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(b) The equation x = e* — 3 also has a positive solution, but this is an unstable
equilibrium of x,41 = e — 3. Explain how nevertheless we can find the positive
solution by rewriting the equation and using the same technique as above.

3. The function f in Fig. 4 is given by f(x) = —x2 + 4x — 4/5. Find ~the values (?f
the cycle points &; and &, and use (5) to determine whether the cycle is stable. It is

clear from the figure that the difference equation x;41 = f(x;) has tWO equilibrium
states. Find these equilibria, show that they are both unstable, and verify the result in
Problem 1.

12.1

DISCRETE TIME
OPTIMIZATION

In science, what is capable of proof
must not be believed without a proof.!
—R. Dedekind (1887)

his chapter gives a brief introduction to discrete time dynamic optimization problems. Th:

term dynamic refers to the fact that the problems involve systems evolving over time. Tim:
is here measured by the number of whole periods (say weeks, quarters, or years) that havi
passed since time 0. So we speak of discrete time. In this case it is natural to study dynami
systems whose development is governed by difference equations.

If the horizon is finite, then such dynamic problems can be solved, in principle, using classice
calculus methods. There are, however, special solution techniques described in the presen
chapter that take advantage of the special structure of discrete dynamic optimization problems

Most of the chapter is concerned with dynamic programming. This is a general methot
for solving discrete time optimization problems that was formalized by R. Bellman in the latt
1950s. There is also a brief introduction to discrete time control theory. The last two section
cover stochastic dynamic programming. (This is the only part of the book that relies on some
knowledge of probability theory, though at a basic level.)

Dynamic Programming

Consider a system that is observed at times ¢ = 0, 1, ..., T. Suppose the state of the systen
attime 7 is characterized by a real number x,. For example, x, might be the quantity of grair
that is stockpiled at time ¢. Assume that the initial state x¢ is historically given, and tha
from then on the system evolves through time under the influence of a sequence of controls
ur, which can be chosen freely from a given set U, called the control region. For example
u, might be the fraction of grain removed from the stock x, during period ¢. The controls

! There is no ideal English translation of the German original: “Was beweisbar ist, soll in des
Wissenschaft nicht ohne Beweis geglaubt werden.”
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influence the evolution of the system through a difference equation
Xep1 = g(t, xi,up),  xo given, u; € U ey

where g is a given function. Thus, we assume that the state of the system at time ¢ + 1
depends explicitly on the time ¢, on the state x; in the preceding period ¢, and on u;, the
value chosen for the control at time ¢.

Suppose that we choose values for ug, 1, ..., ur—;. Then (1) gives x; = g(0, xo, uo).
Since x; is now known, x; = g(1, x, uy), and next x3 = g(2, x2, uy), etc. In this way, (1)
can be used to compute successively, or recursively, the values or states x1, x2, ..., X7 in
terms of the initial state, xg, and the time path of the controls, uo, ..., ur—;. Each choice of
(wo, uy, ..., ur—1) gives rise to a sequence (xj, xz, ..., xr), for instance path 1 in Fig. 1.
A different choice of (ug, uy, ..., ur—_1) gives another path, such as path 2 in the figure.
Such controls u, that depend only on time, are often called open-loop controls.

X
_[dPath 2

Path 1

Figure 1 Different evolutions of system (1)

Different paths will usually have different utility or value. Assume that there is a function
f (¢, x, u) of three variables such that the utility associated with a given path is represented
by the sum

T
Zf(tvxuur) (%)
=0

The sum is called the objective function, and it represents the sum of utilities (values)
obtained at each point of time.

The objective function is sometimes specified as ZtT;o] [, xe,u) + Sixr),
where S measures the net value associated with the terminal period. This is a special case
of (%) in which f(T, xr,u7) = S(x7). (S is often called a scrap value function.)

Suppose that we choose values for ug, u1, ..., ur—i, ur, all from the set U. The initial state
Xo is given, and as explained above, (1) gives us x, ..., xr. Let us denote corresponding
pairs (xo, ..., x7), (o, ..., ur) by ({x;}, {us}), and call them admissible sequence pairs.

For each admissible sequence pair the objective function has a definite value. We shall study
the following problem:

Among all admissible sequence pairs ({x;}, {u}) find one, ({x}}, {u}}), that makes the
value of the objective function as large as possible. Such an admissible sequence pair is

EXAMPLE 1

SECTION 12.1 / DYNAMIC PROGRAMMING

called an optimal pair, and the corresponding control sequence {u} ,Tz(, is called an o}
control. Briefly formulated, the problem is this:

T

maXZf(I,Xr,Mr) subject to  x,41 = g(t, x;, u,), xo given, u, € U
=0

Let x, be an individual’s wealth at time ¢. At each point of time ¢, the individu
to decide the proportion u; of x; to consume, leaving the remaining proportion 1 —
savings. Assume that wealth earns interest at the rate p — 1 > 0. After u,x, is withdra
consumption, the stock of wealth is (1 —u,)x,. Because of interest, this grows to the ai
Xe41 = p(1 — uy)x, at the beginning of period # + 1. This goes fort =0, ..., T — 1
Xo a positive constant. Suppose that the utility of consuming ¢, = u,x; is U(t, ¢;),
U(t, ¢) is increasing and concave in c. Then the total utility over periods r = 0, . ..
Z,T=o U(t, u;x;). The problem facing the individual is therefore the following:

T
maxZ U(t,u;x;) subjectto x,0p =p(1 —u)x;,, t=0,...,T —1
t=0

with xo given and with u, in [0, 1] fort = 0, ..., T. Note that this is a standard dy
optimization problem of the type described above. (See Problems 2, 3, and 8.)

The Value Function and its Properties

Return to the general problem described by (2). In order to find the optimal solutio
shall use a method that appears to solve a more general problem.

Suppose that at time ¢ = s the state of the system is x (any given real number
best we can do in the remaining periods is to choose ug, Usyl, ..., ur (and thereb:
X541, - - - » X7) tO maximize ZLS f(t, x;, u;) with x; = x. We define the (optimal)
function for the problem at time s by?

T
Ji(x) = max (t, X, u
£ (x) UZ]‘( )

where
xg=x and x4 =g, x5, u;) for t >5, wu, €U

The controls uj, ..., u} that give the maximum value in (3) subject to (4), will d¢
on x. In particular, the first control, u}, will depend on x € R, u¥ = u¥(x,) = ur(x),\
X = xy is the state at time s. Controls that depend on the state of the system in this w:
called closed-loop controls, feedback controls, or policies.

Suppose that we have found the first control u*(x) for each s = 0, 1, ..., T. The
have actually found the solution to the original problem (2). In particular, since the st

2 We assume that the maximum in (3) is attained. This is true if, for example, the functi
and g are continuous and U is compact.
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t = 0 is xo, the best choice of ug is uj(xg). After ug(xo) is found, the difference equation
in (1) determines the corresponding x; as xi = g(0, xo, u;(xo)). Then u}(x}) is the best
choice of u; and this choice determines x3 by (1). Then again, u3(x5) is the best choice of
uy, and so on.

We now prove an important property of the value function. At the terminal time t = T,
we have Jr(x) = max,ey f (7T, x, u). Suppose that at time r = s (< T) we are in state
xg = x. What is the optimal choice for u;? If we choose u; = u, then at time t = s we
obtain the immediate reward f (s, x, u), and according to (4), the state at time s + 1 will be
Xs+1 = g(s, x, u). The highest total reward obtainable from time s + 1 to time 7T, starting
from the state x;1, is Jy41(xs4+1) = Js+1(g(s, x, u)) according to definition (3). Hence the
best choice of u = u; at time s must be a value of u that maximizes the sum

f(S,X, M) + JS+l(g(va» M))

This leads to the following general result:

THEOREM 12.1.1 (FUNDAMENTAL EQUATIONS OF DYNAMIC PROGRAMMING)

Let J;(x) be the value function (3) for the problem

7
mafo(t,x,, u;) subjectto x4 =g, x;,u;), u; €U (5
t=0

with xq given. Then J;(x) satisfies the equations

Jo(x) = mal)/( [f(s,x,u) + Jor1(g(s, x, u))], s=0,1,...,T -1 (6)
Jr(x) = Ui f(T,x,u) (7

If we minimize rather than maximize the sum in (5), then Theorem 12.1.1 holds
with “max” replaced by “min” in (6) and (7), because minimizing f is equivalent to max-
imizing — f.

Let X;(xo) denote the range of all possible values of the state x; that can be
generated by the difference equation (1) if we start in state xo and then go through all
possible values of u, ..., u,—;. Of course J; need only be defined on X, (xg).

Theorem 12.1.1 is the basic tool for solving dynamic optimization problems. It is used as
follows: First find the function J7(x) by using (7). The maximizing value of u depends
(usually) on x, and was denoted by u’.(x) above. The next step is to use (6) to determine
Jr-1(x) and the corresponding % _, (x). Then work backwards in this fashion to determine
recursively all the value functions J7(x), ..., Jo(x) and the maximizers uf(x), ..., ug(x).
As explained above, this allows the solution to the original optimization problem to be
constructed.

EXAMPLE 2
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Use Theorem 12.1.1 to solve the problem

3
2
maxZ(]—l—x,—ut), X+l =X +u, t=0,1,2, x0=0, u, eR
=0

solution: Here T = 3, f(t,x,u) = 1 4+ x — u?, and gt,x,u) = x +u. Cor
first (7) and note that J3(x) is the maximum value of 1 +x — u? foru € (—00, 00).
maximum value is obviously attained for u = 0. Hence, in the notation introduced at

J3(x)=1+x, with u3(x) =0

For s = 2, the function to be maximized in ©)isha(u) =14+ x —u’ + J3(x +u
course, J3(x + u) is obtained by replacing x by x + u in the formula for J3(x). "
ho(u) =1+x—u?+1+ (x + u) =2+ 2x 4+ u — u?. The function hy(u) is concave
and b (u) = 1—2u = 0 foru = 1/2, so this is the optimal choice of u. Then the maxi:
value of hy(u) is hy(1/2) = 2 + 2x + 1/2—~1/4 =9/4 + 2x. Hence,

J(x) =3 +2x, with ub(x) = !

For s = 1, the function to be maximized in (6)is givenby iy (u) = 1 +x —u2+J2(x+J
L+ x —u?+9/4 +2(x +u) = 13/4 + 3x + 2u — 2. Because hy is concave
hi(u) =2—2u =0foru = 1, the maximum value of A;(u) is 13/4 +3x +2 —
17/4 4+ 3x, so

S =Y +3x, with wi(x)=1

Finally, for s = 0, the function to be maximized is how) = 1+ x —u? + J, x +u
L+x —u? +17/4 +3(x + u) = 21/4 + 4x + 3u — u2. The function hg is con
and h{)(u) =3-2u =0foru = 3/2, so the maximum value of ho(u) is ho(3/2
21/4+4x +9/2 -9/4 = 15/2 + 4x. Thus,

Jo(x) = 12_5 +4x, with uj(x) = %

In this particular case the optimal choices of the controls are constants, independent of
states. The corresponding optimal values of the state variables are X1 = X0+ uy ="
X2 =x1+u =3/2+1 = 5/2,x3 =x3+u; =5/2 + 1/2 = 3. The maximum valu
the objective function is 7.5.

