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Econometric methods: A review

In this chapter, we provide an overview of the econometric methods
used in long-run structural macroeconometric modelling. The aim is to
place in context the methods employed, to describe the steps taken in
the estimation and development of the model, to help explain the various
econometric tools used in interpreting the empirical results, and to explore
some of the ways in which a long-run structural macroeconometric model
can be used.

The long-run structural VARX modelling approach adopted in our work
is described in Pesaran and Shin (2002) and Pesaran, Shin and Smith
(2000), jointly denoted PSS, and is based on a modified and generalised
version of Johansen’s (1988, 1991, 1995) maximum likelihood approach
to the problem of estimation and hypothesis testing in the context of
augmented vector autoregressive error correction models. Of course, the
analysis of economic time series containing unit roots has a long his-
tory, traceable to Yule’s seminal (1926) paper on the potential pitfalls
of interpreting regressions based on such data.! Granger and Newbold
(1974) revived the issue when they showed that spurious regressions could
result from the regression of one independent random walk on another.?
The theoretical rationale behind the Granger-Newbold spurious regression
result was set out in Phillips (1986) who showed that the R? of the regres-
sions involving I(1) variables tend to one and the t-ratios grow without
bound as the sample size increases, even if the underlying I(1) variables

1 Excellent surveys of the literature on cointegration are provided in Banerjee et al. (1993),
Watson (1994), Hamilton (1994), and in the papers in the Special Issue of the Journal of Economic
Surveys edited by Oxley and McAleer (1998). The material of this chapter draws on Pesaran
and Smith (1998) in that Special Issue.

2 The problem of spurious regression in the case of stationary but highly serially corre-
lated regressors was demonstrated earlier by Champernowne (1960), also using Monte Carlo
techniques.
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are statistically independent. The possibility of spurious regression and the
growing availability of tests for unit roots, e.g. Dickey and Fuller (1979),
led to a proliferation of testing for the order of integration of economic
time series in the 1980s. The classic study is Nelson and Plosser (1982)
who raised the possibility that the null hypothesis of a unit root could
not be rejected for most US economic time series. At the same time,
Granger (1981, 1986) and Engle and Granger (1987) were developing
the analysis of cointegrated systems, explaining the links with the (rela-
tively well-established) error correction models used for example in Sargan
(1964) and subsequently popularised through the work of Davidson et al.
(1978). Johansen’s maximum likelihood approach popularised the use of
cointegration analysis, allowing for symmetric treatment of all the vari-
ables in the cointegrated system and for an analysis of the number of
cointegrating relations. Our own approach, elaborated in PSS, builds on
this to allow economic theory to motivate the exact and over-identifying
restrictions studied in the cointegration analysis in place of the type of
statistical identification used by Johansen. PSS also develop the econo-
metric analysis of vector error correction models with weakly exogenous
I(1) variables.

In what follows, we provide a brief statement of the econometric issues
involved in the modelling approach advanced in PSS. We start by describ-
ing a general structural VARX model, allowing for the possibility of
drawing a distinction between endogenous and exogenous variables. We
use this general model to place in context the identification issues raised
in Chapter 3 and to introduce the ideas behind impulse response analysis.
We then turn our attention to cointegrating VARX models, contrasting the
PSS approach to the Johansen approach, commenting on the small sample
properties of some of the test statistics and broadening the discussion of
the impulse response analysis to a more general analysis of system dynam-
ics in the cointegrated VARX context. We end the chapter with comments
on the small sample properties of some of the test statistics discussed in
the chapter and on the distributional properties of the impulse response
function. These statistical properties can be readily investigated through
simulation methods and we explain how simulation methods can be used
in this regard. This sets the scene for the use of structural VARX models in
forecasting discussed in Chapter 7. Throughout the chapter, our descrip-
tion of the econometric techniques is informed by how they are used in
practice and we relate the discussion to the choices that an applied econo-
metrician has to make in the practical application of cointegrating VARX
techniques.
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6.1 Augmented VAR or VARX models

6.1.1 The structural VARX model

The general structural VARX model for an my, x 1 vector of endogenous
variables y;, is given by:3

Ay, = A1Yt-1+---+Apyt—p +Boxt + B1Xr 1+ + BpXt_p + Dd; + &4,
(6.1)

fort=1,2,...,T, where d; is a g x 1 vector of deterministic variables (e.g.
intercept, trend and seasonal variables), x; is an my x 1 vector of exogenous
variables, e = (e1t, £2¢, . . ., €m,t)’ is an my, x 1 vector of serially uncorrelated
errors distributed independently of X; with a zero mean and a constant pos-
itive definite variance-covariance matrix, 2 = (w;), where wjj is the (i, j)th
element of . For given values of d; and x;, the above dynamic system is
stable if all the roots of the determinantal equation

A-An—Ap?—... —AM|=0, (6.2)

lie strictly outside the unit circle. This stability condition ensures the
existence of long-run relationships between y; and x;, which will be
cointegrating when one or more elements of x; are integrated, namely
contain unit roots. The assumption, however, rules out the possibility that
the endogenous variables, y;, will themselves be cointegrating when the
model contains no exogenous variables.

The above VARX model is structural in the sense that it explicitly allows
for instantaneous interactions between the endogenous variables through
the contemporaneous coefficient matrix, A. It can also be written as

AL)y; = BWL)x; + Dd; + &, (6.3)
where L is the lag operator such that Ly;=y,_;, and
AL)=A—-AL—---—Apl?; B(@L)=By+BiL+---+Byl?.

Of particular interest are the system long-run effects of the exogenous
variables which are given by:

i=1 i=0

-1
-1 p p
AD™'BA) = (A— E Ai) > B;.

3 In general, different orders can be assumed for the distributed lag functions associated with
the endogenous and exogenous variables. Alternatively, p can be viewed as the maximum lag
order of the distributed lag functions on y; and x;.
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Notice that, since all the roots of (6.2) fall outside the unit circle by
assumption, the inverse of A(1), which we denote by A(D)7L, exists.

INITIAL MODELLING CHOICES

The decision to work with a model of the type described above presents the
applied econometrician with a number of important choices, namely:

1. The number and list of the endogenous variables to be included,

(my, ¥t).

2. Th}e,z number and list of the exogenous variables (if any) to be included,
(My, Xt).

3. The nature of the deterministic variables (intercepts, trends, season-
als) and whether the intercepts and/or the trend coefficients need to
be restricted.

4. The lag orders of the VARX (the lag order of the y; and X; components
of the VARX need not be the same).

5. The order of integration of the variables.

These choices change the maximised value of the log-likelihood (MLL)
so that, in principle, they could be made on the basis of either hypothe-
sis testing exercises or by means of model selection criteria such as the
Akaike Information Criterion (AIC), or the Schwarz Bayesian Criterion
(SBC). However, different significance levels, different forms of the tests
and different model selection criteria invariably can lead to different model
specifications. In many cases, little is known about the small sample prop-
erties of these procedures and what is known is often not reassuring. Little
is also known about the properties of the tests or model selection criteria
when the range of models considered does not include the data generation
process. These choices are often closely related and the outcomes are sen-
sitive to initial choices. The combination of these choices gives us a very
large space of possible models and there is no reason to expect a series of
sequential choices (e.g. fix m, and my, then choose p conditional on m, and
my, elc.) to adequately explore the possible model space. Joint tests may
lead to different inferences from a sequence of individual tests. Sequential
procedures are likely to suffer from pre-test bias, while general to specific
searches face the difficulty that the unrestricted models are profligate with
parameters.

While data-dependent decision procedures are extremely important,
they have to be supplemented with other considerations given the com-
plexity of most applied modelling problems. In particular, choices will be
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informed by the purpose of the exercise and by prior information from
economic theory; theory being interpreted widely. In principle, this com-
bination could be done formally by embodying the purpose of the exercise
in an explicit loss function and the theory information in a prior probabil-
ity distribution for the parameters, and then applying Bayesian techniques.
In practice, the difficulty of formalising the loss function and prior prob-
ability distributions makes a formal use of these other considerations
attractive only for relatively simple problems. Often, the applied econo-
metrician will make use of a range of informal procedures for integrating
economic and statistical information. For example, statistically insignif-
icant variables may be retained when they are economically important,
and statistically significant variables may be deleted when they are likely
to be economically unimportant, since misleading statistical significance
can arise for many reasons. For example, chance correlations with omitted
variables, like cold winters or policy announcements, can make variables
significant. It is a matter of judgement whether these variables or lags are
regarded as economically important.

Given the size of the potential model space, defined by the choices dis-
cussed above, it is important to investigate a range of specifications and
allow for model uncertainty in forecasting and policy analysis. At present
full exploration of the model space is likely to be highly data-intensive and
computationally burdensome, if not infeasible. Even much simpler prob-
lems, like determining the lag order in a single-equation autoregressive
distributed lag model, as discussed in Pesaran and Shin (1999), require
many hundred regressions. As full exploration is not feasible, organised
sensitivity analysis plays an important role. This sensitivity analysis should
investigate both the statistical significance and the economic importance
of the restrictions.

