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CHAPTER 8 / CALCULUS OF VARIATIONS

The Integrand Depends on Higher Order Derivatives

Consider a variational problem where the integrand depends on higher order derivatives of
the unknown function. With appropriate requirements on F, the problem is to maximize or

d dx d*x d"x
—_— = ..., — ) dt 2
/to F(r,x, dt’ dr?’ dz") @

where x(¢) and its first n — 1 derivatives have given values at 7o and #;. One can show that
a necessary condition for x* = x*(t) to solve this problem is that it satisfies the following
generalized Euler equation
LA P S P A L @
ox  dt\ox dt2 \ 39X drm \gx ™)
We refer to Gelfand and Fomin (1963) and Hestenes (1966) for further details.

minimize

The Unknown Function Depends on Two Variables

Suppose the variable function has two arguments ¢ and s. With appropriate requirements on
F, the problem is to maximize or minimize

0x 0x
—, — )dtd 4
//RF(Ls,x, 3z’as) s 4

where R is a closed domain in the plane and x = x(z, s) is the unknown function. In
addition, require that x(z, s) takes prescribed values on the boundary of R. One can then
prove that a necessary condition for x* = x*(¢, s) to solve the problem is that it satisfies the
following partial differential equation (see Gelfand and Fomin (1963)):

d /0F
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PROBLEMS FOR SECTION 8.6

1. Consider the problem of maximizing J (x), subject to the given conditions.
x(0)=1, x(x/2)=0,

/2
_ w2 2 2
J(x)—’/(; (x x° 4+ t7)dt, A0 =0, i(t/2) = -1

Find the associated Euler equation and its solution.
2. Consider the problem of maximizing J(y) w.r.t y(x), subject to the given conditions.
1
1 !/
J(y) = / (El«tyﬂ +py)dx,  y(=D=0, y(=D=0 y1)=0, y'(1)=0
~1

where 1 and p are constants. Find the associated Euler equation and its solution.

9.1

CONTROL THEORY:
BASICTECHNIQUES

A person who insists on understanding every tiny step before going
to the next is liable to concentrate so much on looking at his

feet that he fails to realize he is walking in the wrong

direction.

—I. Stewart (1975)

ptimal control theory is a modern extension of the classical calculus of variations. Whert

the Euler equation, the main result of the latter theory, dates back to 1744, the m
result in optimal control theory, called the maximum principle, was developed in the 19¢
by a group of Russian mathematicians. (See Pontryagin et al. (1962).) The maximum princi
gives necessary conditions for optimality in a wide range of dynamic optimization probler
It includes all the necessary conditions that emerge from the classical theory, but can also
applied to a significantly wider range of problems.

Since 1960, thousands of papers in economics literature have used control theory. It has be
applied to, for instance, economic growth, inventory control, taxation, extraction of natu
resources, irrigation, and the theory of regulation under asymmetric information.

This chapter contains some important results based on reasoning that appears widely
economics literature. (“What every economist should know about optimal control theory.”)
concentrates on the case where there is a single control variable and a single state variable.

The Basic Problem

Consider a system whose state at time 7 is characterized by a number x (7), the state variab.
The process that causes x(¢) to change can be controlled, at least partially, by a contr
function u(¢). We assume that the rate of change of x(¢) depends on ¢, x(¢), and u(¢). T
state at some initial point ¢y is typically known, x(#y) = xo. Hence the evolution of x(¢)
described by a controlled differential equation

x(t) = g(t, x(t), u)), x(t) =xo (

Suppose we choose some control function u(¢) defined for r > #,. Inserting this functic
into (1) gives a first-order differential equation for x(z) alone. Because the initial point
fixed, a unique solution of (1) is usually obtained.
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EXAMPLE 1

EXAMPLE 2

By choosing different control functions u(¢), the system can be steered along many
different paths, not all of which are equally desirable. As usual in economic analysis, assume
thatitis possible to measure the benefits associated with each path. More specifically, assume
that the benefits can be measured by means of the integral

n
J =[ ft, x(@),u))dt )

where f is a given function. Here, J is called the objective function or the criterion
function. Certain restrictions are often placed on the final state x (#;). Moreover, the time 4
at which the process stops is not necessarily fixed. The fundamental problem that we study
is:

Among all pairs (x(t), u(t)) that obey the differential equation in (1) with x(ty) = xo
and that satisfy the constraints imposed on x(t,), find one that maximizes (2).

(Economic Growth) Consider the control problem

T
max/ (1 =s)fkydt, k=sfk), k©O) =ky, k(T)>kr, O0<s<1
0

Here k = k(t) is the real capital stock of a country and f(k) is its production function.
Moreover, s = s(t), the control variable, is the rate of investment, and it is natural to require
thats € [0, 1]. The quantity (1 —s) f (k) is the flow of consumption per unit of time. We wish
to maximize the integral of this quantity over [0, T'], i.e. to maximize total consumption over
the period [0, T']. The constant kg is the initial capital stock, and the condition k(T') > kr
means that we wish to leave a capital stock of at least k7 to those who live after time 7.
(Example 9.6.3(b) studies a special case of this model.)

(0il Extraction) Let x(¢) denote the amount of oil in a reservoir at time 7. Assume
that at + = O the field contains K barrels of oil, so that x(0) = K. If u(¢) is the rate of

extraction, then!
x(t) =—-u), x(0)=K ()

Suppose that the market price of oil at time ¢ is known to be g(), so that the sales revenue
per unit of time at ¢ is g (¢)u(z). Assume further that the cost C per unit of time depends on
t, x and u, so that C = C(t, x, u). The instantaneous rate of profit at time ¢ is then

m(t, x(0), u()) = g(Ou(t) — C(t, x(t), u())

If the discount rate is r, the total discounted profit over the interval [0, T] is

T
/ [q@u() — C(t, x(t), u(t)]e™"" dt (%)
0

! Integrating each side of (x) yields x(¢) — x(0) = —fo' u(r)dr,orx(t) = K — f(; u(r).dr.
This equation just says that the amount of oil left at time ¢ is equal to the inittial amount K, minus
the total amount that has been extracted during the time span [0, ¢], namely fo u(rydr.

9.2

SECTION 9.2 / A SIMPLE CASE

It is natural to assume that u(¢) > 0, and that x(7") > 0.

Problem I: Find the rate of extraction u(t) > 0 that maximizes (*#) subject to (%)
x(T) > 0 over a fixed extraction period [0, T].

Problem II: Find the rate of extraction u(t) > 0 and also the optimal terminal time T
maximizes (*x) subject to (x) and x(T) > 0.

These two problems are optimal control problems. Problem I has a fixed terminal tim
whereas Problem II is referred to as a free terminal time problem. See Example 9.8.1.

