10.1

CONTROLTHEORY
WITH MANY VARIABLES

To be sure, mathematics can be extended to any branch of
knowledge, including economics, provided the concepts are so
clearly defined as to permit accurate symbolic representation.
That is only another way of saying that in some branches of
discourse it is desirable to know what you are talking about.
—D. MacDouglas (1956)

his chapter begins by extending the optimal control theory developed in the previous chap

to problems with several state and control variables. In the first section the main emphe
is on appropriate generalizations of results from Chapter 9. There is not too much discussi
because the essential motivation was given in Chapter 9. However, we give a proof of the Arrc
sufficiency theorem in the case of several state and control variables.

Section 10.2 deals with examples illustrating the theory.

Section 10.3 extends the infinite horizon theory of Section 9.11. In fact, the majority of 1
control models that appear in economics literature assume an infinite horizon.

Section 10.4 begins with a discussion of the existence of optimal controls. Then we prese
precise sensitivity results which are seldom spelled out except in specialized literature.

Section 10.5 offers a heuristic proof of the maximum principle, which, at least in the case
afree end, is close to a proper proof. In economics literature necessary conditions for optima
are often obtained by using the “Lagrangian method”. This consists of introducing a suital
Lagrangian and equating its “derivatives” to 0. There is no justification for this method, bu
might serve as a mnemonic device.

The chapter concludes with a short discussion of control problems with mixed constraints
the type h(t, x, u) > 0, as well as pure state constraints of the type h(t, x) > 0. Many of t
control problems that economists have considered involve additional constraints of these typ

Several Control and State Variables

Chapter 9 studied control problems with only one state and one control variable. In t
section most of the results from Chapter 9 are generalized to control problems with
arbitrary number of state and control variables.
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The standard end constrained problem is to find, for fixed values of 7y and ¢, a pair

of vector functions (x(¢),u(¢)) = (x1(¢), ..., x, (), u;(t),...,u,(t)) defined on [tg, #;]
which ,
1
maximizes f f(t,x(t),u())dt €))]
fy
subject to the dynamic constraints
dx(t
xd'f ) — g1, u@)
....................... or x=g(t,x(1),u(t)) )
L) _ gt %), u))
df - gn vx( 7“ )

the initial conditions

x,-(to)zxo i=1,...,n (x0=(x?,...,x,?) is a given point in R") 3)

i
the terminal conditions

(@ x@t)=x!, i=1..,
® x@)=x!, i=Il+1,....,m ()

. () x;i(t) free, i=m+1,...,n

and the control variable restrictions
ut) = (u1(@),...,u,(t)) e U CR, (U is a given set in R") (5)

In (2) the system of differential equations is also written as a vector differential equation,
where X = (dx,/dt,dxy/dt, ..., dx,/dt), and g = (g1, g2, - - ., &) 18 a vector function.

The pair (x(¢), u(z)) is admissible if u;(z), ..., u,(¢) are all piecewise continuous,
u(z) takes values in U and x(¢) = (x1(¢), ..., x,(¢)) is the corresponding continuous and
piecewise differentiable vector function that satisfies (2), (3), and (4). The functions f and
81, - . ., &n and their partial derivatives w.r.t. the x;’s are assumed to be continuous in all the
n + r + 1 variables.

There are n differential equations in (2) describing the rate of growth of each of the
n state variables. By analogy with the single variable problem in Section 9.4, associate
n adjoint functions p;(¢), ..., p,(t) with the n differential equations. The Hamiltonian
H = H(t,x,u,p), withp = (p1, ..., pu), is then defined by

H(t,%,u,p) = pof(t, X, u) + p- g(t, X, 0) = pof (1. X, u) + Y _ pigi(t,x,w)  (6)

i=1

The Maximum Principle

The maximum principle for the problem gives necessary conditions for optimality, but the
conditions are far from sufficient. For a proof see Fleming and Rishel (1975).
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THEOREM 10.1.1 (THE MAXIMUM PRINCIPLE. STANDARD END CONSTRAINTS)

Suppose that (x*(¢), u*(#)) is an optimal pair for the standard end constrained

problem (1)—(5). Then there exist a constant pg, with pg = 0 or pg = 1, and a

continuous and piecewise differentiable function p(t) = (p1(¢), ..., p,(¢)) such

that for all ¢ in [#o, 1], (po, p(t)) # (0, 0), and:

(A) The control function u*(z) maximizes the Hamiltonian H (¢, x*(¢), u, p(¢))
forue U,i.e.

H(, x*(t),u,p(t)) < H(t,x*(¢),u*(t), p(¢)) foralluinU

(B) Wherever u*(¢) is continuous, the adjoint variables satisfy

OH(t, x*(t),u*(t), p(t))

=1,...,n
ax,'

pi(t) = —

(C) Corresponding to the terminal conditions (a), (b), and (c) in (4), one has the
transversality conditions:

(") p;i(t;) no condition, i=1,...,1
(b) pi(t) =0 (pi(t) = 0if xf(11) > x}), i=l+1,...,m
(c") pi(t) =0, i=m+1,...,n

£ 1 If some of the inequalities in (4) (b) are reversed, the corresponding inequali
in (9)(b') are reversed as well.

©7F 2 One can show the following additional properties:

(a) The Hamiltonian

H(t,x*(t),u*(¢), p(t)) is continuous for all ¢ (

(b) If the partial derivatives df/d¢ and dg; /dt,i = 1, ..., n, exist and are continuous, t|

d P _OH (@, x*(1), u* (1), p(1))

at all points of continuity of u*(¢). (See Problem 2.)

(c) Moreover,
U convex and H strictly concave inu = u*(f) continuous for all ¢ (

Suppose that the terminal condition is that x;(#;) is free fori = 1, ..., n. Tl
(9)(c") yields p(#;) = 0, and then pg = 1.

4 The adjoint variables in Theorem 10.1.1 can be given price interpretations
responding to the price interpretations in Section 9.6 for the case n = r = 1. Indeed,
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x! = (xl‘ e x,ll) and define the value function V associated with the standard problem as

n
V(xo,xl,to,z‘]) = max {/ f@,x(),u(@®))dt : (x(¢), u(t)) admissible} (13)
4]
Then fori = 1,2, ..., n (for precise assumptions, see Section 10.4),

(14)

Here H* denotes the Hamiltonian evaluated along the optimal path.

Sufficient Conditions

The simplest general sufficiency theorem is the following:

THEOREM 10.1.2 (MANGASARIAN)

Consider the standard end constrained problem (1)—(5) with U convex, and sup-
pose that the partial derivatives df/du; and dg;/du; all exist and are continu-
ous. If the pair (x*(¢), u*(¢)) satisfies all the conditions in Theorem 10.1.1 with
po =1, and if

H (¢, x,u, p(¢)) is concave in (x, u) for all ¢ in [z, #;] (15)

then (x*(¢), u*(¢) solves the problem.

If the function H (, X, u, p(¢)) is strictly concave in (x, u), then (x*(¢), u*(¢)) is
the unique solution to the problem.

NOTE 5 Because a sum of concave functions is concave, the concavity condition (15) is
satisfied if f and p,(t)g1, ..., pa(t)gn are all concave in (x, u).

At this point the reader might want to study Example 10.2.1 and then do problem 10.2.1.