6.1.2 The reduced form VARX model

The reduced form of the structural model (6.1), which expresses the
endogenous variables in terms of the predetermined and exogenous
variables, is given by

Ve = ®1Yr-1+ -+ ®pYr—p + YoXe + W1X¢_1 + -+ ¥pXep + Yds + 1y,
(6.4)

where ®; = A~!A;, ¥; = A~1B;, ¥ = A"ID, uy = A le; is iid. (0,%)
with T = A-1@A-1 = (03)- The classical identification problem is how to
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recover the structural form parameters
(A,A;;1,B;,i=0,1,...,p; Dand @),
from the reduced form parameters,
(®;,¥;,i=0,1,...,p, 7, and X).

This is the identification issue raised in the discussion of Section 3.1, and
Section 3.1.2 in particular. The resolution of this identification problem
formed the basis of the Cowles Commission approach to structural mod-
elling in econometrics. Exact identification of the structural parameters
requires m% a priori restrictions, of which m,, restrictions would be provided
by normalisation conditions. The restrictions typically involve setting cer-
tain elements of the structural coefficient matricesto zero. These were
the a priori restrictions criticised by Sims (1980), particularly when such
identifying restrictions were obtained by restricting the short-run dynam-
ics. Most of the traditional macromodels were heavily over-identified and
while, in principle, these over-identifying restrictions could be tested, in
practice the number of exogenous and predetermined variables was so
large that it was impossible to estimate the reduced form. There are a
variety of other ways of imposing identifying restrictions. For instance,
if after a suitable ordering, it is assumed that A is triangular and @ diag-
onal (though there is no general theoretical reason to expect it to be so),
the structural system becomes a recursive causal chain, each equation of
which can be consistently estimated by OLS. The assumptions that A is
triangular and € is diagonal each provide my(m, — 1)/2 + my(my, — 1)/2
restrictions respectively, which together with the m, normalisation restric-
tions just identify the system. As we shall see below these assumptions are
also equivalent to the use of the Choleski decomposition of X originally
advocated by Sims for identification of impulse responses.

6.1.3 Impulse response analysis

One of the main features of the traditional macromodels was their dynamic
multipliers, which measured the effect of a shock to an exogenous variable,
e.g. a policy change, or a shock to one of the structural errors, &¢, on the
(expected) future values of the endogenous variables. Here, we shall briefly
review how one can measure the dynamic effects of shocks or impulse
response functions.

Under the stability assumption (namely that the roots of (6.2) lie strictly
outside the unit circle), A(L) is invertible and the time profile of the
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effect of a shock can be calculated from the ‘final form’ of the structural
model:

Vi=AL) 'BL) X +A L)' Dd; + A (L) e (6.5)

This expresses each endogenous variable in terms of an infinite distributed
lag on the exogenous variables and an infinite moving average process
on the structural errors. Notice that the dynamic multipliers, the effects
of a shock to X¢, can be derived from the reduced form coefficients,
but to measure the dynamic effect of a shock to the structural errors
we have to identify the structural coefficients. The equivalent final form
representation of the reduced form model is:

yvi=eD) VO x+2 DI Yd + D)y, (6.6)
where*
(L) =1m, — &L - — ®plF, V(L) =W+ WL +--- + W,l?,

and I, is an identity matrix of order my. Since ®(L) is invertible, we have
the following moving-average representation of the structural errors:

1 & < 1
L)y ur =Y Q=) OA e, (6.7)
iz0 i=0

where the @;’s can be calculated from the following recursive relations:
O,=00;_ 1+P20;, »+ -+ q’pei-—pr fori=0,1,2,..., (6.8)

where ©; =0, fori < 0and @¢ =1,

Although this infinite moving average representation exists only when
the model is stable, it turns out that similar results can be obtained even
in the unstable case where one or more roots of (6.2) are on the unit circle.
Irrespective of whether the model is stationary or contains unit roots, one
can derive impulse response functions for the responses of the endoge-
nous variables to a ‘unit’ displacement in the particular elements of either
the exogenous variables, X;, or the errors (u; or ;). The former represents
the time profile of the response of the system to changes in the observed
forcing variables of the system, while the latter examines the responses of

4 Since A is non-singular and the roots of |A — AjA — Apa? — .. — ApiP| = 0 are assumed to

fall outside the unit circle, it follows that the roots of 'l,,,v — A — DA — . — QPAP‘ =0 will
also fall outside the unit circle.
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the system to changes in the unobserved forcing variables. The impulse
response functions for the errors can be defined either with respect to the
‘structural’ errors, &¢, or with respect to the reduced form errors, u,. All
these impulse responses can be obtained using the generalised impulse
response approach advanced in Koop et al. (1996) for non-linear mod-
els and discussed in more detail for linear models in Pesaran and Shin
(1998). The generalised impulse response function GIRF measures the
change to the n period ahead forecast of each of the variables that would
be caused by a shock to the exogenous variable, structural or reduced form
disturbance.

GENERALISED IMPULSE RESPONSE FUNCTIONS

To formally define the generalised impulse response functions, denote
the information set containing current and all lagged values of y; and
Xt by 3 = (Yt' Yt-1,---; Xt, X¢—1,...). Consider a shock to the ith struc-
tural error, ;, and let g (n, z : ¢;) be the generalised impulse responses of
Ztsn = (Y, X},,) toaunit change in ¢;;, measured by one standard devi-
ation, namely ,/@;. At horizon n the GIRF is defined by the point forecast
of z;,» conditional on the information J;_1 and the one standard error
shock of the ith structural error, ¢;, relative to the baseline conditional
forecasts. Namely,

g, z: &) =E@tin | £it = Joii, It-1) — E@t4n | It-1)-

Clearly, since the x; are assumed to be strictly exogenous, the effects of
shocking ; on X, will be zero, i.e. g(n,Xx : ;) = 0 for all n and i.5 Since
the ¢; are serially uncorrelated then their impulse response functions are
non-zero only at horizon zero when g(n, e :¢;) = E(er | & = Jwj) for
n = 0, but for all other horizons n > 0 we have g(n,& : ;) = 0.

If the structural errors are correlated, a shock to one error will be asso-
ciated with changes in the other errors. As shown by Koop et al. (1996),
in the Gaussian case where &; « i.i.d.N(0, ), (et,sjt) are also normally
distributed

& .. 0 Q Covi(et, it)
( e ) ~ i.id.N [( 0 ), (Cov(s,-t, er) Viei) )],

5 This would not of course be the case if x; was only weakly exogenous.
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then noting that V(g;) = wj;

Cov(et, &it)

E(etleit = /wii) = E(er) + (Wwii — 0)
Veir)
1
= ——Cov(ey, &j)
JZD—E trCit
1
L 6.9)
T Joi : ' '
Dmyi

which can be written more compactly as

1

E(etleir = Joy) = (J—le) Qe;,
where e; is an m, x 1 selection vector of zeros except for its ith element
which is set to unity.® This gives the predicted shocks in each struc-
tural error given a shock to ¢;, based on the typical correlation observed
historically between the structural errors. In the special case where the
structural errors are orthogonal, the shock only changes the ith error and
we have

E (et | eir = Jwi) = Jwie;.

Application of the generalised impulse response analysis to the VARX
specification, (6.1), now yields

Ag(ny:e)=Ag(n—1,y:8)+---+Apg(n—p,y:e)+ame:s),

forn=0,1,2,..., with the initial values g (n,y : s,—) = 0 forn < 0 and as
we saw above the last term is non-zero only for n = 0. The identification of
g (n, Y : &) requires the identification of the structural coefficients A and
A;, i =1,...,p, and the covariance matrix Q. It is also possible to iden-
tify g (n,y : &;) by a mixture of identification restrictions on A and €. To
see this we premultiply both sides of the above relationship by A~! and
obtain

g(ny:e)=®1g(n—1,y:8)+ -+ Ppg(n—p,y: &)
+ A lgm,e:g), (6.10)

6 This result also holds in non-Gaussian but linear settings where the conditional expecta-
tions E (et | & = /@y) can be assumed to be linear.
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where as before ®; = A™1A;i = 1,2,...,p, and the last term is non-zero
only for n = 0. The ®; can be estimated from the reduced form, thus
the indeterminacy is confined to the contemporaneous interaction of the
structural errors through the expression A~1g(0,¢ : &), and is resolved up
to a scalar multiplication if A~1Q can be estimated consistently. However,
to identify (or consistently estimate) A~1® involves the imposition of m%
a priori restrictions on the elements of A and/or Q. Evidently, the identi-
fication of the structural impulse responses does not require A and € to
be separately identified, and it is possible to trade off restrictions across
A and . But in cases where there are no a priori grounds for restrict-
ing €, since A"1QA'~1= %, then A~"'Q = £A', and the identification of
the impulse responses with respect to structural errors requires complete
knowledge of the contemporaneous effects, A.

ORTHOGONALISED IMPULSE RESPONSES

The standard approach to deriving impulse response functions is to start
from the moving average representations of the final form, (6.6). The
reduced form disturbances are correlated and the covariance matrix of u;,
which can be consistently estimated, is given by £ = A~1QA'~1. Ortho-
gonalised impulse response function advanced by Sims (1980) makes use
of the Choleski decomposition of £ = PP/, where P is a lower triangular
matrix. This can be used to create a new sequence of errors, u; = P lu;,
t =1,2,...,T, which are orthogonal to each other contemporaneously
with unit standard errors, namely E (ufu}’) = Ly,. Thus the effect of a

!

shock to one of these orthogonalised errors, u;y = (u’l‘t, Usproons u;‘nyt) , say
uj,, on the remaining shocks is unambiguous, because it is not correlated
with the other orthogonalised errors. The impulse response analysis is also
often supplemented by the forecast error variance decomposition where
the error variance of forecasting the ith variable n periods ahead is decom-
posed into the components accounted for by innovations in different
variables in the VAR.

