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But these Markov controls are only conditionally optimal. They tell us which control
to use after a disturbance has occurred, but they are optimal only in the absence of further
disturbances.

If we stipulate the probability of future disturbances and then want to optimize the
expected value of the objective functional, this gives a stochastic control problem, in which
optimal Markov controls are determined by a different set of necessary conditions.

Jumps in State Variables

So far we have assumed that the control functions are piecewise continuous, and the state
variables are continuous. In certain applications (e.g. in the theory of investment), the

optimum may require sudden jumps in the state variables. See e.g. Seierstad and Sydsater
(1987), Chapter 3.

11.1

DIFFERENCE
EQUATIONS

He (an economist) must study the present in the light of the past
for the purpose of the future.
—J. N. Keynes

M any of the quantities economists study (such as income, consumption, and savinc
recorded at fixed time intervals (for example, each day, week, quarter, or year).
tions that relate such quantities at different discrete moments of time are called diffe
equations. For example, such an equation might relate the amount of national income |
period to the national income in one or more previous periods. In fact difference equatio
be viewed as the discrete time counterparts of the differential equations in continuous tirr
were studied in Chapters 5-7.

First-Order Difference Equations

Lett =0, 1, 2, ...denote different discrete time periods or moments of time. We u
call 1 = 0 the initial period. If x(¢) is a function defined for t = 0,1,2, ..., we oft
X0, X1, X2, .. . to denote x(0), x(1), x(2), ..., and in general, we write x; for x(¢).

Let f(t, x) be a function defined for all positive integers ¢ and all real number:
first-order difference equation in x; can usually be written in the form

X1 = f(t, xt), t=0,1,2,...

This is a first-order equation because it relates the value of a function in period 7 + 1
value of the same function in the previous period 7 only.'

I It would be more appropriate to call (1) a “recurrence relation”, and to reserve the term *
ence equation” for an equation of the form Ax, = f (t, x;), where Ax, denotes the difference x;
However, it is obvious how to transform a difference equation into an equivalent recurrence re
and vice versa, so we make no distinction between the two kinds of equation.
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EXAMPLE 1

Suppose xg is given. Then repeated application of equation (1) yields

x1 = f(0, xo)
x2 = f(1,x1) = f(1, f(0, x0))
X3 = f(2, )C2) S f(2a f(l» f(O,X()))

and so on. For a given value of xo, we can compute x, for any value of t. We call this the
“insertion method” of solving (1).

Sometimes we can find a simple formula for x;, but often this is not possible. A general
solution of (1) is a function of the form x, = g(¢; A) that satisfies (1) for every value of A,
where A is an arbitrary constant. For each choice of x( there is usually one value of A such
that g(0, A) = xq.

A simple case of equation (1) is
Xer1 = 2y, t=0,1,... (%)

Suppose x is given. Repeatedly applying (1) gives x| = 2x¢, x2 = 2x; = 2 - 2xo = 2%xo,
x3 = 2xy = 2 - 2%x09 = 23x0 and so on. In general,

x; = 2'xp, t=0,1,... (%)

The function x, = 2'x satisfies () for all ¢, as can be verified directly. For the given value
of x, there is clearly no other function that satisfies the equation.

In general, for each choice of xo, there is a corresponding unique solution of (1). Con-
sequently, there are infinitely many solutions. When x is given, the successive values of x;
can be computed for any natural number . Does this not tell us the whole story?

In fact, we often need to know more. In economic applications, we are usually interested
in establishing qualitative results. For example, we might be interested in the behaviour of
the solution when ¢ becomes very large, or in how the solution depends on some parameters
that might influence the difference equation. Such questions are difficult or impossible to
handle if we rely only on the above insertion method.

Actually, the insertion method suffers from another defect as a numerical procedure. For
example, suppose that we have a difference equation like (1), and we want to compute x1qp.
A time-consuming process of successive insertions will finally yield an expression for xo.
However, computational errors can easily occur, and if we work with approximate numbers
(as we are usually forced to do in serious applications), the approximation error might well
explode and in the end give an entirely misleading answer. So there really is a need for a
more systematic theory of difference equations. Ideally, the solutions should be expressed
in terms of elementary functions. Unfortunately, this is possible only for rather restricted
classes of equations.
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A Simple First-Order Equation

Consider the difference equation

Xi+1 = ax, + by, t=0,1

e (

where a is a constant. The equation in Example 1 is a special case with ¢ = 2, b =
Starting with a given x(, we can calculate x, algebraically for small ¢. Indeed

X1 =axy+ by
X2 = axi + by = a(axo + bo) + by = a’xo + aby + b
X3 =axy+by = a(azxo +aby + b)) + by = a3xo + azbo +aby + b,

and so on. This makes the pattern clear. In each case, the formula for x; begins with t
term a'xo, and then adds the terms a'~'by, a'2b,, . ... ab;_3, b,_1 in turn. We thus arri
at the following general result:

t
Xipl =ax; + b, & x,:a'xo—l-Za’"kbk_;, t=0,1,2,... (
k=1

(Note that a'* = q° = 1 when k = t.) Indeed, to check that we have really found

solution to (2), substitute the expression suggested by (3) for x, into the right-hand side «
(2). This yields

t t
ax; + b; = a(a’xo + Za"kbk_l) +b =alx + Zat+l_kbk_1 + b,
k=1 k=1
r+1
— aH']xo + Zatﬂ—kbk_l
k=1

This matches our expression for Xt+1, 80 (3) does solve the difference equation.
Consider the special case when by =bforallk =0,1,2,.... Then

!

t
Zat—kbk_l =b}:at_k - b(at_l +at_2+---+a +1)
k=1 k=1

According to the summation formula for a geometric series, | +a +a%2 + ... +q/~! =
(1—a")/(1 —a),fora # 1. Thus, fort =0, 1, 2, . C

b b
Xl =ax; +b <= Xt:at<x0—l__—a)+m (a#1) 4

Fora:1,wehavel+a+~--+a"1=tandx,=xo+tbf0rt=1,2,....
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EXAMPLE 2

EXAMPLE 3

Solve the following difference equations:
@ X1 = Sx 43, (b) x4 =-3x+4
(a) Using (4) we obtain the solution
Xy = (%)t(xo —6)+6

(b) In this case, (4) gives
x=(=3w-1+1

(A Multiplier-Accelerator Model of Growth) Let Y; denote national income, I, total
investment, and S; total saving—all in period z. Suppose that savings are proportional to
national income, and that investment is proportional to the change in income from period ¢
tot + 1. Then, fort =0,1,2, ...,

S)‘ :(YY[
It+l = ,B(Yt+l )
S =1

The last equation is the familiar equilibrium condition that saving equals investment in each
period. Here o and 8 are positive constants, and we assume that 8 > o > 0. Deduce a
difference equation determining the path of Y;, given Yy, and solve it.

j From the first and third equations, I; = aY;, and so I;+| = aY;4. Inserting
these into the second equation yields «Y;+; = B(Y;+1 —Y;), or (@ — B)Y;41 = —BY;. Thus,

B o
Yyi=—Y=|14+—)Y,, t=0,1,2,... *
t+1 /3-—05’ +,3"Ol t ()
Using (4) gives the solution
a t
Yi=|(1+—] Yo, t=0,1,2,...
B—«

The difference equation (x) constitutes an instance of the equation
Yipp=0A+ oY, 1=0,1,2,...

which describes growth at the constant proportional rate g each period. The solution of the
equationis ¥; = (1 + g)'Yy. Note that g = (Y, — ¥,)/Y,.

Equilibrium States and Stability

Consider the solution of x;1; = ax; +b givenin (4). If xo = b/(1 —a), thenx;, = b/(1 —a)
forall ¢. Infact,if x; = b/(1 —a) forany s > 0, then x;4; = a(b/(1—a))+b =b/(1—a),
and again x4 = b/(1 — a), and so on. We conclude that if x; ever becomes equal to
b/(1 — a) at some time s, then x; will remain at this constant level for each ¢+ > s. The
constant x* = b/(1 — a) is called an equilibrium (or stationary) state for x, | = ax; + b.
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NOTE 1 An alternative way of finding an equilibrium state x* is to seek a solutio
Xi+1 = ax; + b with x; = x* for all 7. Such a solution must satisfy x,.; = x;, = x* an
x* = ax* + b. Therefore, for a # 1, we get x* = b/(1 — a) as before.