A Simple Case

We begin by studying a control problem with no restrictions on the control variable an
restrictions on the terminal state—that is, no restrictions are imposed on the value of
att = 1. Given the fixed times ¢ and ¢, our problem is

maximize []f(t,x(t),u(t))dt, u(t) € (—oo, 00)
to

subject to

X(t) =g(t, x(t), u(r)), x(to) = xo, xofixed, x(t) free

Given any control function «(¢) defined on [%o, 1], the associated solution of the differer
equation in (2) with x (#9) = xo will usually be uniquely determined on the whole of [to,
A pair (x (1), u(z)) that satisfies (2) is called an admissible pair. Among all admissible p
we search for an optimal pair, i.e. a pair of functions that maximizes the integral in (1’

Notice that the problem is to maximize an objective function (or integral) w.r.t. u sub
to the constraint (2). Because this constraint is a differential equation on the interval [,
it can be regarded as an infinite number of equality constraints, one for each time f in [to,

Economists usually incorporate equality constraints in their optimization problems
forming a Lagrangian function, with a Lagrange multiplier corresponding to each constra
Here, by an analogy, the necessary conditions for the problem associate a number p(¢) w
the constraint (2) for each 7 in [fy, #;]. The resulting function p = p(¢) is called the adjo
function (or co-state variable) associated with the differential equation. Correspond
to the Lagrangian function in the present problem is the Hamiltonian H. For each tim
in [#9, #;] and each possible triple (x, u, p), of the state, control, and adjoint variables,
Hamiltonian is defined by

H(t,x,u, p) = f(t,x,u) + pg(t, x, u) [

A set of necessary conditions for optimality is given in the following theorem. (Soi
regularity conditions required are discussed in the next section.)
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THEOREM 9.2.1 (THE MAXIMUM PRINCIPLE)

Suppose that (x*(¢), u*(¢)) is an optimal pair for problem (1)—(2). Then there
exists a continuous function p(¢) such that, for all ¢ in [#g, #1],

u = u*(¢t) maximizes H(t, x*(t), u, p(t)) for u € (—o00, 00) 4)

p(t) = —Hy(t, x* (), u* (1), p®)), p(t;) =0 (5)

NOTE 1 The requirement that p(f;) = 0 in (5) is called a transversality condition. So
condition (5) tells us that in the case where x (7;) is free, the adjoint variable vanishes at 7;.

The conditions in Theorem 9.2.1 are necessary, but not sufficient for optimality. The fol-
lowing theorem gives sufficient conditions.

THEOREM 9.2.2 (MANGASARIAN)

If the requirement
H(t,x,u, p(t)) isconcavein (x, u) for each ¢ in [ty t;] (6)

is added to the requirements in Theorem 9.2.1, then we obtain sufficient condi-
tions. Thus, if we find a triple (x*(¢), u*(¢), p(z)) that satisfies (2), (4), (5), and
(6), then (x*(r), u*(¢)) is optimal.

!OTE 2 Changing u(¢) on a small interval causes f(z, x,u) to change immediately.
Moreover, at the end of this interval x (¢) has changed and this change is transmitted through-
out the remaining time interval. In order to steer the process optimally, the choice of u(t)
at each instant of time must anticipate the future changes in x(¢). In short, we have to
plan ahead. In a certain sense, the adjoint function p(¢) takes care of this need for forward
planning. Equation (5) implies that p(z) = ftt' H (s, x*(s), u*(s), p*(s)) ds.

NMOTE 2 If the problem is to minimize the objective in (1), then we can rewrite the problem
as one of maximizing the negative of the original objective function. Alternatively, we could
reformulate the maximum principle for the minimization problem: An optimal control will
minimize the Hamiltonian, and convexity of H(¢, x, u, p(¢)) w.r.t. (x,u) is the relevant
sufficient condition.

Since the control region is (—00, 00), a necessary condition for (4) is that
H,(t, x*@t), u*(t), p(t)) =0 7

If H(t, x(t),u, p(t)) is concave in u, condition (7) is also sufficient for the maximum
condition (4) to hold, because we recall that an interior stationary point for a concave
function is (globally) optimal.

EXAMPLE 1

EXAMPLE 2

SECTION 9.2 / A SIMPLE CASE

It is helpful to see how these conditions allow some simple examples to be solved.
Solve the problem

T
maXfO [1—1x(t) — u(r)*] dr X(1) =u(t), x(0)=uxp, x(T) free, u eR

where xg and T are positive constants.

fori: The Hamiltonian is H(¢,x,u, p) = 1 — tx — u? + pu, and the cor
u = u*(t) maximizes H (¢, x*(t), u, p(t)) w.r.t. u only if it satisfies H, = =2u+p(t) =
Thus u*(t) = 2p(t) Because H, = —t, the conditions in (5) reduce to p@t) =
p(T) = 0. Integrating gives p(r) = 31> + C with 172 + C = 0, s0

p(t) =—3(T* —1?) and then u (1) = —H(T1? - 1?)

Because x*(t) = u*(t) = ——(Tz—tz) integrating x*(¢) = u*(¢) and imposing x*(0) =
gives
) =x0—3T%t + 52

Thus, there is only one pair (x*(z), u*(¢)) that, together with p(t), satisfies both necess
conditions (4) and (5). We have therefore found the only possible pair which could sc
the problem. Because H (¢, x, u, p) = 1 —tx —u?+ pu is concave in (x, 1) (it is a sun
concave functions), (x*(¢), u*(¢)) is indeed optimal.

(A Macroeconomic Control Problem) Consider once again the macroeconoi
model of Example 8.2.2. If we drop the terminal constraint at the end of the plann
period, we face the following control problem

T
%?/0 [x () + cu(r)*1dr,  x@) = u(t), x(0) = xo, x(T) free

where u(¢) € R and ¢ > 0. Use the maximum principle to solve the problem.
Sofution: We maximize — fOT[x(t)2 + cu(t)?] dt. The Hamiltonian is
H(t,x,u, p) = —x* — cu?® + pu
So Hy = —2x and H, = —2cu + p. A necessary condition for u*() to maximize
Hamiltonian is that H;, = 0 at u = u*(z), or that —2cu*(t) + p(¢t) = 0. Therefore u*(t)
p(t)/2c. The differential equation for p(¢) is
p(t) = —H(t,x* (1), u*(1), p(t)) = 2x*(t) '

From x*(t) = u*(¢) and u*(¢) = p(t)/2c, we have

x5 = p(t)/2c (+
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The two first-order differential equations (x) and (**) can be used to determine the functions
p and x*. Differentiate (x) w.r.t. ¢ and then use (k%) to obtain p(t) = 2x*(t) = p(1)/c,
whose general solution is

p(t) = Ae"" + Be™"', wherer =1//c

Imposing the boundary conditions p(T) = 0 and p(0) = 2x*(0) = 2xo implies that
Ae'T + Be'T = 0and r(A — B) = 2x,. These two equations determine A and B, which
must be A = 2xpe~" T [[r(e’T + e"T)] and B = —2x0e’ T /[r (e’ + e~"T)]. Therefore

2X0 , . er(T—t) +e—r(T—t)
_ —r(T=1) _ r(T—1) xey 1 _

p(t) = ———————r(erT = [e e ] and x*(t) = 3p(t) =x0 T T
The Hamiltonian H = —x? — cu® + pu is concave in (x, u), which confirms that this is the

solution to the problem. (The same result was obtained in Example 8.5.2.)