There are two problems with orthogonalised impulse response func-
tions and the forecast error variance decomposition. First, the impulse
responses obtained refer to the effects on the endogenous variables, y;,
of a unit displacement (measured by one standard error) in the ortho-
gonalised error, uj, and not in the structural or even the reduced form
errors, & and uj. Second, notice that the choice of P is unique only for
a particular ordering of the variables in the VAR. Unless X is diagonal,
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or close to diagonal, different orderings of the variables will give differ-
ent estimates of the impulse response functions. In fact, the particular
ordering of the variables in the VAR and the Choleski decomposition pro-
cedure used constitute an implicit identification assumption, equivalent to
the recursive identifying restrictions discussed in Section 3.2.3. Orthogo-
nalised impulse response functions, therefore, actually employ traditional
identification assumptions, typically motivated by what we termed ‘tenta-
tive’ theory on contemporaneous relations. Other identification schemes
based on similarly tentative theory were discussed in Section 3.2.3 in the
context of the Structural VAR models. The interpretation of the impulse
responses obtained on the basis of these is only as robust as the under-
lying identifying assumptions and, as the discussion of Section 3.2.3
showed, our view is that economic theory only rarely provides justification
for robust short-run identifying restrictions (although it is more capa-
ble of providing justification for identifying restrictions on the long-run
coefficients).

When plausible a priori information to identify the effects of structural
shocks is not available, it would still be of some interest to examine the
effect of shocks to the reduced form errors, us = A~le;. The generalised
impulse response function provides a natural way to do this since it mea-
sures the effect on the endogenous variables of a typical shock to the
system, based on the estimated covariances of the reduced form shocks
computed using the historical data. Recall from (6.9) that the generalised
impulse responses of y;,, with respect to u; (the ith element of u;) are
given by

g(ny:u)=S1g(n—1,y:u)+ -+ Spg(n—p,y: )
+g(nlu TU), (611)

where the last term is non-zero only for n = 0, when it is

gn,u:uy) = (J%) Ye;forn=0. (6.12)
These impulse responses can be uniquely estimated from the parameters
of the reduced form and unlike the orthogonalised impulse responses are
invariant to the ordering of the variables in the VAR. One can also construct
a comparable forecast error variance decomposition.

In the case of stationary variables the generalised impulse response func-
tion, as defined by (6.10) or (6.11), will tend to zero as n tends to infinity.
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In the case of I(1) variables it will tend to a non-zero constant as n goes to
infinity. When the variables are I(1) and cointegrated, there will be linear
combinations of the generalised impulse response function that tend to
zero and we discuss this further below.”

Note that an alternative methodology used to investigate the dynamic
properties of large-scale systems, often employed by macromodellers, is
to consider the effect of a displacement in the intercept of one of the
model’s equations. This is equivalent to shocking the innovation in the
equation and implicitly assumes that changes in one equation’s intercept
has no effect on the intercepts of the other equations in the system. Of
course, this is one possible counter-factual exercise that might be of inter-
est. But in interrelated systems, it is not likely that one could change the
parameters of one part of the system without initiating changes elsewhere.
The interpretation of dynamics based on innovations of the type captured
by generalised impulse responses is, in our opinion, a much more plau-
sible type of counter-factual than the ad hoc once-and-for-all changes in
parameter values considered by many macromodellers.

PERSISTENCE PROFILES

The above impulse responses consider the effect of a shock to a particular
exogenous variable, x;¢, or an error term, & O Ujt. An alternative approach,
developed in Lee and Pesaran (1993), would be to consider the effect of
system-wide shocks at time ¢ on the evolution of the system at time £ +n.
Under this approach, the generalised impulse responses are derived with
respect to the whole vector of shocks, &; or ut, and viewed as random vari-
ables. The probability distribution function of these random variables is
then examined as a function of n. In the case where &; (or u;) are Gaussian,
the generalised impulse responses with respect to the system-wide shocks
are also Gaussian with a zero mean and the covariance matrix 0,X0, (see
(6.8)). The diagonal elements of @nze’,, (appropriately scaled) are called
the persistence profiles by Lee and Pesaran (1993). It is easily seen that
the same persistence profiles are obtained for the structural as well as the
reduced form errors. For a stationary VAR, the persistence profiles tend to
zero as n — oo. For VARs with unit roots, the persistence profiles tend to
the spectral density function (apart from a scalar constant) of Ay; at zero
frequency.

7 The relationships between the generalised impulse response functions and the orthogo-
nalised impulse responses are discussed in Pesaran and Shin (1998).
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6.2 Cointegrating VAR models

Much of the econometric analysis of cointegration has been done in the
context of a VAR(p), where all the variables are regarded as endogenous.
Initially, we follow the literature and assume that the VAR model only
contains endogenous I (1) variables and linear deterministic trends. Setting
B; = 0in (6.1), we have:

yt = ®1yt-1+ -+ ®pyrp +ao +art +uy, (6.13)

where ag and a; are m x 1 vectors of unknown coefficients.® To cover the
unit root case we allow for the roots of

Im— @14 — @202 — ... — ®pa?| =0, (6.14)

to fall on and/or outside the unit circle, but rule out the possibility that
one or more elements of y; be I (2).° We shall return to the case where
the model also contains exogenous I(1) variables below. The model can be
re-parameterised as a Vector Error Correction Model (VECM)

p-1
Ay; = —Ty;_1+ Y TiAyr i+ao+ait +uy, (6.15)
i=1
where
P P .
H=Im—2‘l>i, ri=- Z Qj, l=1,...,P—1. (616)
i=1 j=i+1

If the elements of y; were I(0), IT will be a full rank m x m matrix. If the
elements of y; are I(1) and not cointegrated then it must be that I = 0
and a VAR model in first differences will be appropriate. If the elements
of y; are I(1) and cointegrated with rank(Il) = r, then M=«p’, where
« and B are m x r full column rank matrices, and there will be r < m linear
combinations of y;, the cointegrating relations, §; = 'y, which are I(0).
The variables &, are often interpreted as the deviations from equilibrium,
an interpretation that is at the heart of the long-run structural modelling
strategy elaborated in Section 3.1.3.
Under cointegration, (6.15) can be written as:

p-1
Ay; = —ap'yi_1+ Z TjAy:_i+ap+ait +uy, (6.17)

i=1

8 To simplify the notations in this section we denote the dimension of yt by my =m.
9 A review of the econometric analysis of I(2) variables is provided in Haldrup (1998).
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where « is the matrix of adjustment or feedback coefficients, which
measure how strongly the deviations from equilibrium, the r station-
ary variables B'y;_1, feedback onto the system. If there are 0 < 7 < m
cointegrating vectors, then some of the elements of « must be non-zero, i.e.
there must be some Granger causality involving the levels of the variables
in the system to keep the elements of y; from diverging.

The unrestricted estimate of II can be obtained using (6.15). In the
restricted model, (6.17), which accommodates r < m cointegrating vec-
tors, we need to estimate the two m x r coefficient matrices, &« and 8. This
rank reduction therefore imposes m? — 2mr restrictions to be imposed on
II. Further, as noted in Section 3.1.1, « and B are not separately identified
without some additional restrictions since, for any non-singular matrix
Q, we have I = «QQ 18, and the new coefficient matrices a* = «Q
and ¥ = Q~1p’ would be observationally equivalent to using « and g’
respectively. Put differently, any linear combination of the I(0) variables,
&; = B'y:, are also I(0) variables. To avoid this indeterminacy, we require
r independent restrictions on each of the r cointegrating relations, a total
of r2 further restrictions (r of which are provided by normalisation condi-
tions). Thus in the restricted model, we impose (m? — 2mr)+r2 = (m — r?,
namely m?—2mr testrictions imposed by the rank restrictions on I, and
r? exact identifying restrictions.

6.2.1 Treatment of the deterministic components

If there are unrestricted linear trends in the unrestricted VAR, in general
there will be quadratic trends in the level of the variables when the model
contains unit roots. To avoid quadratic trends, the linear trend coeffi-
cients must be restricted. As shown, for example, in Pesaran, Shin and
Smith (2000), using (6.13), Ay; can be represented by an infinite moving
average'0

Ay: =C(L) (ap + art +uy), (6.18)

where

CW) = 3 U = C) + (1 - [)C* (@), (6.19)
j=0

10 This ‘first-difference MA representation’ was originally given in Engle and Granger (1987)
for VAR models without linear trends.
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o0 . o0
C'Ly= Y C;‘L’, C;‘ = C;*_l +C;, or C;‘ ==Y C. (6.20)
j=0 i=j+1

Consider now the relationship between C; and @i, ®;,...,®, , the
parameter matrices of the underlying VAR specification in (6.13), and note
that since C(L) is invertible, we must also havell

CcTlW)Ay: = @Dyt
where as before
O(L) =Ly — &1L — $2L% — .- — §pLP.
Hence, we also have
[clwa-n-ew]ye=0,
or
(1-L)I; = ®L)CL) = CAL)YP(L).
Therefore
Ci=®Ci_1+®Ci 2+ +®C;p, fori=23,..., (6.21)

where Cog =1, C1 = ®1 — Iy, and C; =0, fori < 0.
Using (6.19) in (6.18), it is now easily seen that

Ay: =bg + b1t + C()u; + C* (L) Au, (6.22)
where
bp = C(D)ag + C*(D)a;, by =C(Da;.
Cumulating (6.22) forward, we obtain the ‘level MA representation’

tt+1)
2

yt = Yo + bot + b + C(1)s; + C*(L)(u; — ug),

where s; denotes the partial sum s; = E}t:l u, t = 1,2,..., and
rank [C(1)] = m — r. It is immediately seen that, since by = C(1)a;,
in general y; will contain m different linear deterministic trends, bot,
m — r different (independent) deterministic quadratic trends given by
%t(t + 1)C(1)a;, m — r unit root (or permanent) components given by

11 Recall that by assumption Ay; is covariance stationary.
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C(1)s;, and m stationary components given by C*(L)(ur — ug).12 With
a; unrestricted, the quadratic trend term disappears only in the full rank
stationary case where there are no unit roots, namely if rank(IT) = m.