Suppose the constant @ in (4) is less than 1 in absolute value—that is, —1 < a < 1. 1
a’ — 0ast — 00, so (4) implies that

b

X — x* =
l1—a

as = o0

Hence, if |a| < 1, the solution converges to the equilibrium state as ¢ — oco. The equa
is then called globally asymptotically stable. Two kinds of stability are shown in Fig
(a) and (b). In the first case, x, converges monotonically down to the equilibrium s
In the second case, x; exhibits decreasing fluctuations or damped oscillations around
equilibrium state.
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Figure 1

If |a| > 1, then the absolute value of a’ tends to co as t — co. From (4), it follows tha
moves farther and farther away from the equilibrium state, except when xo = b/(1 —
Two versions of this phenomenon are illustrated in Figs. 1 (c) and (d). In the first c:
X, tends to —o0, and in the second case, x; exhibits increasing fluctuations or explos
oscillations around the equilibrium state.
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EXAMPLE 4

EXAMPLE 5

Equation (a) in Example 2 is stable because @ = 1/2. The equilibrium state isb/(1—a) =
3/(1 — 1/2) = 6. We see from the solution given in that example that x; — 6ast — oo.

Equation (b) in Example 2 is not stable because |a| = |-3] = 3 > 1. The solution does
not converge to the equilibrium state x* = 1 as 1 — 00, except if xo = 1—in fact, there are
explosive oscillations.

(The Hog Cycle: A Cobweb Model) Assume that the total cost of raising ¢ pigs is
C(q) = aq + Bq*. Suppose there are N identical pig farms. Let the demand function for
pigs be given by D(p) = y — 8p, as a function of the price p, where the constants o, S,
v, and § are all positive. Suppose, too, that each farmer behaves competitively, taking the
price p as given and maximizing profits 7(q) = pg — C(q) = pq — g — Bq>.

The quantity ¢ > 0 maximizes profits only if

n'(@)=p—a—28g=0 andso g=(p—a)/2p

It follows that 7/(¢) > 0 for ¢ < (p — «)/2B, and 7' (g) < 0 for g > (p — «)/2p. Thus,
g = (p — «)/2p maximizes profits provided p > «. In aggregate, the total supply of pigs
from all N farms is the function

S=Np-o)/28 (p>a)

of the price p. Now, suppose it takes one period to raise each pig, and that when choosing
the number of pigs to raise for sale at time ¢ + 1, each farmer remembers the price p; at
time ¢ and expects p;41 to be the same as p;. Then the aggregate supply at time  + 1 will
be S(p;) = N(p: —)/2p.

Equilibrium of supply and demand in all periods requires that S(p;) = D(pi+1), which
implies that N (p; — &) /2B =y —8pi+1,t =0, 1,.... Solving for p;4; in terms of p; and
the parameters gives the difference equation
N n aN + 2,8)/’

— =12, ...
Pt+1 285 Dt 285 ()

The equilibrium price p* with p,41 = p; occurs at p* = (aN + 2By)/ (26 + N). The
solution of (*) can be expressed as

pr=p*+(=a)(po—p*)  (a=N/2B%)

Equation (%) is stable if |[—a| < 1, which happens when N < 2B848. In this case,
p. — p*ast — oo. The solution in this case is illustrated in Fig. 2. Here, qo is the
supply of pigs at time 0. The price at which all these can be sold is po. This determines the
supply ¢; one period later. The resulting price at which they sell is pi, and so on.

The resulting price cycles are damped, and both price and quantity converge to a steady-
state equilibrium at (¢*, p*). This is also an equilibrium of supply and demand. If N > 286,
however, then the oscillations explode, and eventually p, becomes less than «. Then the pig
farms go out of business, and the solution has to be described in a different way. There is no
convergence to a steady state in this case. A third, intermediate, case occurs when N = 286
anda = 1. Then the pair (g;, p;) oscillates perpetually between the two values (y —3po, po)
and (8(po — @), & + y/8 — po) in even- and odd-numbered periods, respectively.
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S=N(p—a)/2p
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Figure 2 The cobweb model in Example 5—the stable case.
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1. Find the solutions of the following difference equations with the given values of xo:

@) x41 = 2x

+4, xp=1

©) 2x41 4+ 3% +2=0, xo=-—1

(d) X141 —x +3=0,

) 341 =x+2, x=2

xo=3

2. Consider the difference equation x; 4| = ax; + b in (4) and explain how its solutic
behaves in each of the following cases, with x* = b/(1 — a) (fora # 1):

A O<a<l, xg<x*
@ a<-1,
(g a=1,b>0

xo > x* (e)a#1, xo=x*

(ha=1b<0

3. (a) Consider the difference equation

Yegt(a +by) = cyy,

by =1 <a <0, xo <x*

t=0,1,...

) a>1, xo>x*

(f) Ll:—l, xO:/lL'-)C’k
i a=1,b6=0

where a, b, and c are positive constants, and yo > 0. Show that y, > 0 for all z.

(b) Define a new function x; by x; = 1/y,. Show that by using this substitution, tt
new difference equation is of the type in (4). Next solve the difference equatic
yi+1(2 + 3y,) = 4y,, assuming that yo = 1/2. What is the limit of y, as t — o0

4. By substituting y, = x; — b/(1 — a) transform equation (2) into a simple differenc
equation in y,. Solve it and find a new confirmation of (4).

5. Consider the difference equation x; = /x,_; — I with xo = 5. Compute x;, x2, ar
x3. What about x4? (This problem illustrates the need to take care if the domain of ti
function f in (1) is restricted in any way.)
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11.2

EXAMPLE 1

Present Discounted Values

The theory in the previous section can be applied to describe the changes over time in a
savings account whose balance is subject to compound interest. Let a, denote the value of
the assets held in the account at the end of period ¢. Further, let ¢; be the amount withdrawn
for consumption and y; the amount deposited as income during period ¢. If the interest rate
per period is a constant r, the relevant difference equation is

a1 = (L+1)a + y1 — 1, 1=0,1,2,... M

The result in (11.1.3) implies that the solution of (1) is

t
a=0+r'a+) A+ -, t=12,.. @)
k=1

Let us multiply each term in (2) by (1 + )™, which is a factor of sufficient economic
importance to have earned a standard name, namely the discount factor. The result is

t
A+r e =a+Y A+r* 0 —a) 3)
k=1
If time O is now, then the left-hand side is the present discounted value (PDV) of the assets
in the account at time 7. Equation (3) says that this is equal to

(a) initial assets ag
(b) plus the total PDV of all future deposits, ZL: (1 + ry~* Vi

(c) minus the total PDV of all future withdrawals Zi:l (14 r)"*cy

If time ¢ is now, the formula for a; in (2) can be interpreted as follows: Current assets a,
reflect the interest earned on initial assets ag, with adjustments for the interest earned on
all later deposits, or foregone because of later withdrawals.

(Mortgage Repayments) A particular case of the difference equation (1) occurs when
a family borrows an amount K at time 0 as a home mortgage. Suppose there is a fixed
interest rate r per period (usually a month rather than a year). Suppose, too, that there are
equal repayments of amount a each period, until the mortgage is paid off after n periods
(for example, 360 months = 30 years). The outstanding balance or principal b, on the loan
in period ¢ satisfies the difference equation b;1; = (1 +r)b; — a, with by = K and b,, = 0.
This difference equation can be solved by using (11.1.4), which gives

a a
b=+ (K-2)+2
r r
Butb; =0 whent =n,s00 = (1 +r)”(K —a/r) 4+ a/r. Solving for K yields

a

K=-r-[1—(1+r)—]=a2(1+r)‘ (%)

t=1
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The original loan, therefore, is equal to the PDV of n equal repayments of amount a
period, starting in period 1. Solving for a instead yields

rkK rK(l+r)"

a = =
L—(+r="  (+ry—1

Formulas () and (%) are the same as those derived by a more direct argument in EV
Chapter 10.

PROBLEMS FOR SECTION 11.2

11.3

EXAMPLE 1

1. Find the solution of (1) for » = 0.2, ag = 1000, y: = 100, and ¢; = 50.

2. Suppose that at time 7 = 0, you borrow $100 000 at the fixed interest rate r = 0.0
year. You are supposed to repay the loan in 30 equal annual repayments so that :
n = 30 years, the mortgage is paid off. How much is each repayment?