Alternative solution: In simple cases like this, a dynamic optimization problem can be sol
quite easily by ordinary calculus methods. By letting t = 0, 1, and 2 in the differe
equation Xe+1 = X + Uy, we get x; = xo9 + ug = ug, X2 = X1 +uy = uy + uy,

X3 = X2 + U2 = ug + u; + up. Using these results, the objective function becomes
following function of ug, u, u,, and us:

1=(1—u3)+(1+u0—uf)+(1+uo+u,—u§)+(1+uo+u,+uz—u§)
=4+3u0—u3+2u1—u:,z-f-uz—u%—u%
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EXAMPLE 3

The problem has been reduced to that of maximizing / with respect to the control variables
ug, U1, U, and u3. We see that I is a sum of concave functions and so is concave. Hence a
stationary point will maximize /. The first-order derivatives of [ are

al al al I

— =3-2uy, — =2-2u;, — =1-2uy, — = —2u;

314() 0 8u| ! 8112 2 8Lt3
Equating these partial derivatives to zero yields the unique stationary point (uq, u, uz, u3) =
(3/2,1, 1/2,0), which then solves our problem. We have the same solution as the one we
obtained by using Theorem 12.1.1.

In principle, all finite dimensional dynamic programming problems can be solved this way
using ordinary calculus, but the method becomes very unwieldy if the horizon T is large.

In the next example the terminal time is an arbitrarily given natural number and the optimal
control turns out to depend on the state of the system.

Solve the following problem

T—
max( —%u,x, + In xT), Xe41 = X (1 +usxy), xo positive constant, u, >0 (%)
t=0

Because xg > Oandu, > 0, we have x; > Oforall¢. Now, fo(T, x,u) =Inx
is independent of u, so Jr(x) = Inx, and any ur is optimal. Equation (6) withs = T — 1
yields

Jr—1(x) = max[—3ux + Jr(x(1 + ux))] = max[—%ux +1Inx 4+ In(1 + ux)]
u>0 N u>0 -
The maximum of the concave function h(u) = —%ux + Inx + In(1 4+ ux) is where its

derivative is 0. This gives i’ (1) = —_%x +x/(14+ux) = 0, or (since we can assume x > 0),
u=1/(2x). Then h(1/(2x)) =Inx — 1/3 + In(3/2). Hence

Jr—1(x) = h(1/(2x)) =Inx + C, with C = —1/3 +1n(3/2), and uj_,(x) = 1/(2x)
The next step is to use (6) fors =T — 2:

Jr_(x) = maé([—%ux 4+ Jr_1(x(1 + ux))] = mg())([—%ux +Inx + In(1 4+ ux) + C]
U= - u= -

Againu = u}_,(x) = 1/(2x) gives the max&mum because the first-order condition is the
same, and we get

Jr—2(x) =Inx +2C, with C = —1/3+1n(3/2), and u}_,(x) = 1/(2x)
This pattern continues and so, fork = T,T — 1, ..., 1,0, we get

Jr—x(x) =Inx +kC, with C = —1/3 +1n(3/2), and uj_,(x) = 1/(2x)

(or Ji(x) = Inx + (T — 1)C, uf = 1/(2x)). Inserting u; = 1/(2x}) in the difference
equation gives x| = (%)x,*, so x} = (%)txo, with @, = (%)f/(2x0) as optimal control
values.

EXAMPLE 4
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£ 4 Consider the difference equation x,1; = g(t, x,, u,) and any given sequer
policies ug(x), ..., ur_;(x), all taking values in a control region U. When the initial st
is given, the evolution of the state x; is then uniquely determined by the difference eqt

X1 = g(t, X, u (X)),  xp given

Let us write down the control values (numbers) it, = u,(x;) given by this particular seq
of states {x,}. Next insert these numbers i, into the difference equation:

Xeyl = g(t, X, 4),  Xo given

This difference equation has the same solution as equation (x). Hence, we get the
result whether we insert the functions u,(x), or the numbers i, .

Consider, for example, the case x,; = x; + u;, and choose u;(x) = 2x for all ¢.
equation () is x,11 = x; + 2x, = 3x;, and with x given, the solution is x; = 3'x
associated controls are u; = 2x; = 2 - 3'x, and equation (%) is now x,1 = x, + 2 -
This equation is easily seen to have the solution x, = 3’ x as well. (Insert and check.

Now, the dynamic programming method gives us the optimal control functions u
Given the initial situation xo, once we have calculated the values if, using the optimal cc
functions u} (x), we can forget about these functions: At each point of time, we knov
it is optimal to use #, as the control variable.

It may nevertheless be useful not to forget entirely the form of each control func
Suppose that at time 7, there is an unexpected disturbance to the state x7 obtained froi
difference equation, which has the effect of changing the state to %,. Then u¥(x) still
the optimal control to be used at that time, provided we know that no further disturb:
will occur.

+ Theorem 12.1.1 also holds if the control region is not fixed, but depends on (
U = U(t, x). Then the maximization in (2), (3), and (5) is carried out for u, in Ult, x,
(6) and (7), the maximization is carried out foru € U(s, x) and u € U(T, Xx), respecti
Frequently, the set U(z, x) is determined by a set of inequalities, {u : h;(t, x,u) <0
1,...,i*} . If U(z, x) is empty, then by convention, the maximum over U (¢, x) is set ¢
to —oo0.

In the above formulation, the state x and the control u may well be vector
say R" and R", respectively. Then g must be a vector function as well, and the differ
equation is a system of difference equations, one for each component of x. No change
then needed in Theorem 12.1.1 (except that we would use boldface letters for X, U, an

Let x; denote the value of an investor’s assets at the start of period ¢, and u, consumy
during period ¢. Suppose that assets at the start of period ¢ + 1 are proportional to say
X; — u; in period ¢, with a factor of proportionality depending on ¢, i.e.

Xi+1 = a;(x; —u;), a; given positive numbers
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Assume that the initial assets, xo, are positive. The utility associated with a level of con-
sumption u during one period is supposed to be ! =7, while the utility of the assets at the end
of period T is Ax}ﬁ. Here A is a positive constant and y € (0, 1). The investor wants to
maximize the discounted value of the sum of utility from consumption and terminal assets.
Define B = 1/(14r), where r is the rate of discount. Assume that no borrowing is allowed,
with 0 < u, < x;. The investor’s problem is thus:

T-1
max[z ,Bt“rl_y + IBTAxyl“_y], X+l = ar (X —uy),  ur € (0, x) (1)
=0

t

Combined with Note 5, and with U (¢, x) = (0, x), Theorem 12.1.1 can be
applied to the present problem. We then have f (¢, x, u) = ,8’14"7’ fort =0,1,...,T -1,
whereas (T, x,u) = BT Ax'~7. Since this function does not depend on u, (7) yields

Jr(x) = max BTAx'7V = T Ax!™7 (ii)
ue(0,x)

and any u7 in (0, x) is optimal. Moreover, equation (6) yields

Joxy = max [l + o1 (as (= u) | (i)
ue(0,x)
In particular, (i) gives J7(ar_1(x — u)) = ,BTAa}__}I (x —u)'=7, so

JroaG) = 877 max W' + pAar - w)' ] (iv)

Put g(u) = u'~7 + ,BAa;__"l (x — u)'=7 for u in (0, x). Computing g’(#) and solving the
equation g'(u) = 0 for u yields

ol
ur =u=x/CY7,  where CYY, =1+ (BAal))"” W)

Because y € (0, 1) and ,BAa;__}; > 0, g is easily seen to be concave over (0, x). Then the
value of u given in (v) does maximize g(u). Now,

X\ _ iy =Dy 1-y X A\
g(c}/ﬁ) =x"Cr +ﬁAaT—l<x - C;/yl)
1/y =
_ - _ (C/5, =D _
=x! yC(TV—ll)/y“’)‘l V(C}/—yl -1)" - (ll—y)/y =x'7"Cr
CT—]
Hence, by (iv),
Jro(x) =T Crox Y (vi)

Notice that J7_;(x) has the same form as Jr(x). Proceed by substituting s = T — 2 in (iii)
to get:

Jroa(x) =g urel}oa)i)[u"” + BCr_1a; ) (x — M)l_y]

P

SECTION 12.1 / DYNAMIC PROGRAMMING

Comparing with (iv), we see that the maximum value is attained for

1/y

ur—2 =u=x/Cy%y,  where C;%, =1+ (BCr_jailh)"”

and that Jr_,(x) = BT2Cr_»x'"7. We can obviously go backwards repeatedly i
way, and obtain for every ¢,
Ji(x) = ,B’Ctxl_y

From (ii), Ct = A, while C, fort < T is determined recursively backwards by the follc
linear difference equation of the first order in C,l/ &

1 — —
Ct/y = i (,BCr+latl y)l/y =14+ (/3‘1:! y)l/)/ctl_‘/_;l/

The optimal control is
uf(x):x/Ctl/y, t<T
We find the optimal path by successively inserting ug, uf, ...
(i) for x,.
Suppose in particular that @, = a for all ¢. Then (viii) reduces to

into the difference equ

1

1/y 1/ 1 ~
G- BCt 7 = o where o = ﬂ‘/)’al/y 1

This is a first-order linear difference equation with constant coefficients. Using Cr -
and solving the equation for C,l/ Y we obtain

_ 1 — Tt
Y = AVY T~ 4 , t=T,T—-1,...,0
l—w
PROBLEMS FOR SECTION 12.1
1. (a) Use Theorem 12.1.1 to solve the problem
2
max Z[l —(x2 +2u,2)], Xeol =X —u;, t=0,1
t=0

where xo = 5 and u, € R. (Compute J;(x) and ui(x)fors =2,1,0.)

(b) Use the difference equation in () to compute x; and x, in terms of upand u; (v
Xo = 5), and find the sum in (x) as a function S of ug, U1, and u,. Next, maxir
this function as in Example 2.

2. Consider the problem

T
1 t
u,rg[%ﬁ]g(lﬁ-r) Nuxe, X1 =p( —udx, t=0,..., T —1, xp > (

where r is the rate of discount. Compute Jy(x) and u¥(x) fors =T, 7T — 1, T — 2
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3. (a) Replace the utility function in Problem 2 by Y>/_o(1 -+ r)~'u;x;. Compute J7 (x), . 8. Consider the following special case of Problem 2, where r = 0:
uh(x), Jr—1(x), and uj_, (x) forx > 0.
T
(b) Prove that there exist constants Py (depending on p and r) such that J;(x) = Psx max Suxi,  xep1=p(1—u)x, t=0 T—-1, x>0
0

fors=0,1,...,T. ' ur€[0,1)

(¢) Find Jy(x) and optimal values of ug, uy, ..., ur.
(a) Compute Jr(x), Jy—1(x), Jr—2(x). (Hint: Prove that m{gx}}[ﬁ +AVT=u]
ue|l,

V14 A2 withu = 1/(1 + A?).)
(b) Show that the optimal control function is us(x) = 1/(14+p + p2> 4+ --- + pT~

4. (a) Compute the value functions Jr(x), Jr—i(x), Jr—2(x), and the corresponding
control functions, u} (x), u._,(x), and u3_,(x) for the problem

T .
max 2(3 —u)x?, Xy =ux, t=0, ..., T — 1, xois given and find the corresponding Js(x), s = 1,2,..., T.
u€[0,1] s
(b) Try to find a general expression for Jr_,(x) forn = 0, 1, 2, ..., T, and the

corresponding optimal controls.

12.2 The Euler Equation

5. Solve the problem: Lo . . . .
Economics literature sometimes considers the following “control variable free” formulat:

T-1 ) of the basic dynamic programming problem (e.g. Stokey et al. (1989))
max [Z(—%u,)+lnxr], Xep1=x14+u), t=0,...,T —1, xo > 0 given
u;€[0,1] o T
max F(t, x¢, x;41), xo givenand xy,x2,...,Xx vary freely in R
6. (a) Write down the fundamental equations for the problem ; A 08 b = Y y
T . . . .
In this formulation the instantaneous reward F(¢, x;, x;+1) at time ¢ depends on ¢ and
2 » Xty Xt+1 p
- = ,t=0,1,....,T =1, x=0 . . .
weR IZ(;(X' )y X1 = 20x - ue) o the values of the state variable in the periods 7 and 7 + 1.

