7

Probability forecasting: Concepts
and analysis

Having considered the econometric issues involved in the estimation, test-
ing and interpretation of a long-run structural VAR model, in this chapter
we turn attention to the use of the model in probability forecasting. Much
of the material would be relevant to forecasts based on any type of model.
However, the material is particularly relevant here since VARs are fre-
quently employed in forecasting. Moreover, given the size and simplicity
of the structure of most VAR models, these models are particularly well-
suited to an investigation of the various types of uncertainty that influence
forecasts, and their use in decision-making.

7.1 Probability forecasting

In much of what follows, we are concerned with the notion of probability
forecasting, arguing that these convey the uncertainties surrounding fore-
casts from a macroeconomic model in a very straightforward way and
one that is most useful in decision-making. A probability forecast is a
statement of the likelihood of a specified event taking place conditional
on the available information and can be estimated on the basis of any
macroeconomic model. The event can be defined with respect to the val-
ues of a single variable or a set of variables, measured at a particular time,
or at a sequence of times, or over a particular interval of time in the
future.

For example, in a macroeconomic context, suppose that the focus of
interest is inflation, Apy, and output growth, Ay;. Then events that might

145



Probability Forecasting

be of interest include

mit = Pr(Apee1 < a1 | Jr),

7ot = Pr(Apes1 < a1, Aye1 > az | 3t), (7.1)
n3t = Pr(Apein < a1, Ayeen > a2 | Jt), h= 1, ’
Tar = Pr(Apes1 < a1, Aprio < a1, Apry3 < ay, Aprya < a1l 3),

where J; denotes a non-decreasing information set up to time t. The
first example illustrates a single event while the others relate to joint
events involving either more than one variable or a variable considered at
more than one time horizon. Examples one and two are concerned with
the one-step ahead forecast horizon, example three is concerned with
an h-step ahead forecast horizon, and the fourth example relates to a
multiple-step ahead forecast horizon. The probability of all events are
conditional on J;.

The calculation of probability forecasts remains relatively unusual, how-
ever. Macroeconomic forecasts are typically presented in the form of
point forecasts and their uncertainty is characterised (if at all) by fore-
cast confidence intervals. Focusing on point forecasts is justified when the
underlying decision problems faced by agents and the government are
linear in constraints and quadratic in the loss function; the so-called LQ
problem. But for most decision problems, reliance on point forecasts will
not be sufficient and probability forecasts will be needed (see, for example
Granger and Pesaran, 2000a,b).

The need for probability forecasts is also acknowledged by a variety of
researchers and institutions. In the statistics literature, for example, Dawid
(1984) has been advocating the use of probability forecasting in a sequen-
tial approach to the statistical analysis of data; the so-called ‘prequential
approach’. In the macroeconometric modelling literature, Fair (1980) was
one of the first to compute probability forecasts using a macroeconometric
model of the US economy. For example, in a macroeconomic context,
the motivation for the current monetary policy arrangements in the UK
is that it provides for transparency in policy-making and an economic
environment in which firms and individuals are better able to make invest-
ment and consumption decisions. The range of possible decisions that a
firm can make regarding an investment plan represents the firm’s action
space. The ‘states of nature’ in this case are defined by all of the possible
future out-turns for the macroeconomy. For example, referring to the illus-
trative events above, the investment decision might rely on inflation in
the next period, or the average rate of inflation over some longer period,
remaining below a target level; or interest might focus on the future path
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of inflation and output growth considered together. In making a deci-
sion, the firm should define a loss function which evaluates the profits or
losses associated with each point in the action space and given any ‘state
of nature’. Except for LQ decision problems, decision rules by individ-
ual households and firms will generally require probability forecasts with
respect to different threshold values reflecting their specific cost-benefit
ratios. For this purpose, we need to provide estimates of the whole prob-
ability distribution function of the events of interest, rather than point
forecasts or particular forecast intervals which are likely to be relevant
only to the decision problem of a few. Probability event forecasts can also
convey important information on the properties of a model. For exam-
ple, long-run neutrality of output growth to inflation (or vice versa) would
imply that

lim Pr(Apein < a1, Ayrin > az | 3t)
h—o0

= [hlggo Pr(Apein < a1 | Jt)] x [I}Lr{.lo Pr(Ayein > az | Jt)] . (7.2

7.1.1 Probability forecasts in a simple univariate AR(1) model

As an illustration we first consider probability forecasts in the case of a sim-
ple univariate AR(1) model. This serves to illustrate the use of the concept
in a simple context, but also demonstrates some of the (perhaps surprising)
features of probability forecasts and highlights the problems involved in
calculating probability forecasts analytically (as opposed to the use of the
simulation methods described below).

Consider the following AR(1) model for the log of real output y;:

Yt=M+(1—P)Yt+P}’t—1+ut, t=1,2,...,T,T+1,...,T+H,
(7.3)

where u;'s are independently and identically distributed random variables
with a zero mean and variance o'2. In the case where output can be assumed
to be trend stationary (i.e. |p| < 1), the trend growth rate of y; is given by y.
In the case where y; is difference stationary (i.e. p = 1), the average growth
rate will be given by u. The restricted specification of the trend coefficient
in (7.3) ensures that irrespective of whether y; is trend stationary or first
difference stationary its deterministic trend component is linear.
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Defining the lag polynomial
pn @) =1+ pL+p*L% +--- + p" 1L,
then, by successive substitution in (7.3), we can obtain
yren =01+ on W) [k + A = p)y (T+h) +uryn], h=1,2,...H,

which after some algebra yields

Yreh = o"yr +8 (B, T) + hy +vrin, (7.4)
where
1-— ph 1- ph B
s(h, T) = — - ,
h,T) (1_p>u (l—p py +T(A = p%)y
h-1
VI4+h = 2(‘,) PUT 4h—i-
j=

For a given initial value and the sample size, T, the sum of the terms olyr
and § (h, T) is of O(1) in h and will be dominated by hy as the forecast
horizon, b, is extended. Note that

lim 8k, T) = ==X 4+ Ty, iflpl <1,
h—o00 1—-p

and é (h, T) =h(u — y) if p = 1. Therefore, for sufficiently large h, the deter-
ministic component of yrp, will be given by hy + Ty + (u — py) /(1 — p)
if |p| < 1, and by yr + hu if p = 1. It is interesting to note that irrespective
of whether y; has a unit root or not, the mean of the h-step ahead forecast
will be of the same order of magnitude.