PROBLEMS FOR SECTION 9.2

Solve the control problems 1-5:

2
1. max f [e'x(t) — u(t)z]dt, () = —u(t), x(0)=0, x(2)free
0

u(t)e(—00,00)

1
2. max / [1 —u()?)dt, x(@) =x@)+u(), x0) =1, x(1) free
0

u(t)e(—00,00)

1
3. min / [x(2) + u@®)?1de, x(t) = —u@), x(0)=0, x(1) free
0

u(t)e(—00,00)

10
4. max / [1 = 4x(t) — 2u@®)?]dr,  5() =u(), x(0)=0, x(10) free
0

ue(—00,00)

T
5. max / (x — udde, x =x+u, x(0)=0, x(T) free
0

u(t)e(—00,00)

6. (a) Write down conditions (7) and (5) for the problem

T
max )f lqgf (K) —c(I)]dt, K =1—8K, K(0)=Ko, K(T) free
0

Ie(—00,00

(K = K (t) denotes the capital stock of a firm, f(K) is the production function, g
is the price per unit of output, [ = 1(¢) is investment, c([) is the cost of investment,
§ is the rate of depreciation of capital, Ko is the initial capital stock, and T is the
planning horizon.)

(b) Let f(K) =K —0.03K%,q = 1,c(]) = 12,8 =0.1, Ko = 10, and T = 10.
Derive a second-order differential equation for K, and explain how to find the
solution.

9.3

SECTION 9.3 / REGULARITY CONDITIONS 31

Regularity Conditions

In most applications of control theory to economics, the control functions are explicitly
or implicitly restricted in various ways. For instance, in the oil extraction problem of Sec-
tion 9.1, u(r) > 0 was a natural restriction, because it means that you cannot pump oil back
into the reservoir.

In general, assume that u(t) takes values in a fixed subset U of the reals, called the
control region. In the oil extraction problem, then, U = [0, 00), and u(t) can take the
value 0. Actually, an important aspect of control theory is that the control region can be
closed, so that u(z) can take values at the boundary of U. (In the classical calculus of
variation, by contrast, one usually considered open control regions, although developments
in the theory around 1930-1940 paved the way for the modern theory.)

What regularity conditions is it natural to impose on the control function u(r)? Among the
many papers in economics literature that use control theory, the majority assume implicitly
or explicitly that the control functions are continuous. Consequently, many of our examples
and problems will deal with continuous controls. Yet in some applications, continuity is too
restrictive. For example, the control variable u(r) could be the fraction of investment in one
plant, with the remaining fraction 1 — u(¢) allocated to a second plant. Then it is natural
to allow control functions that suddenly switch all the investment from one plant to the
other. Because they alternate between extremes, such functions are often called bang-bang
controls. A simple example of such a control is

1 fortin [1, t']

u(t) = {
0 fortin (¢, ]

which involves a single shift at time ¢'. In this case u(t) is piecewise continuous, with a
jump discontinuity at r = t’.

By definition, a function has a finite jump at a point of discontinuity if it has (finite) one-
sided limits at the point. A function is piecewise continuous if it has at most a finite number
of discontinuities on each finite interval, with finite jumps at each point of discontinuity.
(The value of a control u(¢) at a point of discontinuity will not be of any importance, but
let us agree to choose the value of u(r) at a point of discontinuity t’ as the left-hand limit
of u(t) at #'. Then u(t) will be left-continuous as illustrated in Fig. 1.) Moreover, if the
control problem concerns the time interval [fo, t;], we shall assume that u(¢) is continuous
at both end points of this interval.

What is meant by a “solution” of X = g(t, x, u) when u = u(t) has discontinuities? A
solution is a continuous function x (7) that has a derivative that satisfies the equation, except
at points where u(¢) is discontinuous. The graph of x(7) will, in general, have “kinks” at
the points of discontinuity of u(¢), and it will usually not be differentiable at these kinks. It
is, however, still continuous at the kinks.

For the oil extraction problem in Example 9.1.2, Fig. 1 shows one possible control
function, whereas Fig. 2 shows the corresponding development of the state variable. The
rate of extraction is initially a constant u( on the interval [0, t'], then a different constant u
(with u; < ug) on (', t"]. Finally, on (¢, T1, the rate of extraction u(7) gradually declines
from a level lower than « until the field is exhausted at time 7. Observe that the graph of
x(7) is connected, but has kinks at " and ¢”.
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u X

uo K
u = u(t) X =x(0)
uj 1‘————9
Lt
1 t’ T t
Figure 1 Figure 2

So far no restrictions have been placed on the functions g(z, x, u) and f(z, x, u). For the
analysis presented in this chapter, it suffices to assume that f, g, and their first-order partial
derivatives w.r.t. x and u are continuous in (¢, x, #). These continuity assumptions will be
implicitly assumed from now on.

Necessary Conditions, Sufficient Conditions, and Existence

In static optimization theory there are three main types of result that can be used to find
possible global solutions: Theorems giving necessary conditions for optimality (typically,
first-order conditions), theorems giving sufficient conditions (typically, first-order condi-
tions supplemented by appropriate concavity/convexity requirements), and finally existence
theorems (typically, the extreme value theorem).

In control theory the situation is similar. The maximum principle, in different versions,
gives necessary conditions for optimality, i.e. conditions which a possible optimal con-
trol must satisfy. These conditions do not guarantee that the maximization problem has a
solution.

The second type of theorem consists of sufficiency results, of the kind originally de-
veloped by Mangasarian. Theorems of this type impose certain concavity/convexity require-
ments on the functions involved. If a control function u*(¢) (with corresponding state
variable x*(#) and adjoint variable p(t)) satisfies the stated sufficient conditions, then
(x*(t), u*(r)) solves the maximization problem. But these sufficient conditions are rather
demanding, and in many problems there are optimal solutions although the sufficient con-
ditions are not satisfied.

Existence theorems give conditions which ensure that an optimal solution of the prob-
lem really exists. The conditions needed for existence are less stringent than the sufficient
conditions. Existence theorems are used (in principle) in the following way: One finds, by
using the necessary conditions, all the “candidates” for a solution of the problem. If the
existence of an optimal solution is assured, then an optimal solution can be found by simply
examining which of the candidates gives the largest values of the objective function. (This
direct comparison of different candidates is unnecessary if we use sufficient conditions.)

9.4

SECTION 9.4 / THE STANDARD PROBLEM 31

The Standard Problem

Section 9.2 studied a control problem with no restriction on the control function at ar
time, and also no restriction on the state variable at the terminal time; x (¢;) was free. The:
features are unrealistic in many economic models, as has already been pointed out.

This section considers the “standard end constrained problem”

max/lf(t,x,u)dt, uelUCR (
fo
x(t) = g(t, x(2), u(®)), x(to) = xo (.

with one of the following terminal conditions imposed
@) x(t) =x1 (b) x(t1) =x; or (c) x(r) free (:

Again, 1y, 11, X9, and x; are fixed numbers and U is the fixed control region. A pair (x (1), u(t
that satisfies (2) and (3) is called an admissible pair. Among all admissible pairs we see
an optimal pair, i.e. a pair of functions that maximizes the integral in (1).

In order to formulate correct necessary conditions, we need to define the Hamiltonian

H(t,x,u, p) = pof(t,x,u)+ pgt, x,u) (¢

The new feature is the constant number py in front of f(z, x, u). If pg # 0, we can divic
by po to get a new Hamiltonian in which py = 1, in effect. Butif py = 0, this normalizatic
is impossible.?

THEOREM 9.4.1 (THE MAXIMUM PRINCIPLE. STANDARD END CONSTRAINTS)

Suppose that (x*(¢), u*(¢)) is an optimal pair for the standard end constrained
problem (1)—(3). Then there exists a continuous function p(¢) and a number py,
which is either O or 1, such that for all ¢ in [#, ¢;] we have (pg, p(t)) # (0, 0)
and, moreover:

(A) The control u*(t) maximizes the Hamiltonian H (¢, x*(¢), u, p(t)) w.r.t.
uel,i.e.