If we define u; = x;41, then (1) becomes a standard dynamic programming probl
with U = R. On the other hand, the dynamic optimization problem (12.1.2) can usu
ly be formulated as a problem of the type (1). Suppose, in particular, that the equati
Xi41 = g(t, x;, uy) for each choice of x; and x;4; has a unique solution u, in U, w
u; = @(t, xy, x1+1). If we define the function F by F(t, x;, x;41) = f(t, x¢, o(t, X1, Xe4

(b) Prove that the value function for the problem is given by

Jroa@®) =@ =Dx+) @ -1 n=0,1,...,T

j=0 fort < T,and F(T, x7, x7+1) = max,ey f(T, xr, u), then problem (12.1.2) is the sa
Determine the optimal controls #, = u and the maximum value V = Jy(0). | as problem (1). (If there is more than one value of u such that g(z, x;, u) = x,41, let u,
a value of u that maximizes f (¢, x;, u), i.e. choose the best u that leads from x; to x;.
7. Consider the problem 1 Then, in any case, F (¢, x;, x;+1) = max{f (¢, x,,u) : u € U, x;41 = g(t, x;, u)}.)
- Let{xg, ..., x7,,} be an optimal solution to problem (1). For each given ¢, the derivat
max Z(‘e_yu') — e | 1 =20 —up, t=0,1,..., T —1, xo given of the e:(pressio*n in (1)'w.r.t.3x,+1 must be zero. If we define F(T + 1, x74+1, X142) =
u R — then {xg, ..., xT+1} satisfies
where « and y are positive constants. | Fy(t + 1, X141, X142) + Fi(t,x;, x,41) =0, t =0,1,..., T (Euler equation) |

C te J ,Jr— ,and Jr_o(x). ) o . . L .
(a) Compute Jr(x), Jr-1(x) 7-2(x) This is a second-order difference equation analogous to the Euler equation in the classi

(b) Prove that J;(x) can be written in the form : calculus of variations. (See Section 8.2.) Note carefully that the partial derivatives in |

. are evaluated at different triples.
Ji(x) = —ae”Y

) 3 Only the two terms F(t, x;, x,41) + F(t + 1, x,41, X;42) in the sum in (1) depend on x,
and find a difference equation for o;. Alternatively, we can require the derivative w.r.t. x, to be 0. This gives the same equation.
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EXAMPLE 1

A solution procedure for the Euler equation is as follows: First, for t = T, (2) reduces
to F3’(T, x7, xr+1) = 0. This equation is solved for xr., yielding the function x7,; =
X741 (x7). Next, this function is inserted into (2) fort = T — 1, and (2) is then solved for x7,
yielding x7 = x7 (x7—1). Then this function is inserted into (2) for t = 7 — 2 and (2) is then
solved for x7_ yielding the function x7_; (xr_2). In this manner we work backwards until
the function x; (xo) has been constructed. Since xy is given, the value of x; is determined,
and then x, is determined, and so on.

Write down the Euler equation for the problem

2
max [Z[l +x = (1 — )T+ (1 +x3)} o x0=0,x,x,3€R (%
t=0

and find the solution of the problem. Show that the problem is equivalent to the problem in
Example 12.1.2.

olution: Define F(t, x;, xp41) = 14+ x, — (X141 — x)? fort = 0, 1, and 2, and
let F (3, x3,x4) = 1 + x3. Then the problem is of the type (1). For t = 0, 1, 2, we get
Fy(t, x1, Xr41) = 14 2(x41 — %), and hence Fj(t + 1, xeq1, Xe42) = 1+ 2(X42 — X141).
Moreover, Fg(t, Xty Xe41) = —2(X;41 — X;), so that the Euler equation for ¢ = 0, 1 becomes
1+ 2(xr42 — xe41) = 2(x41 — %) =0, or
Xp2 =24 +x =—1, t=0,1 ()
Fort = 2 the Eulerequationis F; (3, x3, x4)+F3(2, x2, x3) = 0. With F (3, x3, x3) = 1+x3,
this gives 1 + (—2)(x3 — x2) =0, or

X3 — Xy = % (k%)

Let us solve the problem backwards. As x4 does not appear in the Euler equation for t = 3,
there is nothing to determine as regards x4. The equation (*x) gives x3 = 1/2 + x,.
Inserting this into (+*) for t = 1, gives 1/2 4+ x, — 2x; + x; = —1/2,i.e. xp = x; + 1.
Inserting this into (x*) for # = 0, gives x; + 1 — 2x; + xo = —1/2, i.e. x; = xp + 3/2.
Since xo = 0, then x; = 3/2, and so x, = 5/2 and x3 = 3.

Look back at Example 12.1.2. From the difference equation there we obtained u, =
Xr+1 — X, so that if we define F (¢, x;, x,11) = 14+ x; — (x4 —x;)2fort =0, 1and?2, and
F(3, x3, x4) = max,ep(l +x3 —u?) = 1+ x3, the problem in Example 12.1.2 is equivalent
to problem (*). Note how the two approaches yield the same optimal solution.

PROBLEMS FOR SECTION 12.2

1. (a) Transform Problem 12.1.1 to the form (1).

(b) Derive the corresponding Euler equation, and find its solution. Compare with the
answer to Problem 12.1.1.

12.3

SECTION 12.3 / INFINITE HORIZON 4z

2. (a) Transform the problem in Example 12.1.3 to the form (1).

(b) Derive the corresponding Euler equation, and find its solution. Compare with tl
answer in Example 12.1.3.

Infinite Horizon

Economists often study dynamic optimization problems over an infinite horizon. This avoi
specifying what happens after the finite horizon is reached. It also avoids having the horiz
as an extra exogenous variable that features in the solution. This section considers hc
dynamic programming methods can be used to study the following infinite horizon probler

o0
maxZﬁtf(xt,Mt), Xee1 = gxuy), t=0,1,2,..., xpgiven, u; e U CR  (
t=0

Here f and g are given functions of two variables, 8 € (0, 1) is a constant discount factc
and xg is a given number in R. Having a discount factor 8 < 1 plays an important role
our subsequent analysis of this problem.

The sequence pair ({x,}, {u,}) is called admissible provided u; € U, x, and the diffe
ence equation in (1) is satisfied for all # = 0, 1, 2, .. .. Note that neither f nor g depen
explicitly on ¢. For this reason, problem (1) is called autonomous.

Assume that f satisfies the boundedness condition

M < f(x,u) < M, forall (x,u),u € U, where M| and M, are given numbers  (

Because 0 < B < 1, the sum in (1) will always converge. Take any control sequen
T = (ug, Usy1,...), where ugyy € U fork =0, 1, ..., and let x;1 = g(x;, u,) fort =
s+ 1, ..., with x;, = x. The total utility (or benefit) obtained during the periods s, s +
...,1s then

Vor,m) = Y B fxrug) = BV (x. ), where V(e m) =3 B fxiu)
t=s t=s

Moreover, let

Jo(x) = max Vi(x,m) = p*J°(x), where J'(x)= max Vi(x, ) (

and where the maximum is taken over all sequences m = (ug, Usy1, -..) With ugy € U
Thus, J;(x) is the maximum total utility (or benefit) that can be obtained in all the perio
from ¢t = s to 0o, given that the system is in state x at t = 5. We call J;(x) the (optim:
value function for problem (1).

4 The existence of this maximum is discussed later in Note 2.
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The function J*(x) satisfies the following property:
JOx) = I (x) 5)

Intuitively, this equality is rather obvious. When maximizing V*(x, 7) and Vo(x, T), we
obtain the same value in both cases, since the future looks exactly the same at time 0 as at
time s. Equation (5) implies that

J(x)=pJx), s=0,1,... (6)

Define
J(x) = Jo(x) = JO(x) )

From (6) it follows that if we know Jy(x) = J(x), then we know J(x) for all s. The main
result in this section is the following:

THEOREM 12.3.1 (FUNDAMENTAL EQUATION FOR INFINITE HORIZON)

EXAMPLE 1

The value function Jo(x) = J(x) in (4) for problem (1) satisfies the equation

J(x) = malj([f(x, u) + BJ(g(x,u))]  (the Bellman equation) (8)
ue

A rough argument for (8) resembles the argument for Theorem 12.1.1: Suppose we are in
state x at time ¢ = 0. If we choose the control u, the immediate reward is ,BO fx,u) =
Sf(x,u), and at time t = 1 we end up in state x; = g(x, u). Choosing an optimal con-
trol sequence from ¢ = 1 on gives a total reward over all subsequent periods that equals
Ji(g(x,u)) = BJ(g(x, u)). Hence, the best choice of u at t = 0 is one that maximizes the
sum f(x,u) + BJ(g(x, u)). The maximum of this sum is therefore J (x).

Equation (8) is a “functional equation”, in which the unknown function J (x) appears on
both sides. Under the boundedness condition (2) and the assumptions that the maximum in
(8) is attained and that 0 < B < 1, this equation always has one and only one bounded
solution J (x), and this solution is automatically the optimal value function for the problem.
The control u(x) that maximizes the right-hand side of (8) is the optimal control, which is
therefore independent of t.

In general it is difficult to use equation (8) to find J (x). The problem is that maximizing
the right-hand side of (8) requires knowledge of the function J (x).

Consider the following infinite horizon analogue of problem (i) in Example 12.1.4 in the
case a; = a, and where we have introduced a new control v defined by # = vx. The former
constraint ¥ € (0, x) is then replaced by v € (0, 1):

o0
mafo}’(x,v,)l_V, xr1=a(l—v)x, t=0,1,..., v €@©1) @
t=0

SECTION 12.3 / INFINITE HORIZON

where a and x; are positive constants, B € (0,1),y € (0,1), and Ba'"" < 1. Bec:
the horizon is infinite, we may think of x, as the assets of some timeless institution li
untversity, corporation, or government.

In the notation of problem M), f(x,v) = (xv)!~7 and glx,v) = a(l —v)x. \
Jo(x) = J(x), equation (8) yields

J(x) = P I-y _
() U';}?},’ﬁ)[(xv) +BJ(a(l —v)x)]
In the closely related problem in Example 12.1.4, the value function was proportiona
x177 . A reasonable guess in the present case is that J (x) = kx '~ for some constant k.
try this as a solution. Then, cancelling the factor x!~7, (ii) reduces to

k = l—y l=y 1 _ \l—y
Urér}g)ﬁ)[v + Bka 7V (1 = v)!7] (

Put (v) = v!~7 + Bka'=7 (1 — v)!=7. Then the first-order condition is
¢ ==y =B - yka'" (1 —v)" =0

implying that v™7 = Bka'~7 (1 — v)~7. Raising each side to the power —1/y and solv
for v yields
v — 1
T L+ pkl/r

Note that v € (0, 1) and it is easy to verify that ¢(v) is concave. Thus we have shown t
if J(x) = kx'=7, then the value of v that solves the maximization problem in (iii) is giv
by (iv). Then equation (iii) implies that k satisfies the equation

where p = (,Bal“y)l/y (

l=y (1=y)/y
_, Pk
+ Bka'™Y

k= — LK T
(1 + pkl/v)l=y (1 + pk/vyl=y

Recalling that Ba!~" = p7, simple algebra reduces this equation to
k= (1+pk'7)~'[1 +kp? ! EINY] = (1 + ok!/r)Y

Raise each side to the power 1/y, and solve for k!/¥ to obtain k!/¥ — 1/(1 = p),
k= (1 — p)~7. Then (iv) implies v = 1 — p. Because J(x) = kx'=7, we have

J@) =1 =p)7x"7, with v=1-p, p=(Bal")/" ¢

In this example the boundedness assumption (2) is not valid until one makes a simp
transformation of the problem. Define the new state variable Y+ = x;/a'. Then y, satisfic
tpe equation y,.1 = (1 N v;)y;. The objective function is now Zf’ioﬁ’(y, v)!=7, whe
B =pBa'"7 andso0 < B < 1. Itis easy to verify that the function f(y) = J(ay) satisfie
the Bellman equation for this new problem (the optimal v is the same). In the new problei
the condition in Note 3 below is satisfied with Ul X1 (x0) € (0, yp) because the state -
remains within the interval (0, Yo) forall ¢, and s0 0 < (y,v,)!"7 < y(;_y for all ¢ and all 1
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in (0, 1). Therefore v defined in (iv) is optimal and the problem is solved. According to (v),
the optimal v; is constant, v; = 1 — p. The corresponding optimal x, satisfies the difference
equation x; 41 = a(l — v/)x, = apx,. With xo = x, the solution is x; = x(ap)’. The value
of the objective function in (i) is then

Y B (x@p)) A=) = (A= p)! X Y (Blap) )
t=0

=0

[ee]
=A=' 7Ty == p)Tx

t=0

where we have used the fact that B(ap)!™" = (Ba'")p'™" = p’p!~" = p and that
Yoo p" = 1/(1 = p). The value of the objective function is therefore precisely equal to
J(x), as given by (v).

f& 1 As pointed out in Note 12.1.6, the same theory applies without change when x;, u,, and g
are vector functions. Moreover U may depend on the state, U = U (x) (but not explicitly on time).