To remove the quadratic trends and ensure that the trend in the deter-
ministic part of y; is linear for all values of r, we need to restrict the trend
coefficients such that

a; = Iy, (6.23)

where y is an arbitrary m x 1 vector of fixed constants. Note that y is
unrestricted only if I is full rank. In this case y = M—la;. But where I is
rank deficient, all elements of y can be estimated from the reduced form
coefficients. In this case the reduced form trend coefficients are restricted.

For the above choice of aj, it is easily seen that by = C()Ily = 0.13
Under this restriction on the trend coefficients, we have

¥t = Yo + bot + C(1)s¢ + C* (L) (ur — o), (6.24)

and its associated vector error correction formulation is given by
p-1
Ay: = —ap’ (yt—1 —rt) + 2 TiAyri+ao+us
i=1

p-1
=-ILy; 1+ ) TiAyt_i+ao+uy, (6.25)
i=1

where I, = af., B, = B, —B'»), Y1 = (¥;_1, 1), and the determin-
istic trend is now specified to be a part of the cointegrating relations,
B’ (yt—1 — rt) = B.y;_,- This ensures that the y; contains only linear and
not quadratic deterministic trends. This result also shows that in general
the cointegration relations could contain linear trends if y; is trended. In
the absence of a time trend term in the cointegrating relations we must
have B’y = 0. These provide r further restrictions, known as ‘co-trending’
restrictions which are testable.

A similar conclusion also follows from the ‘level MA representation’,
(6.24). Premultiplying both sides of (6.24) by B’ we have

Byt = B'yo + (B'bo) t + B'C(1)s; + B'C*(L) (ur — o).

12 This decomposition of the stochastic part of y; into permanent and transitory compo-
nents is not unique and raises a number of identification problems discussed by Levtchenkova
et al. (1998).

13 Notice from (6.13) and (6.18) that since C(L)®(L) = (1 — L)Im, then C(1)®(1) =
chnm=0.
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But B/C(1) = 0, and it is also easily established that
B'bo = B'C()ag + B'C*(1)a; = p'C*(1)y = B'y.
Hence

Byt =B'yo+ (B'y)t+B'C L)(ur —ug), (6.26)

and in the case of VAR models with linear trends, the cointegrating rela-
tions will generally contain deterministic trends, unless the co-trending
restrictions B’y = O are imposed. The hypothesis of co-trending is
particularly relevant in the output convergence literature where ‘con-
vergence’ involves both cointegration and co-trending. See, for example,
Pesaran (2004a) for a pairwise approach to testing for output and growth
convergence.

So far we have focused on cointegrating VAR models with linear deter-
ministic trends. A similar consideration also applies to cointegrating VAR
models that contain intercepts only. Once again to ensure that the level
variables do not contain different numbers of independent linear deter-
ministic trends as the cointegrating rank changes, the intercepts in these
models must be restricted accordingly. It is also possible that different ele-
ments of y; may have different trend characteristics. For example, output
and interest rates are often included in the same VAR, while it is clear that
these variables have different trend characteristics. Although there are a
large number of possible treatments of the deterministic elements, it will be
convenient to distinguish between five different cases often encountered
in practice:

e Case I: (No intercepts; no trends.) ap = 0 and a; = 0. Hence, the
VECM (6.17) becomes

p-1
Ay = —Iye_1 + ). TiAyr—i +ut. (6.27)

i=1

e Case II: (Restricted intercepts; no trends.) ap = Ilu and a; = 0. The
VECM (6.17) is
p-1
Ayt =Tp — My, 1+ 3 TiAye i +us. (6.28)

i=1

o Case III: (Unrestricted intercepts; no trends.) ap # 0 and a; = 0. In
this case, the intercept restriction ag = I is ignored and the structural
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VECM estimated is

p-1
Ayt =ap — Myr1+ 3 TiAyri+ Ut (6.29)
1=
« Case IV: (Unrestricted intercepts; restricted trends.) ap # 0 and a; =
My. Thus

p-1
Ayt =ag+ (My)t —Mye1+ 3 TiAyri+us. (6.30)
i=1
o Case V: (Unrestricted intercepts; unrestricted trends.) ap#0 and
a1 # 0. Here, the VECM estimated is

p-1
Ay =ag+ait — Oy;_1+ Y TiAy:; +us. (6.31)
i=1

It should be emphasised that the DGPs for Cases II and III are identical
as are those for Cases IV and V. However, as in the test for a unit root
proposed by Dickey and Fuller (1979) compared with that of Dickey and
Fuller (1981) for univariate models, estimation and hypothesis testing in
Cases Il and V proceed ignoring the constraints linking, respectively, the
intercept and trend coefficient vectors, ag and a;, to the parameter matrix
T whereas Cases II and IV fully incorporate these restrictions. As argued in
Pesaran, Shin and Smith (2000), Cases I and IV are likely to be particularly
relevant in practice and are preferable to the corresponding unrestricted
Cases Il and V.

6.2.2 Trace and maximum eigenvalue tests of cointegration

If the sole purpose of the cointegration analysis is simply to test for
cointegration (or select the appropriate number of cointegrating rela-
tions), the nature of the r? restrictions employed to ensure there are r
identified cointegrating relations is not important since the maximised
log-likelihood values will be invariant to how the long-run relations are
exactly identified. This was shown by Johansen (1988, 1991) who estab-
lished an algorithm for maximising the likelihood of (6.25) subject to
the constraint that I, = «f, and under the assumption that the distur-
bances are Gaussian. The algorithm involves two steps. In the first, Ay;
and y; ; = (Yi_1,t) are regressed in turn on Ayy_1, Ayt-2,..., AYt—p+1
and 1 to generate residuals ro; and ry;, respectively. Then, defining

T T T
Soo=T"" 2 Torfoy, o1 = T} X fortyy, S11 = T-! Y rury,  (632)
t= t= t:
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the m ordered eigenvalues of 81‘118108501801 namely A1 > Ag > -+« > Am, are
computed. The maximum value of the log-likelihood function subject to
the constraint that there are r cointegrating relations is given by

—~ Tm T TI
(r(Br) = -5 (1 +log@2m)) — 5 log [Sool — 5 Y log(1—12;), (6.33)
i=1

where ET is the ML estimate of the m x r cointegrating coefficient matrix
(see also the discussion below). This expression can be calculated irrespec-
tive of the form of the r? independent restrictions on the cointegrating
relations. In fact it is easily established that ¢1 (E'T) =47 (Q?T) , for any
choice of a r x r non-singular matrix, Q.

If the applied econometrician is simply interested in testing the null
hypothesis of r cointegrating relations in (6.15):

Hp : Rank(Il) =, (6.34)

there are two types of the log-likelihood ratio statistics that can be used for
this purpose. The ‘trace’ statistic is intended for testing the null hypothesis
(6.34) against the full rank hypothesis,

Hi, : Rank() = m, (6.35)

and the ‘maximum eigenvalue’ statistic is intended for testing the null
against

Hip : Rank(Il) =1+ 1. (6.36)
These statistics are computed as
m
A.n-ace = —T Z 111(1 - A‘l)l (6.37)
i=r+1
).max = —Tll’l(l - A.r+]). (6.38)

Given the presence of unit roots, the asymptotic distributions of both
statistics are non-standard (and depend on the nature of the determin-
istic processes involved), but Johansen (1991) provided the appropriate
critical values based on Monte Carlo simulations, and Pesaran, Shin and
Smith (2000) provided the corresponding statistics under Cases I-V above.

6.2.3 Identifying long-run relationships in a cointegrating VAR

Typically, the applied econometrician will be interested not only in the
number of cointegrating relations that might exist among the variables
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but also the specification of the identifying (and possibly over-identifying)
restrictions on the cointegrating relations. Indeed, Johansen (1988, 1991)
have provided procedures for estimating « and g, using ‘statistical’ over-
identifying restrictions. He computed the ML estimates of g as the r
eigenvectors corresponding to the first r largest eigenvalues of the canon-
ical correlation matrix, 8;1151085(}801, where Spo, So1, and S1; are defined
in (6.32). These are often referred to as ‘empirical’ or ‘statistical’ iden-
tifying restrictions, and together impose the r? restrictions needed for
exact identification of 8. However, while mathematically natural given
the statistical structure of the problem, these restrictions have no eco-
nomic meaning since there is no reason to expect economic cointegrating
vectors to be orthogonal. When r > 1, the economic interpretation of
the Johansen estimates of the cointegrating vectors is almost impossi-
ble. See also Phillips (1991) for an alternative non-economic identification
adopting a triangular structure.