3. A'loan of amount $L is taken out on January 1 of year 0. Instalment payments fo;
principal and interest are paid annually, commencing on January 1 of year 1. Le
interest rate be r < 2, so that the interest amounts to r L for the first payment.
contract states that the principal share of the repayment will be half the size of
interest share.

(a) Show that the debt after January 1 of year n is (1 — r/2)"L.
(b) Find r when it is known that exactly half the original loan is paid after 10 yeas

(c) What will the remaining payments be each year if the contract is not changed".

Second-Order Difference Equations

So far this chapter has considered first-order difference equations, in which each value »
of a function is related to the value x; of the function in the previous period only. Next
present a typical example from economics where it is necessary to consider second-o1
difference equations.

(A Multiplier-Accelerator Growth Model) Let Y, denote national income, C it
consumption, and /, total investment in a country at time ¢. Assume that forr =0, 1, .

WY, =C+1 (i) Cip1=a¥, +b (i) fry1 = c(Crp1 — Cy)

where a, b, and ¢ are positive constants.
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Equation (i) simply states that national income is divided between consumption and investment.
Equation (ii) expresses the assumption that consumption in period ¢ + | is a linear function of
national income in the previous period. This is the “multiplier” part of the model. Finally, equation
(iii) states that investment in period ¢ + 1 is proportional to the change in consumption from the
previous period. The idea is that the existing capital stock provides enough capacity for production
to meet current consumption. So investment is only needed when consumption increases. This is the
“accelerator” part of the model. The combined “multiplier—accelerator” model has been studied by
several economists, notably P. A. Samuelson.

Assume that consumption C¢ and investment /o are known in the initial period t = 0.
Then by (1), Yo = Co+ Iy, and by (ii), C; = aYy+b. From (iii), we obtain I, = ¢(C; — Cyp),
and then (i) in turn gives Y| = C; 4 I;. Hence, Yj, C;, and /; are all known. Turning to
(i) again, we find Cy, then (iii) gives us the value of I, and (i) in turn produces the value
of Y. Obviously, in this way, we can obtain expressions for C;, Y;, and I; for all ¢ in terms
of Cy, Yy, and the constants a, b, and c. However, the expressions derived get increasingly
complicated.

Another method of studying the system is usually more enlightening. It consists of
eliminating two of the unknown functions so as to end up with one difference equation in
one unknown. Here we use this method to end up with a difference equation in ¥;. To do
so, note that equations (i) to (iii) are valid forallt = 0, 1, .... Replace ¢ with ¢ + 1 in (ii)
and (iii), and ¢ with ¢t + 2 in (i) to obtain

(iv) Cryp =aY 1 +b (V) Iyy2 = c(Cry2 — Cry1) ) Yo =Crpo+ I

Inserting (iv) and (ii) into (v) yields I,+2 = ac(Y;4+1 — Y;). Inserting this result and (iv) into
(vi) gives Y40 = aYiy1 + b + ac(Y;41 — Yr). Rearranging gives

Yiyo —a(l +¢)Y;y1 +acY, = b, t=0,1,... (vii)

This is a second-order linear difference equation with Y, as the unknown function. The next
section sets out a general method for solving such equations. (See Problem 11.4.3.)

The typical second-order difference equation can be written in the form
Xepo = f1, X0, Xe41), t=0,1,... (D

Suppose that f is defined for all possible values of the variables (¢, x;, x;+). Suppose xg
and x; have fixed values. Letting ¢ = 0 in (1), we see that x, = f (0, xo, x1). Letting 7 = 1
yields x3 = f(1, x1, f(0, xo, x1)). By successively inserting t = 2, f = 3, ... into (1),
the values of x, for all t are uniquely determined in terms of xo and x;. Note in particular
that there are infinitely many solutions, and that the solution of the equation is uniquely
determined by its values in the first two periods. By definition, a general solution of (1) is
a function of the form

x =g(t; A, B) )

that satisfies (1) and has the property that every solution of (1) can be obtained from (2) by
choosing appropriate values of A and B.
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Linear Equations

The general second-order linear difference equation is

Xi+2 + X +bix; = ¢ (3)
where a;, b;, and ¢; are given functions of ¢. The associated homogeneous equation

X2 + Xy +bix; =0 4)

is obtained from (3) by replacing ¢; with 0. Compare these equations with the linear differen-
tial equations (6.2.1) and (6.2.2). By arguments which are much the same as for differential
equations (but simpler), the following results are easy to establish:

THEOREM 11.3.1

The homogeneous difference equation
Xi42 + Xy +bix; =0

has the general solution
Xy = Au,“) + Bu§2)

where uf]) and uiz) are any two linearly independent solutions, and A and B are

arbitrary constants.

THEOREM 11.3.2

The nonhomogeneous difference equation

Xey2 + X1 + bexe = ¢
has the general solution

x = AulV + Bu® + uy

where Au;l) + Buf2) is the general solution of the associated homogeneous
equation (with ¢; replaced by zero), and u} is any particular solution of the
nonhomogeneous equation.

NOUTE 1 In order to use these theorems, we need to know when two solutions of (4) are
linearly independent. The following necessary and sufficient condition is easy to apply (and
generalizes easily to the case of n functions):

n @
iy Uy

(N (2)
iy Uy

#0 < uﬁ” and ufz) are linearly independent (5)

See Problem 5 for a proof.



400

CHAPTER 11 / DIFFERENCE EQUATIONS

A General Solution

There is no universally applicable method of discovering the two linearly independent solutions of
(4) that we need in order to find the general solution of the equation. But if we know two linearly
independent solutions of (4) and thereby its general solution, then it is always possible to find the
general solution of (3).

Consider the equation

Xep2 + axppr +bixy=¢, t=0,1,2,... (6)

Suppose ufl) and u§2) are linearly independent solutions of the corresponding homogeneous equation

and define
1, (2) a1 @
Dy =up uify — gy

Then, if D, # O forall t = 1, 2, ..., the general solution of (6) is given by

Q)]

2 1 - Ck |M(2) 2) d Ck—1U

1) ) ) 14y ( —1ly

X = Auﬁ + Bui = u,( E D + u, E N, )
k=1 k k=1 k

where A and B are arbitrary constants. (See Hildebrand (1968).)

When the coefficients @, and b, in (4) are constants independent of ¢, then it is always
possible to find a simple formula for the general solution of (4). The next section shows
how to do this.

PROBLEMS FOR SECTION 11.3

1. Prove by direct substitution that the following functions of ¢ are solutions of the asso-
ciated difference equation (A and B are constants):

(@ xy =A+ B2, Xeg2 — 341 +2x, =0

(b) x;, = A3 + B4, Xi4o — Txpp1 + 12, =0
2. Prove that x, = A + Bt is the general solution of x;45 — 2x,41 +x, = 0.
3. Prove that x, = A 3" + B 4 is the general solution of x,15 — 7x;41 + 12x; = 0.
4. Prove that x, = A2 4+ Bt2' + 1 is the general solution of x; o — 4x,41 +4x; = 1.

5. Prove the equivalence in (5). (Hint: If the determinant is zero, then the two columns

are linearly dependent, and since both u;” and ufZ) are solutions of equation (4), this

dependency will propagate to ugl) and uﬁz) for all z.)

11.4

SECTION 11.4 / CONSTANT COEFFICIENTS ¢

Constant Coefficients

Consider the homogeneous equation
Xep2 +axig +bx; =0

where a and b are arbitrary constants, b # 0, and x; is the unknown function. Accorc
to Theorem 11.3.1, finding the general solution of (1) requires us to discover two soluti
uﬁ” and u§2) that are linearly independent. On the basis of experience gained in some of
previous problems, it should come as no surprise that we try to find solutions to (1) of
form x, = m'. Then x4 = m't! = m -m" and x, 1, = m'*? = m? -m'. So inserting tt
expressions into (1) yields m’(m? +am + b) = 0. If m # 0, then m' satisfies (1) provi
that
m*+am+b=0

This is the characteristic equation of the difference equation. Its solutions are
miy = —1a+ 3va> —4b, my = —%a — 3va? —4b

There are three different cases, which are summed up in the following theorem:

THEOREM 11.4.1

The general solution of

Xeg2 +axe +bx, =0 (b #0)
is as follows:

(D) If a® — 4b > 0 (the characteristic equation has two distinct real roots),
x; = Am| + Bm}, mm:—%a:l:%\/aT——llb
(1) If a* — 4b = 0 (the characteristic equation has one real double root),
x=(A+Btm', m=-—ja
(II1) If a® — 4b < 0 (the characteristic equation has no real roots),

a
x; = r'(Acos6t + Bsinft), r=+b, cos =———, 6¢€l0,n]
=7 2vb

Jo7e 1 If xo and x; are given numbers, then in all three cases the constants A an
are uniquely determined. For instance, in case (I), A and B are uniquely determined by
equations xo = A + B and x; = Am| + Bmy.

picite 2 The solution in case (IIT) can be expressed as
x; = Cr' cos(0t + w)

where w and C are arbitrary constants. (See the corresponding case for differential equat
in Section 6.3.)
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, (I): The case a®> — 4b > 0 is the simplest. Then m; and m»
are real and different, and m/ and m} are both solutions of (1). The determinant in (11.3.5)
has the value m, — m; # 0, so the two solutions are linearly independent, and the general
solution is consequently as given in (I).