The proof of Theorem 10.1.2 is very similar to the proof of Theorem 9.6.1, so we skip
it. Instead, we take a closer look at Arrow’s proposed generalization of the Mangasarian
theorem. (See Arrow and Kurz (1970).) Define

H(t, x,p) = max H(z, x, u, p) (16)
uelU

assuming that the maximum value is attained. Then the appropriate generalization of The-
orem 9.7.2 is this:
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THEOREM 10.1.3 (ARROW)

Suppose that (x*(7), u*(¢)) is an admissible pair in the standard end constrained
problem (1)—(5) that, together with the continuous and piecewise differentiable
adjoint (vector) function p(z), satisfies all the conditions in Theorem 10.1.1 with
po = 1. Suppose further that

ﬁ(t, X, p(t)) is concave in x for all ¢ in [z, ;]

Then (x*(1), u*(¢)) solves the problem.

le Let (x,u) = (x(t),u(r)) be an arbitrary admissible pair. We must show that
f,;' F,x5(0), u* (1)) dt — f,;‘ f(t,x(t), u(t))dr > 0. Let us simplify the notation by letti
denote f(t,x*(t), u*(r)), f denote f(z,x(t),u(z)), H* denote H(z, xX*(t),u*(t), p(1)), etc.
the proof of Theorem 9.7.1, it is easy to see that

Du=/I(H*—H)dt—{-flp(t)-()k(t)—)k*(t))dt

0 fo

Integration by parts yields

1 1 n
f p() - (X(t) — X*(1)) dt =‘ p(?) - (x(t)—X*(t))—/ p() - (x(t) —x*(t)) dt

fo fo [}
il

= = / p() - (x(1) — x*(1)) dt
0

To explain the last inequality, note first that because x(fp) = x*(1y) we get

t

1 n
P() - (X(1) = X"(1) = p(1y) - (X(1)) = X"(11)) = D _ pi (1) (xi (1) — x7(17))

o i=1

We claim that this sum is > 0, which will imply the inequality in (ii). In fact, fori = 1, 2,
we have x;(t)) = x}(t;) = xi', so the corresponding terms are 0. Also fori =m + 1,...,
corresponding terms in the sum in (iii) are 0 because by (9)(¢), p; (1)) = 0. Ifi =1 +1,...,
xr(t) > x} , the corresponding terms are 0 because by (9)(b'), p;(#;) = 0. Finally, if x}(t;)
then x;(t) — x/(t;) > 0 and by (9)(t), p;(t;) > O so the corresponding terms are > 0. All
this proves that the sum in (iii) is > 0.

To proceed, note that by the definition of H,

H*=H* and H<H

It follows from (i)—(iv) that
t
Dy > / W = H = ) - (x(0) — X" dr
fo

But (8) implies that —p(z) is the (Ram'al) gradient vector Vy H*, which must equal Vxﬁ* t
envelope Theorem 3.1.6. Because H is concave w.r.t. X, it follows from Theorem 2.4.1 that

H—H* < —p0)(x(t) —x*(1)), or H*— H > p@)(x(t) — x* (1))

This means that the integral on the right hand of (v) is nonnegative for all # in [t0, 111, so Dy >
required.



364

CHAPTER 10 / CONTROL THEORY WITH MANY VARIABLES

NOTE 6 The result in Problem 3 shows that condition (15) implies (17). Thus Theorem
10.1.3 generalizes Theorem 10.1.2.

NOTE 7 Suppose that in the standard end constrained problem (1)-(5) one requires that
x(t) € A(t) forall, where A(¢) foreach is a given convex setin R”. Suppose also that x*(¢)
is an interior point of A(f) for each z. Theorem 10.1.3 is then valid, and x — ﬁ(r, X, p(1))
need only be concave in the set A(t).

Variable Final Time

Consider problem (1)-(5) with variable final time #;. The problem is among all control
functions u(r) that during the time interval [#, #;] steer the system from x0 along a time
path satisfying (2) to a point where the boundary conditions in (4) are satisfied, to find one
which maximizes the integral in (1). The time #; at which the process stops is not fixed,
because the different admissible control functions can be defined on different time intervals.
Theorem 9.8.1 has then the following immediate generalization:

THEOREM 10.1.4 (THE MAXIMUM PRINCIPLE. VARIABLE FINAL TIME)

Suppose that (x*(¢), u*()) is an admissible pair defined on [fo, ¢{] that solves
problem (1)—(5) with #; free, (¢ € (fp, 00)). Then all the conditions in the
maximum principle (Theorem 10.1.1) are satisfied on [1y, ¢/], and, in addition,

H (7, x* (1), w* (1), p(t)) = 0 (18)

For a proof, see Hestenes (1966). Neither the Mangasarian nor the Arrow theorems apply
to variable final time problems. For sufficiency results, see Seierstad and Sydseater (1987).

Current Value Formulations with Scrap Values

The theorems in Section 9.10 on current value formulations of optimal control problems
with scrap value functions can easily be generalized to the following problem involving
several state and control variables.

ugl‘/%xﬂ,{/mtl f(t,x,u)e‘”dt+S(x(t|))e_”'}, X =g x,u), x(p)=x" (19
(@ xt)=x!, i=1,..,1
b xt)=x!, i=Il+1,...,m (20)
() x;(t)) free, i=m+1,...,n

Here r denotes a discount factor (or an interest rate). The current value Hamiltonian is by
definition
H(t,x,u,}) = Ao f (¢, %, u) + A - g(, X, w) (21

and the maximum principle is as follows:
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THEOREM 10.1.5 (THE MAXIMUM PRINCIPLE)

Suppose that (x*(¢), u*(¢)) is an optimal pair for the problem (19)—(20). Then
there exist a continuous and piecewise continuously differentiable vector function
A(t) = (A(1), ..., A, (2)) and a constant Ay, with Ag = 0 or Ay = 1, such that
(X0, A(2)) # (0, 0) for all ¢ in [z, t;], and such that:

(A) Forall t in [1g, t1],

u = u*(¢) maximizes H(t,x*(¢),u, A(?)) forue U (

(B) Wherever u*(¢) is continuous,

OHE(t, x*(t), u*(t), A (1))

(@) — ri@®) = — o

i=1,...,n (

(C) Finally, corresponding to the terminal conditions (20) (a), (b), and (c), one
has the transversality conditions:

(@) A;i(t;) no condition, i=1,...,1
0S*(x*(t
) ri(n) 2107(; @) (with=ifx*(r)) > x}), i=1+1...,m (
Xi
oS*(x*(¢
(" M(H)=M%, i=m+1,...,n
Xi

THEOREM 10.1.6 (SUFFICIENT CONDITIONS. ARROW)

The conditions in Theorem 10.1.5 are sufficient (with Ag = 1) if

ﬁc(t, X, A(t)) = mal)/( H(t,x,u, A(¢)) is concave in x (
ue
and
S(x) is concave in X. (

The problems for this section are of a theoretical nature. Non-theoretical exercises are for
at the end of the next section.

PROBLEMS FOR SECTION 10.1

1. Consider the variational problem with an integral constraint

151 n
max/ F(t,x,x)dt, x(t) = x°, x(ty) = x', f G(t,x,%)dt = K
to 0]
Transform the problem to a control problem with one control variable (¢ = X) and 1
state variables x = x(¢) and y(t) = ft:) G(t, x(1), x(1))dr.
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2. Prove (11) assuming that u*(z) is differentiable and u*(¢) belongs to the interior of U.
(Hint: Differentiate H (¢, x*(¢), u*(t), p(¢)) totally w.r.t. t.)

3. Let S and U be convex sets in R"” and R", respectively, and let F(x, u) be a real-valued
concave function of (x, u), x € S, u € U. Define

f(x) = max F(x,u) (%)
uel

where we assume that the maximum value exists for each x € S. Prove that f is
concave in S. (Hint: Let x|, Xo € S, A € (0, 1) and choose uj, u; € U such that
f(x)) = F(xj,wy), f(x2) = F(x2,u2).) Let B be a convex set in R” x R" and define
the set Uy = {u : (x, u) € B}. Prove that g(X) = maxuey, F(x,a) is concave.

4. Rewrite the following problem as one of the type (1)~(5),

n 1
max/ ft, x,u)dt, x =g(t, x,u), x(to) = xU, uel, / h(t, x,u)dt = K
to 1o
Here 1y, t1, x%, and K are given numbers, f, g, and h are given functions, and U is a
subset of R.

Some Examples

In this section the theory from the previous section is used to solve some multidimensional
control problems. The first is intended to be simple enough for you to be able to make a real
effort to solve it before looking at the suggested solution.

Solve the problem

@) =y@®), x(0)=0, x(T)isfree

T
_1 2
1)k /o (X(t) A 2(u(t)) )dt’ y(t) =u(t), y©0)=0, y(T)isfree

u(t)eR

Verify that the last equality in (14) is satisfied.

Solutiorn: Suppose that (x*(z), y*(r), u*(r)) solves the problem. With the two adjoint
variables p; and p, the Hamiltonianis H = x +y — %uz + p1y + pau, which is clearly
concave in (x, y, u). (Because x(T) and y(T') are free, Note 10.1.3 implies po = 1.) We
see that H, = 1, H, = 14 pj,and H, = —u + p>.