The more satisfactory approach promoted in Pesaran and Shin (2002)
is to estimate the cointegrating relations under a general set of structural
long-run restrictions provided by a priori economic theory. Suppose that
we are considering an example of a model with unrestricted intercepts
and restricted trends (Case IV), and the cointegrating vectors, B,, are sub-
ject to the following k general linear restrictions, including cross-equation
restrictions: 14

R vec(8,) =f{, (6.39)

where R and f are a k x (m + 1)r matrix of full row rank and a k x 1 vector
of known constants, respectively, and vec(g,) is the (m + 1)r x 1 vector of
long-run coefficients, which stacks the r columns of B, into a vector. Three
cases can be distinguished: (i) k < r?: the under-identified case; (i) k = r2:
the exactly identified case; and (iii) k > r2: the over-identified case.

ESTIMATION OF THE LONG-RUN COINTEGRATING
VECTORS SUBJECT TO IDENTIFYING RESTRICTIONS

Following Pesaran and Shin (2002), we will describe the ML estimation of
the long-run parameters g of the VEC model (6.25) subject to the k identi-
fying restrictions on B given by (6.39). We first note that the concentrated

14 pesaran and Shin (2002) also consider the more general case where the restrictions on
the cointegrating coefficients may be non-linear.
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log-likelihood function for the cointegrated model is given by:!

T
27(B) = constant — 5 {In|g’ArB| —In |B'Brpl}. (6.40)
where
Ar =S$11 —S10S0gSo1, Br =S11, (6.41)

and Sgo, S10, S11 are defined in (6.32). Then, the ML estimator of § = vec(B)
is obtained by solving

H33XA(9,X),

where A (9, 1) is the Lagrangian function for this constrained ML estima-
tion problem and given by

1 1
A@,L) = ?—ET ) — Ellh 6) (6.42)
= constant — % {In|g'ArB| —In|g'Brg| -1 (RO —£)},

where h (9) = R0 — f and A is a k x 1 vector of Lagrange multipliers.

We distinguish between two cases: when the cointegrating vectors are
exactly identified (k = r?), and when they are subject to over-identifying
restrictions (k > r2). In both cases it is convenient to start with the exactly
identified ML estimator of B obtained by Johansen’s eigenvalue routine,
i.e. the r eigenvectors corresponding to the first r largest eigenvalues of
81‘118108601801, which we denote by ﬁ 7

Exactly identified case (k = r2)
In the exactly identified case, the ML estimator of 8 is obtained simply by

i=(Led)[rR(Le ﬁ,)]_l f, (6.43)

where I, is an 7 x r identity matrix and R and f are defined by (6.39).
Al A A A

Note that by construction g;Brg; = I, and ﬁ;,- Br—An)B;; =0 fori#j,

i,j=1,2,...,rand ﬁﬁ is the ith column of ﬁ,.

15 Since the main focus is on the long-run parameters, 8, we can concentrate out all the
short-run parameters from the log-likelihood function.
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Over-identified case (k > r?)
Now there are k — r2 additional restrictions that need to be taken into
account at the estimation stage. This can be done by explicitly maximis-
ing the Lagrangian function (6.42). We assume that the normalisation
restrictions on each of the r cointegrating vectors are also included in
h@)=Ro—-£f=0.

The first-order conditions are given by

dr@ -Ri=0, (6.44)

RO —£f=0, (6.45)

A0 A
where dr(9) = T-1[047 (0) /36]. Let 8? and i? be the initial estimates of
the ML estimators of  and A. Taking the Taylor series expansion of (6.44)

A0 A
and (6.45) around 8 and l(o), we obtain!6

. ~(0) NO)
Gr (é“’)) R || T (o - o“”) dr (0 ) ~Ri
0 = A(0) + Op(l)r
R 0 i@ -T (Ro - f)

(6.46)

where Gr(8) = T2[—32¢7(8)/3036']. To deal with the singularity of the
normalised Hessian matrix, G() in the case of cointegration, we let

Jr @)= Gr @) +RR.

Then, the solution of (6.46) using a generalised inverse based on JT(é) is
given by

~A(0) A(0)
T (,; _§© Voo (6 Vou (6

NI = A(0) A(0)
A1 Vi (67) v (8

A0 A
dr (§7) -ri® a 647
X + Op ), .
T (Ro“” ~ 1)

16 The detailed derivations for dr(f) and Gr(9) can be found in the DAE Working Paper
version of Pesaran and Shin (2002).
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where
» —1=1 — 1=l [Ri=1 v’ R1=1(
Voo ® =J7' @ -J'OR [RTOR]| RIF'O),  (6.48)
~ ~ ~ -1 ~ a -1
Vo® =J'@OR [RITOR] , vud =[R7'OR] .

Hence, we obtain the following generalised version of the Newton-
Raphson algorithm:!’

, A=1) AG=1)
6(i) 5(1—1) Voo (9 l ) Vo (0 :
~0) ] T G- A(i—1 A(i—
£ N v, (0(1 )) Vi (0(1 1
s far (i) -

X .
T ( §4 b - f)

From (6.47) we also find that

(6.49)

T (é - o) L MN[0, Ve (8)], (6.50)

which shows that the cointegrating parameters are super-consistent and
have an asymptotic (mixture) normal distribution. It also shows that a
consistent estimator of the asymptotic variance of 6 is given by (6.48).
See also Pesaran and Shin (2002) for a proof, and Pesaran and Pesaran’s
(1997) Microfit 4.0 for more details of the numerical algorithms and other
computational considerations.

For the initial estimates, 5(0), we suggest using the linearised exactly
identified estimators given by (6.43). One important aspect of this method-
ology is the fact that we begin with the exactly identifying restrictions
from economic theory, rather than the type of statistical identification
favoured by Johansen. This is particularly important for models with a
relatively large number of long-run relations. Clearly, without some guid-
ance from theory it would be extremely difficult to advance an exactly
identified model with meaningful and understandable properties.

17 See Magnus and Neudecker (1988, pp. 57-60) for the algebra about the bordered Gramian
matrix. '
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TESTING THE VALIDITY OF OVER-IDENTIFYING
RESTRICTIONS

Consider the general k > r? restrictions on @ given by (6.39), and partition

these restrictions as
Ri6 ) _(fa (6.51)
Rgpé fz |’

where Ry, Rp are r2 x (m+ 1)7, and (k — %) x (m+ 1)r known matrices,
and f4, fg are r2 x 1 and (k - r2) x 1 known vectors, respectively. Since
we need r2 independent restrictions to just identify 8, without loss of
generality, R40 = f4 can be regarded as such r2 just-identifying restric-
tions. The remaining restrictions, Rz = fg, will then constitute the k — r?
over-identifying restrictions.

Let 6 be the (unrestricted) ML estimators of 8 obtAained subject to the r?
exactly identifying restrictions (say, R48 = f4), and ¢ be the restricted ML
estimators of @ obtained subject to the full k restrictions (namely, R6 = f),
respectively. Then, the k—r2 over-identifying restrictions on § can be tested
using the log-likelihood ratio statistic given by

LR=2 [zT (61) —er (60)] ) (6.52)

where £¢1 (51) and &t (50) represent the maximised values of the log-
likelihood function obtained under R40 = f4 and Ré = f, respectively.
Pesaran and Shin (2002) prove that the log-likelihood ratio statistic for
testing R@ = f given by (6.52) has a x? distribution with k — r2 degrees
of freedom, asymptotically. Small sample properties of the tests of over-
identifying restrictions on the cointegrating vectors are described in
Section 6.4 below.

6.2.4 Estimation of the short-run parameters of the
conditional VEC model

Having computed the ML estimates of the cointegrating vectors ﬁ; =
(ﬁ/, - ﬁy/ ’, obtained under the exact and/or over-identifying restric-
tions given by (6.39), the ML estimates of the short-run parameters
(a, Ty,...,Tpo1, ao) in (6.25) can be computed by the OLS regressions of
Ay: on

£/, AYt-1,...,AYtpr1and 1,
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where é: = ﬁ;y’{hl is the ML estimate of & = B.y;_,. Notice that B is
super-consistent, while the ML estimators of the short-run parameters are
V/T-consistent. The ML estimate of the (restricted) trend coefficients are
then obtained by a; = &yﬁ,y.

It is worth emphasising that, having established the form of the long-
run relations, then standard OLS regression methods and standard testing
procedures can be applied. All of the right-hand side variables in the error
correction regression models are stationary and are either dated at time
t — 1 or earlier. In these circumstances, OLS is the appropriate estimation
procedure and diagnostic statistics for residual serial correlation, normal-
ity, heteroscedasticity and functional form misspecifications can be readily
computed, based on these OLS regressions, in the usual manner.!8 This is
an important observation because it simplifies estimation and diagnostic
testing procedures. Moreover, it makes it clear that the modelling pro-
cedure is robust to uncertainties surrounding the order of integration of
particular variables. It is frequently difficult to establish the order of inte-
gration of particular variables using the techniques and samples of data
which are available, and it would be worrying if the modelling procedure
relied on assumptions that variables were integrated of a particular order.
However, the observations above indicate that, so long as the é: = ﬁ;y;‘_l
are stationary, the conditional VEC model, estimated and interpreted in
the usual manner, will be valid even if it turns out that some or all of
the variables in y; ; are I(0) and not I(1) after all. A related discussion
with mathematical proofs is given in Pesaran and Shin (1999) for cases
wherer = 1.

