of the variables p; —p{ and p; —p{ in the alternative model has at its base the
view that, once the effects of oil price movements are taken into account,
the price series are I(1). This is appealing to those who point out that
inflation rates are unlikely to grow without bounds and are therefore best
modelled as being stationary. However, the statistical evidence indicates
unambiguously that nominal interest rates are I(1). If prices are treated as
I(1), then the modeller can only maintain the long-run FIP relationship
if the interest rate is excluded from the cointegrating analysis (assuming
nominal rates are I(0) despite the statistical evidence). Or interest rates
can be retained in the analysis as I(1) variables, but then the long-run FIP
relationship cannot be accommodated within the model (as is the case
with B4, above). We preferred to work with the relative price variable, p; —
p; and the inflation rate Ap, since this allows us to accommodate the FIP
relationship in the model in a straightforward way. While we recognise the
difficulties in the view that price inflation and nominal interest rate series
are I(1), we also note the importance of capturing the statistical properties
of the sample of data available and of accommodating the FIP relationship
in the long-run model. We have, therefore, decided to continue with the
model described in the earlier section, but we understand that others may
make a different judgement. This highlights the importance of taking into
account model uncertainty when making decisions on the basis of models.
This is an issue that we explore in the work of Chapter 11 below.
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