NOTE 2 Whenever we wrote “max” above, it was implicitly assumed that the maximum exists.
Of course, without further conditions on the system, this may not be true. Under assumptions (2),
the same conditions as in the finite horizon case ( f and g are continuous and U is compact) ensure
that the maxima in (4) and (8) do exist. Meanwhile, we prove that (8) has a unique solution, which
must therefore be the optimal value function. This is done using the result in Section A.4 on iterated
suprema.

Jox) = sup. Zﬁ S Gst,ue) = sup [ f (xo, o) +sup Zﬂ fxun)]

oMUY g upelU LR B

= sup [ f(x0, uo) + Ji(g(x0, uo))] = sup [ f (x0, uo) + BJo(g(xo, ug))]

ugel ugel

Next, the contraction mapping theorem 14.3.1 is used to prove that the Bellman equation (8) has
a unique solution. Indeed, define the operator T on the space of bounded functions I (x) so that
T(DHx) = supu[f(x u) + BI(g(x,u))] for all x. For any bounded functions J and J, define
diJ,J) = supZIJ(z) J(2)|. Then

T(J)(x) = sup[f (x,u) + BT (g(x, ) + B(J (g(x, w)) — T (g(x, u)))]

< sup[f(x,u) + BT (g(x, w)) + Bd(J, J)]= T(J)(x) + Bd(J, )

Symmetrically, T (J)(x) < T())(x) + Bd(J, J). So [T())x) — T())(x)| < pd(J. J) for all x.
This verifies that T is a contraction mapping, and the proof is complete.

Finally, it is easily seen that the control u = u(x) yielding maximum in the Bellman equation is
optimal: Defining J*(xg) = ZZO f(x, u(x,)), we have

J4(x0) = fxo, uCxo) + B Y B f(xr u(x)) = f (o, u(x)) + BT (g (%o, u(x0)))

t=1

(The sum from ¢ = 1 to infinity, is similar to the sum defining J*“, but the sequence x; in the former
sum starts at g(xo, u(xp)), hence the term J*(g(xo, u(xo))).) Since also J(xo) = f(xo, u(xp)) +

SECTION 12.4 / THE MAXIMUM PRINCIPLE

BJ (g(xo, u(xp)), then from the last equalities, we get J" (xo) — J (x0) = B[J*(x0) — J (x0)], impl
J*(x0) — J(xg) = 0.

Suppose we replace max with sup in (12.1.3), (12.1.5), (12.1.6), (12. 1.7), (12.3.4), and (12.
Then equations (12.1.6), (12.1.7), and (12.3.8) still hold, even if no maximum exists. More
(12.3.8) still has a unique solution, which is the optimal value function. Only if the suprem
(12.1.6), (12.1.7), and (12.3.8) are attained by a closed-loop control do optimal controls exist,
these optimal controls are those closed-loop controls.

'\ 3(("‘ "Y’ = 2

It suffices to assume that the boundedness condition (2) holds for all x in X (xg
U -0 DC (x0), where X, (x) is defined in Note 12.1.3.

PROBLEMS FOR SECTION 12.3

12.4

1. Consider the following problem with 8 € (0, 1):

max Zﬁ( x——u2) Xe41 =X +uy, t=0,1,..., xpgiver

ure(—o0, oo)

(a) Suppose that J (x) = —ax?. Find a third degree equation for «. Find the associ:
value of u*. (Disregard condition (2).)

(b) Givenastart value xg. By looking at the objective function, show that it is reasonz
to assume that |x,| < |x,—1| and that u; < |x,_;|. Does (2) then apply?

2. Consider the problem

o0
max I:Z;S (—e ™ — —e‘x'):l X1 =2x —uy, t=0,1,..., xois give

us€(0,00)

where 8 € (0, 1). Suppose that J(x) = —ae™,a > 0. Determine «. Disreg
condition (2).

The Maximum Principle

Dynamic programming is the most frequently used method for solving discrete time dynar
optimization problems. An alternative solution technique is based on the so called maxim
principle. The actual calculations needed are often rather similar. However, when there
terminal restrictions on the state variables, the maximum principle is often preferable. 1
corresponding principle for optimization problems in continuous time is studied in m
detail in Chapters 9 and 10, because for such problems it is the most important method.
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Consider first the discrete time dynamic optimization problem with one state, one control MOTE 2 I U is compact and f and g are continuous, there will always exist an optir
variable and a free right-hand side: ' solution. (This result can be proved by using the extreme value theorem. )
Hdx Z Ft, x,up), xep1 = gt xp,up), t =0, ..., T —1, xois given, x7 free (1) ' EXAMPLE 1 Apply Theorem 12.4.2 to the problem in Example 12.1.2,
u cUCR )

t=0

Here we assume that the control region U is convex, i.e. an interval. The state variable x;

2
) ) i max A+x —uy), xq1=x +us, x0=0,1r=0,1,2, u; e R
evolves from the initial state xo according to the law of motion (1), with 1, as a control that Z ! t ! t t

t=0
ischosen ateacht =0, ..., T. Define the Hamiltonian by
D) 3G, 0) S O <3 ) ) i Fort < 3, the Hamiltonian is H = 1 4+ x — 12 +p(x+u),soH, = —2u+
H(t,x,u, p)= £t 2, 4) for t=T ' and H, = 1+ p. Fort = 3, H=1+x-u’soH = —2u and H/ = 1. Note that t

Hamlltoman 1s concave in (x, u). The control region is open, so (3) implies that (H)* =
ie. —2u* ~ P =0fors =0,1,2,and —=2u% = 0 for r = 3. Thus u}; = 1 po, ut = 1,
! and u3 = 2p2,
THEOREM 12.4.1 (THE MAXIMUM PRINCIPLE. NECESSARY CONDITIONS) The difference equation (4) for p; is p,_; = 1 + prfort =1,2,andso pgp = 1 +
' p1 =1+ p>. Moreover, (5) yields p, = 1 + pj3, and because x3 is free, p3 = 0. It folloy
that p =1, py =14+ py =2,and py = 1 + p1 = 3. This results in the following optimr
choices for the controls, uy=3/2,uf =1,u5 =1/2,and u} = 0, which is the same rest
as in Example 12.1.2.

where p is called an adjoint function (or co-state variable).

Suppose ({x;}, {u}) is an optimal sequence pair for problem (1), and let H be
defined by (2). Then there exist numbers p,, with py = 0, such that for all t = 0,
. T,
H,(t,x} uf, p)u—u’) <0 forallu e U 3)

(Note that if 4} is an interior point of U, (3) implies that H, (¢, x}, u}, p;) = 0.) EXAMPLE 2

. Consider an oil field in which x; > 0 units of extractable oil remain at time ¢ =
Furthermore, p; is a solution to the difference equation

Let u; > 0 be the quantity of oil extracted in period ¢, and let x; be the remaining stox
=H (t,x* u*,p), t=1,...,T 4) ' at time 7. Then u, = x, — x,4. Let C(¢, x,, u;) denote the cost of extracting u, units
b A e b ’ , period ¢ when the stock is x,. Let p be the price per unit of oil and let » be the discount rat
with = 1/(1 +r) € (0, 1) the corresponding discount factor. If T is the fixed end of I
planning period, the problem of maximizing total discounted profit can be written as
For a proof see Arkin and Evstigneev (1987). A closer analogy with the continu-

ous time maximum principle comes from writing the equation of motion as x;4| — x; = . . B ~

g(t, xs,up). If we rediﬁne the Hamiltonian accordingly, then (4) is replaced by p; — p,_ = I,},lg)é Z(;ﬁ lpus = Ct, xpu)], t=0,1,...,T =1, x4 =x —u;, x>0 (

—H(t, x}, u}, p;), which corresponds to equation (9.2.5). =

Sufficient conditions are given in following theorem. The proof is similar to the proof of ' assuming also that .
. . . . - _ .
the corresponding theorem in continuous time. ] ur < xy, t=0,1,...,T @

] because the amount extracted cannot exceed the stock.
THEOREM 12.4.2 (SUFFICIENT CONDITIONS) ‘ Because of restriction (ii), this is not a dynamic optimization problem of the type de
scribed by (1). However, if we define a new control vy by u; = v, then restriction (i
combined with u, > 0 reduces to the control restriction vy € [0, 1], and we have a stanc
ard dynamic optimization problem. Assuming that C (¢, x, u) = u*/x,0 < p < 1, an
B € (0, 1), apply the maximum principle to the problem

Suppose that the sequence triple ({x;'}, {u}}, {p}) satisfies all the conditions in
Theorem 12.4.1, and suppose further that H (¢, x, u, p;) is concave with respect
to (x, u) for every ¢. Then the sequence triple ({x;"}, {1}, {p;}) is optimal.

, max “(puxi —vix),  xpr =x(1—v), x>0, v €[0,1] (i
Suppose that admissible pairs are also required to satisfy (x;, u;) € A,, t = 0, | wel0l] ;ﬂ PUrX; Xt t+1 t 1) '

, T, where A, is a convex set for all . Then Theorem 12.4.2 is still valid, and H need
only be concave in A;. with x7 free.
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Soiution: We denote the adjoint function by A,. We know that A7 = 0. The Hamiltonian
is H = B'(pvx —v%x)+Ax(1—v). (Thisis valid also fort = T, because then A = A7 = 0.)
Then H) = B'(px —2vx) —Ax and H, = B'(pv — v?) 4+ A(1 —v). So (3) implies that, for
({x7}, {v}}) to solve the problem, there must exist numbers A, with A7 = 0, such that, for
allt =0,...,T,

[B'x(p —2vf) — hex[1(v —v) <0 forall vin [0, 1] (iv)

Fort = T, with A7 = 0, this condition reduces to
ﬂTx;(p —2vp)(v—v3) <0 forallvin [0, 1] v)
Having v} = 0 would imply that pv < 0 for all v in [0, 1], which is impossible because
p > 0. Suppose instead that v;. = 1. Then (v) reduces to ,BTx;(p —2)(v—1) <O0forall
v in [0, 1], which is impossible because p — 2 < 0 (put v = 0). Hence, v} € (0, 1). For

t = T, condition (v) then reduces to ﬂTx} (p —2v7) =0, and so

p (vi)

=

v =
According to (4), fort =1,..., T,
himt = B} (p — v}) + (1 — o] (vii)
For t = T, because Ay = 0 and v} = % p, this equation reduces to
rro1 = pTvi(p —vp) = ;p°BT (viii)
Fort = T — 1, the term within square brackets in (iv) is
BT xi_ (p = 2v5_)) — Ar—ixp_ =BT [p(1 = §Bp) — 20741 (i)

Because 0 < p < l and 8 € (0, 1), one has 1 > %ﬂp. It follows that both v;_, = 0
and v}_, = 1 are impossible as optimal choices in (iv), so v;._; € (0, 1) can only be the
maximizer in (iv) provided the square bracket in the last line of (ix) is 0. Hence

vi_y = 3p(1 = 38p)

Let us now go k periods backwards in time. Define gr—x = Ar_¢/8 T=k We prove by
backward induction that at each time T — k we have an interior maximum point vy_, in (iv).
Thenvy_, = %(p —qr_1), which belongs to (0,1) if g7 ¢ € (2— p, p). Using (vii) and the
definition of g7, we find that g7_ 1) = F(gr—i) where F(q) = B[;(p —@)*+q] = 0.
Note that g — F(q) is a strictly convex function, and by the assumptions on the parameters,
we have 0 < F(g) < max{F(0), F(p)} = max{Bp?/4, Bp} < p for all ¢ in [0, p].
Because g7 = 0, it follows that gr—x does belong to (0, p) for all k& > 1. Thus the
solution of the problem is given by v} _, = (1/2)(p —qr-«), where g7 is determined by
ar-k+1 = BT Prr_41y = F(gr—i), with g7 = 0.
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PROBLEMS FOR SECTION 12.4

1. Consider Problem 12.1.1.

(a) Write down the Hamiltonian, condition (3), and the difference equation for p;,.
(b) Use the maximum principle to find a unique solution candidate.