The differential equations for p; and p; are pi(r) = —1 with p;(T) =0, and po(1) =
—1 — p1(¢) with po(T) = 0. It follows that py(¢) = T —t. Hence, po(t) = -1+t =T
and therefore p,(t) = —t + %t2 — Tt + A. The requirement p(T) = 0 implies that
A =3T?+T. Thus

pi®)=T—t, p@)=3T -0 +T ~1

EXAMPLE 2
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H is concave in u and u € R, so H has its maximum when H,, = 0. This gives u*(¢)
p2(t) = $(T —1)>+ T —1. Since y*(t) = u*(t) = $(T —1)>+T — 1, we find by integrat
that y*(1) = — (T — 1)> + Tt — 112 + B. The initial condition y*(0) = 0 gives B = ¢’
From x*(t) = y*(¢) we get x*(¢) = ilz(T —)4+ %Tt2 — %t3 + %T3t + C. The requirem
x*(0) =0 gives C = ——21—4T4. Hence the optimal choices for x* and y* are

)= LT =0+ IT2 =134 I - LTty ) = (T -0+ Tt =37+ ¢

Mangasarian’s theorem shows that we have found the optimal solution.

The value function is V(T) = f; (x*(t) + y*(t) — (u*(1))?) dt, and a rather tedi
computation (using Leibniz’s formula) yields that V'(T) = %Tz + %T3 + —éT‘*. On
other hand, H*(T) = x*(T) + y*(T) — 3(u*(T))* + py(T)y*(T) + p2(T)u*(T) is eas
seen to equal %Tz + %T3 + éT“, so confirming (10.1.14).

(Two-sector Model) This model is related to a model of Mahalanobis.) Consider
economy which is divided into two sectors. Sector 1 produces investment goods, wl
sector 2 produces consumption goods. Define

x; () = output in sector i per unit of time, i =1, 2

u(t) = the fraction of investment allocated to sector 1

Assume that Xx; = aux; and X, = a(l — u)x|, where a is a positive constant, so t
the increase in production per unit of time in each sector is proportional to the fractior
investment allocated to that sector. By definition, 0 < u(¢) < 1, and if the planning per
starts at time ¢ = 0, then x;(0) and x;(0) are historically given.

We consider the problem of maximizing total consumption in a given planning per
[0, T]. The problem is then, with a, T, x?, and xg as positive constants:

T {x](t) = au(t)x; (1), x1(0) = x¥,  x(T) is frec
max / xy(t)dt, . Q ;
u()€l0,11 Jo Xo(t) = a(l —u(@))x1(2), x2(0) = x5,  x2(T) is free

The Hamiltonian is H = x» + piaux; + paa(l — u)x;, where p; and p, are the adjc
variables associated with the two differential equations. (Because both terminal stocks
free, Note 10.1.3 implies pg = 1.)

Suppose that (xj(z), x5 (¢)) and u*(t) solve the problem. According to Theorem 10.
there exists a continuous vector function (p1(¢), p2(¢)) such that for all ¢ in [0, T], v’
is the value of u in [0, 1] which maximizes x;(¢) + p1(t)auxj(t) + p2(t)a(l — u)xy
Collecting the terms in H which depend on u, note that «*(¢) must be chosen as that va
of u in [0, 1] which maximizes a(p1 (1) — p2(t))x} (t)u. Now, x{(0) = x? > 0, and beca
X7(t) = au*(t)x] (1), it follows that x{(#) > 0 for all . The maximum condition theret
implies that u*(¢) should be chosen as

1 if pr(t) > pa2(®)

u*(t) = { ]
0 if pi(t) < p2(®)
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The function p, (1) satisfies p2(t) = —9H*/3dxy = —1 with p»(T) = 0. Hence
pa)=T—1

The function p;(¢) satisfies p(t) = —9H*/3x; = —p1(H)au*(t) — p2(Ha(l — u*(1)),
with p1(T) = 0. Because pi(T) = p2(T) = 0, one has p1(T) = 0. From po(t) = —1, it
follows that py(t) < pa(t) inan interval to the left of T'. (See Fig. 1.) Let t* be the largest
value of ¢ in [0, T'] for which p;(¢) = p2(t) =T —1. (Possibly, t* = 0.) Using (i) it follows
that u*(t) = 0in (¢*, T). Hence p; (1) = —apy(t) = —a(T —t) in (t*, T). Integration
yields pi(t) = —aTt + Sar* + Cy. But pi(T) = 0,50 C1 = 1aT? and hence

pi(t) = —aTt + sar* + JaT? = Ya(T =1, 1€l T]

IJI»PZﬂ

Figure 1 The behaviour of p; and ps.

Unless pi(t) < pa(t) for all ¢ in [0, T], the number t* is determined by the requirement
p1(t*) = pa(t*). Using the expressions found for p;(7) and p; (1), it follows that

t* =T —2/a if T >2/a, otherwise t* =0

Consider the case when T > 2/a, so t* > 0. How does p1(t) behave in the interval [0, t*)?

t that -
Note first tha —ap\(t) if pi(t) > pa(t)

5 (1) =

o { —apa(t) if pr(t) < pa(0)
If p1(t) > pa(), then —apy(t) < —ap,(t). Whatever is the relationship between p; () and
p2 (1), we always have

p1(t) < —apa(t) =a —T)
In particular, if # < *, then p; (1) < a(t—T) < a(*—T) = —2. Because pa(t) = —1for
all t and p)(t*) = p2(t*), we conclude that py(t) > pa(r) fort < t*. Hence, u*(t) =1 for
¢ in [0, t*]. The maximum principle therefore yields the following candidate for an optimal
control, in the case when T > 2/a:

1 iftel0,T—-2/a N

ut(t) = { ' [ /al (T > 2/a) (i1)

0 ifre(T—2/a,T]
In [0, T — 2/a], u*(t) = 1 and so py = —apy, ie. pi(t) = Ce . Because p(t*) =
pr(t*) = T —t* = 2/a, this yields

p1(t) = (2/a)e™TTHHD 1[0, T —2/a)
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It is easy to find explicit expressions for x{ (¢) and x3(¢). (See Problem 2.)
In the other case, when T < 2/a, one has t* = 0, so the candidate for an optim
control is

w*(t) =0 forallzin[0,T] (T <2/a)

In this example the maximum principle yields only one candidate for an optimal control (i
each of the cases T > 2/a and T < 2/a).
The Hamiltonian is not concave in (x|, x2, u) (because of the product ux;). Thus tt

Mangasarian theorem does not apply. The maximized Hamiltonian H defined in (10.1.1¢
isforx; >0, x>0,

~ xy +apyx; if py > ps
H(t, x1,x2, p1, p2) = )
xy+aprxy if p1 < p2

For each ¢ in [0, T'], the function H is linear in (x1, x2). It is therefore concave in the s
A = {(x1,x2) : x; > 0, xo > 0}. According to Theorem 10.1.3 and Note 10.1.7, tt
solution to the two-sector problem has been found.

PROBLEMS FOR SECTION 10.2

1. Solve the problem

x1(t) = x2(1), x1(0) =2, x1(4)is free

uel—1,1] X2(1) = u(t), x00) =4, xp(4)is free

4
max f(]O—x|+u)dt, {
0

2. In Example 2, for the case when T > 2/a, find the functions x{(¢) and x5 () corre
ponding to the control function given in (ii).

3. (a) Solve the problem

X1() =u1(®), x1(0)=0, x(T)isfre

T
1 1
max 5X1 4 zxp —up —up)dt,
/o (3%1 + 5%2 —uy —u2) [5(2(;)=u2(,)’ x(0) =0, xo(T)is fre

withO < u;(¢) < 1,0 < up(¢) < 1, and with T as a fixed number greater than 5
(b) Replace the objective functional by fOT (%xl =4 -;-X2 —uy—up)dt+3x;(T)+2x,(1

and find the solution in this case.

4. Solve the problem
max fT(xz(t) +c(l —uy —up))dt
x1(t) = aul(t),o x1(0) = x?, x1(T) free
%2(t) = auy(t) + bxi (1), x2(0) = x5, xa(T) free

0<uy, O0<uy, ur+ur=1
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where T, a, b, and c are positive constants and T — c¢/a > T — 2/b > 0. (Compared
with Example 2, an extra flow of income amounting to one unit (say 1 billion per year)
can be divided between extra capital investment in either the investment or consumption
goods sectors, or consumed directly.)