H(t,x*(t),u, p(t)) < H(t,x*(@), u*(t), p@t)) forall u in U (¢

(B) p(t) = —H(t,x*(t),u*(t), p(t)) (t
(C) Corresponding to each of the terminal conditions (b) and (c) in (3) there is
a transversality condition on p(t)):
() p(t1) =0 (with p(t)) = 0if x*(t1) > x1) ¢
() pt)=0
[In case (a) there is no condition on p(#;).]

2 For a proof see Fleming and Rishel (1975).
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MOTE 1 In some “bizarre” problems the conditions in the theorem are only satisfied with
po = 0. (See Problem 10.) Note that in this case the conditions in the maximum principle
do not change at all if f is replaced by any arbitrary function. In fact, when py = 0, then
(5) takes the form pg(t, x*(¢), u, p(t)) < pg(t, x*(t), u*(t), p(t)) forall u in U.

In the examples and problems to follow we shall assume without proof that py = 1,
except in Example 4 where we show the type of argument needed to prove that py = 1.
(Almost all papers in economic literature using control theory assume that the problem is
“normal” in the sense that py = 1.)

If x(z1) is free, then according to (7)(c¢), p(#;) = 0. Since (po, p(;)) cannot be (0, 0),
we conclude that in this case pp = 1 and Theorem 9.2.1 is correct as stated.

NOTE 2 If the inequality sign in (3)(b) is reversed, so are the inequality signs in (7)(b’).

NOTE 2 The derivative p(¢) in (6) does not necessarily exist at the discontinuity points of
u*(t), and (6) need hold only wherever u*(¢) is continuous.

NOTE 4 If U is a convex set and the function H is strictly concave in u, one can show that
an optimal control #*(¢) must be continuous.

The conditions in the maximum principle are necessary, but generally not sufficient for
optimality. The following theorem gives sufficient conditions.

THEOREM 9.4.2 (MANGASARIAN)

Suppose that (x*(¢), u*(¢)) is an admissible pair with corresponding adjoint
function p(z) such that the conditions (A)—(C) in Theorem 9.4.1 are satisfied
with po = 1. Suppose further that the control region U is convex and that
H(t, x,u, p(t)) is concave in (x, u) for every ¢ in [#o, t;]. Then (x*(z), u*(¢)) is
an optimal pair.

In general, it is not easy to apply Theorems 9.4.1 and 9.4.2. In principle one can use the
following approach:

(a) For each triple (¢, x, p), maximize H(t, x,u, p) w.r.t. u € U. In many cases, this
maximization occurs at a unique maximum point u = u(t, x, p).

(b) Insert this function into the differential equations (2) and (6) to obtain
X(t) = g, x(0), u(t, x(t), p(t))) and p(t) = —H(z, x(t), i(t, x(1), p(1)), p(t))

This gives two differential equations to determine the functions x(z) and p(¢).

(c) The constants in the general solution (x(r), p(r)) of these differential equations are
determined by combining the initial condition x(#y) = x( with the terminal conditions
and the transversality conditions (7). The state variable obtained in this way is denoted
by x*(t), and the corresponding control variable is u*(¢) = i(t, x*(¢), p(t)). The pair
(x*(t), u*(1)) is then a candidate for optimality.

EXAMPLE 1

EXAMPLE 2

SECTION 9.4 / THE STANDARD PROBLEM 3

This sketch suggests that the maximum principle may contain enough information to g
only one or perhaps a few solution candidates, and in fact the procedure (a)—(c) is usefu.
many problems.

Solve the problem

1
maX/O x(@)de, x(t)=x)+u(r), x0)=0, x(1)free, ue[-1,1]

§ Looking at the objective function, we see that it pays to have x () as large
possible all the time, and from the differential equation it follows that this is obtained
having u as large as possible all the time, i.e. u(¢) = 1 for all . So this must be the optin
control. Let us confirm this by using the maximum principle.

The Hamiltonian function with py = 1is H(¢, x, u, P) = x + px + pu, which is line
and hence concave in (x, u), so Theorem 9.4.2 applies. The differential equation (6) togett
with p(1) = 0 (see (7)(c")) gives

p=-1-p, p(1)=0

This differential equation is especially simple because it is linear with constant coefficien
According to (5.4.3), the general solution is p(r) = Ae™" — 1, where A is determined |
0 = p(1) = Ae™! — 1, which gives A = e. Hence, p(t) = e'~" — 1, and we see t
p() > Oforall ¢in [0, 1). Since the optimal control should maximize H(t, x*(t),u, pt
we see from the expression for H that we must have u*(t) = 1 for all ¢ in [0,1]. TI
corresponding path x*(¢) for the state variable x satisfies the equation x*(¢) = x*(t) +
with general solution x*(¢) = Be' — 1. Since x*(0) = 0, we obtain B = 1, and so

@) =e€ —1

We see now that u*(¢), x*(r), and p(¢) satisfy all the requirements in Theorem 9.4.2. W
conclude that we have found the solution to the problem.

(Optimal Consumption) Consider a consumer who expects to live from the prese:
time, when ¢ = 0, until time 7. Let ¢(¢) denote his consumption expenditure at time ¢ ar
y(2) his predicted income. Let w(z) denote his wealth at time . Then

w(t) =rOw(t) + y(1) — c(t) (4

where r(t) is the instantaneous rate of interest at time ¢. Suppose the consumer wants t
maximize the “lifetime intertemporal utility function”

T
/ e u(c(t))dt
0
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where o > 0, and u’(c) > 0, u”(c) < 0 for all ¢ > 0. The dynamic constraint is () above.
In addition, w(0) = wy is given, and there is the terminal constraint w(7) > 0 preventing
the consumer from dying in debt.

This is an optimal control problem with w(z) as the state variable and ¢(¢) as the control
variable. We assume that ¢(t) > 0 so that the control region is (0, c0). We will try to
characterize the optimal consumption path, and look at some special cases.

The Hamiltonian for this problem is H (¢, w, ¢, p) = e~ *u(c) + p[r(t)w + y — c], with
po = 1 and with p = p(¢) as the adjoint function. Let ¢* = c*(¢) be an optimal solution.
Then H. =0 atc*, i.e.

e (c* (1)) = p(1) 1)

Hence, the adjoint variable is equal to the discounted value of marginal utility. Also,
p(t) = —H, = —p(t)r(1) (ii)

so that the adjoint variable decreases at a proportional rate equal to the rate of interest.
Notice that (ii) is a separable differential equation whose solution is (see Example 5.3.6)

t
p(t) = p(0)exp [— / r(s)ds] (iii)
0

A more explicit formula is not possible, except in special cases. One such is when
r(t) = r, independent of time, and r = «. Then (iii) reduces to p(¢t) = p(0)e™"", and (i)
becomes e™"'u’(c*(¢)) = p(0)e™"", or u’(c*(t)) = p(0). It follows that ¢*(¢) is a constant,
c*(t) = ¢, independent of time. Then () becomes 1w = rw + y(t) — ¢, whose solution is

w*(t) = e [wo + for e y(s)ds — g(l - e‘”)} (iv)
Because of (7)(b’), the terminal constraint w*(7) > 0 implies that
p(T) > 0 (with p(T) = 0if w*(T) > 0)

It follows that if w*(T) > 0, then p(T') = 0, which contradicts (i). Thus w*(T) = 0, so

it is optimal for the consumer to leave no legacy after time 7. The condition w*(7) = 0
determines the optimal level of ¢, which is 3

T
r
= —|wpy + e " y(s)ds
1— e—rT[ 0 V/(; y ) ]
It is interesting to consider the special cases where the utility function u is

_ \1l-e
u(c) = % (e>0;,e#1) or u(c) =In(c —¢) (v)

3 This is the same answer as that derived in Example 2.4.2, equation (iii).

SECTION 9.4 / THE STANDARD PROBLEM g

Then u'(c) = (¢ — ¢)~¢ in both cases, with ¢ = 1 when u(c) = In(c — ¢). Note that wl
¢ = 0, the elasticity of marginal utility is El.u’(c) = cu”(c)/u'(c) = —e.