6.2.5 Analysis of stability of the cointegrated system

Having estimated the system of equations in the cointegrating VAR, we will
typically need to check on the stability of the system as a whole, and more
particularly to check that the disequilibria from the cointegrating relations
are in fact mean-reverting. Although such a mean-reverting property is
intrinsic to the modelling framework when the cointegration restrictions
are not rejected, it is possible that the estimated model does not display
this property in practice or that, if it does, the speed with which the system

18 Fyrther discussion of the validity of standard diagnostic test procedures when different
estimation procedures are adopted in models involving unit roots and cointegrating relations
is provided in Gerrard and Godfrey (1998), and the importance of the use of predicted values
in the tests is discussed in Pesaran and Taylor (1999).
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reverts back to its equilibrium is very slow. Summary statistics that shed
light on the convergence property of the error correction terms, §t, will
therefore be of some interest.

In the empirical applications of cointegration analysis where r = 1, the
rate of convergence of &, to its equilibrium is ascertained from the estimates
of the error correction coefficients, «. However, as we shall demonstrate
below, this procedure is not generally applicable. Consider the simple two
variable error correction model

Ayt al Uit
= - _ 1)+ , 6.53
( Ayar ) ( o )(ﬂl}’l,t 1+ B2y2t-1) < iz ) (6.53)

in which the variables y1; and y»; are cointegrated with cointegrating vec-
tor B = (B1, B2) . Denoting &1 = B1y1t + B2yat, and premultiplying both
sides of (6.53) by B/, we obtain

Abpp1 = —(B'0)é + B'uy,
where a = (a1, a2) and uy = (Uit, Ut)', OF
grr1 = (1 — Pa)és + B'uy. (6.54)

Since B'u; is 1(0), then, the stability of this equation requires |1 — Ba|=
|11 = Bray — Baaz| < 1, or Bray + Baaz > 0, and Biag + Braz < 2. 1t is
clear that these conditions depend on the adjustment parameters from
both equations («; and ) as well as the parameters of the cointegrating
vector, and the estimate of ¢ alone will not allow us to sign the expressions
B1a1 + Baaz and B + Braz — 2. Hence, for example, restricting a; to lie in
the range (0, 2) ensures the stability of (6.54) only under the normalisation
B1 =1, and in the simple case where ap = 0.1

More generally, we can rewrite (6.17) as an infinite order difference
equation in an rx 1 vector of (stochastic) disequilibrium terms, §; = B'yt-1.
Under our assumption that all the variables in y are I(1), and all the roots
of |I, — Zi;l Fiyi| = 0 fall outside the unit circle, we have the following

expression for Ay;:
Ay =T@L) ! (-t +ao+art+uy), t=12,..,T, (6.55)

where T(L) = Iy — Y/~ T;L". Defining (L) = T(L)™! = Y%, ©;L’, then
it is easily seen that the following recursive relations hold:

0,=T10,1+T20, 2+ - +Tp_1Oppy1, n= 12,...,
19 When a; = 0, y2 is said to be ‘long-run forcing’ for y1¢.
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where @9 = I, and ©, = 0 for n < 0. Premultiplying (6.55) by g’, then
we have

Abpyy =—F (Im +2 OiLi) ak; + (Im +3 OiLi) (a0 +ait +uy),

i=1 i=1
(6.56)

or

§tp1= [(Ir —pla) - Zl (ﬂ'e,-a) Li:l &+ (ﬁ' + %0: ﬁ'@iLi> (ag +ait +uy).
i= i=1
(6.57)

This shows that, in general, when p > 2, the error correction variables,
§:.1, follow infinite order VARMA processes, and there exists no simple rule
involving a alone that could ensure the stability of the dynamic processes
in§ t+1~2J0

However, given the assumption that none of the roots of ’Im - Zf;ll r;z l
= 0 fall on or inside the unit circle, it is easily seen that the matrices 8;, i =
0,1,2,... are absolutely summable,?! and therefore a suitably truncated
version of Y52, (B'@;) L’ can provide us with an adequate approximation
in practice. Using an £-order truncation we have

4
§t+1 = Z] Di&t—i+1 + Vi, L= 11 21 ey Tr (658)
i=

where

—Ba, Di=-B'0;, qa, i=23,...,1 (6.59)

¢ )
z= (ﬁ’ + Zl ﬁ’GiL‘) (@0 +ait+uy).
1=

To explicitly evaluate the stability of the cointegrated system, we rewrite
(6.58) more compactly as

1 =Dé+%, t=12,..,T (6.60)

'20 This .result also highlights the deficiency of residual-based approaches to testing for
cointegration, where finite-order ADF regressions are fitted to the residuals even if the order
of 2tlhe underlying VAR is 2 or more.

The matrllx2 sequence, {@;,i=0,1,2,...} is said to be absolutely summable if
>0 [tr(efe;)] 2 o oo, which is satisfied since I'(L) is invertible. See, for example, Liitkepohl
(1991), Section C3, pp. 488—491.
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where
&
&1
gt'—— gt—Z ’
réx1 :
kEt—e+1
(D1 Dz D3 -+ De1 Do
; 0 O .- 0 0
_lo 1 o .. 0o o]
rexreé N
\o 0 O I, O
(Vi
0
vv.=| 90 |. (6.61)
rex1 .
\ 0

The above cointegrated system is stable if all the roots of

I, —Dyz—---—Dyz{=0

lie outside the unit circle, or if all the eigenvalues of D have modulus less
than unity.??

6.2.6 Impulse response analysis in cointegrating VARs

Using the level MA representation, (6.24), generalised impulse response
functions can be calculated for the cointegrating VAR model (6.25) in a
way similar to the VAR discussed above. Now, it is easily seen that the
effect of a unit shock to the ith reduced form error, u;, is given by?3

1 CnZe;, n=0,1,..., i=1,...,m, (6.62)

J&E

9(":Y¢ui) =

where u; is i.i.d. (0,X), Cp = 2?:0 Cj, Cj's are given by the recursive rela-
tions (6.21), and e; is a selection vector of zeros with unity as its ith

22 Notice that the stability analysis is not affected by the presence of deterministic and
stationary exogenous variables in the system. 2

23 Combining (6.11) and (6.24) together, we obtain g (ny:w) = oy / {C(D) +C;;} Ze;.
Then, using (6.20), we find that C(1) + C}; = Z;’zo Cj=Cu.
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element. For the effect of a unit shock to the ith structural form error,
&;+, we notice that (6.24) can be written as

¥t = Yo + bot + C(1)st + C* (L) A~ (e — &0), (6.63)
where we use u; = A~le;, and therefore we have
g(ny: &)= L ¢,A-l0e, n=0,1 i=1,...,m (6.64)
’ - <1 Jw_u n ir RN = Ly ’ .

where ¢, is i.i.d. (0,2) with £ = A-1QA'~1. In particular,
g(o0,y: &)= wi;l/ZC(l)A‘lsze,-, g(oo,y 1) = aﬁ‘l/ZC(l)):e,-,

which shows that shocks will have permanent effects on the I(1) variables,
unlike the stationary case.

Shocks will have only a temporary effect on the cointegrating relations
though. Hence, the generalised impulse response function for the cointe-
grating relations &§; = B'y;_1 with respect to a unit shock to the structural
errors is given by

1 -
g, &:e)=——BCsA™'Re;, n=0,1,..., i=1,...,m 6.65
§:¢ @ﬁ n i (6.65)

Since 8'Co = B'C(1)=0, it follows that g(oo,§:¢;) = 0, and ulti-
mately the effects of shocks on the cointegrating relations will disappear.
Nevertheless, estimation of g (n,§ : ¢;) for a finite n still requires a priori
identification of A~1Q. Once again, a variety of identification schemes
can be used for this purpose. Alternatively, we could focus on the impulse
response functions of &, = B'y;—1 with respect to the ith reduced form
shock, u;. In this case

1 - )
. = — i = ,1,..., =1,...,m. .
og(m, & :uy) Ja_ﬁﬁ CnXe;, n=0 i=1 m (6.66)

which is uniquely determined from the knowledge of the reduced form
parameters.

Furthermore, generalised forecast error variance decompositions for the
cointegrating VAR model (6.25) can be computed as follow:

o1y (e’.C ).‘.e-)2
i 2e=0 \&i-e =Y
Yi-0€Ce=Cre;

Yijn = n=0,1,...; and i,j=1,...,m. (6.67)

The ¥j,, in (6.67) measures the proportion of the n-step ahead forecast
error variance of variable i accounted for by the reduced form error in
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the jth equation in the system unlike the orthogonalised forecast error
variance decomposition, which due to non-zero correlations across the
shocks, cause the different proportions not necessarily to add up to unity.

Corresponding orthogonalised impulse response functions and forecast
error variance decompositions for the cointegrating VAR model (6.25) are
given by:

o(ny:u)=CuPe;, n=0,1,..., i=1,...,m, (6.68)

o(n,&:u})=pCuPe;, n=0,1,..., i=1,..,m, (6.69)

- 2
o7 Lo (¢/CePey)
TioeCexCpe;

Ojjn = , n=0,12,..., ij=1,....,m, (6.70)

where uj, is an orthogonalised residual and P is a lower triangular matrix
obtained by the Choleski decomposition of £ = PP’.