(I): If a® — 4b = 0, then m = —3a is a double root of (2). This means that mit+am+b=
(m+ %a)z. In addition to m’, the function tm’ also satisfies (1) (see Problem 6). Moreover,
these two functions are linearly independent because the determinant in (11.3.5) is equal to
m= —%a. (Note thata # 0 because b # 0.) The general solution is, therefore, as indicated
in (10).

(I0): If a® — 4b < 0, the roots of (2) are complex. The two functions uf]) = r! cos Ot and

ufz) = r! sin Ot are linearly independent. Indeed, the determinant in (11.3.5) is

=rsing = vby/1 —cos?0 = vb+/1 —a?/4b = §v/4b —a® > 0

1 0
rcos@ rsin6

Moreover, direct substitution shows that both these functions satisfy (1).

Indeed, let us show that u;l) = r! cos Ot satisfies (1). We find that uﬁﬂ:l ="t cos@(r + 1) and
M

U ly = r'*2 cos O(t + 2). Hence, using the formula (B.1.8) for the cosine of a sum, we get

ully +au®) + bul” =2 cos(t +2) + ar'™' cos6(t + 1) + br' cos 01
= r'[r?(cos 0t cos 20 — sin 6t sin 20) + ar(cos O cos & — sin O sin B) + b cos H¢]
= r'[(r? c0s 26 + ar cos @ + b) cos Ot — (r? sin 20 + ar sin6) sin 6¢]

Here the coefficients of cos@¢ and sin @t are both equal to O because r?cos26 + arcosf + b
= r2(2c0s?0 — 1) + arcosf + b = b(2a%/4b — 1) + av/b(—a/2b) + b = 0, and likewise
r2sin 20 +ar sin = 2r2sin6 cos O +ar sin @ = 2r2(—a/2r) sin 6 +ar sin = 0. This shows that
uf” = r' cos At satisfies equation (1), and a similar argument shows that so does ufz) =r'sing. =

An alternative argument for the solution in (III) relies on properties of the complex
exponential function. In trigonometric form the roots in (3) are m; = a+if = r(cos 6 +i sin6) and
my =a—if =r(cosf —isinf),withd € [0, ], r = Ja? + 2 = Vb, cosO =a/r = —a/2\/5,
and sin6 = B/r = (/b — a2/4)//b.

By de Moivre’s formula, (B.3.8), m| = r'(cos6t + i sinft) and m, = r'(cosft — isin6t).
The complex functions m/ and m) both satisfy (1), and so does every linear combination of them.
In particular, %(m’l + mb) = r'cosft and 5'7(m’l — mb) = r'sin 6t both satisfy (1). The general
solution of (1) is therefore as given in case (III).

We see that when the characteristic equation has complex roots, the solution of (1) involves
oscillations. The number r is the growth factor. Note that when |r| < 1, then |Ar'| — 0
as t — oo and the oscillations are damped. If |r| > 1, the oscillations are explosive, and
in the case |r| = 1, we have undamped oscillations.

Let us now consider some examples of difference equations of the form (1).

Find the general solutions of

(@) Xr42—3.9x41+3.78x, =0 (b) x42—6x41+9% =0 (¢) xp42—Xr41+x =0

SECTION 11.4 / CONSTANT COEFFICIENTS

sofution: (a) The characteristic equation is m? — 3.9m + 3.78 = 0, whose roots
m1 = 1.8 and m, = 2.1, so the general solution is

x; = A(1.8)" + B(2.1)'

(b) The characteristic equation is m> —6m +9 = (m —3)?> = 0,som = 3 is adouble
The general solution is
x = (A+ Bn3'

(c) The characteristic equation is m? —m + 1 = 0, with complex roots m| = %(1 +1i
and my = %(1 — i+/3). Here r = Vb =1landcos® = 1/2,506 = %n. The ger
solution is
= Acos£t+Bsin£t
t 3 3

The frequency is (rr/3)/(27) = 1/6 and the growth factor is Vb = 1, so the oscillat
are undamped.

The Nonhomogeneous Case

Now consider the nonhomogeneous equation
X2 +axp +bx = ¢ b #0)

According to Theorem 11.3.2, its general solution is

x = Aul + Bu® + uy

where Auﬁl) + Bufz) is the general solution of the associated homogeneous equatior

and u} is a particular solution of (5). Theorem 11.4.1 tells us how to find Auil) + B
How do we find u}? The general formula in (11.3.7) gives one answer, but it involves
of work, even when ¢, is a simple function.

In some cases it is much easier. For example, suppose ¢; = ¢, where ¢ is a cons

Then (5) takes the form
Xiq2 +axep +bx; = (c is a constant)

We look for a solution of the form x, = C, where C is a constant. Then x; 41 = x;42
so inserting x, = C into (7) gives C + aC + bC = c, thatis, C = ¢/(1+a+b). He

uy = 1—_1—_%_'_—1) is a particular solution of (7) when 1 +a+b #0

(If 1 + a + b = 0, no constant function satisfies (7). To handle this case, see Problem
Consider more generally the case in which ¢; in (5) is a linear combination of terr

the form

t tm

a, , cosqt, or singt
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or products of such terms. Then the method of undetermined coefficients can be used to ob-
tain a particular solution of (5). (If the function ¢, in (5) happens to satisfy the homogeneous
equation, the procedures described below must be modified. )

Solve the equation x;42 — 5x,4 + 6x; = 4’ 412 + 3.

The associated homogeneous equation has m> — Sm + 6 = 0 as its charac-
teristic equation, with the two roots m; = 2 and my = 3. Its general solution is, therefore,
A?2" + B3 To find a particular solution we look for constants C, D, E, and F such that

uw'=C4+Dt> +Et+F
is a solution. (You cannot put £ = 0.) This requires that

CAP 4+ DA +2>+E(t+2)+ F=5[C4T + D+ 1)’ +EGt+ 1)+ F]
+6(C4 +Dt>+Et+F)=4 +1>+3

Expanding then rearranging yields 2C4’ + 2Dt> + (—6D + 2E)t + (=D — 3E +2F) =
4" + 2 4+ 3. For this to hold for all t = 0, 1, ... one must have 2C = 1, 2D = 1,
—6D +2E =0,and —D — 3E +2F = 3. Itfollows that C = 1/2, D = 1/2, E = 3/2,
and F = 4. The general solution of the equation is, therefore,

= A2 EBY 4L s

Stability

Suppose an economy evolves according to some difference equation (or system of difference
equations). If the right number of initial conditions are imposed, the system has a unique
solution. Also, if one or more initial conditions are changed, the solution changes. An
important question is this: Will small changes in the initial conditions have any effect on the
long-run behaviour of the solution, or will the effect die out ast — oo? In the latter case, the
system is called stable. On the other hand, if small changes in the initial conditions might
lead to significant differences in the long run behaviour of the solution, then the system
is unstable. Because an initial state cannot be pinpointed exactly, but only approximately,
stability in the sense indicated above is sometimes a minimum requirement for a model to
be economically meaningful.

Consider in particular the second-order nonhomogeneous difference equation (5) whose
general solution is of the form x; = Auﬁ“ + Buiz) + u;. Equation (5) is called globally
asymptotically stable if the general solution Auﬁl) + Bu ,(2) of the associated homogeneous
equation tends to O as ¢t — o0, for all values of A and B. So the effect of the initial conditions
dies out as t — 00.