(¢) Solve the problem by using Theorem 12.4.2.

2. (Boltyanski) Consider the problem

T
2 _ 5.2
u,g[lff,u;(uf 2x7) st Xeyq = uy, t=0,1,....,.T -1, x=0

(a) Provethatu = Ofort =0,1,...,7 —1,and uy =1 (or —1) are optimal contro
(Express the objective function as a function of uo, Uy, ..., ur only.)

(b) Verify that the conditions in Theorem 12.4.2 are satisfied.

(c) Verify that u* does not maximize H(t, x[, u, p) foru e [—1, 1].

12.5 More Variables

Consider the following problem with n state and r control variables:

T

mafo(t,x,,u,), X4l = g(4, X, W,), Xois given, u, € U CR (1
t=0

Here x; is a state variable in R” that evolves from the initial state xq according to the law ¢

motion (11), with w; asa control thatis chosen ateach r = 0,...,T. Weputx, = (x} x7
ti ,T. =0, ..., X"
W= (u,...,u),and g = (gl, ..., &"). We assume that the control region U is convex.
The terminal conditions are
(@ xh=x" fori=1,...,1
(b) xp =% fori=1I+1,....m @
(c) xhfree fori=m+1,....n
Define the Hamiltonian by
n .
t) bl : [
H(, %, u, p) = {(Jof( X u)+i§lpgz(t,x,u) for t <T
ft,x,u) for t =T
where p = (p', ..., p") is called an adjoint function (or co-state variable). (For a prooi

of the following theorem, see Arkin and Evstigneev (1987).
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THEOREM 12.5.1 (THE MAXIMUM PRINCIPLE AND SUFFICIENCY)

Suppose that ({x;'}, {u}}) is an optimal path for problem (1)—(2). Then there exist
vectors p; in R” and a number g, with (go, pr) # (0, 0) and withgo = O or 1,
such that forr =0, ..., T,

> HL (L x;uf,p) () — (u)') <0 forall ue U 3)
Also, the vector p, = (p}, ..., p") is a solution of
pi_y=H,@txu,p), t=1..T-1 )
Moreover, 2F (T, .
. x* ,u .
Pr-1 =490 —5,T—T Pr ®
where the vector pr = (pr., ..., p) satisfies
(@) ph noconditions i=1,...,1
() ph >0 (ph=0ifx} > x') i=l+1...,m (6)
) ph=0 i=m+1,....n

If the conditions above are satisfied with go = 1 and H (¢, X, u, p) is concave in
(x, u), then ({x}}, {u/}) is optimal.

f E 1 If m = 0 (so that there are no restrictions on the terminal state x7), then p7 = 0
and it follows from Theorem 12.5.1 that go = 1.

¢ 2 If uf is an interior point of U, then (3) implies that H,;i (t,x},u’, p;) = 0 forall
i=1,...,r.

Infinite Horizon

We consider briefly the following infinite horizon version of problem (1)—(2),

o0
mafo(t,Xt, u), x; €R", w,eUCR", U convex @)
t=0

where we maximize over all sequences (X;, u,) satisfying
Xp1 =g X, u), t=1,2,..., X given 3

and the terminal conditions

(a) lim x;(T) = x;, i=1,...,m
T—o00 R . / (9)
(b) lim x(T) > x;, i=m+1,....,m

T—o00

SECTION 12.5 / MORE VARIABLES

Note that f and g = (g, ..., g,) can now depend explicitly on ¢. Assume that the su
(7) exists for all admissible sequences. The functions f and g are assumed to be C!
respect to all x; and u;.

We do no more that state a sufficient condition for such problems:®

THEOREM 12.5.2 (SUFFICIENT CONDITIONS)

Suppose that the sequence ({x}}, {uy}, {p;}) satisfies the conditions (3)—~(6) and
for go = 1. Suppose further that the Hamiltonian H (t, X, u, p;) is concave in
(x, u) for every ¢. Then ({x}}, {u}'}) is optimal provided that the following trans-
versality condition is satisfied: For all admissible sequences ({x,}, {u,}),

lim p;(x; —x;) >0 |
t—>00

2 3 Suppose there are additional conditions for a sequence {X;, u,} to be admissi
Then (10) needs only to be tested for such sequences.

PROBLEMS FOR SECTION 12.5

1. Consider the problem

2
Eﬁ%ZI-}—x,—y,—Zu, v7] st
1=0

t=0,

Xe4l =Xp — U, X0 =15
Vel =Y+, yo=2'

(a) Solve the problem by using the difference equations to express the objective funct
I as a function only of ug, u;, uy, vo, vy, and vy, and then optimize.

(b) Solve the problem by using dynamic programming. (Find Jo(x, y), Ji(x, y),:
Jo(x, y) and the corresponding optimal controls.)

(c) Solve the problem by using Theorem 12.5.1.

2. Solve the problem
T
maxz:(—xt2 — utz) subjectto  Xy1 =y, Y41 =y +u, t=0,1,..., T —

t=0

where xo = x° and yy = y9 are given numbers and u; € R.

® For the definition of lim see Section 10.3.
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EXAMPLE 1

3. Solve the problem

e°]
maxZ,B’(x, —u,)] subjectto x4y =u;, x0>0, u >0
t=0

where 8 € (0, 1). Verify that x > u} for all ¢.

Stochastic Optimization

What is the best way of controlling a dynamic system subject to random disturbances?
Stochastic dynamic programming is a central tool for tackling this problem.

In deterministic dynamic programming the state develops according to a difference equa-
tion X,+1 = g(t, X;, u;), controlled by appropriate choices of the control variables u,. In
this section, the state X; is influenced by random disturbances, so that x; is a stochastic vari-
able. Following common practice, we often use capital letters instead of lower case letters
for stochastic quantities, e.g. X, instead of x,. We assume that x, belongs to R", that u, is
required to belong to a given subset U of R”, and thatr =0, ..., T.

Suppose now that the state equation takes the new form

Xi+1 =g, X, Viyp),  Xo = Xo, Vo = vo, with Xg and vg given, uw, e U (1)

We consider two cases. In the first, V4| is a random variable that takes values in a finite
set V. It is assumed that the probability that V;;; = v € 'V may depend on the outcome v;
at time 7, as well as explicitly on time 7. Then we consider the conditional probability that
V.11 = v, given v;, which is denoted by P; (v|v;). In the second case, V,| may take values
anywhere in a Euclidean space. Then the distribution of V,; is assumed to be described
by a conditional density p;(v|v,) that is a continuous function of v and v, together.

Suppose that Z, Z,, ... are independently distributed stochastic variables which take
positive values with specified probabilities independent of both the state and the control.
Thus, ateach time ¢t =0, ..., T, either there is a discrete distribution P;(Z;), or a continu-

ous density function p,(z,). The state X, is assumed to evolve according to the stochastic
difference equation
X1 = Zip1 (Xy — uy), u; € [0, 00) (1)

Here u, is consumption, X, — u} is investment, and Z, is the return per invested dollar.
Moreover, the utility of the terminal state x7 is S(T, xr, u) = BT Bx; ” and the utility of
the current consumption is B’ u,l "V fort < T, where B is a discount factor and 0 < y < 1.
The paths of the state x, and of the control u, are now uncertain (stochastic). The objective
function to be maximized is the sum of expected discounted utility, given by

T-1
E[Zﬂ'u}“V +ﬂTBX;‘V] (ii)

t=0

SECTION 12.6 / STOCHASTIC OPTIMIZATION

This problem will be studied in Example 3. In the discrete variable case, the expec
will be a sum, but in the continuous variable case it will be an integral.

Consider first a two-stage decision problem with one state and one control variable. As
that one wants to maximize the objective function

E[£(0, Xo,u0) + f(1, X1,u1)] = £(0, Xo, uo) + Ef(1, X1, uy)

where E denotes expectation and f is some given function. Here the initial state X 0
and an initial outcome vy are given, while X is determined by the difference equatio
ie. X1 = g(0, xo, ug, V1). We can find the maximum by first maximizing with respe
ui, and then with respect to ug. When choosing u;, we simply maximize f(1, X,
assuming that X; is known before the maximization is carried out. The maximum
u} becomes a function ui(X1) of X;. Insert this function instead of u; in the obje
function, and replace the two occurrences of X by g(0, xo, ug, V7). Then ug occurs in
terms of the objective function. A maximizing value of u is then chosen, taking both
occurrences into account.

To see why it matters that we can observe X before choosing u, the following exa
is illuminating: Consider the simple two stage decision problem with f(0, Xo, ug)
S, X1, u1) = Xju;, and X| = V;, where V; takes the values 1 and —1 with probabi
1/2, and where u must equal one of the two values 1 and —1. Then E(Xju] =01
have to choose u before observing X, hence a constant u 1. But if we can first observ
then we can let u; depend on X;. If we choose u; = u1(X1) = Xy, then E[X u4]
which yields a better value of the objective. In all that follows we shall assume that X
fact, both X, and V), can be observed before choosing u;.

Let us turn to the general problem. The process determined by (1) and the values ¢
random variables Vi, V3, ... is to be controlled in the best possible manner by approg
choices of the variables u,. The objective function is now the expectation

E [XT:f(I, X, u (X, Vt))]

t=0

Here several things have to be explained. Each control u,r=20,1,2, ..., T shoul
a function u,(x,, v;) of the current state X, and the outcome v;. Such functions are c:
“policies”, or more specifically Markov policies or Markov controls. For many stoch
optimization problems, including those studied here, this is the natural class of polici
consider in order to achieve an optimum. The policies that occur in (2) are of this type.
letter E, as before, denotes expectation. To compute it requires specifying the probabil
that lie behind the calculation of the expectation. Recall that in the discrete random vari
case the probability for the events V| = v; and V, = v, to occur jointly, given Vo =
equals the conditional probability for V, = v, to occur given V| = v, times the probab
for Vi = v, to occur given Vo = v,. That is, the joint probability equals Py (v, | vy) ti
Po(vi]vo). Similarly, the probability of the jointevent Vi = v;, Vo =v,, ..., V, =y
given by
P'(vVi, ..., v) = Po(vi Vo) - Py(va | Vi)« P (¥ | Vi)
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In the continuous random variable case, the same formula is valid in determining the joint
density p'(vy, ..., v,) provided each P; is replaced by p;.