. Solve the problem

T x| =u, x1(0) = 0, x () is free
max / (x1 —cx2+u0—u)dt, ! ;
0

uel0,u0) Xy = bxy, x2(0) = xg, x1(2) is free

where T', b, ¢, and u® are positive constants. (Economic interpretation: Oil is produced
at the rate of u° per unit of time. The proceeds can be used to increase the capacity x|
in the sector producing consumption goods. By adjusting the physical units, assume
%1 = u. The production of consumption goods is proportional to x1, and by adjusting the
time unit, the constant of proportionality is chosen as 1. The production of consumption
goods increases the stock of pollution, x7, at a constant rate per unit. This subtracts cx;
from utility per unit of time.)

. Consider the problem:

K(t) = f(K(@t),ut)) —c(t), K©)= Ko, K(T)=Kr

T
max/ Ulc(t))e " dt, { )
0 x(t) = —u(t), x(0) =xo, x(T)=0

where u(t) > 0, c(t) > 0. Here K (¢) denotes capital stock, x(¢) is the stock of a
natural resource, c(t) is consumption, and u(¢) is the rate of extraction. Moreover, U is
autility function and f is the production function. The constants T', Ko, K7, and xo are
positive. Assume that U" > 0, U” < 0, fr > 0, f, > 0, and that f (K, u) is concave
in (K, u). This problem has two state variables (K and x) and two control variables (u
and ¢).

(a) Write down the conditions in Theorem 10.1.1, assuming that u(#) > Oand c(¢) > 0
at the optimum.

(b) Derive from these conditions that

¢ r—frK,w

d !/ ! /
- ) E(fu(K,u))=fK(K»u)fu(K,u)

where o is the elasticity of the marginal utility. See Section 8.4.

7. Solve the problem

2 | x=u, x0)=1, x(2)isfree
max / (x — qu)dt, .
uel0.1] Jo y=u, y0)=0, y@2) =l

10.3
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Infinite Horizon

Infinite horizon control problems were introduced in Section 9.11. This section extends
analysis in several directions. Consider as a point of departure the problem

oo

max f,x@),u@)dt, x(t) = g(t, x(t), u(r)), x(1p) = x°, lim x(¢) = x'

u(t)el Jy, t—00
where x! is a fixed vector in R". Suppose the integral converges whenever (x(z), u(
satisfies the differential equation and x() tends to the limit x! as ¢ tends to co. For t
problem the maximum principle holds. If we replace the condition lim,_, o, X(f) = x' w
lim; 00 X(#) > x! or lim,_, o, X(7) free, then the maximum principle again holds, except
the transversality conditions.

When the integral in (1) does not converge for all admissible pairs, what is a reasona
optimality criterion? Suppose (X(¢), u(¢)) is an arbitrary admissible pair, and (x*(¢), u*(
is a pair we wish to test for optimality. Define

t t
Du(t)=/ f(r,X*(r),U*(f))dr—/ fo(r,x(7),u(r))dr
4] to

There are several optimality criteria in economics literature which differ in how D,
behaves for large values of 7. The simplest of these criteria is:

OVERTAKING OPTIMAL

The pair (x*(¢), u*(¢)) is OT optimal if for each admissible pair (x(¢), u(t))
there exists a number Ty, such that Dy (¢) > O for all t > Ty,.

More important than overtaking optimality is the next criterion:

CATCHING-UP OPTIMAL

The pair (x*(¢), u*(r)) is CU optimal if for each admissible pair (x(z), u(z)) and
every ¢ > 0 there exists a number Ty, . such that Dy () > —e whenever ¢ > Ty ;.

NOTE * In general, let f(z) be a function defined for all # > #;. Define the functi

F(t) =inf { f(v) : T > t}. Then F(¢) is an increasing function of ¢, and we define

lim f(5) = lim F(r) = lim (inf { f(7) : 7 2 1}) (

11— 00

Here we allow lim;_, o F(t) = oo. The following characterization is useful and qu
straightforward to prove.
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With this definition the requirement in (4) can be formulated as:

(x*(¢), u*(t)) is CU optimal <= lim Dy(t) > 0 for all admissible pairs (x(1), u(t))

t—00

We turn next to the behaviour of X(¢) as t approaches infinity. The requirement that x(¢) tends
to a limit as ¢ approaches infinity is often too restrictive. So is the alternative requirement
that lim_, o0 X(¢) = x! because it excludes paths where x(¢) oscillates indefinitely. Among
many possible terminal conditions consider the following:

lim, o0 X; (1) exists and is equal to x/, i=1,...,1 (7a)
lim, , , xi(t) > x/, i=1+1,...,m (7b)
no conditions imposed on x;(f) as t — o0, i=m+1,...,n (7¢)

One can show the following theorem (Halkin (1974)):

THEOREM 10.3.1 (THE MAXIMUM PRINCIPLE. INFINITE HORIZON)

Suppose the pair (x*(¢), u* (1)) satisfies the differential equation in (1), the initial
condition x(fy) = x", and the terminal conditions (7). If this pair is OT or CU
optimal, then it must satisfy all the conditions in Theorem 10.1.1 except the
transversality condition.

The problem with this theorem is that when | < n it gives too many solution candidates,
because it includes no transversality condition.
Here is a result that gives sufficient conditions for CU optimality.

THEOREM 10.3.2 (SUFFICIENT CONDITIONS FOR AN INFINITE HORIZON)

Consider problem (1) and (7) and suppose that U is convex. If (x*(¢), u*(¢)) for
po = landforallz > 1o satisfies the conditions in Theorem 10.1.1, except the
transversality conditions, and if moreover

H(t,x,u, p(t)) isconcave in (X, u) ®)

and
lim [p(¢) - (x(¢) — x*(¢))] = 0 for all admissible x(¢) )

—00

then the pair (x*(¢), u*(¢)) is CU optimal.

Applying the arguments in the proof of Theorem 9.7.1 and putting #; = ¢, we obtain
Dy (1) = p(t)- (x(¢) —x*(1)). Taking lim on both sides, it follows thatlim,_, ., Du(?) = 0. =
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The following conditions are sufficient for (9) to hold (see Seierstad and Sydsater (1987
Section 3.7, Note 16). For all admissible x(#):

lim [p; (1) (] = x;(t)] = 0 S (10

=00

The exists a constant M such that

|pi(t)| < M forall t > tg J =8 0009 110 Qo
Either there exists a number ¢’ > 1y such that

pi(t) > 0 for all t > ¢, or there exists a

number P such that |x;(t)| < P forallt >t i=l+1,....m (10
and lim p;(z) > 0

1—>00
There exists anumber Q suchthat |x; ()| < Q
forallt > fg, and lim p;(r) =0 i=m+1,....n (10«
=00

NOTE 2 (Malinvaud’s transversality conditions) If the terminal conditions 7(a)—(c) a
replaced by the conditions x;(t) > xI.' forallt and all i = 1, ..., n, then the inequaliti
p(t) = 0 forall t > t and 10(a) are sufficient for (9) to hold.

PROBLEMS FOR SECTION 10.3

1. Givenr € (0, 1), solve the problem
o0
max / (x —uw)e "dt, x=ue’, x(0)=x0>0, uecl01]
0

2. (a) Solve the following problem when r > a > 0:

o X = —,0
max / xpe " dt, _1 e #1(0) =x1 20
uel0.1] Jo X =a(l —u)x;, x0)=x)=0

(b) Show that the problem has no solution when r < a.
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10.4

Existence Theorems and Sensitivity

We mentioned at the end of Section 9.3 the role played by existence theorems in optimal
control theory. Not every control problem has an optimal solution. For example, in most
control problems in economics it is easy to impose requirements on the final state that are
entirely unattainable. These are trivial examples of problems without optimal solutions.
Moreover, when the control region U is open or unbounded, it is frequently the case that no
optimal solution exists. Even if U is compact and there exist admissible pairs, there is no
guarantee that an optimal pair exists.

As a practical control problem without an optimal solution, think of trying to keep a pan
of boiling water at the constant temperature of 100°C for one hour when it is being heated
on an electric burner whose only control is an on/off switch. If we disregard the cost of
switching, there is no limit to the number of times we should turn the burner on and off.

In applications one often sees the argument that practical physical or economic consid-
erations strongly suggest the existence of an optimum. Such considerations may be useful
as heuristic arguments, but they can never replace a proper mathematical existence proof.
In general, a necessary condition for a mathematical optimization problem to give a real-
istic representation of physical or economic reality is that the problem has a solution. If
a practical problem appears to have no solution, the fault may lie with the mathematical
description used to model it.