If Aui” + Bufz) tends to 0 as t+ — oo, for all values of A and B, then in particular
uﬁ” — Qast — oo (choose A =1, B = 0), and u,(z) — 0 ast — 00 (choose A = 0,
B = 1). On the other hand, these two conditions are obviously sufficient for Au;l) + Bu§2)
to approach 0 as t — oo.

2 For more details, we refer to Goldberg (1958) or Gandolfo (1980).

SECTION 11.4 / CONSTANT COEFFICIENTS
For the remainder of this section, u}l) and u,(z) will denote the particular solutions
that were used in the proof of Theorem 11.4.1.
We claim that u}l) — 0 and uﬁz) — 0 ast — oo if and only if the moduli of the
of m?> + am + b = 0 are both less than 1.?

First, in the case when the characteristic polynomial has two distinct real roots, m #
(H

the two solutions are uﬁ” = m{ and ufz) = mb. In this case, we see that u, = — (
uﬁz) — Oast — ooifand only if |m| < 1 and |my| < 1.
Second, when the characteristic polynomial has a double root, m = —a/2, then the

linearly independent solutions are m' and tm'. Again, |m| < 1 is a necessary and suffi
condition for these two solutions to approach 0 as t — oo.

Third, suppose the characteristic polynomial has complex roots m = « £ if8. Then
—laand B = §+/4b — a2. So the modulus of either root is equal to |m| = y/a? + p? =
We argued before that the two solutions r’ cos 07 and r' sin 8¢ tend to 0 as ¢ tends to in;
if and only if r = +/b < 1—that is, if and only if b < 1.

To summarize, we have the following result:

THEOREM 11.4.2

EXAMPLE 3

The equation
X2 +axep +bx = ¢

is globally asymptotically stable if and only if the following two equivalent con-
ditions are satisfied:

(A) The roots of the characteristic equation m? + am + b = 0 have moduli
strictly less than 1.

B) lal<1+bandb <1

It remains to prove that (B) is equivalent to (A). Assume first that b > a’/4. The
characteristic equation has complex roots m; , = « i and |[m;| = |m2| = Vb, a
(B) obviously implies (A). On the other hand, since f(m) = m? 4+ am + b is never
and since f(0) = b is positive, the Intermediate Value Theorem tells us that f(m)
be positive for all m. In particular f(1) = 1+a+b >0and f(=1) =1—a+b
But these conditions together are equivalent to |a| < 1 + b, so (A) implies (B) are
necessary. Problem 11 asks you to analyse the case of real roots.

Investigate the stability of the equation x;4, — éxtﬂ - %xt =¢;.

Solutiorn: Inthiscasea = —1/6and b = —1/6,s0 |a| = 1/6and 1 + b =5/6."
according to Theorem 11.4.2, the equation is stable. This conclusion can be confirme
looking at the general solution of the associated homogeneous equation, which is .
A(1/2)! + B(—1/3)". Clearly, x;, — 0 irrespective of the values of A and B, so the ;
equation is globally asymptotically stable.

3 See Section B.3. Note that if m is a real number, the modulus of m equals the absolute
of m.
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Investigate the stability of equation (vii) in Example 11.3.1, where a and c are positive,

From Theorem 11.4.2 (B) it follows that the equation is stable if and only

ifa(l +c¢) < 14 ac and ac < 1—that is, if and only if @ < 1 and ac < 1. (See also
Problem 3.)

PROBLEMS FOR SECTION 11.4

1. (@) x42 —6x,41 +8x, =0

Find the general solutions of the difference equations in Problems 1 and 2.

(b) x40 —8x,41 +16x, =0

(©) X2 +2x41 4+ 3%, =0 (d) 3xr42 +2x, =4

@) X2+ 2x41+ x5, =922 (b) x40 —3x;41 +2x, =3-5" + sin(%nt)

. Consider the difference equation (vii) in Example 11.3.1, witha > 0,¢ > 0,and a # 1.

(a) Find a special solution of the equation.

(b) Find the characteristic equation of the associated homogeneous equation and de-
termine when it has two different real roots, or a double real root, or two complex
roots.

. Consider equation (7) and assume that 1 +a + b = 0. If a # —2, find a constant D

such that Dt satisfies (7). If a = —2, find a constant D such that D 72 satisfies (7).

. A model of location uses the difference equation

Dyio — 4(ab + 1) D, + 4a’b*D, = 0, n=0,1,...

where a and b are constants, and D, is the unknown function. Find the solution of this
equation assuming that 1 + 2ab > 0.

. Consider equation (1) assuming that iaz — b = 0, so that the characteristic equation

has a real double root m = —a/2. Let x, = u;(—a/2)" and prove that x; satisfies (1)
provided that u, satisfies the equation u,4» —2u,+| +u, = 0. Use the result in Problem
11.3.2 to find x,.

. Investigate the global asymptotic stability of the following equations:

1 .
@) xi42 = 3% =sint (b) Xr42 = Xep1 =X =0 (C) X2 — g1 + g% = 12¢'

SECTION 11.4 / CONSTANT COEFFICIENTS ‘

8. (a) A model due to B. J. Ball and E. Smolensky is based on the following system:
Ci=cYy, Ki=0Y,_y, Y, =C + K — K,

Here C, denotes consumption, K, capital stock, Y; net national product, where:

and o are positive constants. Give an economic interpretation of the equations

(b) Derive adifference equation of the second order for Y;. Find necessary and suffic

conditions for the solution of this equation to have explosive oscillations.

9. (a) A model by J. R. Hicks uses the following difference equation:
Yoo — b+ )Y +kY, =a(l+g)', t=0,1,...

where a, b, g, and k are constants. Find a special solution Y;* of the equation.
(b) Give conditions for the characteristic equation to have two complex roots.
(c) Find the growth factor r of the oscillations when the conditions obtained in part

are satisfied, and determine when the oscillations are damped.

10. The authors Frisch, Haavelmo, Ngrregaard-Rasmussen, and Zeuthen, in their stud;
the “wage-price spiral” of inflation, considered the following system for ¢ = 0, 1,
Wt+2 - Wt+1 Pt—l—l - Pt

® Win =5 (i) P =y +pW

Here W, denotes the wage level and P; the price index at time ¢, whereas y an
are constants. The first equation states that the proportional increase in wages is e
to the proportional increase in the price index one period earlier, whereas the sec
equation relates prices to current wages.

(a) Deduce from (i) and (ii) the following equation for W;:

Wiva Wi

= , t=0,1,...
Y+ BWi1 v+ BW

(b) Use (iii) to prove that W,y = c¢(y + BW;),t = 0, 1, ..., where ¢ = Wy,
and find a general expression for W, when c¢f # 1. Under what conditions
the equation be globally asymptotically stable, and what is then the limit of W
t — o00?

HARDER PROBLEMS

11. Prove that the conditions in (B) in Theorem 11.4.2 are equivalent to the condition in
for the case when the characteristic polynomial has real roots, by studying the paral
f(m) = m? 4 am + b. (Consider the values of f(—1), f(1), f'(=1),and f'(1).)
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11.5 Higher-Order Equations

In this section we briefly record some results for nth order difference equations,

xt+n:f(t’xtsxt+lv~~axt+n—l)7 t=0,1,... (1)
Suppose f is defined for all values of the variables. If we require that xo, xi, ..., X, have
given fixed values by substituting t = 0 into (1), we find that x, = f(0, xo, X1, ..., X4—1) is
uniquely determined. Then substituting ¢ = 1into (1) yields x,41 = f(1, x1, X2, ..., Xp) =
f(, x1,x2,..., £(0, x0, X1, ..., X,—1)). And so on. Thus the solution of equation (1) is
uniquely determined by the values x; takes in the first n periods, 0,1, ..., n — 1.
The general solution of (1) is a function x; = g(¢; Ci, ..., C,) depending on n arbitrary
constants, Cy, ..., C,, that satisfies (1) and has the property that every solution of (1) can
be obtained by giving Cy, ..., C, appropriate values.

Linear Equations

The general theory for second-order linear difference equations is easily generalized to nth
order equations.

THEOREM 11.5.1

The general solution of the homogeneous difference equation
Xetn +a1()Xr4n—1+ -+ + an—1(O)Xr41 + an(t)x; =0
where a, (1) # 0, is given by
X = Clufl) qpocoqp Cnuf")

where ufl), cees ui”) are n linearly independent solutions of the equation and C1,

..., Cy are arbitrary constants.