When ¢ > 0, the level ¢ of consumption can be regarded as minimum subsistence, bel
which consumption should never be allowed to fall, if possible. With utility given by (
equation (i) can be solved explicitly for ¢*(¢). In fact

—1/e

(M) =c+ [ p(t)] (

In order to keep the algebra manageable, restrict attention once again to the case wt
r(t) = r, independent of time, but now r # a is allowed. Still, p(t) = p(0)e™"" and so (
implies that

() =c+ [« pO)] " = ¢ + Ae

where A = p(0)~"¢ and y = (r — &) /e. Then () becomes
W=rw+y—c— Ae"’

Multiplying this first-order equation by the integrating factor e~’! leads to

d .
E;(e_”w) =e(w—rw)=e""(y —c— Ae")

Integrating each side from 0 to ¢ gives

!
e w(t) — wo =/ e y(s)ds — g(1 - e"”) A4 [1 — e_(’_y)’]
0 r r—y
In particular,
T c A
w(T) = e Twy +/O T Dy@yde — ;(e’T -1) - — (€T —erT)

Again p(T) > 0 and thus w*(T') = 0, so the optimal path involves choosing p(0) such th
A = p(0)~1/¢ has the value

A= [ Two + LTy ar - ST 1)
e’T - €yT 0 0 Y r

There are two significantly different cases involved here. The first is when r > & and s
¥ > 0. Then consumption grows over time starting from the level ¢ + A. Butif r < ¢ an
so y < 0, then optimal consumption shrinks over time. This makes sense because r < i
the case when the agent discounts future utility at a rate & that exceeds the rate of interest

The previous case with constant consumption is when y = 0. The same solution emerge
in the limit as & — 0o, which represents the case when the consumer is extremely avers
to fluctuations in consumption.
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In the next example the optimal control is bang-bang.

Solve the following control problem:

1
max/ Q2x —xHdt, i=u, x(0)=0, x(1)=0, wuel-1,1]
0

The Hamiltonian is H = 2x — x2 + pu, which is concave in (x, u). The
optimal control u*(f) must maximize 2x*(t) — (x*(t))> 4+ p(t)u subject to u € [—1, 1].
Only the term p(#)u depends on u, so

. 1 if p(r) >0 )
! (t)_{—l if p(t) <0
The differential equation for p(z) is
p@t) = —H (t, x*(1), u* (1), p(1)) = 2x*(t) — 2 = 2(x*(t) — 1) (%)

Note that x*(t) = u*(t) < 1. Because x*(0) = 0, it follows that x*(¢) < 1 forall ¢ in [0, 1).
Then (*x) implies that p(z) is strictly decreasing in [0, 1].

Suppose there could be a solution with p(1) > 0. Because p(t) is strictly decreasing
in [0, 1], one would have p(¢) > 0 in [0, 1), and then (x) would imply that u*(t) = 1 for
all 7. In this case, X*(t) = 1 for all ¢ in [0, 1]. With x*(0) = 0 we get x*(¢) = ¢ and thus
x*(1) = 1, which is incompatible with the terminal condition x*(1) = 0. Thus any solution
must satisfy p(1) < 0. Suppose p(t) < 0 for all ¢ in (0, 1]. Then from (%), u*(t) = —1
for all such ¢, so x*(t) = —¢ with x*(1) = —1, violating the terminal condition. Hence,
for some #* in (0, 1), the function p(¢) switches from being positive to being negative, with
p(t*) = 0. A possible path for p(¢) is shown in Fig. 1.

P
p()
t* 1
.
Figure 1
It follows that u*(t) = 1 in [0, t*]* and u*(t) = —1 in (¢*, 1]. On [0, t*), therefore,
x*(t) = 1, and withx*(0) = O this yields x*(z) = ¢. Since x*(¢) is required to be continuous
att®, x*(t*) = x*(t*7) = t*. In (¢t*, 1], ¥*(¢) = —1 sox*(t) = —t+C for some constant C.

4 Recall our convention to let u*(t) be left-continuous.

EXAMPLE 4

SECTION 9.4 / THE STANDARD PROBLEM

Because x*(r) is continuous at t*, x*(r*t) = t*, so C = 2r*. Hence, x*(t) = —t +
Then x*(1) = 0 implies that t* = 1/2. We conclude that the optimal solution is

I in [0, 1/2] t in [0, 1/2

u (1) = { . / x*(t) = [ . /2

—1 in (1/2,1] I -t in (1/2,1]

To find p(t), note that p(r) = 2x*(t)—2 = 2t —2in [0, 1/2]. Because p(1/2) = 0, on
p(t) =12 =2t + 3/4. In the interval (1/2, 1], (x%) implies that p(t) = —2t, and bec
p(2) is continuous with p(1/2) = 0, the adjoint function is p(r) = —t> + 1/4. For
function p(r) the maximum condition (x) is satisfied.

The last example shows a typical kind of argument needed to prove that po # 0.

Consider Example 3 again. Including the multiplier pg, the Hamiltonian function (4) is .
Po(2x — x%) + pu, and the differential equation (6) for pis p = —H = —po(2 — 2x*(2)). Sug
po = 0. Then p = 0 and so p is a constant, p- Because (py, p(1)) = (po, p) # (0, 0), that con
p is not 0. Now, an optimal control must maximize pu = pu subjecttou € [—1,1]. If p > 0,
obviously u*(¢) = 1 forall ¢ in [0, 1]. This means that x*(t) = 1, with x*(0) = 0, so x*(¢) = ¢.
violates the terminal condition x*(1) = 0. If p < 0, then obviously u*(f) = —1, and x*(r) =
for all ¢ in [0, 1], with x*(0) = 0, so x*(t) = —t. This again violates the terminal condition
conclude that pg = 0 is impossible, so py = 1.

PROBLEMS FOR SECTION 9.4

1. What is the obvious solution to the problem

T
maxf x(0)de, x(t) =u(), x(0)=0, x(T) free, u(t) [0, 1]
0

where T is a fixed positive constant? Compute the associated value, V(T), of
objective function. Find the solution also by using Theorem 9.4.2.

1
2. Solve the problem: maxf (1—x%>—u?) dr, X=u, x(0) =0, x(1)>1, ue
0

3. Consider the problem in Example 9.2.1.
(a) Replace u € Rby u € [0, 1] and find the optimal solution.
(b) Replace u € Rby u € [—1, 1] and find the optimal solution, provided T > 2.
4. Solve the following problems. Also compute the corresponding value of the object
function.