Also, for reasonably long forecast horizons, the composite error term
vr4p will be approximately distributed as a normal variate even if the
underlying errors, u;, were not normally distributed. In particular, for
sufficiently large h we have

vieh 2 N [0,62 (,)h: p2<i-1>>] . (7.5)
j=1

Unlike the point forecasts, the orders of the variance of the h-step ahead
forecasts differ depending on whether |p| < 1 or p = 1. Under the former
V (yr+4l3t) = V (vryn) = O(1), whilst under the latter V (vr4p) = O(h).
But as we shall see, the probability forecasts have similar limit properties
under |p| < 1 or p = 1, when y; contains deterministic trends.
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FORECASTING GROWTH PROBABILITIES:
AN ANALYTIC SOLUTION

To illustrate the nature of probability forecasts in the univariate AR(1)
model, we present below expressions for forecasts of output growth over
different horizons. Specifically, we consider the four-period average growth
rate over the period T + h — 4 to T + h, for any arbitrary horizon h, and
also the average growth rate in y; over the period T to T +h, for horizon h.
The four-period average growth rate is given by

— _ 1% -V _
YT+h 4yT+h 4=f1(p,yT,6(4,T))+y+£h—41+_h—ll h=4,5,.‘.H,
(7.6)

where fi (0, y1,8 (4, T)) = ph4{-1 - pYyr + 8 (4, T)} /4, while the aver-
age growth rate of y; over the period T to T + h is given by

I ZIT (o yr 8 (W T)) 4y + 0 vrn, h=1,2,.H, (7.7

where f2 (o, y1,8 (1, T)) = {- (1 - pMyr +8(h, T)}/h. The four-period aver-
age given by (7.6) provides a good example of a typical event of interest;
setting h = 4, for example, we would have the annual growth rate over
the coming year if quarterly data were used. Given the trended nature of
the y; process, the ‘long average’ in (7.7) provides useful insights on the
long-run properties of the probability forecasts. In what follows, we exam-
ine probability forecasts of (yr4x — yr) /h in both the stationary and unit
root cases, but we focus on the case where parameters are known, so that
the only source of uncertainty relates to the future shocks.

Case 1: y; is trend stationary (lp| < 1)
If y; is trend stationary, then (7.5) provides

2
VI+h — VT+h-4 _ d 2 1 — oA 2
TLeh Tt N[o,—42 (1+0%) (2-a-ph0 )], (7.8)

while

1 o2 [1-p2h
ZVT_HI’VN[O’-h—Z ( l—pz )] . (79)
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From (7.6) and using (7.8), we have

Pr (}’T+h _4YT+h—4 <a :’T)

1% -V _
=pr{_&h4ﬂ <[a=v ~fi (o,y16 (4, T))] m]

4la-y—fi(o,yr, 8 (4, D)
oy/(1+0?) (2 = (1 — pH)p2-9)

while from (7.7)

Pr (YT+h VT g C’T)

=o

h
= Pr{h"IVnh <[a-y-faloyr,8(h, T))]I 3T}'
—o {h\/I —plla-y-f (P,}'T/'S(h'T))]]
o/1—p2h '

where ®(-) denotes the cumulative distribution function of a standard
normal variate. For sufficiently large h we now have

(7.10)

Km [Pr (}’T+h ~Tehed JT)] —ol_4@-v
o

and the probability of the four-period average falling below a given
threshold converges to a constant.
For the long average, as h — oo we have

lim [p, (Ylth“_VT <al :;T) o (hV 1 '”2(“"’)” =0, (7.11)
o

h—o0 h
and hence
1 ifa>y
. YT+h — YT .
hll)r{.loPr(—h—-<a|5t)= 05 ifa=y
0 ifa<y

This shows that, at the infinite horizon, the probability of events relat-
ing to the long average will typically degenerate to values of zero or one,
depending on the value of the trend growth rate, y, relative to the selected
threshold value. This property follows directly from the fact that y; tends
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(mean-reverts) to its deterministic trend path as k — oo. In addition this
result also explains why the long-run forecasts of trend stationary models
are not affected by intercept adjustments.

Case 2: y; has a unit root (p = 1).
In this case, the analysis simplifies considerably and we have

Pr ()’T+h —VT+h-4 _ , I :,T) =& |:_‘/_—4(‘;——“l] , (7.12)

4
and
PI(M <a|'JT) =¢[_«/_I_1(a——_u):|. (7.13)
h o
For the long average case
_ 1 ifa>pu
lim Pr (’Eh—"f <a sT) =105 ifa=pu |, (7.14)
h—o00 h .
0 ifa<up

which is the same as the result obtained for the trend stationary case.

The above discussion highlights an extremely important property of the
probability forecasts, showing that the probability of the long-run average
growth rate, (yr, — yr)/h, will take a value of zero or one at the infinite
horizon whether or not there exists a unit root in the series. Compari-
son of (7.10) and (7.13) shows that the speeds with which the probability
forecasts degenerate are given by h/(1 — p2) and /b for the trend station-
ary and the unit root processes, respectively. Thus, the main distinction
between the stationary and unit root case is the speed with which the
zero/unity boundary is reached.