Consider the standard end constrained problem (10.1.1)-(10.1.5). For every (¢, X) in
R+ define the set

N@x) = {(fe.xw+y, g1t x,0), ..., g, x,w) 1 y <0, ueU} (1)

This is a set in R" ! generated by letting y take all values < 0, while u varies in the control
region U.

The next theorem requires the set N(t, X) to be convex. This implies that if the system
starts in position x at time ¢ and can be driven at either of the two velocity vectors x; and
%, then it can also be driven at any velocity vector which is a convex combination of X; and
X». The “gain” obtained (measured in terms of the value of f) is no smaller than the convex
combination of the gains associated with X; and X,. (For a proof of the theorem see Cesari
(1983).)

THEOREM 10.4.1 (FILIPPOV—CESARI'S EXISTENCE THEOREM)

Consider the standard end constrained problem (10.1.1)—(10.1.5). Suppose that
there exists an admissible pair, and suppose further that:

(a) N(t,x)in (1) is convex for every (¢, X).
(b) U is compact.

(c) There exists a number b > 0 such that || (x(7)|| < b forall ¢ in [fo, #;] and all
admissible pairs (x(¢), u(t)).

Then there exists an optimal pair (x*(¢), u*(¢)) (where the control function u*(r)
is measurable).

EXAMPLE 1

SECTION 10.4 / EXISTENCE THEOREMS AND SENSITIVITY

MOTE 1 The condition (a) in Theorem 10.4.1 can be dropped if all the functions g; ar
the form g; (¢, x, u) = h; (¢, X) + k; (¢, u), where the k; functions are linear in x.

Condition (c) in the theorem is implied by the following sufficient conditior

IO

‘ 2 For an existence theorem for infinite horizon problems, see Seierstad and Syds:
(1987), Section 3.7, Theorem 15.

¢ Consider problem (10.1.1)-(10.1.5) where ¢, is free to take values in an inte
[Ty, T»] with T} > to. Then Theorem 10.4.1 is still valid if the requirements are satisfiec
all ¢ in [ty, T>].

There is a technical problem with the Filippov—Cesari existence theorem which is sugge
by the word “measurable”. In order to ensure the existence of an optimal control, the clas
admissible control functions must be enlarged to include “measurable” functions. These
be much “more discontinuous” than piecewise continuous functions. (For a brief sur
see Lee and Markus (1967), p. 55-56.) In almost all control problems encountere
applications one can assume that if there is a measurable control that solves the probl
then there exists a piecewise continuous control that solves the problem.

Consider the problem max fol xX2dt, x=1—u? x(O)=x(1)=4, ue[-1,2]=
The Hamiltonian H = x2 + p(l — u?) is not concave in (x, ) and Arrow’s sufficie
condition also fails. In Problem 3 you are asked to find a unique solution candidate by w:
the maximum principle. Use Theorem 10.4.1 to prove that this candidate is optimal.

Note first that (x(¢), u(t)) = (4, 1) is an admissible pair. Also,
Nt x)={("+y,1—u’): y <0, ue[-1,2])

which does not depend on ¢. As u varies in [—1, 2], the second coordinate takes all va
between 1 and —3. For fixed x, the first coordinate takes all values less than or equal tc
The set N (¢, x) is therefore as illustrated in Fig. 1.

N@tx) 1-1

Figure 1 The set N(z, x) in Example 1 is convex.

Obviously, N(z, x) is convex as an “infinite rectangle”, so (a) is satisfied. The set {
[—1, 2] is compact. Since |x(1)| = |1 — u?(t)| < 3 for all admissible u(z), any admiss
x(t) satisfies 1 < x(z) < 7 for all ¢ in [0, 1], which takes care of (c). We conclude that
unique pair satisfying the conditions in the maximum principle is optimal.
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Show the existence of an optimal control for Example 10.2.2. (Hint: Use Note 2.)
Clearly, u(t) = 0 gives an admissible solution, and the set U = [0, 1] is
compact. The set N = N (t, x) is here

N(t, x1,x2) ={(x2+ vy, aux;, a(l —u)x)) : y <0, u €[0,1]})

This is the set of points (&, &>, &3) in R3 with &1 < xp and (&, &3) lying on the line segment
that joins (0, ax;) to (axy, 0) in R2. Hence N is convex.
The inequality in (2) is also satisfied because

lg(t, x1, x2, W)l = ll(auxy, a(l —wx)| = v/ (aux))? + (a(l — u)x;)>

=alx;|vV2u? - 2u+1 < a|x| :a,/)cl2 < a,/xl2 +x§ =al|(x1, x2)|l

using the fact that 2u” — 2u + 1 = 2u(u — 1) + 1 < 1 for all u in [0, 1]. The existence of a
(measurable) optimal control follows from Theorem 10.4.1.

Precise Sensitivity Results

We want to discuss briefly precise conditions for the sensitivity results in (10.1.14) to hold.
Consider the standard end constrained problem (10.1.1)—(10.1.5) and assume that admissible
pairs exist. Suppose one could compute the value of the objective functional in (10.1.1) for
all admissible pairs (x(r), u(#)). Letx! = (x], ..., x]) and define

!
v, x!, 1, 1) =sup{f f@,x@),u(@)dt : (x(1),u(r)) admissible ] (3)
fo

(If m = 0, the right end point s free and V will not have x' as an argument.) The function V is
called the (optimal) value function of the problem. Itis defined only for those (x°, x!, 1o, #1)
for which admissible pairs exist. If for a given (x°, x!, 7, ¢1) an optimal pair exists, then V
is finite and equal to the integral in (10.1.1) evaluated along the optimal pair. (This was the
case studied in Section 9.6). If the set in (3) is not bounded above, then V = 00.)

Suppose that (x*(¢), u*(¢)) solves problem (10.1.1)~(10.1.5) with x° = x°, x! = x!,
fo = fy, t; = f; for pp = 1, with corresponding adjoint function p(¢). The next theorem
gives sufficient conditions for V to be defined in a neighbourhood of (x°, X', 7, 71), and for
V to be differentiable at (x°, X', 7y, ;) with the following partial derivatives:

V&, %', 70, 1))

axlo =p1(f0)» i=l»"'7n (4)
VR, R, 7o, 7)) _ .
——— = —pih), i=1,...,n ®)
8xi
AVEY, %, 1o, 1)) _ _ i} -
—5# = —H (o, X* (7o), u*(io), p(7o)) ©6)
V&%, %!, iy, i) - S
e = H@L X (), w @), p) 0

0ty
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THEOREM 10.4.2

Consider the standard end constrained problem (10.1.1)-(10.1.5) with a compact
control region U. Suppose that

(a) (x*(¢), u*(¢)) is a unique optimal solution.

(b) p(z) is uniquely determined by the necessary conditions given x* (1), u*(z),
and pp = 1.

(c) There exist continuous functions a(t) and b(¢) such that

IfEx,w] <a@)|x|| +b(t) forall (x,u) withu € U

(d) The set N(z, x) in (1) is convex for each (¢, x).
Then (4)—(7) are all valid.

For a proof of this theorem see Clarke (1983).

NOTD 5 Assume in this note that the uniqueness condition in (b) is replaced by the con
that the function x — Fl(t, X, p()) is concave. Then the function V is defined for #,
1 = Iy, and (x°, x") in a neighbourhood of (x°, x!), and the partial derivatives are

by (4) and (5) at (X°, x!). If / = n (and so the end point is fixed), or if x — H(z, X,
is strictly concave, then all the partial derivatives (including those in (6) and (7)) exis
further details see Seierstad and Sydsazter (1987).

PROBLEMS FOR SECTION 10.4

1. Show the existence of a optimal control and draw a picture of the set N (7, x) fc
problem

1
max/ x(t)dt, X)) =x@)4+u(@), x(0)=0, x(1)>1, uel[-1,1
0

1
2. Solve the problem: m[gx”/ (l—u)x2dt, Xx=ux, x(0)=xy>0, x(1)
uell, 0

3. Find the unique solution candidate in Example 1 using the maximum principle. (.
Argue why u*(t) can only take the values 0 and 2, and why any admissible x (¢) i
in [0, 1].)
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10.5 A Heuristic Proof of the Maximum Principle

A full proof of the general maximum principle is quite demanding and draws on several advanced
results in the theory of differential equations which are not in the toolkit of most economists. The
heuristic arguments for the main results given below, although not precise, give a good indication of
why the maximum principle is correct. We restrict our attention to problems with one state and one
control variable.