(a) n}g;hfo‘oxdz, i=u, x(0)=0, x(10)=2
uel0,

(b) m[g)glfoTxdt, x=u, x(0) =x9, x(T)=x (withxg < x; < xq + T)
uel0,
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5. (a) Given the fixed positive number T, write down the conditions in Theorem 9.4.1 for

10.

the problem
T

max/ —W? +x>dt, x=au, x©0)=1, x(T) free, u(r) € [0,1]
0

and find the solution when a > 0.

(b) Find the solution if a < 0. (Hint: Try u*(¢) € (0, 1) for all ¢.)

Solve the following special case of Problem I in Example 9.1.2:

5
max/ [10u — u® +2)1e % dt, % =—u, x(0) =10, x(5)>0, u>0
0

. (From Kamien and Schwartz (1991).) A firm has an order of B units of a commodity to

be delivered at time 7. Let x(¢) be the stock at time ¢. We assume that the cost per unit
of time of storing x () units is ax (¢). The increase in x (¢), which equals production per
unit of time, is u(¢) = x(¢). Assume that the total cost of production per unit of time ?s
equal to b(u(r))?. Here a and b are positive constants. So the firm’s natural problem is

T
min/ [ax(@) + bu)?]dt, (1) = u(t), x(0) =0, x(T) = B, u(t) >0
0

(a) Write down the necessary conditions implied by Theorem 9.4.1.

(b) Find the only possible solution to the problem and explain why it really is a solution.
(Hint: Distinguish between the cases B > aT?/4b and B < aT?/4b.)

. Find the only possible solution to the problem

2
max/ (x> =2u)dt, *=u, x(0)=1, x(2) free, u < [0, 1]
0

(Hint: Show that p(t) is strictly decreasing.)

. Consider the problem max fozudt, x=u, x(0)=0, x2)<1, uel[-1,1].

(a) Prove that the associated adjoint variable p(¢) is a constant, and show that this
constanthastobe —1. Butthen H = 0, and #*(¢) is not determined by the maximum

condition (5).

(b) Show that any control which implies that x*(2) = 1 solves the problem.

Consider the problem max fol —udt, ¥ = u?, x(0)=x(1)=0, u eR.
(a) Explain why u*(¢) = x*(t) = 0 solves the problem.

(b) Show that the conditions in the maximum principle are satisfied only for py = 0.

SECTION 9.5 / THE MAXIMUM PRINCIPLE AND THE CALCULUS OF VARIATIONS

9.5 The Maximum Principle and the Calculus of

Variations

The introduction to this chapter claimed that optimal control theory extends the cla
calculus of variations. Consider what the maximum principle has to say about the sta
variational problem

. @) x(#) = x
max/ F(t,x,x)dt, x(ty) = xo, (b) x(11) > x;
o (c) x()) free
To transform this to a control problem, simply let X (r) be a control variable with & @) =
Because there are no restrictions on X (¢) in the variational problem, there are no restric
on the control function u(z). Hence, U = R.

The control problem has the particularly simple differential equation x(t) = u(r).
Hamiltonian is H(t, x, u, p) = poF(t,x,u) + pu. The maximum principle states tl
u*(t) solves the problem, then H as a function of & must be maximized at u*(¢). Bec
U = R, a necessary condition for this maximum is

Hy(t,x,u, p(t)) = poFL(t,x, u) + p(r) = 0

Since (po, p(t)) # (0, 0), equation () implies that po # 0, s0 pg = 1. The differe
equation for p(¢) is

p(t) = —Hy(t,x,u, p) = —F.(t, x, u)

Differentiating () with respect to ¢ yields

%(Fu’(t, x.0) + p) =0 ¢

Since u = x, it follows from (*x) and (x*x) that

dy .
Fl(t,x, %) — E(Fx(t, X, x)) =0
which is the Euler equation. Moreover, (*) implies that

Using (3) it is easy to check that the transversality conditions in (9.4.7) are precisely th
set out in Section 8.5. Note also that concavity of the Hamiltonian with respect to (x, u
equivalent to concavity of F(z, x, %) with respect to (x, x).

Thus the maximum principle confirms all the main results found in Chapter 8. Actua
it contains more information about the solution of the optimization problem. For instan
according to the maximum principle, for every ¢ in [to, t;] the Hamiltonian attains its m:
imum at u*(¢). Assuming that F is a C? function, not only is H, = 0, but also H), <
implying that F, < 0. This is the so-called Legendre condition in the calculus of v:
ations. (Also, continuity of p(t) and (3) together give the Weierstrass—Erdmann corr
condition, requiring F to be continuous. This is a well known result in the classical theor
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PROBLEMS FOR SECTION 9.5

. Find the only possible solution to the following problem by using both the calculus of

variations and control theory:

1
maxf xe™ = 2xx —x%)dt, x(0)=0, x(1)=1
0

Solve the following problem by using both the calculus of variations and control theory:

2
max/ B —x?=2x%dt, x(0)=1, x2) >4
0

. Solve the following problem by using both the calculus of variations and control theory:

1
maX/ (=2i —&He™M0dr, x(@) =1, x(1)=0
0

. At time ¢t = 0 an oil field contains X barrels of oil. It is desired to extract all of the oil

during a given time interval [0, T]. If x(¢) is the amount of oil left at time #, then —x is
the extraction rate (which is > O when x (¢) is decreasing). Assume that the \yorld .market
price per barrel of oil is given and equal to ae®’. The extraction cost.s per u:[lt of.tlmze z;rre
assumed to be % (1)2eP!. The profit per unit of time is then 7 = —x(¢)ae®" — x(1)*e’.
Here a, o, and B are constants, @ > 0. This leads to the variational problem

maxfT[~x(t)ae“' — i) e ]e™" dt, x(0) =%, x(T)=0, (%%)
0

where r is a positive constant. Find the Euler equation for problem (*x*), and show t.hat
at the optimum 97 /dx = ce"" for some constant c. Derive the same result by using

control theory.

. S. Strgm considers the problem

maX/T{U(x(t)) —b(x(1)) — gz(n)}dt, z(t) = ax(t), z(0) = zo, z2(T) free
% 0

Here U (x) is the utility enjoyed by society consuming x, whereas b(x) is total C(/)/St and
: i

z(t) is the stock of pollution at time ¢#. Assume that U and b satisfy U’ > O., U” <0,

b’ > 0,and b” > 0. The control variable is x (z), whereas z(¢) is the state variable. The

constants a and g are positive.

(a) Write down the conditions implied by the maximum principle. St.)ow that the adjoint
function is given by p(t) = g(t — T), t € [0, T], and prove that if x*(¢) > 0 solves
the problem, then

U'(x*(1) = b'(x*(1)) + ag(T — 1) ()

(b) Prove that a solution of (*) with x*(¢) > 0 must solve the problem. Show that x*(¢)
is strictly increasing. (Hint: Differentiate () with respect to t.)

9.6

EXAMPLE 1

SECTION 9.6 / ADJOINT VARIABLES AS SHADOW PRICES

Adjoint Variables as Shadow Prices

Like the Lagrange multipliers used to solve static constrained optimization proble
Chapter 3, the adjoint function p(1) in the maximum principle can be given an inter
price interpretation.