Consider now the effect of parameter uncertainty on the probability
forecasts, and for simplicity assume that p = 1,02 is given and that
the unknown mean growth rate, u, is estimated by the sample mean,
o=T"1 Eg;l Ayt. To allow for parameter uncertainty, we first write (7.7)
forp=1as

YT+h — YT

A =0+ @-m+h v, (7.15)

and let u to be unknown conditional on the past observations given by
the information set, 37 = {y1,y2,...,yr}. The uncertainty associated with
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u can be characterised by’
o2
u—aior~N(0,% ). (7.16)

This result can be viewed as the posterior distribution of u with respect to
diffuse priors for x. Using (7.16) in conjunction with (7.15), we have

_ ~ o p?
h 1(YT+h—YT)~N(M,—T—+-h— ’

and therefore,

Pr(m_n-ﬁw'gT):q, _a-r
h a\/T:f
TTH

The result in this case depends on the relative size of T and h. For a fixed
T and as h — oo,

im pr (P42 <a137) = o (LT2A),

h—>o00

which differ from the limit result given by (7.14) when u is known. Cleatly,
result (7.14) follows if T and h — oo, jointly. In this case the uncertainty
surrounding the value of u vanishes as T — oo and we return to the case
of known u. In the case where h is relatively small, the effect of parameter
uncertainty on the probability estimates is of order T-1. To establish this
result we first write 7y = Pr[h~! (y74n —y1) <@ |37 ]as

=061 +072],

where § = vh(a—1) /o and x = h/T. Expanding n:(x) around x = 0, we
have?

0
m(x) = 7t (0) — [§¢(0>] x+0(x?),

where 7; (0) corresponds to the probability estimate that ignores parameter
uncertainty. Hence, for finite h we have

me(x) = (0) + O (;1:) ,

1 It is also assumed that conditional on J7, u and vt are i.i.d. normal variables.
2 Such an expansion is sensible since k is assumed to be small relative to T.
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as required. This result holds more generally and in practice the effect of
parameter uncertainty on probability forecasts would be of second-order
importance when h is small and T relatively large.

7.2 Modelling forecast uncertainties

Returning to a more general setting, model-based forecasts are subject to
five different types of uncertainties:

o future uncertainty

o parameter uncertainty (for a given model)

o model uncertainty

o policy uncertainty

e measurement uncertainty (data inadequacies and measurement
errors).

Here, we focus on the first three and consider how to allow for them in
the computation of probability forecasts. Policy and measurement uncer-
tainties pose special problems of their own and will not be addressed here.
Future uncertainty refers to the effects of unobserved future shocks on
forecasts, while parameter and model uncertainties are concerned with
the robustness of forecasts to the choice of parameter values (for a given
model) and more generally the alternative models under consideration.’

7.2.1 Future and parameter uncertainties

The standard textbook approach to taking account of future and parameter
uncertainties is through the use of confidence intervals around point fore-
casts. Instead of a point forecast, an interval forecast is provided. Although
such forecast intervals may contain important information about proba-
bility forecasts of interest to a particular decision-maker, they do not allow
for a full recovery of the forecast probability distribution function which
is needed in decision-making contexts where the decision problem is not
of the LQ type. The relationships between forecast intervals and proba-
bility forecasts become even more tenuous when forecasts of joint events
or forecasts from multiple models are considered. For example, it would
be impossible to infer the probability of the joint event of a positive out-
put growth and an inflation rate falling within a pre-specified range from

3 For a discussion on the problem of model uncertainty, see Draper (1995) and Chatfield
(1995).
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given variable-specific forecast intervals. In fact, even if the primary object
of interest is a point forecast, as we shall see below, consideration of proba-
bility forecasts can help clarify how best to pool point mean and volatility
forecasts in the presence of model uncertainty.

For the purpose of exposition, initially we abstract from parameter
uncertainty and consider the following simple linear regression model:

yt=x’t_1ﬂ+ut, t=1,2,...,T,

where x;_1 is a k x 1 vector of predetermined regressors, g is a k x 1 vector
of fixed but unknown coefficients, and u; ~ N(0, o2). The optimal forecast
of yr,1 at time T (in the mean squared error sense) is given by x7.8. In the
absence of parameter uncertainty, the calculation of a probability forecast
for a specified event is closely related to the more familiar concept of fore-
cast confidence interval. For example, suppose that we are interested in
the probability that the value of yr.1 lies below a specified threshold, say
a, conditional on J1 = (1, XT, ¥T-1, XT—1, - - - -), the information available
at time T. For given values of § and o2, we have

/
Pr(yr41 <aldr) =@ (a_—?‘)_(-[_ﬁ) )
where as before ®(-) is the standard Normal cumulative distribution func-
tion while the (1 — )% forecast interval for yr,1 (conditional on Jr) is
given by X8 £ 0@~ (1 — (@/2)).

The two approaches, although related, are motivated by different
considerations. The point forecast provides the threshold value a =
xpB for which Pr(yry; <a|Jr) = 0.5, while the forecast inter-
val provides the threshold values ¢, = x78 — o®~!(1—(a/2)), and
cv = xpB + 0@~ 1 (1 - (a/2)) for which Pr(yr41 <cr | Jr) = «/2 and
Pr(yr4+1 < cu 1 31) = 1 — (@/2). Clearly, the threshold values, ¢, and cy,
associated with the (1 — )% forecast interval may or may not be of
interest.# Only by chance will the forecast interval calculations provide
information in a way which is directly useful in specific decision-making
contexts.

The relationship between probability forecasts and interval forecasts
becomes even more obscure when parameter uncertainty is also taken into
account. In the context of the above regression model, the point estimate

4 The association between probability forecasts and interval forecasts is even weaker when
one considers joint events. Many different such intervals will be needed for the purpose of
characterising the probability forecasts of joint events.

154

Modelling Forecast Uncertainties

of the forecast is given by P41 = x;.Br, where
ET = Q;lqur
is the Ordinary Least Squares (OLS) estimate of 8, with

T T
Qr-1=) X1X;_;, and qr=Y X1y
t=1 t=1

The relationship between the actual value of yr,; and its time T
predictor can be written as

YT+1 =X7B + Ur41
= X[-Br + X7 (B — Br) + urs1, (7.17)

so that the forecast error, ér1, is given by

ET41 = YT+1 — V141 = X7 (B — Br) + UT41.