Now, given the policies w,(x;, v;), the sequence X;, ¢ = 1, ..., T in (2) is the solution
of (1) whenVy, ..., V,andu, = w,(X;, V;),t =0, ..., T — 1 are inserted successively.
Hence, X; depends on Vi, ..., V, and, for each ¢, the expectation Ef (¢, X;, u,(X;, V;))
is calculated by means of the probabilities (or densities) specified in (3). We can write (2)
as Z,T:O Ef(t, X;,u,(X;, V;)), so we have now explained how the expectation in (2) is
calculated.

Though not always necessary, we shall assume that f and g are continuous in X, u (or in
X, u, and v in the continuous random variable case).

The optimization problem is to find a sequence of policies ug(xo, Vo), . .., Uy (Xr, vr),
that gives the expression in (2) the largest possible value.

We now define

T
‘](t7 X, vl‘) = maXE [Z f(S’XS‘ uS(XS9VS)) l X, vt} (4)

s=t

where the maximum is taken over all policy sequences u; = u;(Xs, V5), s =17, ..., T, given
v, and given that we “start” equation (1) in state x, at time ¢, as indicated by “| x,, v;” in
(4). The computation of the expectation in (4) is now based on conditional probabilities
of the form P(Vi41, ..., Vs | V) = Pr(Vig1 | V4) -+ Ps—1(vs | Vs—1) in the discrete case, and
conditional densities in the continuous case.

The central tool in solving optimization problems of the type (1)—(2) is the following
dynamic programming equation or optimality equation:

J(t=1,%_1, V1) = r‘?af{f(t —Lx—p,we) + E[J@. X, V) [ X, vim1 ]} )

where X; = g(t — 1,%,-1,u,_1, V;). The “x,_;” in the symbol “|x,_, v,—;” is just a
reminder that inserting this value of X, makes the expectation depend on X,_;, as well as
on V,_;. After this insertion, equation (5) becomes

J@ = 1,%-1,V—1) =
max{f(t - Lx—,u-)+E [J(t =1, 8@, X1, uy, Vr)»Vr)|Vt—l]}

-1

Moreover, when t = T we have

J(T,xr, vr) = J(T, xr) = max f(T, xr, ur) (6)

As in the deterministic case, first (6) is used to find u}.(x7, vr). Then (5) is used repeatedly
to find wy_; (X7_1, v7_1), U} _,(Xr—2, V7-2), €tc.

Equations (5) and (6) are, essentially, both necessary and sufficient. They are sufficient
in the sense that if wf  (x,_, v,—1) witht =1, ..., T maximizes the right-hand side of
(5) (or (6) fort =T + 1), thenuw}_, (X,—1, V,—1), t = 1,..., T + 1, are optimal policies.
On the other hand, they are necessary in the sense that, for every x,_;, an optimal control

EXAMPLE 2
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u (X1, V1), t =1,..., T, yields a maximum on the right-hand side of (5), a
t = T + 1, on the right-hand side of (6). To be a little more precise, it is necessary 1
optimal control u;_, (X;—1, v;—1) yields a maximum on the right-hand side of (5) (
for all values of x,_; and v, that can occur with positive probability (positive prot
density in the continuous case).

The intuitive argument for (5) is as follows: Suppose the system is in state X,
given u,_1, the “instantaneous” reward is f(r — 1, X,_, u,_;). In addition, the m
expected sum of rewards at all later times is E[J(t, X;, V) | X,—1, V;—1] providec
g(t —1,%-1,u-1, V,). When using u,_, the total expected maximum value gain
all future time points (now including even ¢ — 1) is the sum in (5). The largest expect
comes from choosing u,_| to maximize the right-hand side of (5).

Note that when P;(v | v;) (or p,(v|v,)) does not depend on v;, then v; can be d
from the functions J;(x;, v;), u;(X;, v;) and in (5) and (6). (Intuitively, this is bec.
(5) the conditioning on v,_; drops out, so J(¢ — 1, X,_1, v;—1) and the maximizing
u_; = w_(X,—1, v,—1) will not depend on v,_;.) Some examples below empl
simplification.

i The argument above also holds if the control region is a closed set that d
on ¢t and x—for example, if U = U(¢t, x) = {u : h; (¢, X, u) < 0} where the function:
continuous in (X, u). Thus it is here required that u, € U (¢, X;). In this case the cor
in Note 12.1.5 carry over.

Suppose that a gambler chooses to bet a certain fraction u of his wealth at eves
Because of his skill, he wins this fraction with probability p > 1/2. Thus, if his
at time ¢t — 1 is x,_, then x, is equal to x;_; + ux,_; with probability p, and x; i
to x,—; — ux,—; with probability 1 — p. (Formally, X, = X;_; + u,—1V: X;1,
Vi € {—1,1}, Pr[V, = 1] = p, and Pr[V, = —1] = 1 — p.) Suppose that he is g
play T times, and that the utility of terminal wealth x7 is f(7, x7) = Inxy = J(
(note that f (T, x7) is independent of u7). We also have f(t,x;) =0fort <T.

If the gambler’s wealth at time 7" — 1 is xy—; and he then bets uxr_j, he v
In(x7-1 + uxy—1) with probability p and In(xy_; — uxy_;) with probability g =
Thus, the expected utility of his terminal wealth is

pIn(xr—i +uxr_) +qln(xy_1 —uxy_1) =Inxy_| + A(u)

where A(u) = pIn(1+u)+qIn(1 —u) (because p+¢q = 1). Attime T — 1 the opt
equation is therefore

J(T —1,xp_1) =Inxp_ —I-Omaxl A(u)
<us<

The function A(u) is concave, so the maximum is attained where

, 1 1
Au)y=p———gq =0

1 +u 1l —u
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This implies p(1 —u) = qg(1 +u),or p—q = u(p+4q) =u,sous_, = p—gq.
Inserting this expression for u into the right-hand side gives the maximum value. This is
J(T'—1,x) =Inx + B,where B=pIn[l1 4+ (p —¢)]+qgIn[l — (p —q)] = pIn(2p) +
qIn(2q) =In2+ plnp +gqlng.

Starting from x7_,, we end up at xy_; = x7_, + uxy_, with probability p, and then
obtain J(T — 1,x7_1) = In(xr—2 + ur—2x7-2) + B; with probability g we end up at
XT—1 = Xr—2—ur—_2x7—3andobtain J(T — 1, xy_;) = In(xy_p —ux7_>) + B. Therefore,

J(T =2, x7-) = Jnax (p[In(xr—2 + uxr_2) + B] + q[In(x7—> — uxy_5) + B])
=Inx7_2+ B+ max A(u)
O<u<l

Once again, the maximum value in the latter maximization problem is B, withu = p — q.
Hence
J(T —2,x72) =Inxr_»+2B ur ,=p—q)

Continuing in this manner, for k = 3,4, ... gives
J(T —k,xp_x) =Inxr_; + kB (M;’—k =p—q)

To conclude, we see that in every round it is optimal for the gambler to bet the same fraction
u = p—gq = 2p — 1 of his wealth. (If the objective function were f(T,xr) = xr and
p > 1/2, itis easy to see that he would bet all his wealth at every stage.)

The strict concavity of the utility function In x7 means that a decline in wealth reduces
utility more than a corresponding rise in wealth increases utility. Therefore the gambler is
careful and bets only a fraction each time. This is what economists call risk aversion.

Solve the problem in Example 1,
T-1
max E| Y8+ BTBX; 7], Xei=Zea (K —u). x>0 u € (0,x)
t=0
where 0 < ¥y < 1,0 < 8 < 1, B > 0, and {Zz},T;Ol is a sequence of independently
distributed non-negative random variables with E Z[1 Y < ooforall .
Solution. Here J(T, x7) = ,BTBx;_y. To find J(T — 1, x7—1) , we use the optimality
equation

J(T =1, x7-y) =max (B""'u'™ + E [T B(Zr (xr—1 =)' 7)) ()

The expectation must be calculated by using the probability distribution for Z7. In fact,
the expectation term in (*) is equal to 87 BDy(xr—; — u)!~Y, where D, = E[Ztl_y].
Hence, the expression to be maximized in () is BT 'u!=" + BT BDy(xp_; — u)!~7.
Define Cr = B, C}/”, = 1+ (BBDr)"/”, and generally C)”” = 1+ (8C,11D,11)"/”. The
same calculations as in Example 12.1.4 show that, in general, maximizing the expression
(1 — Y)us + BCrira, " (x — u)'=7 for u, € (0, x,) gives u; = x/C}"", with maximum
value equal to C,x'~7, where C;”” = 1 + (BCy41a,7")1/7. Applying this for D, = a”’
gives Jr_1(x) = BT Cr_ixV ur_y = X/C}/.yl, Jr—2(x) = BT 2Cr_ox! ™ ur_y =
x/C}/_yz, and generally J, = B/C,x'", u, = x/C" .
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We conclude this section with the following formal result:

THEOREM 12.6.1 (SUFFICIENCY OF THE OPTIMALITY EQUATIONS)

The sequence of policies & = {u,(x;, vt)}tT=0 solves the problem of maximizing
(2) subject to (1) if, together with a sequence of functions {J (¢, x;, v,)}frzo, it
satisfies the optimality equations (5) (fort = 1,2, ..., T) as well as (6).

Let r = {u,(x;, V:)},T=o be an arbitrary control sequence. Define

T
J”(t’ X, v!) =E [Z f(sv XS? uS(XA‘v VS))IXN VI}

s=t

which is the conditionally expected value in state (x,, v;) at time ¢ of following & from that ¢
Trivially, J*(T, xr, vr) < J(T, Xz, vr), with equality if ur(xr, vr) satisfies (6). By backw
induction, let us prove that J* (¢, x,, v,) < J(t,%,, v,), with equality if & is such that u,(x;
satisfies (5) fors = ¢, +1,..., T — 1, and ur(xr, v7) satisfies (6). As the induction hypoth
assume that this is true for ¢. Replacing # by ¢ — 1 in the above definition gives

T
JH =1, X1, vim) = f(t— 1, %1, 0 (X1, Vi—1)) + E [Z S, X, u (X, Vo) Ixe—1, v

s=t

But the law of iterated expectations and the induction hypothesis together imply that

T T
E [Z £, X, u5(X, Vs>>|x,~1,v,_l} =V [E [Z £, X, us (X, Vo)X, V,] X1, Vi

s=t s=t

= E[J"(t,X;, V)IX—1, Vi1 < E[J (¢, X, VO IX,—1, v,

where X; = g(t,X,—1, w_1 (X1, V,—1), V;), with equality if u,(x,, vy) satisfies (5) for s -
t+1,...,T — 1, and ur(xy, vr) satisfies (6). Hence

JE =1, %21, Vim) < fO =1 Xy, wo (Xe—y, Vem1)) + E[J (6, X, VO X—1, Vioi]
< mle{f(l‘ —Lx,w)+ E[J(#, g(t, x—1,u, V), Vv, 11}

=J@—1,%-1,Vi—1)

with equalities if u, (Xy, vy) satisfies (5) fors =+ —1,¢,t+1,..., T — 1, and up(xr, vr) sati
(6). This verifies the induction hypothesis for # — 1, and so completes the proof.

In the discrete variable case, the above proof is easily adapted to show that a policy n
optimal only if the optimality equations hold at every time ¢ (t =0, 1,2, ..., T)inany s
(x;, v;) which is reached with positive probability given &r*. In the continuous variable ¢
these necessary conditions become a little bit more complicated: essentially, the optime
equations must hold at every time ¢ (t = 0, 1,2, ..., T) in almost every state (X;, v;) wi
has a positive conditional probability density given x*.
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The Stochastic Euler Equation

In the formulation of problem (12.2.1) leading to the Euler equation, let the function F in
the criterion contain a stochastic variable V;; = v, governed as before, by a conditional
probability distribution P, (v, |v;) or a conditional density p;(v|v;). Hence, consider the

problem
T

max E Z F(t, Xi, Xi41, Vit1),  xo given, xq, ..., x4 free
=0
Now, we allow x; to be a function of v, and x;_;. Hence we decide the value of x, after
observing v;. Then the Euler equations takes the form

Fi(T, x7, x741(x7, v741), v741) = 0 *)

and fort =0,..., T — 1,

E[F(t+1, X1, Xpp2(Xet1, Vig), Vig) i1 1+ F3 (8, Xe, Xe1 (Xr, Ve1), Ve1) = 0 (5F)

First, (x) is solved for x741, yielding the function x74; = x741(x7, vry1). Next, this
function is inserted into (x%) for + = T — 1, and () is then solved for x7, yielding
xr = x7(x7_1, vr). Then this function is inserted into (k%) for t = T — 2 and (*x*)
is then solved for x7_; yielding the function x7_;(x7_3, vr—1). In this manner we work
backwards until the function x; (xg, v1) has been constructed. Since xg is given, the value of
x1 is determined once we have observed v;. Then the value of x, = x»(x1, vp) is determined
once we have observed v, and so on.