Consider the standard endconstrained problem (9.4.1)—(9.4.3). Suppose that it
unique optimal solution (x*(z), u*(t)) with unique corresponding adjoint function

The corresponding value of the objective function will depend on xy, x, to, and 1. S
denoted by

Vixo, x1, 19, 17) =/ f@, x* (), u*(t)) dt
Iy

We call V the (optimal) value function. (When x (1) is free, x| is not an argument o

Suppose xg is changed slightly. In general, both u*(¢) and x*(¢) will change ove
whole interval [1y, #;]. For typical problems in control theory, there is no guarantee tt
is differentiable at a particular point. But at any point where it is differentiable,

The number p(%) therefore measures the marginal change in the optimal value functic
Xo increases.

In Example 9.2.1 the objective function was fOT[I — tx(t) — u(r)*] dt, and the solt
was i (1) = —3(T? = 2), x*(t) = xo — 172t + 13, with p(r) = —3(T% — 1%). Sc

value function is

T T
V (xo, T)=/O [1—zx*(z)—(u*(z))2]dr=/o [1—x0t+}‘T2t2—ﬁt4—%(T2—t2)2

This last integral could be evaluated exactly, but fortunately we do not need to. Inst
simply differentiating V w.r.t. xo under the integral sign using formula (4.2.1) gives

aV(xo0, T)
8x0 -

T
/ (=t)dt = —172
0

On the other hand, p(0) = — % T2, 50 (2) is confirmed.

Formula (2) interprets p(¢) at time ¢ = fo. What about p(¢) at an arbitrary ¢ € (¢9, t1)?

wantan interpretation that relates to the value function for the problem defined over the wh
interval [z, ], not only the subinterval [z, f, ]. Consider again problem (9.4.1)-(9.4.3),

assume that all admissible x(t) are forced to have a jump equal to v atz € (to, t1), so t
x(tT) —x(t™) = v. Suppose all admissible x(r) are continuous elsewhere. The optir
value function V for this problem will depend on v. Suppose that (x*(¢), u*(t)) is 1
optimal solution of the problem for v = 0. Then, under certain conditions, it can be sho'



324

CHAPTER 9 / CONTROL THEORY: BASIC TECHNIQUES

that V as a function of v is defined in a neighbourhood of v = 0, that V is differentiable
w.r.t. v at v = 0, and that

3

A General Economic Interpretation

Consider a firm that seeks to maximize its profit over a planning period [fy, #;]. The state
of the firm at time ¢ is described by its capital stock x(z). At each time t the firm can
partly influence its immediate profit, as well as the change in its future capital stF)ck. Let
the firm’s decision or control variable at time ¢ be u(¢). Let the rate of profit at time ¢ be
f(t, x(¢), u(r)), so that the total profit in the time period [#g, #;] is

/” F@, x(@), u@®))dt
fo

The firm can choose u(t) within certain limits, so that u(t) € U = [ug, u;], but it canpot
directly influence x (¢). The rate of change in the capital stock depends on the present capital
stock as well as on the value chosen for u(¢) at time ¢. Thus,

x(t) =g, x(t), u(t)), x(t)) = xo

where x( is the given capital stock at time ¢ = #y,. The control variable u(¢) not only
influences the immediate profit but also, via the differential equation, inﬂuegces the rate of
change of the capital stock and thereby the future capital stock, which again changes the
total profit. . N .

Suppose we have found the solution to this problem, with correspond{ng adjoint function
p(t). According to (3), p(¢) is a “shadow price” of the capital stock, since p(t) meaSI.lres
the marginal profit of capital. The Hamiltonianis H = f (¢, x, u)+ p(¢)g(¢, x, u). Consider
a small time interval [z, ¢ + At]. Over this time interval, Ax =~ g(¢, x, u) At and so

H At = f(t,x,u) At + p(1)g(t, x,u) At = f(1,x,u) At + p(t) Ax

Hence H At is the sum of the instantaneous profit f (¢, x, u) At earned in the time i.nterval
[¢, t + At] and the contribution p(¢) Ax to the total profit produced by the extra cap'ltal Ax
at the end of this time period. The maximum principle requires choosing at each time the
value of u that maximizes H, and hence H At.

5> Economists have realized for a long time that the adjoint can be interpretéd as a shadpw
price. Dorfman (1969) has an illuminating discussion on the economic interpretations, extending
the material in the next subsection.

EXAMPLE 2

SECTION 9.6 / ADJOINT VARIABLES AS SHADOW PRICES

Other Sensitivity Results

Consider once again the standard end constrained problem (9.4.1)—(9.4.3) and its op
value function (1). It turns out that, provided V is differentiable, the effects on V of s
changes in xy, #y, and #; can also be expressed very simply. Define

H*(t) = H(t, x*(1), u*(t), p(r))

Then

Py, & (). = H" (1)
IR ¥

The first of these equations was discussed above. As for the second, it is like the first, ex
that requiring the state x; to be larger at time ¢, has an effect that is opposite of allowin
to be larger at time f. For example, in the capital accumulation interpretation in the prev
subsection, increasing the initial capital stock xo by one unit increases the total profi
approximately p(fy). On the other hand, increasing the capital which must be left at the
of the planning period 7, decreases the total profit earned by approximately p(¢;). The t
equality is similar to the fourth except for the change of sign. In the capital accumula
interpretation, increasing #; makes the planning period longer and the total profit incre:
(if it is positive). On the other hand, increasing #) makes the planning period shorter, so
total profit decreases. The last equality is illustrated in the next example.

NOTE 1 Consider the standard end constrained problem with x(t;) free. If x*(), u*
is an optimal pair with corresponding adjoint function p(r), then according to condit
(9.4.7)(c), p(t;) = 0. This makes sense in light of the second formula in (5): The ;
(x*(t), u*(¢)) will solve the problem with terminal condition x(t) = x*(t) = xq, .
the optimal value function V is given in (1). Since the optimal path in the problem w
x(t1) free ends at x*(¢;), small changes in x; = x*(#;) will not change V, and theref
p(t1) = —3V/dx; = 0. With the economic interpretation given above the result is a
natural: If there is no reason to care about the capital stock at the end of the planning peri
its shadow price should be equal to 0.

Verify the last equality in (5) for the problem in Example 1.

soiution: Differentiating the value function V(xo, T) from Example 1 w.r.t. T, usi
the Leibniz rule (4.2.3) yields

A% T
a7 = L= x0T+ 3T = T4 4 [[12T - 112 - 227 4
0

Integrating and simplifying gives

v 1 a4
Now, H*(T) = 1—Tx*(T)—(u*(T))2+p(T)u*(T) = 1—x0T+%T4,becauseu*(T) =
and x*(T) = xg — éT3. Thus the last result in (5) is confirmed.
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EXAMPLE 3

(Economic Growth) Consider the following problem in economic growth theory due
to Shell (1967):

,
max/ (1 = s(0))e” fk(t))e ™ dt
0

k(t) = s@)e”" f(k(t)) — Ak(1),  k(0) =ko, Kk(T)=kr >ko, 0<s@t) <1

Here k(¢) is the capital stock (a state variable), s(¢) is the savings rate (a control variable)
and f(k) is a production function. Suppose that f(k) > O whenever k > koe™*T, that
f'(k) > 0, and that p, 8, A, T, ko, and kr are all positive constants.