This example shows that the point forecasts, x’TﬁT, are subject to two
types of uncertainties, namely that relating to g and that relating to the
distribution of ur,,. For any given sample of data, Jr, ET is known and
can be treated as fixed. On the other hand, although B is assumed fixed
at the estimation stage, it is unknown to the forecaster and, from this
perspective, it is best viewed as a random variable at the forecasting stage.
Hence, in order to compute probability forecasts which account for future
as well as parameter uncertainties, we need to specify the joint probability
distribution of g and ur,1, conditional on J7. As far as ur1 is concerned,
we continue to assume that

ur;1131 ~ N(0,02),

and to keep the exposition simple, for the time being we shall assume that
o2 is known and that ur,; is distributed independently of B. For g, noting
that

(Br - 8) 130 ~N (0,0%Q71,), (7.18)
we assume that
8137 ~N (Br,o*QrY), (7.19)

which is akin to a Bayesian approach with non-informative priors for .
Hence

ér41197 ~N[0,0% (14 %707 x7) |
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The (1 — a)% forecast interval in this case is given by
~ _ 1/2 _ o
ar =xpBr —o {1+x7Q7lxr} o7 (1~ 2 @20
and
'R " -1 1z 1 o
cor =X Br +o {1+x0Qr xr} 07 (1- 2. @2

When o2 is unknown, under the standard non-informative Bayesian priors
on (8,02), the appropriate forecast interval can be obtained by replacmg o?
by its unbiased estimator, ”T =(T-k"1 Et_l(yt X; 4 ﬂT) 0t — X4 ﬁT),
and &~ (1 — (a/2)) by the (1 — (@/2))% critical value of the standard
t-distribution with T — k degrees of freedom. Although such interval fore-
casts have been discussed in the econometrics literature, the particular
assumptions that underlie them are not often fully recognised.

Using this interpretation, the effect of parameter uncertainty on fore-
casts can also be obtained via stochastic simulations, by generating alter-
native forecasts of yr,1 for different values of g (and o2) drawn from the
conditional probability distribution of g given by (7.19). Alternatively,
one could estimate probability forecasts by focusing directly on the prob-
ability distribution of yr.1 for a given value of xr, simultaneously taking
into account both parameter and future uncertainties. For example, in the
simple case where o2 is known, this can be achieved by simulating yg’.'f_)l,
where

yI9 =xpB? +ud,,  j=12...), s=1,2,...5,

BY is the jth random draw from N (ET, O’ZQ,;_I_I) ,and u, ; is the sth ran-

dom draw from N (0, 0%) , which is independant of the drawing E(I).s This
is an example of the parametric ‘bootstrap predictive density’ discussed
in Harris (1989). In large samples, the stochastic simulation approach will
be equivalent to the analytical methods discussed above, as ] and § — oo.
However, as argued below, it is more generally applicable and will be used
in our empirical application.

An alternative approach to allowing for the effects of future and parame-
ter uncertainties on prediction of yr..1 would be to follow the literature on
‘predictive likelihoods’, where a predictive density for yr1 conditional on
31 is derived directly.® In the case of the regression example, the problem

5 In the realistic case where o2 is unknown it is replaced by 62.
6 A large number of different predictive likelihoods have been suggested in the statistics
literature. Bjornstad (1990) provides a review.
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has been studied by Levy and Perng (1986) who show that the optimal
prediction density for yr1, in the Kullback-Leibler information-theoretic
sense, is the Student t-distribution with T — k degrees of freedom, hav-
ing the location pry1 = xTﬁT and the dispersion & (1 +x7Qr- le)
This is the same as the Bayes predictive density of yr41 | Jr with a
non-informative prior on (8,62). In this way Levy and Perng provide a
non-Bayesian interpretation of Bayes predictive density in the context of
linear regression models.

7.2.2 Model uncertainty: Combining probability forecasts

Suppose we are interested in a decision problem that requires probability
forecasts of an event defined in terms of one or more elements of z;, over
the periodt = T+1,T+2,...,T+h, where z; = (z11, 22t, - - -, Znyt) isannx1
vector of the variables of interest and 4 is the forecast (decision) horizon.
Assume also that the data generating process (DGP) is unknown and the
forecasts are made considering m different models indexed by i (that could
be nested or non-nested). Each model, M;, i = 1,2,...,m, is characterised
by a probability density function of z; defined over the estimation period
t=1,2,...,T, as well as the forecast periodt =T +1,T+2,...,T+h, in
terms of a k; x 1 vector of unknown parameters, 8;, assumed to lie in the
compact parameter space, ©;. Model M; is then defined by

M;: {fi(z1,22, .., 27, 2741, ZT42, - - - 27413 0i) , i € O}, (7.22)

where f; (-) is the joint probability density function of past and future val-
ues of z;. Conditional on each model, M;, being true we shall assume that
the true value of ;, which we denote by 6, is fixed and remains constant
across the estimation and the prediction periods and lies in the interior
of ©;. We denote the maximum likelihood estimator of 6 by olT, and
assume that it satisfies the usual regularity conditions so that

VT @i — 010) IM; SN (0,Vy),

where & stands for ‘asymptotically distributed as’, Vg, is a positive definite
matrix, and T~!Vy, is the asymptotic covariance matrix of 9,7 conditional
on M;, with Vg, being a positive definite matrix. 7 Under these assumptions,
parameter uncertainty only arises when T is finite and i > 0pas T — oo.