Finally, we could examine the effect of system-wide shocks on the
cointegrating relations using the persistence profiles discussed above in
Section 6.1.3. Pesaran and Shin (1996) suggest using the persistence pro-
files to measure the speed of convergence of the cointegrating relations
to equilibrium. The scaled persistence profiles of the jth cointegrating
relation is given by

B,CnxC,B; ,
h(ﬁ,’-wm):W, n=0,1,..., j=1,...,1, (6.71)

which is scaled to have a value of unity on impact. The profiles tend to
zero as n — oo, and provide a useful graphical representation of the extent
to which the cointegrating (equilibrium) relations adjust to system-wide
shocks. Once again, the main attraction of persistence profiles lies in the
fact that they are uniquely determined from the reduced form parameters
and do not depend on the nature of the system-wide shocks considered.
Using (6.26), the cointegrating relations in terms of the structural errors
may be written as

Byt = Bjyo+ (Bjr) t + BIC* WA (er — 0),

134

The Cointegrated VAR Model

and the persistence profile of p;yt with respect to the structural errors,
&, is given by
~ ~ i
8;(Cra1) @ (Ca1) B;
ﬂgA“lsZA“lp,- ’

n=0,1,..., j=1,...,r.

But, since ¥ = A~ 1A, this persistence profile is in fact identical to the
one derived using the reduced form errors, u;, given by (6.71).

6.3 The cointegrated VAR model with /(1)
exogenous variables

The most complete econometric model that we might wish to consider
is the case in which there are both endogenous and exogenous variables
and linear deterministic trends. This is the model discussed in Pesaran,
Shin and Smith (2000), where we distinguish between an my x 1 vector of
endogenous variables y; and an my x 1 vector of exogenous I(1) variables
Xt among the core variables in z; = (y;, x})’, with m =m,, + m,.

We begin with the extended vector error correction model (VECM) in z;
(cf. (6.17)),

p—1

Azy = -z 1+ Y TjAzZ_;+ag +ait +uy, (6.72)
i=1

where the short-run response matrices {I'; f;ll and the long-run multiplier
matrix I are similarly defined to those below (6.17).
By partitioning the error term u; conformably with z; = (y}, x)’ asu; =

!
(u’ o/ ) and its variance matrix as

ytr Yt
Ty Zu

we are able to express u,; conditionally in terms of uy as
Uyt = Ty T Uy + vp, (6.73)

where v; ~ i.i.d. (0, 2yy), Tyy = Ty — LT Tyy and vy is uncorrelated
with uy by construction. Substitution of (6.73) into (6.72) together with a

!
similar partitioning of the parameter vectors and matrices ag = (a;,o, a;o) ,
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/ 14 14 . .
a; = (a;,l,a;d) I = (l‘[;,, H;) ,Ti= (1";,,., F;i) ,i=1,...,p—1, providesa
conditional model for Ay; in terms of z;_1, AXt, AZt—1, AZt_2,-- - viz.
p—1

Ayt = —Tlyyxze_1 + AAXt + ) WiAZ i+ Co+C1t + v, (6.74)
i=1

where My, x = Iy — TEgiMly, A = ZXy, ¥ =Ty — Ty Ep Ty | =
L...,p—1,¢o=ay — Ty Zyiax and ¢ = ay1 — Ty Eriax,

Following Johansen (1995), we assume that the process {x;}72; is weakly
exogenous with respect to the matrix of long-run multiplier parameters I,
namely,

n,=0. (6.75)
Therefore,
My, =1,. (6.76)

Consequently, from (6.72) and (6.74), the system of equations is ren-
dered as

p-1
Ay = —Tyze_1 + ADXt + ) WiAZe i+ Co+Cit + vy, (6.77)
i=1
p-1
AXt = ) TyAzp j+ayo + Uxt, (6.78)

i=1
where now the restrictions on trend coefficients (6.23) are modified to
¢ =Iyy. (6.79)

The restriction Iy = 0 in (6.75) implies that the elements of the vector
process {X;}32, are not cointegrated among themselves as is evident from
(6.78). Moreover, the information available from the differenced VAR(p—1)
model (6.78) for {x,}$2, is redundant for efficient conditional estimation
and inference concerning the long-run parameters II, as well as the deter-
ministic and short-run parameters co, ¢1, A and ¥;, i = 1,...,p — 1, of
(6.77).24 Furthermore, we may regard {X;}%2, as long-run forcing for {ytlieys
see Granger and Lin (1995). Note that this restriction does not preclude
{Yt}:il being Granger-causal for {x;}{°; in the short run.

24 1n general the variance of v will be smaller than that of uy because it is easily seen that

Tow — Eyy = —EpEg Zay < 0.
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When there are r cointegrating relations among z;, then we may express
my =a,p, (6.80)

where ay (my X r) and B (m x r) are matrices of error correction coefficients
and of the long-run (or cointegrating) coefficients, both of which are of
full column rank, r. For the purpose of empirical analysis, we assume that
the lag order p is large enough so that u; and v; are serially uncorrelated,
and have zero mean and positive definite covariance matrices, X and Xy,
respectively. For the purpose of the ML estimation, we also assume that u;
and v; are normally distributed, although this is not binding if the number
of the time series observations available is large enough.?

To a large extent, the analysis of a cointegrated VAR model containing
exogenous I(1) variables follows very similar lines to that described in
Section 6.2 above. Hence, to avoid the unsatisfactory possibility that there
exist quadratic trends in the level solution of the data generating process
for z; when there is no cointegration, we can again assume that there are
restrictions on the intercepts and/or time trends corresponding to Cases
I-V in Section 6.2.1 above. We delineate five cases of interest; viz.

e Case I: (No intercepts; no trends.) cp = 0 and ¢; = 0. Hence, the
structural VECM (6.77) becomes

p-1
Ay = —Ilyze 1 + AAX: + > WAz, ;+ vy (6.81)

i=1
o Case II: (Restricted intercepts; no trends.) cop = Iy and ¢; = 0. The
structural VECM (6.77) is

p-1
Ay =Myp — Myze 1 + AAX: + > WAz ;+ vy (6.82)
i=1

o Case III: (Unrestricted intercepts; no trends.) cp # 0 and ¢; = 0. In this
case, the intercept restriction co = I, is ignored and the structural

Therefore, the parameters in the conditional model (6.77) are likely to be estimated more
precisely than the parameters of the unconditional model. Whether this is an advantage
depends on what the economic parameters of interest are. If the parameters of interest are
M, = (I,y, @,x), it is clear from the above equation that Ax; will be weakly exogenous for Iy
only if either Xy = 0 so that ® = 0 or if Ily = (M, Mxx) = 0. In either of these cases the
coefficient matrix on (yt_1, X¢-1) in the conditional model will provide an estimate of Iy. In
other cases the economic parameter of interest may be simply the long-run effects of x; on y;
50 one might be interested in II, — I, directly, in which case the model conditional on x;
is appropriate whether or not Iy = 0.

25 For a more precise statement of these assumptions see Johansen (1995), and Pesaran,
Shin and Smith (2000).
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VECM estimated is

p-1
Ayt =Co — nth_l + AAX: + Z W;AZs_; + vt (6.83)
i=1
e Case IV: (Unrestricted intercepts; restricted trends.) ¢ # 0 and ¢; =
M,y. Thus,

p-1
Ay =co+ (Myy)t —Myze_1 + AAX 4+ Y WAz j+vr. (6.84)

i=1

e Case V: (Unrestricted intercepts; unrestricted trends.) co # 0 and
c1 # 0. Here, the deterministic trend restriction ¢; = I,y is ignored
and the structural VECM estimated is

p-1
Ay =co+cit —yze 1 + AAX: + Zl W,AZ; ; + vt (6.85)
i=

Tests of the cointegrating rank are obtained along exactly the same
lines as those in Section 6.2.2, with the first step in the algorithm gen-
erating residuals ror and ri; from the regression of, in turn, Ay; and
z; | = (z’t_l, t)/ on AXt, Az 1, Az, ..., AZs_py1 and 1.26 Estimation of
the VECM subject to exactly and over-identifying long-run restrictions
can be carried out using maximum likelihood methods as in Section 6.2.3
applied to (6.77) subject to the appropriate restrictions on the intercepts
and trends, subject to Rank(Il;) = r, and subject to k general linear
restrictions of the form in (6.39). And, having computed ML estimates
of the cointegrating vectors, estimation of the short-run parameters of the
conditional VECM can be computed using OLS regressions exactly as in
Section 6.2.4.

The investigation of the dynamic properties of the system including
exogenous I(1) variables does require a little care, however. For this, we
require the full-system VECM, obtained by augmenting the conditional
model for Ay, (6.77), with the marginal model for Ax, (6.78). This is
written as

p-1
Azt = —af'ze_1+ Y TiAz ;+ao+ait +Hey, (6.86)
i=1

26 Asymptotic distributions of the trace and maximum eigenvalue statistics are again non-
standard, and depend on whether the intercepts and/or the coefficients on the deterministic
trends are restricted or unrestricted. Pesaran, Shin and Smith (2000) have tabulated the
upper 5% and 10% quantiles of the asymptotic critical values of both statistics via stochastic
simulations with T = 500 and 10, 000 replications. See also Mackinnon (1996).
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where g is defined by (6.80),

ay W; 4+ ATy Co + Aaxo C1
= ’ ;= ’ = ’ = ’
* ( 0 ) l ( T 20 ax0 & 0

(6.87)

vt Im A EU’U 0
= H-= 4 = = .
Ct ( Uxt ) , ( 0 Imx ) ' COV(ct) zgg ( 0 ZXX )

(6.88)

Analysis of the stability of the cointegrated system follows the arguments
of Section 6.2.5, and impulse response analysis follows the arguments
in Section 6.2.6, but applied to the full system in (6.86). While efficient
conditional estimation of, and inference on, the parameters of (6.77)
can be conducted without reference to the marginal model (6.78), the
dynamic properties of the system have to accommodate the influence of
the processes driving the exogenous variables.