Consider the following control problem with two alternative terminal conditions

1 ) x(ty) free .
mag(/ f@, x,u)yde, x=g(t x,u), x(t) = xo, (i)
ue 1

x(t) = x
Think of x = x(¢) as a firm’s capital stock and fi(t)' f(t, x,u)dt as the total profit over the planning
period [f, 1], in line with our general economic interpretation in Section 9.6. Define the value
function by

x(ty) free ] (i)

x(t) = x;

t
Vit x) = ma&( [/ lf(s,x(s), u(s))ds : x(s) = g(s, x(s), u(s)), x() = x, {

Thus V (¢, x) is the maximum profit obtainable if we start at time ¢ with the capital stock x. Suppose
the problem in (ii) has a unique solution, which we denote by i (s; t, x), X (s; t, x),forty <t <s < .
Then, by definition, X (; ¢, x) = x.

' x') X(s31,%)
(t,x)

I

t t

Figure 1 The case of x(t;) free.

Consider any starting point (¢/, x’) which lies on the optimal path I" defined by the original
solution X(s; ¢, x). If there were a better path I'” starting at (¢/, x’), it would have been optimal for
the solution starting at (¢, x) to follow this improved path over the time interval [¢, #;].! (See Fig. 1,
which deals with the case when x (¢;) is free.) For this reason, an optimal solution starting at (¢, x) is
automatically an optimal solution from (¢, x’) as well: The “tail” of an optimal solution is optimal.
Using the uniqueness of (X(s; #, x), i(s; t, x)) for all (¢, x), this implies the relations

a(s;t', x'y=u(s;t,x), X(s;t,x")=x(s;t,x)
whenever t' € [t, s]and x’ = X(¢'; 1, x). Hence,
1
V(' X't x) = / f(s,%(s; 8, x), a(s; t,x))ds
r/
Differentiate this equation w.r.t. " at ¢’ = t. Because dx(t'; ¢, x)/dt' = g(t', x(t'; t, x), u(t'; t, x)),

we have
V/(t,x)+ V.t x)g(t, x, i(t; t,x)) = —f(t, x, i(t; t, X)) (iii)

! “Better path” I'’ is intuitive language. It means that there exists an admissible pair (x(s), u(s))
(with corresponding path I'') that gives a higher value to the integral of f over[¢’, £;] when (x(s), u(s))
is inserted, as compared with the value resulting from (x(s; ¢, x), u(s; t, x)).
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Hence, if we define
pt,x) =V, x)

and introduce the Hamiltonian function H (¢, x, u, p) = f(t, x,u) + p g(t, x, u), then equatio
can be written in the form

V/(t,x)+ H(t, x,a(t; ¢, x), p(t,x)) =0

Starting at the point (¢, x), consider an alternative control which is a constant v on an int
[¢,t + At] and optimal thereafter. Let the corresponding state variable be xV(s) for s in [z, r +
Then

+At
V(t,x) > f f(s,xV(s),v)ds + V(t + At, x"(t + At))

and so
t+At
V(t+ At, x°(t + At)) — V(t, x) +/ f(s,x"(s),v)ds <0
t

Dividing this inequality by Az and letting At — 0, we get %V(t, x'@®) + f(t,x,v) <0.
%V(r,x) = V/(t, x(#)) + V(t, x)x". Since V/(t,x) = p(t,x) and x*(t) = g(t, x, v), we
have

V/(t,x)+ p(t, x)g(t, x,v) + f(t,x,v) <0

Thus for all v in U,
V/(t,x)+ H(t, x,v, pt,x)) <0

Because of (iv), this implies that the optimal control &(z; ¢, x) must maximize H (¢, x, u, p(.
w.r.t. u € U. In addition,

V/(t, x) + max H(t,x,u, V)(t,x)) =0
ue

This is called the Hamilton—Jacobi-Bellman equation.

Next, define x*(¢) = x(t; 1y, x0) and u*(¢) = i(t; ty, xo). These functions give the op
solution to the original problem. Also, let p(r) = p(¢, x*(¢)). Then u(t;t, x*(t)) = u*(t)
therefore

u = u*(t) maximizes H(t,x*(t),u, p(t)) wrt. u € U

Finally, differentiating (iv) w.r.t. x and using the envelope theorem (see Section 3.8), we get
Vi+H +H,p, =0

Because p = V[ and H,, = g, this can be written as p; + p.g = —H;, where g is eval
at (¢, x,a(t; ¢, x)). If we let x = x*(¢) and use u*(t) = #(t;t,x), then p = p; + pi.& =
P8t x, u*(1)), so

p@t) = —Hy(t, x*(t), u* (1), p(t))

By definition of V, if x(#;) is free, then V (#;, x) = O for all x. Thus p(#;, x) = 0, and so we
the transversality condition
p(t) =0

Conditions (vii) to (ix) are the necessary conditions in the maximum principle (with 7, fixe
x(ty) free). If x(z;) is fixed, condition (ix) is not valid (and not needed).
We have shown that
Vo =—=H*(to), V) =pto)

X

In fact, the first equality follows from (iv) and the second one from the definitions of the functi
and p. These are two of the formulas in (10.1.14). Reversing time gives the other two relatio
(10.1.14):

Vi =H't), V =-pt)
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10.6

EXAMPLE 1

Variable Final Time Problems

Consider problem (i) with 7, free. Suppose (x*(¢), u*(¢)) is an optimal solution defined on [f, tf].
Then conditions (vi)-(viii) must be valid on the interval [z, ¢;], because (x*(¢), u*(t)) must be an
optimal pair for the corresponding fixed time problem with #; = r{. Moreover, at the terminal time
t the value function’s derivative w.r.t. #; must be 0. (As a function of ¢, it has a maximum at )
Because of (xi), this means that

H*(if) = H@t{, x* (D), w™ (1), p(t]) = V, (1], x* (1)) = 0 (xi)
This equation gives an extra condition for determining ', and is precisely condition (9.8.2).

I In the above heuristic “proof™ of the maximum principle, differentiability of the function
V was assumed without proof.

Mixed Constraints

This section describes control problems where the admissible pairs (x, u) are required to
satisfy additional constraints of the form h(z, x, u) = 0. Such restrictions often occur in
economic models. If the control variable u as well as the state vector x appear in the function
h, the restriction is often referred to as a “mixed constraint”, while restrictions of the type
h(z, x) = 0 are called “pure state constraints”.

Whether or not mixed constraints are present in a given control problem is partly a
question of the form in which the problem is stated. Consider the following problem.

Consider the growth problem

T
max/ U(l—u)f(K))dt, K =u, K©O)=Ko, K(T)=Kr, u>0, f(K)—u=>0
&z 0

Here there are two constraints for each 7—namely, 7 (¢, K, u) = u > 0 and h,(t, K, u) =
f(K) —u > 0. However, if we specify a control variable v so that K = vf (K), then the
simple restriction 0 < v < 1 replaces the mixed constraints. (If we require f(K) —u >
k > 0, this trick does not work.)

We consider the mixed constraints problem

131
méix/ f(t, x,u)dt, x =g, x,u), Xx() = x? (1)
fo

h(¢,x,u) 20 forall ¢ 2)

with the terminal conditions

(@) xi(t) =x/}, i=1,...,1
) x@)=x!, i=I+1,....m (3)

() x;(t1) free, i=m+1,...,n
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As usual, x is n-dimensional and u is r-dimensional, while h is an s-dimensional ve
function, so that the inequality h(z, X, u) = 0 represents the s inequalities

he(t,x(2),u(t)) >0, k=1,...,s

All the restrictions on u(#) are assumed to have been incorporated into (2). Thus, no
ditional requirement of the form u € U is imposed. In addition to the usual requirem
on f and g, it is assumed that h is a C' function in (¢, X, u). The pair (x(¢), u(z)) is
missible if u,(¢), ..., u,(¢t) are all piecewise continuous, and x(z) = (x1(¢), ..., x,
is the corresponding continuous and piecewise differentiable vector function that sati:
X = g(t,x,u), x(fy) = x", (2), and (3). The theorem below gives sufficient conditions
the solution of the mixed constraints problem (1)—(3). To economists, it will come a:
surprise that we associate multipliers g (¢), . .., gy (¢) with the constraints (2) and define
Lagrangian function, with q = (g1, ..., gy), as

S
L0,%,0,p,q) = H(t, X, u,p) + Y qehi(t, %, u)
k=1
where the Hamiltonian is as before H(t, x,u,p) = f(¢,x,u) + Z,'.'zl pigi(t,x,u) (°

po = 1).
In the following theorem «£* denotes evaluation of £ at (¢, x*(¢), u*(¢), p(¢), q(z)).