7 In the case of cointegrating VAR models, a more general version of this result is needed.
This is because the cointegrating coefficients converge to their asymptotic distribution at a

faster rate than the other parameters in the model. However, the general results of this section
are not affected by this complication.
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The case where 6,y could differ across the estimation and forecast periods
poses new difficulties and can be resolved in a satisfactory manner if one is
prepared to formalise how ;3 changes over time. See, for example, Pesaran,
Timmermann and Pettenuzzo (2004).8

7.2.3 Bayesian model averaging

The object of interest is the probability density function of Zr,;;, =
(zT+1, ... ,zT+h) conditional on the available observations at the end of
period T, Zr = (z1, 22, ..., Zr), denoted by Pr (ZT+1,;, |ZT ) For this purpose,
models and their parameters serve as intermediate inputs in the process of
characterisation and estimation of Pr (Z7,1 4 |Zr). The Bayesian approach
provides an elegant and logically coherent solution to this problem, with
a full solution given by the so-called ‘Bayesian model averaging’ formula
(e.g. Draper (1995) and Hoeting et al. (1999)):

m
Pr(ZriinlZr) =Y Pr(M;|Z7) Pr(Zriq 0121, M;), (7.23)
i=1

where Pr (M; |Zr) is the posterior probability of model M;,
Pr (M) Pt (Z7 |M;)

Y21 Pr(M;) Pr (Z7 [M;)

Pr (M;) is the prior probability of model M;, Pr(Zr |M;) is the integrated

likelihood,

Pr(M;|Zr) = (7.24)

Pr(Zt IM;) = /; Pr (0; IM;) Pr (Z7 |M;, 8;) dé;. (7.25)

Pr (6;|M;) is the prior on 8; conditional on M;, Pr (Zr |M;,0;) is the like-
lihood function of model M;, and Pr(Zri1,|Z7 ,M;) is the posterior
predictive density of model M; defined by

Pr (Zrs1p |2, M;) = fo Pr (0 1Zr, M) Pr (Zry1 127, M;, 0;) d6;,  (7.26)

in which Pr (8; |Zt, M;) is the posterior probability of 8; given model M;:
Pr(0; |IM;) Pr (Z1 |M;, 6;)

Pr(8;|Zr,M;) = .
rONEn MO = e B (M) Pr (27 M)

(7.27)

8 Pesaran, Timmermann and Pettenuzzo (2004) propose a Bayesian procedure that allows for
the possibility of new breaks over the forecast horizon, taking account of the size and duration
of past breaks (if any) by means of a hierarchical hidden Markov chain model. Predictions are
formed by integrating over the hyper parameters from the meta distributions that characterise
the stochastic break point process.
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The Bayesian approach requires a priori specifications of Pr(M;) and
Pr(0;|M;) fori=1,2,...,m, and further assumes that one of the m models
being considered is the DGP so that Pr(Zry1,,1Z7) defined by (7.23) is
proper.

7.2.4 Pooling of forecasts

The Bayesian model averaging formula also provides a simple ‘optimal’
solution to the problem of pooling of the point and volatility forecasts.
In the context of the above set-up the point forecasts are given by
E(Zr41,01Zr,M;), i = 1,2,...,m, and can be combined in a variety of
ways as discussed extensively in the literature. For reviews of the forecast
combination literature see Clemen (1989), Granger (1989), Diebold and
Lopez (1996) and Newbold and Harvey (2002).
In general the combined or pooled point forecasts can be written as

m
Ew(Zr41,n1Z1) = Z WirE (Zr11,n 121, M;),

i=1

where wir, i = 1,2, ..., m are the weights attached to the individual point
forecasts. The main issues are: Should the weights be non-negative and
add up to unity? Should they be based on past relative performance of
the alternative models and hence be time varying? How should the rela-
tive performance of the various models be measured, namely should we
be using in-sample criteria of fit and parsimony or out-of-sample realised
performance?

In situations where the models under consideration are thought to be
exhaustive (and hence the true data generating process is thought to lie in
the set of models under consideration), the Bayesian approach can be used
to provide a coherent answer to these questions. Under Bayesian model
averaging (BMA) the weights, w;r, are set to the posterior probability of
model M; and hence are non-negative and satisfy the additivity condition,
>, wir = 1. Using the Bayesain weights the combined point forecast is
given by

m
E (ZT+1,h |ZT) = ZPI’ M;|ZT)E (ZT+1,h |ZT,M,') .

i=1

In practice the derivation of the model-specific probability weights pose
a number of conceptual and computations issues that will be briefly
addressed below.

159



Probability Forecasting

In cases where the models under consideration are not exhaustive
and the underlying data generation process could be time varying, non-
Bayesian weights might be more appropriate. Many alternatives have been
proposed in the literature. Amongst these the simple average rule where
equal weights are attached to the alternative forecasts tends to perform sur-
prisingly well, as noted originally by Clemen (1989).° Recently, Granger
and Jeon (2004) have proposed a modification of this procedure where the
average rule is applied to a subset of best performing models. This modifi-
cation, referred to as ‘thick’ modelling, is particularly relevant when there
are many forecasts under consideration.

Pooling of forecast variances can also be considered. Under BMA we have
(e.g. Draper, 1995)

m
Var (Zr41,4|Zr) = Y Pr(M;|Z7) Var (Zg41,4 |Z1, M;)
i=1
m
+ 3 Pr(M;|Zr) [E (ZT+1,h |ZT, M,')
i=1

—E (Zrs101Z7)),

Once again, more generally, we could have

m
Vary (Zry1,n121) = 21 wirVar (Zri1,n 1 Z1, M;)
1=

m
+ 21 Wit [E (Zr41,0 1 Z1, M;) — E(Z741,0 |27 )]Z )

1=
where the weights w;r could be obtained using Bayesian or non-Bayesian
procedures. The first term in the above expression accounts for within
model variability and the second term for between model variability.
Clearly, a procedure that only combines the forecast variances will not
be correct unless all models have the same point forecasts. Pooling of pre-
dictive densities clearly does not imply using averages of the moments of
the underlying distributions except for the first moments.

There is no doubt that the Bayesian model averaging provides an attrac-
tive solution to the problem of accounting for model uncertainty. But
its strict application can be problematic particularly in the case of high-
dimensional models such as the vector error correction model of the UK
economy considered in our empirical work. The major difficulties lie in

9 Recent Monte Carlo evidence that attempts to explain this empirical finding is provided
by Hendry and Clements (2004) and Smith and Wallis (2005).
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the choice of the space of models to be considered, the model priors
Pr (M;), and the specification of meaningful priors for the unknown para-
meters, Pr (9; |M;). The computational issues, while still considerable, are
partly overcome by Monte Carlo integration techniques. For an excellent
overview of the issues involved in the application of BMA approach to
forecasting, see Hoeting et al. (1999). See also Fernandez et al. (2001a,b)
and Pesaran and Zaffaroni (2005) for specific applications.