THEOREM 11.5.2

The general solution of the nonhomogeneous difference equation
Xepn +ar(O)Xegn—1 + -+ a1 (X417 + an(t)x, = by
where a, (t) # 0, is given by
Xy = Clu:l) + .+ C,,uﬁn) +u}

where C lu,(” +---+ Cnugn) is the general solution of the corresponding ho-
mogeneous equation, and u; is a particular solution of the nonhomogeneous
equation.

SECTION 11.5 / HIGHER-ORDER EQUATIONS 4

NOTE 1 Inusing the theorem we need the following generalization of (11.3.5): If uﬁl), .
u,(") are solutions of the homogeneous difference equation in Theorem 11.5.1, then

(1) (n)
u cooug
u(]l) ”(1") £0 ufl),...,uﬁm are
............... linearly independent
u(l) u(n)

Constant Coefficients

The general linear difference equation of nth order with constant coefficients takes the fc
Xitn + Q1 Xp4n—1 + -+ 1 X1 + anx; = by, t=0,1,...

The corresponding homogeneous equation is
Xegn + a1 Xp4n—1 + -+ ap—1X41 + anx; =0, t=0,1,...

We try to find solutions to (4) of the form x, = m'. Inserting this solution and cancell
the common factor m' yields the characteristic equation

m'+am” '+ +a_m+a,=0

According to the fundamental theorem of algebra, this equation has exactly n roots, wi
each is counted according to its multiplicity.

Suppose first that equation (5) has n different real roots my, ma, ..., m,. Thenm/, 1
..., m! all satisfy (4). These functions are moreover linearly independent, so the gene
solution of (4) in this case is

x; = Cyml + Comly + -+ + Cym!,

This is not the general solution of (4) if equation (5) has multiple roots and/or comp
roots. The general method for finding n linearly independent solutions of (4) is as follo'
Find the roots of equation (5) together with their multiplicity.

(A) A real root m; with multiplicity 1 gives the solution m}.

(B) A real root m; with multiplicity p > 1 gives the solutions mj, tm}, ..., t”_lm}.

(C) A pair of complex roots a % i, each with multiplicity 1, gives the solutions r* cos
r! sin6t, where r = /a2 + B2, and 0 € [0, ] satisfies cos @ = a/r, sin6 = f/r.

(D) A pair of complex roots « = i, each with multiplicity ¢ > 1, gives the solutions u
tu, tv, ..., 19 u, 1971y, with u = r' cos0t and v = r'sin0t, where r = /a2 +
and 6 € [0, ] satisfies cos@ = «/r and sin6 = B/r.

In order to find the general solution of the nonhomogeneous equation (3), it remains to f
a particular solution u} of (3). If b, is a linear combination of products of terms of the fc
a', 1™, cos gt and sin gt, as in Section 11.4, the method of undetermined coefficients ag
can be used.
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Stability
(n)

Equation (3) is globally asymptotically stable if the general solution C| ufl) + -+ Chu,
of the associated homogeneous equation (4) tends to 0 as t — oo, for all values of the
constants Cy, ..., C,. Then the effect of the initial conditions “dies out” as ¢t — oo.

As in the case n = 2, equation (3) is globally asymptotically stable if and only if
ui(t) > 0Oast — ooforalli = 1,..., n. Each u; corresponds to a root, m;, of the
characteristic polynomial. Again, u;(t) — 0 as ¢+ — oo if and only if modulus of the
corresponding solution of the characteristic equation is < 1.

THEOREM 11.5.3

A necessary and sufficient condition for (3) to be global asymptotically stable is
that all roots of the characteristic polynomial of the equation have moduli strictly
less than 1.

The following result gives a stability condition based directly on the coefficients of the
characteristic equation. (The dashed lines have been included to make it easier to see the
structure of the determinants.) See Chipman (1950) for a discussion of this theorem.

THEOREM 11.5.4 (SCHUR)

Let
m" +am" -+ ay_m + ay

be a polynomial of degree n with real coefficients. A necessary and sufficient
condition for all roots of the polynomial to have moduli less than 1 is that

1 0 ! a, ay—
1 | a, ai 1 v 0 a,
cede--- | >0,  EEnE R EEEEEEEERE >0, 5
a, ' 1 a, 0 ' 1 aj

ap—1 dp E 0 1
1 0 7 P T a

ai b0 ay a
ay_1 Gn_> 1 0 0 ee. ap
------------------------ R R I |
ay, 0 ol ai an—1
An—1 An E 0 1 an—2
aj ar A 5 0 0 1

Slcka |
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Let us see what the theorem tell us in the case n = 1. When n = 1, Theorem 11.5.4

1 aj
aj 1

a? < 1. (Of course, this is clear without using the theorem.) Now, al<1& |a| <1

that m + a; = 0 has a root with modulus < 1 if and only if > 0, i.e.if and op

X1 + a1x, = ¢, is globally asymptotically stable <= |a;| < |

When n = 2, Theorem 11.5.4 says that both roots of m? + a;m + a; = 0 have mc
< 1 if and only if

1 0 a a
1 La a 1 0 a
D, = =coe oo >0 and 105 53 || secoccces Foooseucs >0
a | 1 a 0 ' 1 a
a a + 0 1

Evaluating the determinants yields
Di=1-a} and D)= (1-a)*(1+a;+a)( —a; +a)

Here Dy > 0 <= ay| < 1. If D; > 0, then in particular 1 — a, # 0, so
Dy >0 <= (U+a+a)(—-a +a) >0  |a| <1+ a. The pro
(I + a1 + a2)(1 — a; + ap) is positive if and only if either both factors are positive or |
are negative. If both are negative, 1 +a; +a» < Oand 1 —a; + ay < 0. Adding tl
inequalities yields 2 + 2a, < 0, i.e. 1 +a; < 0, which contradicts D; > 0. Henc:
D; > 0and D, > 0, then

I+a;4+a;>0 and 1—a;+a; >0 and 1—ay >0 (

On the other hand, if these inequalities are satisfied, then adding the first two implies
2+ 2ay > 0,ie. 14+ ay > 0. But then we see that (sx) implies that D and D, defi
by () are both positive. Thus the conditions in (%) are equivalent to the conditions in (:
Since 1 +a; +ax > 0and 1 — a; + a; > 0 are equivalent to |a;| < 1 + ay, we see
Theorem 11.4.2 is the particular case of Theorem 11.5.4 that holds when n = 2.

PROBLEMS FOR SECTION 11.5

1. Solve the following difference equations

(@ xr43 = 3x41+2x, =0 (b) Xi44 +2x00 +x, =8

2. Examine the stability of the following difference equations:

l .
(@) xi42 — 3x, = sint () X420 = X401 =X, =0

1

(©) Xr42 — gXr41 + éx, =12 () X2 +3x01 —4x, =1 — 1

3. In the a as-plane, describe the domain defined by the inequalities ().
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EXAMPLE 1

4. Examine when the equation in problem 11.4.9 is globally asymptotically stable, assum-
ingk > 0and b > 0.

5. A paper by Akerlof and Stiglitz studies the equation
op
Kivz + (2 =2)Kini + (1 - 0p)K, =d

where the constants «, B, and o are positive.
(a) Find a condition for both roots of the characteristic polynomial to be complex.

(b) Find a necessary and sufficient condition for stability.

Systems of Difference Equations

A first-order system of difference equations can usually be expressed in the normal form:*

x1(t+1) = filt, x1(0), ..., x2(2))
.............................. , t=0,1,... (1)

Xp(t+ 1) = frut, x1(8), ..., xn(2))

If x1(0), ..., x,(0) are specified, then x;(1), ..., x,(1) are found by substituting = 0 in
(1), next x;(2), ..., x,(2) are found by substituting ¢ = 1, etc. Thus the values of x;(¢),
..., Xp(t) are uniquely determined for all ¢ (assuming that fi, ..., f, are defined for all
values of the variables). Thus the solution of (1) is uniquely determined by the values of
x100), ..., x,(0).

The general solution of (1) is given by n functions

xl = gl(tv Cl’ ey Cn)» . -’xn = gn(ty Cl» AEE ] CH) (**)
with the property that an arbitrary solution (x| (z), .. ., x,(¢)) is obtained from (%) by giving
Cy, ..., C, appropriate values.

Of course, there are no general methods that lead to explicit solutions of (1) in “closed”
form. Only in some special cases can we find closed form solutions.