THEOREM 10.6.1 (SUFFICIENT CONDITIONS)

Suppose (x*(t), u*(z)) is an admissible pair in the mixed constraints problem
(1)—(3). Suppose further that there exist functions p(¢) = (p(¢), ..., pn(t)) and
q(t) = (qi(t),...,qs(t)), where p(¢) is continuous, while p(¢) and q(¢) are
piecewise continuous, such that the following requirements are satisfied:

9L
3uj -

qr(t) =0 (qr(t) =0 if hg(s, x*(), u*(t)) > 0), k=1,...,s

)

*

pi(t) = — ?;Ci at all continuity points of u*(¢), i=1,...,n

No conditions on p;(t), i=1,...,1 (
pi(t)) =0 (pi(r) =0 if xf(t1) > x}), i=l+1,....m (
pi(t1) =0, i=m+1,...,n (
H(t,x,u, p(t)) is concave in (X, u) (
h(t, X, u) is quasiconcave in (X, u), k=1,...,s (

Then (x*(¢), u*(z)) solves the problem.

A proof of this theorem is given in Seierstad and Sydsater (1987), Section 4.3, which :
discusses necessary conditions, generalizations, and examples, and has further reference
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EXAMPLE 2

other literature. A simpler treatment can be found in Léonard and Long (1992), Chapter 6.
Note that as in nonlinear programming a constraint qualification is often needed to be able
to find a pair (x(t), u(z)) of the type occurring in the theorem. The constraint qualification,
more or less, requires that the control u appears in each constraint.

Solve the mixed constraints problem

T . @ hit,x,u)=u—c>0
max/ udt, x=ax—u, x0)=x", x(7T) free,
0 ho(t, x,u) =ax —u >0

Here x is the capital stock, u is consumption, and c is a subsistence level. The constants T,
a, c, and x° are positive, with T > 1/a and ax® > c.

The Hamiltonian and the Lagrangian are
H =u+ plax —u), L=H+q(u—c)+qgax —u)

Here H as well as & and h, are linear and hence concave in (x, u). The following conditions
from Theorem 10.6.1 are therefore sufficient for optimality:

aL*

o =1=p®+qt)—q2t) =0 (1)
q() >0 (q1(1) =0ifu*(t) > ¢) (ii)
Q@) =0 (q2(t) = 0if ax*(r) > u*(1)) (iii)

oL*

pt) = — Py —ap(t) —aqx(t), p(T)=0 (iv)
u*(t) > c, ax*(t) —u*(t) >0 (v)

Because x*(0) = x° > 0 and x*(t) = ax*(t) — u*(t) > 0 for all ¢, one has x*(¢) > x° for
all 7. If u*(t) = ¢, then ax*(t) —u*(t) = ax*(t) — ¢ > ax® — ¢ > 0, and then from (iii),
g2(t) = 0. If u*(t) > c, then (ii) implies ¢ (t) = 0. Hence, for all ¢ in [0, T'], either g (¢)
or ¢, (t) is 0.

Fort < T close to T, because p(T) = 0, it follows that p(t) < 1. Define t* as the
latest time 7 in [0, T] such that p(r) > 1, with t* = 0 in case p(t) < 1foralltin |0, T].
Then for all ¢ in (+*, T, (i) implies that g,(r) = 1 — p(t) +qi(t) > q1(t) so ga(t) > 0
and p(t) = —ap(t) — aqy(t) = —ap(t) — a(l — p(t) +q1(t)) = —a, since g1 (t) = 0. It
follows that p(t) = a(T — t) and so @) =1—=p@t)=1—a(T —1t)forall tin (t*, T].
Also, from (iii), u*(r) = ax*(¢) for all ¢ in this interval.

From Problem 5.4.9 we see that the solution to (iv) is pt) = ftT ag,(t)e =1 g,
which is clearly > 0. Moreover, p(t) is continuous, so p(t*) = 1 unless t* = 0, and
p(t*) = —a —aqy(t*) < 0. It follows from (iv) that p(r) < 0, so that p(r) > 11in [0, t*)
and p(r) < lin (t*, T]. Because p(t) = a(T —t) for all  in (t*, T, unless t* = 0, one
has 1 = p(t*) = a(T —t*) and so t* = T — 1/a. Then, because of the hypothesis that
T > 1/a, the case t* = 0 cannot arise.

SECTION 10.6 / MIXED CONSTRAINTS

In the interval [0, #*) one has p(¢) > 1, so (i) implies that ¢, () > g,(¢) and,

either g (¢) or g(¢) is 0, in fact g»(t) = 0. Then from (i1), u*(t) = ¢ so that .
ax*(1) — ¢, with x*(0) = x°. Solving this linear differential equation yields »
(x% —c/a)e® + ¢/a. The differential equation for p(t) is p = —ap because g =0
p(t) = Ae™" with p(t*) = 1, s0 p(t) = e~

Since x*(¢) is continuous also at t*, and x*(r) = 0 in (r*, T1, x*(¢) has the ¢

value (x* — ¢/a)e™" + c/a in (t*, T].

We have found the following candidate for an optimal solution, with t* = T —

u* (1) x* (1) p(t) q1(t) q2(t)

[0, t¥] ¢ @0 — c/a)e™ +c/a e~ al=t") eali=1") _ 1 0

(t*, T] ax*(1) 0 — c/a)e‘”* +c/a a(T —1) 0 1 —a(T -

Mangasarian’s theorem implies that this candidate is optimal. Note that in this exan
multipliers ¢, (z) and g, () are continuous.

PROBLEMS FOR SECTION 10.6

1. (a) Write down the conditions in Theorem 10.6.1 for the problem

2
max/ (-%uz—x)dt, X =-u, x(0)=1, x(2)free, x>u
0

(b) Solve the problem. (Hint: Guess that u*(f) = x*(r) on some interval [0,
u*(t) < x*(t) on (r*,2]. Then g(¢**) = 0, and u*(*~) = x*(t*) > u
We can use the following argument? to show that ¢ (+* =) = 0: From 8.£*/.
we get g(t) = —p(t) — u*(¢). In particular, g(t*7) = —p(t*) — u*(z
—p(*) —u*(t* ") =q(t* ) =0.)

. Solve the problem

2
max/(x—%uz)dt, X=u, x(0)=1, x(2)free, x>u
0

(Hint: Guess that u*(t) = x*(t) on some interval [0, r*], and u* (1) < x*(t) on
As in Problem 1, g(t*~) = 0.)

. Solve the following variant of Example 2.

T
max/ udt, x=ax —u, x(O):x0>O, x(T)>x7r, ¢ <u<ax
0

wherea > 0,¢ > 0, T > 1/a, ax® > ¢, and x° <xr < (x%— c/a)e“T +c/a.
model can be interpreted as a simple growth model with a subsistence level c.)

2 The same argument is useful in other problems also, for example in Problem 2.
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4. Solve the problem

| hit,x,u)=1—-u>0
max/ xdt, x=x4u, x(0)=0, x(1) free, hao(t, x,u) =14+u>0

0
hy(t,x,u) =2—x—u>0

(Hint: See the solution to Example 9.4.1. Try with u*(z) = 1, x*(t) = ¢’ — 1 in the
beginning.

10.7 Pure State Constraints

This section briefly discusses a result giving sufficient conditions for a pure state constrained
problem. It gives an indication of the type of results that can be proved, but we refer to
literature for proofs, examples, and generalizations.

Consider the following pure state constrained problem,

n
maX/ fa,x,wde, x=g@.x,u), x(t)=x", ur)eUcCR )

fo
h(t,x) >0 forallt (2)

with the terminal conditions

@ xt)=x!, i=1,..1
b)) xit)=x!, i=l+1,...,m )

() x;(t)) free, i=m+1,...,n

Note that in contrast to the mixed constraints case, we now allow a restriction of the form
u € U. The vector function h is s-dimensional, and the pure state constraint (2) can be
written

hi(2,x(1)) > 0, k=1,...,s 4)

The sufficient conditions given in the next theorem are somewhat more complicated than
those in Theorem 10.6.1. In particular, the adjoint functions may have Jjumps at the terminal
time.

The Lagrangian associated with this problem is

N
L X, 0,p,q) = H{,X,u,p)+ Y qehi(t,%) (5)
k=1

with H(¢, x, u, p) as the usual Hamiltonian (with po=1).