PROBLEMS FOR SECTION 12.6

1. Consider the stochastic dynamic programming problem

T-1
max E[—8 exp(—yXT)+Z —exp(—yu,)], X1 =2X,—u;+Viyy,  xo given
=0

where u, are controls taking values anywhere in R, § > 0 and y > 0. Here V41,

t =0,1,2,..., T — 1, are identically and independently distributed. Moreover,
K =F [exp(—yV,+1)] < 00. Show that the optimal value function J(¢, x) can be
written J(t, x) = —o; exp(—yx), and find a backwards difference equation for «;.
What is a7 ?

2. (Blanchard and Fischer (1989)) Solve the problem
T-1

max E [2(1 +6)'InC, +k(146)TIn AT]
t=0

where w; and C; are controls, £ and 6 are positive constants, and
At = (A — CHIA +row + (1 + Vi) (1 — wy)]

where r; is a given sequence. The stochastic variables V; are independently and identic-
ally distributed.

SECTION 12.6 / STOCHASTIC OPTIMIZATION 4

. Solve the problem

maxE[ZZu:/2+aXr], a>0, x9p>0, Tfixed, u; >0
t<T

where X, = X, — u; with probability 1/2 and X, = 0 with probability 1/2.

. Solve the problem

T-1
max E Yy —uf — X7 subjectto Xip1 = X¢Vipr +ur, Vigr €10, 1)
t=0

with Pr{Vis, = 1|Vi = 1] = 3/4, Pr[Viyy = 1|V, = 0] = /4. (Hint;
J(t,xt,l)——‘——a[xrz, J(t,Xf,O)’;—b[.x?.)

. Solve the dynamic programming problem

T
max E Z(l —u)X:, X=X +uXi+Viqr, xo= 1, u el[0,1]
t=0

where V;1 > 0 is exponentially distributed with parameter A (i.e. the density of |

is @(v) = Ae™MV).

. (Hakansson) Let x; denote capital, y, income, ¢; consumption (a control), and z,

vestment with uncertain return (another control). The balance x; — ¢, — z; is place
a bank, where it earns a return r equal to 1 plus the interest rate. Let the gross rat
return on the uncertain investment (i.e. z) be B; (so B; equals 1 plus an uncertain net
of return). Assume the random variables f3; are independent and identically distribu
Then

Xex1 =B =1z +r(Xe —c) +w

Assume that EB; > r. Let K > 0, y € (0, 1) be given numbers. The maximiza

problem is
T-1

max E [Z(a’/y)cf e K(WT/V)X;]

t=1
where ¢; > 0, z; > 0.
(a) Solve the problem, i.e. find the optimal controls. Assume that ¢, > 0 and x;4]

in optimum. (Hint: When maximizing w.rt. (c, z), first maximize w.rt. z. W
maximizing w.r.t. z, use the fact that for an arbitrarily given number b > 0, one

max E[{rb+ (B — 1z}’ =b"a, wherea = max E[{r + (B —r)s}']

Don’t try to find a, use it as a known parameter in the solution of the p
lem. Formally, we let w¥ = —oo when w < 0. Write expressions of the 1
{(y+r(x—c)+(B—r)z}" as {r(%y +x —c¢) + (B — r)z}¥ when using (*).

(b) Discuss dependence on parameters in the problem, including the distribution
Show ().
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7. Consider the problem

T-1
max E[Z((] —u) X7 — 1) +2X%] s-t Xy =u, X, Vip1, u, € U =10, 1]
t=0

where V., = 2 with probability 1/4 and Vi+1 = 0 with probability 3 /4.

(a) Find J(T,x), J(T — 1,x), and J(T — 2, x). (Note that the maximand will be
convex in the control u, so any maximum will be situated at an endpoint of U.)

(b) Find J(t, x) for general .
8. Solve the problem

maxE[ Z u,l/z—l-aX,]/z] subject to Xiv1 =Xy —u) Vg

I<t<T-1

where @ and T are given positive numbers, and where Vi+1 = 0 with probability 1/2,
Vi+1 = 1 with probability 1/2. (Hint: Try J (t, x) = 2a,x'/2, g, > 0.)

9. Solve the gambler’s problem in Example 2 when f (T, x7) = (x7)!~@ /(1 — ), where
a>0,a#1.

10. (Bertsekas (1976)) A farmer annually produces X units of a certain crop and stores
(1 — ug) Xy units of his production, where 0 < u; < 1. He invests the remaining uy X
units, thus increasing next year’s accumulated output to a level Xy given by

X1 = Xi + wpug Xy, k=0,1,...,N -1

The scalars Wy are independent random variables with an identical probability distri-
bution that depends neither on Xg nor ug. Furthermore, E[W,] = & > 0. The problem
is to find the optimal policy that maximizes the expected output accumulated over N

years,

N-1

E[Xy + Y (1 -uxi]

k=0

Show that one optimal control is given by:
(i) If w > 1, then uj(xg) =--- = uy_(xy—1) = 1.
(i) If0 < w < 1/N, then ug(xg) = -+ = uy_ (xn—1) = 0.
(iii) If 1/N < w < 1, then
ug(xo) =+ =uy o (xy_i_) =1
Uy gy = =uy_(xy_) =0

where k is such that 1 Jk+1) <@ < 1/k. Note that this control consists of constant
functions.

12.7
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11. Use the stochastic Euler equation to solve the problem

2
max E ) [1 = (Wit + Xt — X)2 + (1+ 03+ X3)l,  Xo =0, Xy, Xz, X3
t=0

where all v; are identically and independently distributed, with Ev, = 1/2.

Infinite Horizon Stationary Problems

We consider an infinite horizon version of the problem in the previous section. Sup
that both P; (v, | v;) (or p;(v;41|Vv;)) and g are independent of ¢, and that the instar
eous reward is B’ f(x, u) with 8 € (0, 1]. The problem is then often called stationa
autonomous. We focus on the discrete variable case, which takes the form

(e e]
m;,leZ,Btf(X,, u(X;, V), w(X,, V) eU, Pr[Viyi =v|v]=P(v|v)
t=0

where X, is governed by the stochastic difference equation
Xit1 = X, w (X, Vi), Vig)

with X and V given. The functions f and g are continuous. The control functions u,
values in a fixed control region U. Among all sequences & = (ug(Xo, Vo), u; (X, V),
of Markov controls, we seek one that maximizes the objective function in (1).

We introduce the following boundedness condition:

M, < f(x,u) < M, forall (x,u) € R" x U, where M; and M, are given numbers

For a given sequence r, let us write

Ta(s. % %) = E[ Y2 B (X wi (X, VO) | x4 v,]

t=s

and define J (s, X, v5) = sup, Jr (s, X;, vy). We claim that J (1, Xo, vo) = B8J(0, X0,

The intuitive argument is as follows. Let J,’; x,v) = sz E[B~* fXs, u, (X, V))) |
and let J*(x, v) = sup, J£(x, v). Then J¥(x, v) is the maximal expected present valu
future rewards discounted back to = k, given that the process starts at (x, v) at time ¢ -
When starting at (x, v) at time ¢t = 0, and discounting back to t = 0, the corresponc
maximal expected value is J(x, v) = J (0, x, v). Because time does not enter explicitl
P(v|v,), g, or f, the future looks exactly the same at time ¢ = k as it does at time ¢ =
Hence J*(x,v) = JO(x,v). But J(k, X0, vo) = B*J¥(xo, Vo) because, in the defini
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of J (k, Xq, Vo), we discount back to r = 0. Hence ;8"](0, Xo, Vo) = J(k, Xg, Vo), and in
particular 8J (0, xg, vo) = J (1, Xg, Vo).

The heuristic argument for the optimality equation (12.6.5) works just as well in the
infinite horizon case. When ¢+ = 0, if we write x and v instead of Xy and vg, define
J(x,v) = J(0, x, v), then recognize that J (1, x, v) = 8J(0, x, v), we derive from (12.6.5)
the following optimality equation or Bellman equation

J(x,v) = max{f(x, w) + BE[J (X1, V1) | x, V] (5)

where X = g(x, u, V).

Observe that (5) is a “functional equation” which (we hope) determines the unknown
function J that occurs on both sides of the equality sign. Once J is known, the optimal
Markov control is obtained from the maximization in the optimality equation. The maxi-
mization seems to yield an optimal control function u(x, v) not dependent on ¢. This is to
be expected: Whether we observe (x, v) at time O or at time ¢ does not matter; the optimal
choice of control should be the same in the two situations, because the future looks exactly
the same at both these times.

When the boundedness condition (3) is satisfied, it can be shown that the optimal value
function is defined and satisfies the optimality equation. Moreover, the optimality equation
has a unique bounded solution J (x, v). (At least this is so when “max” is replaced by “sup”
in the Bellman equation.). Furthermore, J (X, v) is automatically the optimal value function
in the problem, and any control u(x, v) that maximizes the right-hand side of (5), given the
function J(x, v), is optimal.

NOTE 1 (Alternative Boundedness Conditions) Complications arise when the bounded-
ness condition (3) fails. First, the Bellman equation might then have more than one solution,
or perhaps none. Even if it has one or more solutions, it might be that none of them is the
optimal value function.

We consider two cases where some results can be obtained. In both cases we must allow
infinite values for the optimal value function J(x), +00 in case A, and —oo in case B. (Of
course, J(x,v) = oo and J(x,v) = —o0 in a sense satisfy the Bellman equation, being
perhaps “false” solutions.)

A Either f(x,u) > 0 forall (x,u) € R" x U and B € (0, 1], or for some negative number
y, f(x,u) >y forall (x,u) e R" x U and B € (0, 1).
In this case if u(x, v) yields the maximum in the Bellman equation with J¥(x, v) inserted,
then u(x, v) is optimal. Here J"(x, v) is the value function arising from using u(x, v) all
the time.
Sometimes it is useful to know the fact that if J"(s, x, v, T) is the value function arising
from using u = u(x, v) all the time from s until t = T, then J"(0,x, v, T) — J%(X, v) as
T — oo.

B Either f(x,u) <0 forall (x,u) € R" x U and B € (0, 1], or for some positive number
v, f(x,u) <y forall (x,u) e R" x U and B € (0, 1).

In this case it is known that if u(x, v) satisfies the Bellman equation (i.e. yields maximum)
with the optimal value function inserted, then u(x, v) is optimal. If we are able to prove

EXAMPLE 1
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that the Bellman equation has one and only one solution J(x,v) > —oo, then this is tt
optimal value function J (x, v) provided we know that J(x, v) > —oo. (Recall that J (x,
is known to satisfy the Bellman equation, both in case A and B.) Another possibility is tt
following: Suppose we have solved the finite horizon problem, with horizon 7. Assume th
U is compact, and that f(x, u) and g(x, u, v) are continuous in (x, u). Denote the optim
value function in this problem by J (0, x, v, T). If we now find the limit Tleoo JO,x,v,T
then this is the optimal value function. (As T — 00, J (0, x, v, T') converges to the optim
value function in this case, as well as in the cases A and (3).) For the results in this note s
Bertsekas (1976) and Hernandez-Lerma and Lasserre (1996).