Find the general solution of the system

i) xp=3%+35y, Q) yp=ix+3iy =01,

4 In this section, the argument ¢ is often included in parentheses, when subscripts are needed to
indicate different variables in the system.
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Guided by the method we used to solve systems of two differential equat
in Section 6.5, we try to derive a second-order difference equation with x; as the «
unknown. From (i) we obtain (iii) y, = 3x,41| — %x,, which inserted into (ii) yields
Yi41 = 2X,41 — 3x,. Replacing ¢ by 7 + 1 in (i), we obtain (v) x, 1, = X1+ 5
Inserting (iv) into (v), then rearranging, one obtains

7 1
Xi42 — gXe41 + X =0

The characteristic equation is m? — %m + % = 0, with the roots m| = 1, m; = %.

general solution is then easily found. In turn, (iii) is used to find y,. The result is

w=A+B(Y.  w=3A-B()

Matrix Formulation of Linear Systems

If the functions fi, ..., f, in (1) are linear, we obtain the system

x1(t+ 1) =an@)xi(t) + - + a1 (Oxn (1) + b1 ()

............................................. , t=0,1,...
X+ 1D =an@®)x )+ + ann ()X, (t) + by (2)
Suppose we define
x1(7) an(t) ... an() by (1)
x(1) = . B A(r) = : : : b(r) = :
X (2) an(t) ... apn(t) by (1)

Then (2) is equivalent to the matrix equation
x(t + 1) = A@)x(t) + b(2), t=0,1,...

The method suggested in Example 1 allows one, in general, to derive a linear nth o
difference equation in one of the unknowns, say x;. When all the coefficients a; (1)
constants, a;;(t) = a;;, this method will lead to a linear difference equation with cons
coefficients.

Alternatively, if A(¢) is a constant matrix A, then (3) reduces to

x(t + 1) = Ax(®) + b(?), t=0,1,...

Inserting t =0, 1, ..., we get successively x(1) = Ax(0) + b(0), x(2) = Ax(1) + b(l
A?x(0) + Ab(0) + b(1), x(3) = Ax(2) + b(2) = A’x(0) + A’b(0) + Ab(1) + b(2),
in general,

x(t) = A’x(0) + A" 'b(0) + A"*b(1) 4+ -- -+ b(t — 1)

If b(¢) = 0 for all ¢, then (with A? = I as the identity matrix)

x(t + 1) = Ax(1) < x(t) = A’x(0), t=0,1,...
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Stability of Linear Systems

The linear system (4) is said to be globally asymptotically stable if, no matter what the initial
conditions, the general solution of the corresponding homogeneous system x(z + 1) = Ax(z)
tends to 0 as ¢ tends to infinity. According to (6), the homogeneous system has the solution
x(r) = A’x(0). Hence we see that (4) is globally asymptotically stable if and only if A’x(0)
tends to 0 as t — oo, for each choice of initial vector x(0) = x(. From linear algebra it is
known that

A'x = 0 forall xg in R" <= A'—0 @)

t—>00

in the sense that every component of the n x n matrix A’ tends to 0. A necessary and
sufficient condition for this is:

A" — 0 <= all the eigenvalues of A have moduli less than 1 ()

=00

The following result follows immediately:

THEOREM 11.6.1

A necessary and sufficient condition for system x(¢ + 1) = Ax(¢) + b(¢) to be
globally asymptotically stable is that all the eigenvalues of the matrix A have
moduli (strictly) less than 1.

Suppose in particular that the vector b(¢) is independent of 7, b(t) = b. According to (5)
the solution of the system is

x(1) = A'x0)+ A"+ A2+ ...+ A+ Db 9)

Suppose that the system is globally asymptotically stable so that all the eigenvalues of A
have moduli less than 1. Now,

T+A+A+ - A THT-A) =1- A’ (10)
(Verify this by expanding the left-hand side.) Since A = 1 is not an eigenvalue for A (it has
modulus equal to 1), the determinant |A — 1| is not 0. But then [T — A| # 0, so (I — A)~!
exists. Multiplying (10) on the right by (I — A)~! yields
I+A+A+ - AT =A-AHT - A)™!
Ast — 00, it follows from (8) that A’ — 0, and we conclude that

I+A+A’+ . +A7' 'S I-A) ast— o0 (11)

We obtain therefore the following conclusion:

SECTION 11.6 / SYSTEMS OF DIFFERENCE EQUATIONS
THEOREM 11.6.2

If all the eigenvalues of A = (a;j)nx» have moduli (strictly) less than 1, the
difference equation

x(t+1)=Ax@)+b, r=0,1,...

is globally asymptotically stable, and every solution x(#) of the equation con-
verges to the constant vector (I — A)7'b.

The following theorem can often be used to show that a matrix has only eigenvalue:
moduli less than 1:

THEOREM 11.6.3

Let A = (a;;) be an arbitrary n x n matrix and suppose that
n
Zla,-jl <1 foralli=1,...,n
j=1
Then all the eigenvalues of A have moduli less than 1.

PROBLEMS FOR SECTION 11.6

1. Find the solutions of the following systems of difference equations with the given

conditions (in each caset =0, 1, ...):
’ xt+l=“yt—2t+1 N 5
Xt4+1 = &0t 0=Y0
(@) s, xo=y =1 ®) yy1=—x—z+t

1
Ye+1 = 3%
2 Tt = =X — yr + 2t

2. Find the general solutions of the systems.
Xipl = QY X141 = ay, + ck'

(a) (b) (k* # ab)
YVit1 = bx; Vi1 = bx; + dk!

3. A study of the US economy by R.J. Ball and E. Smolensky uses the system
v =049y, +0.68i,_;, i, =0.032y,_1+ 0.43i,_4
where y, denotes production and i, denotes investment at time ¢.

(a) Derive a difference equation of order 2 for y;, and find its characteristic equ

(b) Find approximate solutions of the characteristic equation, and indicate the g
solution of the system.
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11.7

Stability of Nonlinear Difference Equations

Stability of an equilibrium state for a first-order linear difference equation with constant
coefficients was considered in Section 11.1. In the present section we take a brief look at
the nonlinear case, and also the possibility of cycles of order 2.

Consider an autonomous first-order difference equation

X1 = f(x) (1

where f : I — I is defined on an interval / in R. An equilibrium or stationary state for
(1) is a number x* such that x* = f(x*), i.e. the constant function x, = x* is a solution
of (1). In the language of Chapter 14, x* is a fixed point of f. As in the case of differential
equations, equilibrium states for (1) may be stable or unstable.

An equilibrium state x* for (1) is called locally asymptotically stable if every solution
that starts close enough to x* converges to x*—i.e. there exists an ¢ > 0 such that if
[xo—x*| < &,thenlim,;_, o, x; = x*. The equilibrium state x* is locally unstable if a solution
that starts close to x* tends to move away from x*, at least to begin with. More precisely,
x* is locally unstable if there exists an & > 0 such that for every x with 0 < [x — x*| < ¢
one has | f(x) — x*| > |x — x*|.

The following result, analogous to (5.7.2), is an easy consequence of the mean-value
theorem.

THEOREM 11.7.1

Let x* be an equilibrium state for the difference equation (1), and suppose that
f is C! in an open interval around x*.

(a) If | f'(x*)| < 1, then x* is locally asymptotically stable.
(b) If | f/(x*)| > 1, then x* is locally unstable.

(a) Since f’ is continuous and | f'(x*)| < 1, there exist an & > 0 and a positive
number k < 1 such that | f'(x)| < k for all x in (x* — ¢, x* + ¢). Then, provided that
|xo — x*| < &, the mean-value theorem tells us that

lxy = x* = f(x0) = fF) =1 f'(©)(xo — x™)| < klxg — x|

for some ¢ between xy and x*. By induction on ¢, it follows that |x, — x*| < k’|xo — x*| for
allt > 0,and so x;, —» x*ast — oo.

(b) Now suppose that | f'(x*)| > 1. By continuity there existane¢ > O anda K > 1
such that | f'(x)| > K for all x in (x* — &, x* + ¢). Hence if x; € (x* — &, x* + &), then

[Xesr — 2% = 1f () = fFO)] = Klx — x¥|

Thus if x; is close to but not equal to x*, the distance between the solution x and the
equilibrium x* is magnified by a factor K or more at each step as long as x, remains in
(x* — e, x*+¢). n
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NOTE 1 If | f'(x)| < I for all x in 7, then x* is actually globally asymptotically stab.
the obvious sense.