Putting the problem of model specification to one side, the two impor-
tant components of BMA formula are the posterior probability of the
models, Pr (M;|Zr), and the posterior density functions of the parame-
ters, Pr (0; |Zt, M;), fori = 1,...,m. In what follows we therefore consider
different approximations of Pr (M; |Zr) and Pr (0; |ZT, M;), assuming that
T is sufficiently large that the sample observations dominate the choice
of the priors; in essence adopting a classical stance within an otherwise
Bayesian framework. See also Garratt et al. (2003b).

7.3 Computation of probability forecasts:
Some practical issues

Suppose the joint event of interest is defined by ¢ (Z7,1,) < a, where
@ () and a are the L x 1 vectors ¢ (-) = (@1 (), 02(),...,0L (")), a =
(a1,az,...,ar), ¢j(Zr41,p) is a scalar function of the variables over the fore-
cast horizon T +1, ..., T+h, and g; is the ‘threshold’ value associated with
; (-). To simplify the exposition, we denote this joint event by 2,. The
(conditional) probability forecast associated with this event assuming that
model M; holds is given by

ni(a, b0 (-),0;) =Pt @ (Z111,n) <alZr,M;, 0;]. (7.28)

In practice, we might be interested in computing probability forecasts for
a number of alternative threshold values over the range @; € [@min, @max]-

With future uncertainty only

If the model is known to be M; defined by (7.22) but the value of §; is not
known, a point estimate of n; (a, me(), 0,-) can be obtained by

mi(a, ke () ,0ir) = / a fi (Zr41,n |ZTpMir3ﬁ) dZti1,h- (7.29)

This probability distribution function only takes account of future uncer-
tainties that arise from the model’s stochastic structure, as it is computed
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for a given density function, M;, and a given value of ¢;, namely 0;r.
It is also known as the ‘profile predictive likelihood'. See, for example,
Bjernstad (1990).

With future and parameter uncertainty

To allow for parameter uncertainty, we assume that conditional on Z7, the
probability distribution function of 8; is given by g (0;|ZT, M;). Then,

Fi(a k() = ] xi(a,10(),0) 8 O1Zr, M) d6;,  (7.30)
9166,‘
or equivalently,

Fi(ame()= ‘/’0‘69’/% fi (Zr41,n 121, M;, 0;) g (0;1Z1, M;) dZT 11,1 d0;.
’ (7.31)

Computation of (7.31) requires the knowledge of g£(0;|Zr,M;). In the
absence of model priors Pr (M;) or priors for the unknown parameters,
Pr (9; |M;), we might assume

0:12r,M; &N (87, T"'Vs,) . (7.32)

In this case, the point estimate of the probability forecast, 7; (a, h; ¢ () ,ET),
and the alternative estimate, #; (a, 1; ¢ (), that allows for parameter uncer-
tainty are asymptotically equivalent as T — oo. The latter is the ‘bootstrap
predictive density’ described in Harris (1989), who demonstrates that it
performs well in a number of important cases. Also, both of these esti-
mates under M; tend to x; (a, ;¢ (-), 8;0), which is the profile predictive
likelihood evaluated at the true value 8;. In practice, computations of
mi(a, () ,3,-7) and #; (a, h; ¢ (-)) are typically carried out by stochastic
simulations (see Section 7.3.2 below), and the two estimates will differ by
terms that are O(h/T) and will be very close when h is small and T large.'0

With future and model uncertainty

The probability estimates that allow for model uncertainty can now
be obtained using the Bayesian averaging procedure. Abstracting from
parameter uncertainty we have

7w (a, k9 (), 0r) = X wirmi (a, hi@ (), 6i), (7.33)

i=1

10 See Bjgrnstad (1990, 1998) for reviews of the literature on predictive likelihood analysis.
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-~ /
where 87 = (7”, .. ,WmT) , and the weights, w;r > 0 can be derived by
approximating the posterior probability of model M; by!!

InPr(M;|Z7) = LL;yr — (%) In(T) + 0 (1), (7.34)

where LL;r is the maximised value of the log-likelihood function for model
M;. This is the familiar Schwarz (1978) Bayesian information criterion for
model selection. The use of this approximation leads to the following
choice for w;r:

exp (Air)

T 7.35
Ej:l exp (AiT) ( )

Wit =

where Air = SBCir — max; (SBCyr) and SBCir = LLir - (%) In(T). Alter-
natively, following Burnham and Anderson (1998), one could use Akaike
weights defined by A;r = AIC;r — max (AICir), AIC;r = LL;r — k;. While
the Schwarz weights are asymptotically optimal if the DGP lies in the set
of models under consideration, the Akaike weights are likely to perform
better when the true model does not lie in the set of models under con-
sideration, that are viewed as approximations to a complex and (possibly)
unknown DGP.

With future, parameter and model uncertainty

When parameter uncertainty is also taken into account, we have
~ m ~
7(ahe() =Y wirfi(ahe(), (7.36)
i=1

where 7; (a, h o (~)) is the bootstrap predictive density defined by (7.31)
that makes use of the normal approximation given by (7.32). Again,
in practice, computations of ; (a, h; ¢ (-))and #; (a, h; @ (-)) are typically
carried out by stochastic simulations (see Section 7.3.2 below).

7.3.1 Computation of probability forecasts using analytic methods

In this subsection, we outline the computational difficulties that typically
will be encountered in the calculation of probability forecasts. We illustrate
this using the simpler case in which it is assumed that the parameters of

11 See also Draper (1995) for approximate posterior probability forecasts, conditional on the
model M; being true.
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the model are known, so that only stochastic uncertainty is considered,
and the probability forecast is evaluated according to (7.29).