To sum up, what do we do after we have found a pair (u(x, v), f(x, v)) satisfyAing tt
Bellman equation? In case A, we try to check if J" = J holds. If it does, (u(x, v), J (X, v
is optimal (J is then the optimal value function). In case B with J > —o0, we either try
show that J is the only solution greater than —oo satisfying the Bellman equation and th
J > —o0, or we try to check that J(0,x,v,T) — f(x, v) as T — oo. If either of the:
tests comes out positive, (u(x, v), J (x, v)) is optimal.

- 5 The boundedness condition (3), or the alternatives in Note 1, need only hold f
x in X (Xg) = U, X, (xo) for all £, where X;(xg) is the set of states that can be reach
at time ¢ when starting at X at time 0, considering all controls and all outcomes that c:
occur with positive probability. The conclusions drawn in the case where (3) is satisfied a
also valid if the following weaker condition holds: There exist positive constants M, M
«, and 8 such that for all x € X(xo) and u € U, one has | f(x,w)| < M*(1 + [Ix[|*) a
lgx,u)|| < M + §||x||, with B6% < 1 and B € (0, 1).

Consider the following stochastic version of Example 12.3.1:
. 1
I=y 1=y
max E [ X, w ]
w,€(0,1) ; FX: w
Xip1 = Vig1(1 —w))X,, xois apositive constant, 0 <y < 1 (
Here, Vi, V,, ... are identically and independently distributed nonnegative stochastic va

ables, with D = EV!7Y < oo, where V is any of the V;. Now, w € (0, 1) is the control.
is assumed that
Be© 1), ye©1, p=(@D) <1 §

In the notation of problem (1)~(3), f(x, w) = x'77w!™” and g(x,w, V) = V(I — w)
The optimality equation (5) yields

J(x) = m(%ﬁ)[x‘—yw‘—y +BEJ(V(1 — w)x)] (i

We guess that J(x) has the form J(x) = kx1~7 for some constant k. (The optimal val
function had a similar form in the finite horizon version of this problem discussed in t
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previous section, as well as in the deterministic infinite horizon version of Example 12.3.1.)
Then, cancelling the factor x' =7, (iv) reduces to

— 1-y _ 1—
€= B[+ Ak W)t ] 0

where D = E[V!~7]. Note that equation (v) is the same as equation (iii) in Example 12.3.1

except that a' = is replaced by D. It follows that JxX)=1-p)7x"7 withw =1 — ,o’

where p = (BD)!/7. ’
In this example the boundedness condition (3) is not satisfied for x e Ut X (x0).

. One way to tackle this problem is to use the transformation Yt = x:/V; with y, satis-
.fylng Yerr = (1 — w)zeyr, 2e41 = Vigy. Taking the expectation of the objective function
inside the sum, and using the so-called monotone convergence theorem, the problem can
be transformed into one in which the new discount factor is B = BEV!=Y < 1 and where
g =g, w) =y Ywl¥ with g satisfying (3) in | J, X, (x0). Yet another way out is the
following: Let us use A in the note above. Then we need to know that J*"(x) = J (x). It
is fairly easy to carry out the explicit calculation of J** (x) (W = w* as in (vi)), by taking
the expectation inside the sum in the objective and summing the resulting geometric series.
But We*don’t need to do that. Noting that x, = x0p'Zy ... Z,, evidently, we must have
that J¥ (xp) = kxé_y for some k. We must also have that J*" (o) satisfies the equilibrium
optimality equation with w = w* and the maximization deleted (in the problem where
U = w*, w* is optimal !). But the only value of k which satisfies this equation were found
above. Thus the test in A works and w* as specified is optimal.

Counterexamples

The Bellman equation may have “false” solutions. Two examples will be given.

Consider the problem Z;’io B'(1 — u,), subject to X1 = (1/B)(x; + uy), u, € [0, 11, xo given
B e (_0, 1]. The Bellman equation is satisfied by J(x) =y + x, where y = 1/(1 —’ﬁ)’ with an3;
u=ie [0, 1] yielding the maximum in the Bellman equation, let, say, u = 1/2. (Thé Bellman
equation is then y + x = max, {1 —u +B(y +(1/B)(x+uw)} =1+ By +x and y equals 1+ By.)
Is then Uy = 1/2 the optimal control, and J (x) = Y + x, the optimal value function? The first thing
we notg is that J¥(x) is independent of x, so Ji(x) # ¥ +x. Neither u, = 1/2 nor J (xy) = Y +Xxo
are optimal entities, it is trivial that u, = 0 is optimal, with a criterion value independent of xy and
strictly greater than the criterion value of u, = 1 /2.

What about cases where we have J "(x,v) = J(x,v), where (u(x, v), J(x, v)) satisfies the
Bellman equation? Consider the problem of maximizing Zfio B'x;(u; — o) subject to x,,; = x,u
and 0 < u, < a, where xy > 01is given, and a, B are positive constants satisfying a8 = 1, ﬂ+€ © tl]t

Note that, regardless of which u; € [0, @] is chosen in each period, one has x, > 0 for all t’ sc;
X(x0) € [0, 00). ) ’

The Bellman equation is

J(x) = Jgg);]{xw —a) + BJ (xu)}
We look for solutions of the form J (x) = yx, where y is a constant. The condition for this to be a

solution when x > 0 is that
y = max u—a—l—ﬂyu
ue[O,a]{ }
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and we see that y = —1/8 works. In this case any u € [0, «] yields maximum in the Be
equation. If we choose the same u € [0, @) in each period, then J* = Z,oio Blx,(u — a)
x; = u'xg. Hence J*(x0) = xo(u — &) 3_20(Bu)" = xo(u — a)/(1 — u) = —xo/B =
So the function J(x) = —x/B = yx solves the Bellman equation, and is the criterion valuc
corresponding stationary policy u, = constant € [0, ). However, J(x) = yx is not equal 1
criterion value of u, = «.

Now, as x, is always > 0, x,(u, — «) < 0, so u, = « is obviously optimal, with criterion
=0, and J(x) = 0 solves also the Bellman equation, with u = « as a maximizing control.

A necessary condition for optimality of a policy u(x, v) is that it satisfies the Bellman equatic
J" inserted. (It is necessary that u(x, v) satisfies the Bellman equation for the optimal value fur
J(x, v). It is also necessary that J"(x, v) = J(X, v), hence the assertion follows.) It is a nece
and sufficient condition in case A, but not in Case B. In the first example (which is of type A
Bellman equation is not satisfied by u = 1/2, it is sufficient to note that J*(x) is a constant 1
this. This condition is not sufficient in problems of type B, as we saw in the last example, whic

of this type.
The first example was actually of the type (3), so in that case the Bellman equation can
unbounded (and hence “false” solutions), in addition to the unique (correct) bounded one.

Iterative Methods

In this subsection, we describe two new methods yielding approximate solutions to in
horizon dynamic programming problems. One approximation result has already been
tioned: Under certain conditions, J(0, x, v, T) — J(x, v) when T — 00. Another me
is the successive approximation method that can be formulated as follows.

For any real-valued bounded function h(x, v), for any function u = u(x, v), d
WU (h), which denotes a function of (x, v), by the formula

VE(h)(x, v) = {f(x, u(x, V) + BE[h(g(x, u(x, V), V), V) | X, V]}
Then define the function W (h) by

Y(h)(x,v) = max WY (h)(x, v) = meag{f(x, u) + BE[A(gEX,u, V), V) |x, v]}

Let W2(h) = W(Wh), W3(h) = W(W2(h)), and so on. Choose in particular & = (
calculate successively W!(0) = W (0), W2(0) = W(¥'(0)), .... Let the control uy(
be the one that yields a maximum at step k. (When W =1(0) is known, a maximizati
carried out to find W*(0), and we assume that all maxima are attained.) Provided that
satisfied, the controls ug (X, v) are approximately optimal for k large.

The second method is called policy improvement. It works as follows. Choose an i
stationary policy ug = up(x, v). Calculate J"(x, v), the expected value of the obje
when starting at x at time 0, and using uo(x, v) all the time. For each (x, v) find the cc
u; (X, v) that yields a maximum when calculating W (J")(x, v). Next calculate J%! (:
and find the control u;(x, v) that maximizes W (J")(x, v), and so on. Since for a
JU(x,v) = f(x,u(x,v)) + E[BJ% (g(x,u;(x, V), V)I|x, v], it is clear that W (J"
J%_ Then WY+ (W(J%)) > W+ (JU) = Y(J%) > J% W+ (Qhi+ (P(J%)
Pkl (JU) = W(J%) > J%, and generally (WUi+1)k (W (J%)) > J%. By a contra
argument, (WK (W (J%)) — JY%+ when k — oo, and it follows that J%+1 > J'
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fact, JU (X, v) increases monotonically to the optimal value function J (x, v) when (3) holds,
and so for ; large, w; (X, V) is approximately optimal. At each step JY*! can be calculated
approximately by using (WU+)k (@ (juiy) — juiei,

PROBLEMS FOR SECTION 12.7

1. Consider the problem

o0
max E ) B'(~u? - X2, Be(0,1), u eR
t=0

Xet1 =Xe+u+V,, E(Vip) =0, E(V2:)=d

(a) Guess that J(x) is of the form ax2 + b, and insert it into (5) to determine a and b.

(b) Solve t2he corresponding finite horizon problem assuming J (¢ x)=J@t,x,T) =

) ’ ) £ -

B'(a;x* 4 b;). (We now sum only up to time 7'.) Find J(0, x0,T),let T — oo and
prove that the solution in (a) is optimal (we are in case B).

2. Solve the problem

(e e]
max E Zat(lnu, +InX,), X, = (Xr —u)Vig1, xo > 0, u; € (0, x,)
t=0

wbere a € (0,1), V, > 0, and all the V; are independent and identically distributed
with |E'In V;| < oco.

13.1

TOPOLOGY AND
SEPARATION

We could, of course, dismiss the rigorous proof as being
superfluous: if a theorem is geometrically obvious why prove it?
This was exactly the attitude taken in the eighteenth century. The
result, in the nineteenth century, was chaos and confusion: for
intuition, unsupported by logic, habitually assumes that
everything is much nicer behaved than it really is.

—I. Stewart (1975)

his chapter concentrates on a few topics of a theoretical nature that turn out to be

in some parts of economics, notably general equilibrium and its applications to rr
macroeconomic theory. Section 13.1 takes a closer look at open and closed sets in R”, to
with closely associated concepts such as the neighbourhood of a point, as well as the interi
boundary of a set. Next, Sections 13.2 and 13.3 cover the associated concepts of conver:
compactness, and continuity in R”. These concepts play an important part in mather
analysis. Their systematic study belongs to general or analytic topology, an important
of mathematics that saw a period of rapid development early in the 20th century. The |
definitions and carefully formulated arguments we provide may strike many readers as
formal. Their primary purpose is not to give solution methods for concrete problems,
equip the reader with the theoretical basis needed to understand why solutions may nc
exist, as well as their regularity properties when they do exist. In the case of optimi
problems, these ideas lead to the versions of the maximum theorem that are the sub
Section 13.4.

Another main theme of this chapter is separation theorems, which are useful in both g
equilibrium and optimization theory. A discussion of “productive economies” and a disc
of Frobenius roots of square matrices wind up the chapter.

Point Set Topology in R"

This section begins by reviewing some basic facts concerning the n-dimensional Euc
space R", whose elements, or points, are n-vectors X = (xi, ..., x,). The Euclidea
tance d(x, y) between any two points X = (xy,...,x,) andy = (yi, ..., yp) in R"
norm ||x — y|| of the vector difference between x and y. (See (1.1.37).) Thus,

%, ¥) = % =yl = (1 = y0)2 4 (0 — 3