An equilibrium state x* of equation (1) corresponds to a point (x*, x*) where the g
y = f(x) of f intersects the straight line y = x. Figures 1 and 2 show two poss
configurations around a stable equilibrium. In Fig. 1, f’(x*) is positive and the sequc
X0, X1, ... converges monotonically to x*, whereas in Fig. 2, f'(x*) is negative and we
a cobweb-like behaviour with x, alternating between values less than and greater thar
equilibrium state x* = lim,_, o ;. In both cases the sequence of points P; = (x;, x;4:

(x;, f(x1)),t=0,1,2,...,onthe graph of f converges towards the point (x*, x*).
y y
Po
F\\\\\\\\fb
1
i Ps
1 : : 1 H
| 1 + +
1 1 I ] 1 1
I 1 1 I I 1 1
Lo | Py =fe
! ] I 1 | | I I ]
i 1 I | I | I I I
I 1 I I | I I I ]
1 ] I I I I I
I 1 I i I ] 1 I I
I 1 I I I I I I I
] | I I I I I I I
L 1 1 L » X il | 1 L 1 >
xo x; xp x* X0 X2 x*x3 X

Figure 1 x* stable, f'(x*) € (0, 1). Figure 2 x* stable, f'(x*) € (—1,0).

In Fig. 3, the graph of f near the equilibrium is too steep for convergence. Figure 4 st
that an equation of the form (1) may have solutions that exhibit cyclic behaviour, in
case a cycle of period 2. This is the topic of the next subsection.

i y=r®
i X

X3 X| X0 X2 3

R bcccomacoooas

&

Figure 3 x* unstable, |f'(x*)| > L. Figure 4 A cycle of period 2.
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Cycles of Period 2

A cycle or periodic solution of (1) with period 2 is a solution x; for which x; 1> = x; forall ¢,
but x,41 # x,. In other words, x; # xo,butxg =xp =x4 =--- and x; = x3 = x5 = - -.

Thus equation (1) admits a cycle of period 2 if and only if there exist distinct numbers
£ and &, such that f(&)) = & and f(&) = &. If welet F = f o f,itis clear that §; and
&, must be fixed points of F, i.e. they are equilibria of the difference equation

yirr = F(ye) = f(f () 2

Such a cycle is said to be locally asymptotically stable if every solution of (1) that comes
close to £ or & converges to the cycle. Thus the cycle is locally asymptotically stable if
and only if £ is a locally asymptotically stable equilibrium of equation (2), or equivalently,
if and only if & is such an equilibrium. The cycle is locally unstable if £; and &, are locally
unstable equilibria of f o f. By the chain rule, F'(x) = f'(f(x)) f'(x), and so

F'(g1) = f'(&) f'(€) = F'(52)

Theorem 11.7.2 implies the following.

If equation (1) admits a cycle of period 2, alternating between the values &; and &,

then:
3
(a) If | f/(§1) f'(&2)] < 1, the cycle is locally asymptotically stable. )

(b) If | f/(&1) f/(&2)| > 1, the cycle is locally unstable.

The Quadratic Case

A linear difference equation x;+; = ax, + b with constant coefficients has no interesting
cycles. The simplest nonlinear case is the case of a quadratic polynomial. So let f(x) =
ax? + bx + ¢ (with a # 0) and consider the difference equation

Xep1 = f(x) = ax,2 + bx; + ¢ 4)
The equilibrium states of (4), if any, are the solutions

1 —b++/(b—1)2—4ac 1—b—/(b—-1)2—4ac
= 5 x2=
2a

X1

of the quadratic equation x = f(x), i.e. ax® + (b — Dx + ¢ = 0. These solutions exist if
and only if (b — 1)2 > 4ac, and they are distinct if and only if (b — 1)> > 4ac. The values
of f’ at these points are

fl(x12) =2ax12+b=1+(b—1)7?—4ac

SECTION 11.7 / STABILITY OF NONLINEAR DIFFERENCE EQUATIONS

It follows thatif the equilibrium points exist and are distinct, then x; is always unstable,
x7 is locally asymptotically stable if (b — 1)? —4ac < 4, and unstable if (b — 1)% —4dac
(If (b — 1)2 — 4ac = 4, then x, is “locally asymptotically stable on one side” and un
on the other side.)

Equation (4) admits a cycle of period 2 if there exist distinct numbers &; and &, suc
f(&) = & and f (&) = &;. These numbers must be solutions of the equation x = f(;
Since f(f(x)) is a polynomial of degree 4, it seems at first sight that we have to
a rather difficult equation in order to find &, and &,. Fortunately the equation simj
because any solution of x = f(x) is also a solution of x = f(f(x)), so x — f
a factor of the polynomial x — f(f(x)). A simple but tedious computation show

x — f(f(x)) = (x = f(x))g(x), where
gx) =a*x>*+ab+ Hx+ac+b+1
The cycle points are the roots of the equation g(x) = 0, which are

R R Sy Vo

=+ D+ (b—1)?—dac—4
N 2a Co 2a

&1

These roots exist and are distinct if and only if (b — 1)> > 4ac + 4. Hence, if ther
cycle of period 2, the equilibrium points x; and x; also exist, and are both unstable.
also Problem 1.)

Because f'(§) = 2a& + b, while & + & = —(b+ 1)/a and §1& = (ac+ b+ 1),
simple calculation shows that f'(£;) f'(£&;) = 4ac — (b — 1)?> + 5. Then

IF'ENFE) <1 & 4<b-1)>—4dac<6

It follows that if the inequalities on the right are satisfied, then equation (4) admits a :
cycle of period 2. (The first inequality on the right is precisely the necessary and suff
condition for a period 2 cycle to exist.)

PROBLEMS FOR SECTION 11.7

1. Show thatif f : I — I is continuous and the difference equation x;; = f(x;) a
a cycle &), & of period 2, it also has at least one equilibrium solution between &
&). (Hint: Consider the function f(x) — x over the interval with endpoints &; an

2. A solution x* of the equation x = f(x) can be viewed as an equilibrium soluti
the difference equation

X1 = f(x;)

If this equilibrium is stable and xo is a sufficiently good approximation to x*, th¢
solution xg, x1, x3, ... of (x) starting from xo will converge to x*.

(a) Use this technique to determine the negative solution of x = ¢* — 3 to at least
decimal places.
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3. The function f in Fig. 4 is given by f(x) =

/ DIFFERENCE EQUATIONS

(b) The equation x = ¢* — 3 also has a positive solution, but this is an unstable
equilibrium of x;41 = €* — 3. Explain how nevertheless we can find the positive
solution by rewriting the equation and using the same technique as above.

—x2 + 4x — 4/5. Find the values of
the cycle points & and &, and use (5) to determine whether the cycle is stable. It is

clear from the figure that the difference equation x;11 = f(x;) has two equilibrium

states. Find these equilibria, show that they are both unstable, and verify the result in

Problem 1.

12.1

DISCRETE TIME
OPTIMIZATION

In science, what is capable of proof
must not be believed without a proof.!
—R. Dedekind (1887)

his chapter gives a brief introduction to discrete time dynamic optimization problems

term dynamic refers to the fact that the problems involve systems evolving over time.
is here measured by the number of whole periods (say weeks, quarters, or years) that
passed since time 0. So we speak of discrete time. In this case it is natural to study dyr
systems whose development is governed by difference equations.

If the horizon is finite, then such dynamic problems can be solved, in principle, using cla
calculus methods. There are, however, special solution techniques described in the pr
chapter that take advantage of the special structure of discrete dynamic optimization prob

Most of the chapter is concerned with dynamic programming. This is a general me
for solving discrete time optimization problems that was formalized by R. Bellman in the
1950s. There is also a brief introduction to discrete time control theory. The last two sec
cover stochastic dynamic programming. (This is the only part of the book that relies on :
knowledge of probability theory, though at a basic level.)

Dynamic Programming

Consider a system that is observed at times 7 = 0, 1, ..., T. Suppose the state of the sy
at time ¢ is characterized by a real number x,. For example, x; might be the quantity of
that is stockpiled at time ¢. Assume that the initial state x¢ is historically given, anc
from then on the system evolves through time under the influence of a sequence of con
u;, which can be chosen freely from a given set U, called the control region. For exar
u, might be the fraction of grain removed from the stock x, during period 7. The cor

! There is no ideal English translation of the German original: “Was beweisbar ist, soll i
Wissenschaft nicht ohne Beweis geglaubt werden.”