In this case there is generally no conceptual difficulty in evaluatmg the
probability of an event taking place using (7.29) for known 8. However, the
computation can become complicated because of the form of the functions
o or due to the difficulties arising from the selection of appropriate limits
of integration for the expression, or because of the complexity of the event
to be forecast even if the functions ¢ are reasonably simple.

Consider, for example, the linear case in which the joint event of interest
@ (2741, - .., ZT+n) can be expressed by

@ (z141, - ZT4n) = @ ET41, - 2T 4h) + VT (7.37)

where ¢ (zT+1, . zT+h) represents a (consistent) stimate of

(zT+1, . zT+h) based on estimated model parameter values OT, and the
stochastic uncertainty surrounding the estimate is captured by an L x 1
vector of the corresponding forecast errors, vr,p, which is assumed to
be normally distributed with zero means and an L x L positive covari-
ance matrix, X,. In this case, the probability forecast defined by (7.29) is
given by

T (a' h; (0(-)137’)

=Pr (@ (zr41, .-, Zr4n) <@) =Pr(vryn <a— @ (Ersy, .. < 214n))
aj aj 1 1 1 _
= f e / [(277) Lz, "2 exp (—5”'T+hzu 1"T+h)] dvryp1 - AvrinL
—0 —o0

where
a;‘ =a,-—<p,-(2T+1,...,2T+h), j= 1,2,...,L.

Even in this relatively simple case, the evaluation of the probability
involves L multiple integrals and, unless L is small (1 or 2), its computation
would be quite demanding.

7.3.2 Computation of probability forecasts based on VAR models by
stochastic simulation

In this subsection, we describe the steps involved in the calcula-
tion of probability forecasts based on a vector error correction model
described in Section 6.3, using stochastic simulation techniques. Con-
sider the underlying vector error correction model, (6.86), which can be
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rewritten as

zt=£:1<l>,‘zt_,-+ao+a1t+H;t,, t=1,2,...,T, (7.38)
1=

where @) =1, —af' +T1, ®;=T;-T;1,i=2,...,p—1,®p=-Tp 1, and
¢, is assumed to be a serially uncorrelated i.i.d. vector of shocks with zero
means and a positive definite covariance matrix, X, given by (6.88). In
what follows, we consider the calculation of probability forecasts first for
given values of the parameters, and then taking into account parameter
uncertainty.

FORECASTS IN THE ABSENCE OF
PARAMETER UNCERTAINTY

Suppose that the ML estimators of ®;, i = 1,..., p, a0, a1, H and X, are
given and denoted by <I>,, i=1,...,p, a9, a1, 31 and ) ¢z, Tespectively. Then,
the point estimates of the h-step ahead forecasts of zr,;, conditional on
Jr, denoted by Zr, 5, can be obtained recursively as

P .. R .
2ron=Y ®2rini+a+a,(t+h), h=12,..., (7.39)
i=1
where the initial values, zr, zr_1, ..., ZT—p4+1, are given. To obtain proba-
bility forecasts by stochastic simulation, we simulate the values of zr.,, by

) ) ®
Zrip = Zl &z, ;+ao+ar(t+h)+ H§T+hf

h=1,2,...;r=1,2,...,R, (7.40)

where superscript ‘(r)’ refers to the rth rephcatlon of the simulation algo-
rithm, and zgf) =7r, zf_r) 1=2T-1,- zT_p +1 = ZT—p+1 for all 7. The ;gfirh's
can be drawn either by parametric or non-parametric methods as described
in Section 7.3.3 below. The probability that ¢, (zgll, zgf:_h) < ay, is
computed as

R (ae, B39, (), 8) = 113 _Zj: (ag — @ (Zglv Zsrrlh))

where 0 is a vector containing estimates of all the parameters, and I (A)
is an indicator function which takes the value of unity if A > 0, and zero
otherwise. To simplify the notation we denote ng (ag, h; @, () ,70) by 7r (a¢).
The predictive probability distribution function is now given by =g (a¢) as
the threshold values, ag, are varied over the relevant regions.
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FORECASTS IN THE PRESENCE OF
PARAMETER UNCERTAINTY

To allow for parameter uncertainty, we use the bootstrap procedure and
first simulate S (in-sample) values of z;, t = 1,2, ..., T, denoted by zt , 8=

., S, where
z¥ = z«pz‘” +ag+art+HY, t=1,2,...,T, (7.41)
realisations are used for the initial values, z_y,...,z_p, and l;‘s”s can be

drawn either by parametric or non-parametric methods (see Section 7.3.3
below). Having obtained the S set of simulated in-sample values,
(z(ls), zy,. .. (5)) the VAR(p) model (7.38) is estlmated S times to obtain
the ML estlmates, (I>f ), ég), 4®, H® and )3“, fori = 1,2,...,p, and
S = 1,2,...,5.

For each of these bootstrap replications, R replications of the h-step
ahead point forecasts are computed as

25, = ,Z 8205 +ad +aP ¢+ + AVLYS), (7.42)

forh=12,..H, r=12,...,Rand s = 1,2,...,S, and the predictive
distribution function is then computed as

TR,s (ae) = —ll—z é g-’ [ — ¥ (Zg-i)l' 'Z(Trj)h)]

Bootstrapping cointegrating models can be done either for a fixed num-
ber of cointegrating relations (obtained from estimates based on the actual
time series), or the cointegrating relations could be re-estimated for each
bootstrap replication. In our empirical applications we follow the former,
but allow for the uncertainty surrounding the number of cointegrating
vectors by means of model averaging techniques; namely different choices
of the number of cointegrating relations are regarded as different models.

7.3.3 Generating simulated errors

We now provide more details on the mechanism by which shocks are
generated in stochastic simulation methods described above. There are
two basic ways that the in-sample and future errors, I;(S) and ;gfj)h respec-
tively, can be simulated so that the contemporaneous correlations that
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exist across the errors in the different equations of the VAR model are
taken into account and maintained. The first is a parametric method where
the errors are drawn from an assumed probability distribution function.
Alternatively, one could employ a non-parametric procedure. The latter
is slightly more complicated and is based on re-sampling techniques in
which the simulated errors are obtained by a random draw from the
in-sample estimated residuals (e.g. Hall, 1992).