SECTION 10.7 / PURE STATE CONSTRAINTS

THEOREM 10.7.1 (SUFFICIENT CONDITIONS)

EXAMPLE 1

Suppose (x*(t), u*(r)) is admissible in problem (1)—(3), and that there exist
vector functions p(¢) and q(t), where p(¢) is continuous and p(¢) and q(¢) are
piecewise continuous in [#y, f;), and numbers B, k = 1,...,s, such that the
following conditions are satisfied with py = 1:

u = u*(¢) maximizes H (t, x*(¢), u, p(¢)) foruin U.

gr(t) >0 (qr(t) =0 if h(t,x*(2)) > 0), k=1,...,s

*

AL . . .
pi(t) = — 5 at all continuity points of u*(z), i=1,...,n
Xi
At 1y, p;i(t) can have a jump discontinuity, in which case

s dhi(n, x*(1))

Pi(ﬁ)*l’i(’l):k;ﬁk ox, i=1,...,n
B =0 (B =0 if h(ty,x* (1)) > 0), k=1,...,s
No conditions on p; (t;), i=1,...,1
pi(t) =0 (pi(t) =0 if xF(t;) > x}), i=l+1,....m
pi(t)) =0, i=m+1,....n
ﬁ(r, X, p(?)) = maxyey H(t, X, u, p(¢)) is concave in X.
h(t, X) is quasiconcave in X, k=1,...,s

Then (x*(¢), u*(z)) solves the problem.

Here p(¢) = (p1(¢), ..., pa(t)) and q(¢) = (q1(¢), ..., gs(2)), while L£* denotes eval
of &£ at (¢, x*(¢), u*(r), p(t), q(1)).

' The conditions in this theorem are somewhat restrictive. In particular, some
one must allow p(t) to have discontinuities at interior points of [#g, #;]. For details
proof, see Seierstad and Sydsaeter (1987).

Solve the problem

4
max/(x —(u — 2)2) dt, x=ueR, x0)=0, x@) free, x(@) <1
0

The Lagrangianis £ = H 4+ g(1 —x) = x — (u — 2)> + pu + q(1
Here H is concave in (x, #) and h(¢, x) = 1 — x is quasiconcave, so the conditions (i
below are therefore sufficient for optimality. Equation (i) results from the observatio
H is concave in u and u € R, so condition (6) is equivalent to the condition d H*/du

w (1) = $p(t) +2
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gt) >0 (qg(t) =0ifx*(r) < 1) (ii)
9L

p(t) =— o = —1+q@), p@ =0 (iii)

PE) = pd) =-F<0 (B=0ifx*@4) <) (iv)

We can make guesses as to the behaviour of the solution as long as we verify that all the
conditions in the theorem are satisfied. We guess that x*(r) < | in an interval [0, t*) and
that x*(r) = lin (+*, 4]. Then in (t*,4), u*(t) = x*(t) = 0, and from (1), p(t) = —4. But
then from (iii) and (iv), 8 = p(4) — p(4~) = 4. On [0, t*), from (ii) and (iii), p(t) = —1.
Since p(t) is continuous at t*, p(t*~) = —4. Hence p(t) = =4 + (t* — t), and from (i),
wi(1) = 3(r* —1). Integrating £*(1) = 1(r* —1) yields x*(1) = —L(t* = 1)2 + C on [0, 1*),
Since x*(1*) = 1, we get x*(1*) = C = 1. But x*(0) = 0, so * = 2. Our suggestion is
therefore:

In[0.2]: u*(r) =1 = 36, x*(1) = 1 = $2 — 1), p(t) = = — 2, and ¢ (r) = 0.

In (2,4]: u*(t) = 0, x*(1) = 1, p(t) = —4 (except that p(4) = 0), and g(t) = | with
B =4.

You should now verify that all the conditions (i)—(iv) are satisfied. Note that p(t) has ajump
att = 4, from —4 to 0.

PROBLEMS FOR SECTION 10.7

1. Solve the problem

5
min/(u—l—x)dt, x=u—1t, x(0)=1, x(5 free, x>0, u>0
0

(Hint: See if it pays to keep x(r) as low as possible all the time.)

2. Solve the problem
2
max/(l —x)dt, X=u, x0)=1, x2) free, x>0, uec [—1,1]
0

(Hint: Start by reducing x(¢) as much as possible until x(r) = 0.)

3. Solve the problem

10
max/(—u2 —x)dt, x=u, x(0)=1, x(10) free, x >0, uelR
0

10.8

SECTION 10.8 / GENERALIZATIOI

4. Consider the problem

3
max/(4— Hudt, x=uecl0,2], xO0O)=1, x3)=3, t+1-—
0

(a) Solve the problem when the constraint 7 + 1 — x > 0 is not imposed.

(b) Solve problem ().

Generalizations

In Chapter 9 and the previous sections of this chapter we have discussed som
optimal control theory. Many important economic problems cannot be treatec
methods described in this book.

More General Terminal Conditions

In some dynamical optimization problems the standard terminal conditions are r
the requirement that x(¢) at time ¢, hits a target defined as a certain curve or sur

The optimal path in such a problem must end at some point x' and therefore, in
will solve the corresponding control problem where all the admissible paths
The conditions in Theorem 10.1.1 must therefore still be valid, except the tra
conditions, which must be adjusted. See e.g. Seierstad and Sydsater (1984), Ch

Markov Controls

The optimal solutions we have been looking for have been functions of time,
x*(t). Such control functions are called “open-loop controls”. Faced with the |
steering an economic system optimally, such open-loop controls are often inade«
problem is that “disturbances” of many types will almost always occur, which wil
system from the optimal path initially computed. If one still uses the “old” con
one can end up with a development of the economy which is far from optimal,
does not necessarily bring the economy to a desirable final state.

This problem is partly resolved if we are able to “synthesize” the optimal con
sense of expressing the optimal control as a function of the present time s and t
state y. In this case, for each time s and each point y in the state space, we s
optimal control @t = i, y to use. Such controls are called closed-loop or Markoy
We can find such Markov controls by solving the control problem with an arbi
point (s, y), s € [fo, ;). The controls u*(¢) obtained will depend on the starting pe
u*(r) = uj."y(r). Of course, at time s, the control @i(s, y) = ujy(s) is used. Then
the required Markov control.
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But these Markov controls are only conditionally optimal. They tell us which control
to use after a disturbance has occurred, but they are optimal only in the absence of further
disturbances.

If we stipulate the probability of future disturbances and then want to optimize the
expected value of the objective functional, this gives a stochastic control problem, in which
optimal Markov controls are determined by a different set of necessary conditions.

Jumps in State Variables

So far we have assumed that the control functions are piecewise continuous, and the state
variables are continuous. In certain applications (e.g. in the theory of investment), the
optimum may require sudden jumps in the state variables. See e.g. Seierstad and Sydseter
(1987), Chapter 3.

11.1

DIFFERENCE
EQUATIONS

He (an economist) must study the present in the light of the past
for the purpose of the future.
—J. N. Keynes

M any of the quantities economists study (such as income, consumption, and savings,
recorded at fixed time intervals (for example, each day, week, quarter, or year). Ec
tions that relate such quantities at different discrete moments of time are called differe
equations. For example, such an equation might relate the amount of national income in
period to the national income in one or more previous periods. In fact difference equations
be viewed as the discrete time counterparts of the differential equations in continuous time
were studied in Chapters 5-7.

First-Order Difference Equations

Lett = 0, 1, 2, ...denote different discrete time periods or moments of time. We ust
call t = 0 the initial period. If x(¢) is a function defined fort =0,1,2,...,weoften
X0, X1, X2, . . . to denote x(0), x(1), x(2), ..., and in general, we write x; for x(¢).

Let f(t, x) be a function defined for all positive integers and all real numbers .
first-order difference equation in x, can usually be written in the form

xt+|:f(tvxl)q tr=0,1,2,...

This is a first-order equation because it relates the value of a function in period t + 1 t«
value of the same function in the previous period 7 only.'

! It would be more appropriate to call (1) a “recurrence relation”, and to reserve the term “d
ence equation” for an equation of the form Ax, = f (¢, x;), where Ax, denotes the difference x;.+
However, it is obvious how to transform a difference equation into an equivalent recurrence rele
and vice versa, so we make no distinction between the two kinds of equation.