This last point is worth emphasising and applies to any analysis involv-
ing counter-factuals, including impulse response analysis and forecasting
exercises, for example. Macromodellers frequently consider the dynamic
response of a system to a change in an exogenous variable by considering
the effects of a once-and-for-all increase in the variable.?” This (implicitly)
imposes restrictions on the processes generating the exogenous variable,
assuming that there is no serial correlation in the variable and that a
shock to one exogenous variable can be considered without having to
take into account changes in other exogenous variables. These counter-
factual exercises might be of interest. But, generally speaking, one needs
to take into account the possibility that changes in one exogenous vari-
able will have an impact on other exogenous variables and that these
effects might continue and interact over time. This requires an explicit
analysis of the dynamic processes driving the exogenous variables, as cap-
tured by the marginal model in (6.78). The whole point of the approach
to investigating model dynamics reflected in the model of (6.86) and
incorporated in the idea of generalised impulse response analysis is to
explicitly allow for the conditional correlation structure in errors and
the interactions between endogenous and exogenous variables to pro-
vide a ‘realistic’ counter-factual exercise based on the contemporaneous
covariances and interactions observed historically in the data.

27 This corresponds to our earlier discussion of the dynamic impact of a once-and-for-all
shock to an equation in a system captured as an intercept shift.
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6.4 Small sample properties of test statistics

The distributions of the trace and maximal eigenvalue statistics used to
test the number of cointegrating relationships (see (6.37) and (6.38)) and
of the log-likelihood ratio statistic used to test the validity of the over-
identifying restrictions (see (6.52)) are appropriate only asymptotically.
Moreover, recent work has shown that the asymptotic results are valid
only when relatively large samples of data are available if the cointegrating
VAR model is of even modest size (in terms of the number of parameters
involved); that is, when the order of the VAR or the number of variables
in the VAR exceeds three or four, say.2® This suggests that care should be
taken in interpreting the test statistics obtained.

In some cases, it is possible to undertake bootstrapping exercises to
investigate directly the small sample properties of the estimated statis-
tics. For example, suppose that the VEC model of (6.77) and (6.78) has
been estimated subject to the just- or over-identifying restrictions sug-
gested by economic theory. Using the observed initial values for each
variable, it is possible to generate S new samples of data (of the same
size as the original) under the hypothesis that the estimated version of
(6.77) and (6.78) is the true data generating process. For each of the
S replications of the data, the tests of the cointegrating rank and of the
over-identifying restrictions can be carried out and, hence, distributions
of the test statistics are obtained which take into account the small sam-
ple of data available when calculating the statistics. Working at the «%
level of significance, critical values which take into account the small sam-
ple properties of the tests can be obtained by observing, from the right
tails of the simulated distributions, the value of the statistics which would
ensure that the probability that the null is not rejected when it is true
is(1-a.

More specifically, suppose that the model in (6.77) has been estimated
under the exactly or over-identifying restrictions given by (6.39). We
therefore have estimates of the cointegrating vectors, B., of the short-run
parameters, (&y, ¥y,..., \ilp_l, A,éo), and of the covariance matrix, 2 ,,.
Taking the observed values of Ax; as fixed or re-sampled using (6.78) over
the whole sample, and taking the p lagged values of the y; observed just
prior to the sample as fixed also, for the sth replication, we can recursively

28 See, for example, Abadir et al. (1999), Gonzalo (1994) and Muscatelli and Hurn (1995).
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simulate the values of Ayis), s=1,2,...,5, using

A A p_l A A ~
AYY = —&,8,2°) + z V;Az®, + AAxe + &+, t=1,2,...,T.
1=
(6.89)

To obtain v?), allowing for the observed correlation of shocks across the
Ayt, we can generate draws from a multivariate normal distribution chosen
to match the observed correlation of the estimated reduced form errors,
% ,u, (termed a parametric bootstrap) or we can re-sample with replacement
from the estimated residuals (a non-parametric bootstrap).?

Having generated the Ayf), t = 1,...,T, and making use of the
observed Axy, it is straightforward to estimate the VECM of (6.77) sub-
ject to just-identifying restrictions and then subject to the over-identifying
restrictions of (6.39) to obtain a sequence of log-likelihood ratio test statis-
tics, LR®, each testing the validity of the over-identifying restrictions in
the s-th simulated dataset, s = 1,...,5.3 These statistics can be sorted
into ascending order and, given that the data has been generated by the
model at (6.77) incorporating the over-identifying restrictions of ﬁ*, criti-
cal values can be identified which are relevant to this particular model and
which take into account the sample size. Hence, for example, the value of
LR® which exceeds 95% of the observed statistics represents the appro-
priate 95% critical value for the test of the validity of the over-identifying
restrictions.3!

6.5 Empirical distribution of impulse response functions and
persistence profiles

The simulation methods described above are relatively easy to imple-
ment in the context of a VAR and can be applied in various contexts.

29 More detailed discussion on generating simulated errors in bootstrap procedures is
provided in Section 7.3.3.

30 The maximum likelihood estimation of the VECM can be time-consuming, especially if
one is to be sure that all of the estimates relate to global and not local maxima. Practically,
the choice of an optimisation algorithm is likely to be important in this exercise, and the
simulated annealing algorithm discussed in Goffe et al. (1994) can prove useful in this respect.

31 Simulation here is used to find the probability of rejection for one point in the space
covered by the null (that the over-identifying restrictions are valid). The classical significance
level is the maximum of the rejection probabilities over the null space. By using a single point,
the observed critical values potentially understate the true rejection level.
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An important example is in examining the distributional properties of
the various statistics used to investigate the dynamic properties of the
estimated models we have discussed in the chapter. Specifically, in this
section, we describe the steps involved in the calculation of empirical
distribution of generalised (orthogonalised) impulse response functions
and persistence profiles based on a vector error correction model using
stochastic simulation techniques.

Consider the underlying vector error correction model, (6.86), which
can be rewritten as

zt=§<l>,'zt_,-+ao+a1t+H;t, t=12,...,T, (6.90)
i=1

where &1 = I, ——aﬂ’+l‘1, ¢, =TI;,-T;_4, i= 2,...,p-— 1, (I’P = ——l‘p_l.
In what follows, we take into account parameter uncertainty and describe
how to evaluate the empirical distributions of generalised (orthogonalised)
impulse response functions of both individual variables and cointegrat-
ing relations and persistence profiles. In the presence of exogenous I(1)
variables, they are given, respectively, by

g(n,z:¢g) = CnHX;ce;, n=0,1,..., i=1,...,m, (6.91)

O¢,ii

G(E L) = ——BCHE e, n=0,1, .., i=1..m (692
D= ZomP On re€ (6.92)

o(n,z:¢)=CsHPre;, n=0,1,..., i=1,...,m, (6.93)
o(n,&:¢)=pCsHPre;, n=0,1,..., i=1,...,m, (6.94)
B,C.HZ, H'C,B;
h(Bizn) = L, n=0,1,..., j=1,... :
(Bjz.n) pEE, mp MO I=hean (699

where ¢, is i.i.d. (0, ;;), o¢,5 is (i, j)th element of X, Cp = 2:;‘ * oCj» With
C,’s given by the recursive relations (6.21), H and X;, are given in (6.88),
& = B'z;_1, e; is a selection vector of zeros with unity as its ith element,
P; is a lower triangular matrix obtained by the Choleski decomposition of
X = P;P’{, and m = my +m,.

Suppose that the ML estimators of ®;, i = 1,...,p, ag, ay, H and X,
are given and denoted by ®,i=1,..., p, 4o, a1, H and }:;;, respectively.
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To allow for parameter uncertainty, we use the bootstrap procedure and
simulate S (in-sample) values of z;, t = 1,2,...,T, denoted by z(s) s =
1,...,S, where

®)

20 =Y &z +ag+at+H;,, t=1,2,...,T, (6.96)

(5)
t

M

i=1

T

realisations are used for the initial values, z_,,...,z_p, and ;(S) 's can be
drawn either by parametric or non-parametric methods (see 7.3.3).
Having obtained the S sets of simulated in-sample values,

)

the VAR(p) model, (6.90), is re-estimated S times to obtain the ML esti-
mates, @ f), al, A(s) , H® and f?g, fori=1,2,...,p,ands = 1,2,...,S.
For each of these bootstrap replications, we then obtain the estimates
of g® (,,, 20 Q(s))’ g® (n, £9 . {lgs))' 0® (n, 2 Q*(s))’ 0® (n, £9 Q*(s))'
/1S (ﬂ,’.z(s), n). Therefore, using these S sets of simulated estimates, we will
obtain both empirical mean and confidence intervals of impulse response
functions and persistence profiles.
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