Parametric approach
Under this approach the errors are drawn for example, from a multi-

variate distribution with zero means and the covariance matrlx, To
obtain the simulated errors for m variables over h periods we first generate

mh draws from an assumed i.i.d. distribution which we denote by egf'ﬂ,

i =1,2,...,h These are then used to obtain {;;f j’,z =1,2,. h] com-

puted as ;(’ ) f’“%%f’fh forr=1,2,...,Rands=1,2,...,S, where P®
is the lower triangular Choleski factor of )A:g) such that ):“.fg = POPGY,

and ig is the estimate of X,, in the sth replication of the bootstrap
procedure set out above. In the absence of parameter uncertainty, we
obtain ;(T':_h = Pegflh with P being the lower triangular Choleski factor of
2. In our applications, reported in Chapter 11, for each r and s, we gen-
erate € as i.i.d.N (0,1), although other parametric distributions such

T+i
as the multivariate Student t-distribution can also be used.

Non-parametric approaches

The most obvious non-parametric approach to generating the simulated

erTors, ;Erri)h, which we denote ‘Method 1, is simply to take # random draws

with replacements from the in-sample residual vectors {2(15), - ;gf)} The

simulated errors thus obtained clearly have the same distribution and
covariance structure as that observed in the original sample. However, this
procedure is subject to the criticism that it could introduce serial depen-
dence at longer forecast horizons since the pseudo-random draws are made
from the same set of relatively small T vector of residuals.

An alternative non-parametric method for generating simulated errors,
‘Method 2’, makes use of the Choleski decomposition of the estimated
covariance employed in the parametric approach. For a given choice
of P® a set of mT transformed error terms {e(s’ ,egf)} are computed

such that e(s) pP®- 12(3) t =1,2,...,T. The mT individual error terms
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are uncorrelated with each other, but retain the distributional infor-
mation contained in the original observed errors. A set of mh simulated
errors are then obtained by drawing with replacement from these trans-

formed residuals, denoted by [e(T'Jf)l,,ef;j)h} These are then used to
obtain [l;gfj)l,,;gfh}, using the transformations ;gf'j)h = P(s)e(T"j_;, for

r=12...,Rand s = 1,2,...,S. Given that the P® matrix is used to
generate the simulated errors, it is clear that I;f_,f’j)h again has the same
covariance structure as the original estimated errors. And being based
on errors drawn at random from the transformed residuals, these sim-
ulated errors will also display the same distributional features. Further,
given that the re-sampling occurs from the mT transformed error terms,
Method 2 also has the advantage over Method 1 that the serial depen-
dence introduced through sampling with replacement is likely to be less

problematic.

Choice of approach

The two non-parametric approaches described above have the advantage
over the parametric approach that they make no distributional assump-
tions on the error terms, and are better able to capture the uncertainties
arising from (possibly rare) extreme observations. However, they suffer
from the fact that they require random sampling with replacement. Replace-
ment is essential as otherwise the draws at longer forecast horizons are
effectively ‘truncated’ and unrepresentative. On the other hand, for a
given sample size, it is clear that re-sampling from the observed errors with
replacement inevitably introduces serial dependence in the simulated fore-
cast errors at longer horizons as the same residuals are drawn repeatedly.
When generating simulated errors over forecast horizons, therefore, this
provides an argument for the use of non-parametric methods over shorter
forecast horizons, but suggests that a greater reliance might be placed
on the parametric approach for the generation of probability forecasts at
longer time horizons.

7.4 Estimation and forecasting with conditional models
The density function f;(-) given in (7.22) can be decomposed in two

ways. First, a sequential conditioning decomposition can be employed to
write f; () as the product of the conditional distributions on successive
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observations on the z;,
t
fi Zt;20,0) = T[] fi (25 | Zs-1;20,05) ,
s=1

where Zs = (29,21,.-.,2s) for given initial values zy. Second, since we
frequently wish to distinguish between variables which are endogenous,
denoted by y;, and those which are exogenous, denoted by x;, we can
write z; = (y},X;)’ and use the factorisation:

fi(ze | Ze-1;20,0) = fiy (Ve | Xt, Zt—1;20,03y) X fix (Xt | Zt—1;20,0ix) , (7.43)

where fy, (e | Xt, Zt-1 ; 20, 0;y) is the conditional distribution of y; given
x; under model M; and the information available at time t — 1, Z;_1, and
fix (xt | Z¢_1; 29, o,-x) is the marginal density of x; conditional on Z;_;. Note
that the unknown parameters 6; are decomposed into the parameters of
interest, 6, and the parameters of the marginal density of the exogenous
variables, 0;,. In the case where x; is strictly exogenous, knowledge of
the marginal distribution of x; does not help with the estimation of 0,
and estimation of these parameters can therefore be based entirely on the
conditional distribution, fiy, (¥t | Xt, Zt—1; Zo, 8y)-

Despite this, parameter uncertainty relating to 8;, can continue to be rel-
evant for probability forecasts of the endogenous variables, yt, and forecast
uncertainty surrounding the endogenous variables is affected by the way
the uncertainty associated with the future path of the exogenous vari-
ables is resolved. In practice, the future values of x; are often treated as
known and fixed at pre-specified values. The resultant forecasts for y; are
then referred to as scenario (or conditional) forecasts, with each scenario
representing a different set of assumed future values of the exogenous vari-
ables. This approach underestimates the degree of forecast uncertainties.
A more plausible approach would be to treat X; as strongly or weakly exoge-
nous (as appropriate) at the estimation stage, but to allow for the forecast
uncertainties of the endogenous and the exogenous variables jointly. The
exogeneity assumption will simplify the estimation process but does not
eliminate the need for a joint treatment of future and model uncertainties
associated with the exogenous variables and the endogenous variables.
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