(a) Suppose (k*(t), s*(¢)) solves the problem. Write down the conditions in the maximum
principle in this case. What are the possible values of s*(¢)?

(b) Put p =0, f(k) = ak,a > 0,5 = 0and . = 0. Suppose that T > 1/a and that
koe?T > kr. Try to find the only possible solution to the problem.

(c) Compute the value function for the problem in (b) and then verify the relevant equalities
in (5).

so/ution: (a) The Hamiltonian is H = (1 — s)e” f(k)e™ + p(se”! f(k) — rk).
If (k*(r), s*()) solves the problem, then in particular, s*(¢) must solve

max (1 — s)e? f(k*(1))e™®" + p(t)[se"”f(k*(t)) — Mk*(1)] subject to s € [0, 1]

Disregarding the terms that do not depend on s, s*(¢) must maximize the expression
e f(k*(1))(—e™® + p(1))s for s € [0, 1]. Hence we must choose

; —8t
() = 1 ?f p(t) > e_(s @
0 if p(r) <e™

A possible optimal control can therefore only take the values 1 and 0 (exceptif p(t) = e~%).
Except where s*(¢) is discontinuous,

p(t) = —(1 —s*(@)e” f'(k*(1))e™® — p(t)s*(t)e”" f'(k*(1)) + Ap(t) (i)
The transversality condition (9.4.7)(b’) gives
p(T) =0 (p(T)=0if k*(T) > kr) (iii)

For more extensive discussion of the model, see Shell (1967).

(b) Briefly formulated, the problem reduces to
T .
maxf (1 = s)akdt, k =ask, k(0) =ky, k(T) > kr > ko
0

withs € [0,1],a > 0, T > 1/a, and koe®” > kr.
The Hamiltonian is H = (1 — s)ak + pask. The differential equation (ii) is now

p@t) = —a+s*(t)a(l — p()) (iv)

SECTION 9.6 / ADJOINT VARIABLES AS SHADOW PRICES

whereas (i) implies that

() = {1 if p(t) > 1
0 if p(r) <1

From (iv) and (v) it follows that

Pt)=—a <0 if p(r) <1, while p(t) = —ap(r) if p(6) > 1

In all cases p(t) < 0, so p(t) is strictly decreasing.

Suppose p(0) < 1, which implies that p(?) < 1throughout (0, T]. Then by (v), s*(
0, and so k*(t) = ko, which contradicts k*(T) > k7 > ko. Hence p(0) > 1. Then ther
two possible paths for p(t), which are shown in Fig. 1. In the first case p(7) = 0; i)
second case, p(T) > 0.

’1

1y T ' t‘* 'I" —>

Figure 1: Two possible paths for p(r).

Case I: p(T) = 0. Since p(t) is continuous and strictly decreasing with p0) > 1
p(T) = 0, there is a unique f, € (0, T') such that p(t) = 1, with p(t) > 1 in [0
and p(t) < 0in (t, T]. Then s*(t) = 11in [0, t,) and s*(t) = 0in (4, T]. By «(
p(t) = —ap(t) in [0, t,) and p(t) = —ain (t,, T]. On (¢, T],wehave p(t) = —a(r —
because we have assumed p(T) =0.But p(t,) = 1,501 = —a(ty — T), implying
tx = T — 1/a. Furthermore, p(1) = ¢*"==' on [0, T — 1/a]. This gives the follow
solution candidate: -

For 1 € [0, T —1/al, s*(t) =1, k*(t) = koe,  and p(r) = e*T--1 (
For 1 € (T —1/a,T], s*(t) =0, k*(t) = koe?T~', and p)=—at-T) G

To verify all the conditions in the maximum principle, it remains to check that k(7) >
Here this reduces to koe®” ! > kr, or e7~1 > kz / ko, or N

If this inequality holds, then (vii)—(ix) give a possible solution to the problem.

Casell: p(T) > 0. Inthis case, by (iii), k*(T) = kr. If it were true that p(T) > 1,thenc
would have p(¢) > 1andsos*(r) = 1forallzin [0, 7), implying that k*(T') = kge®? > |
a contradiction. So there exists a unique t*in [0, T') such that p(+*) = 1. Similar argume)
to those for case I suggest the following as an optimal solution:

For t € [0,7*], s*(t) =1, k*(t) = koe®, and p(r) = 4" =0 (

For ¢ (S ([*’ T], S*([) = O, k*(t) — koe‘”*, and p(t) =1 -—a(t _ t*) (:
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From k*(T) = kr it follows that et — kr / ko, SO 3. Verify (5) for Problem 9.4.4(b).

t* = ~In
a

1 (kT ) ) . HARDER PROBLEMS
ko

4. (a) Given the positive constant 7T, find the only possible solution to the problem:
We note that t* < T is equivalent to koe?T > kr, as assumed. All of this was derived under

| T
the assumption that p(T) > 0,i.e. 1 —a(T —t*) > 0, which gives maX/ (2x*e™ —ue')dt, % = ue', x(0) =1, x(T) free, u € [0, 1]
1 0
1 1 rkr x (xiii) : :
T — 2 = 7 ln(k—0> =1 . (b) Compute the value function V (T') and verify that V/(T) = H*(T).

. . 1 . . .

Putting the two cases together, there is only one solution candidate, with , 5. Consider the problem max [, ux dt, ¥ =0, x(0) = xo, x(1) free, u < [0, 1].
) ) (a) Prove that if xo < O, then the optimal control is u* = 0, and if xo > 0, then the
s*(t) =1 in [0,7], s*(t) =0 in (1, T] (xiv) optimal control is u* = 1.

_ (b) Show that the value function V (xg) is not differentiable at xq = 0.
where 7 = max {T — 1/a, (1/a) In(kr / ko) }. W 0

Example 9.7.3 proves that we have found the optimal solution.

(c) For case I in (b) we have

e kT,T)=/T akoe™™ dt = akoe T[T — (T — 1/a)] = koe?T ™! ‘ 9.7 Sufficient Conditions

T-1/a The maximum principle provides necessary conditions for optimality. Only solution can-

50 9V /dko = eT~1 = p(0), using (vii). Also 3V /dkr = 0 = —p(T). Finally, H*(T) = dida?es fulﬁll'ing. t:le]sje 1.1ecel:sary condliltions Ean possib}y solvedt.lzle prg})len?. Hlowever, the
o K*(T) + p(T)as*(T)k*(T) = ak*(T) = akoe”T'] =9V/aT. ) maxn.num principle by itse cannot. tell us w .ether a given candidate 1s optimal or not, noi
(1 = s*(T)ak*( P does it tell us whether or not an optimal solution exists.
The following result, originally due to Mangasarian, has been referred to before. In fact
it is quite easy to prove.

For case 11,

T

L at* * 1 11 k
V(ko,kT,T)=f akoe® dt = akoe™ (T —1t )=(1kT(T“;lnkT+; n ko)

' THEOREM 9.7.1 (MANGASARIAN)
— pit" = 3 ok =
Hence 3V /dko = kr/ ko, and we see that p(0) = %" = kg /ko also. Moreover, 8V /dkr _ , . _
a(T 1 1r< kTO+ Ln ko) —1=a(T —t*)— 1,and —p(T) = a(T — t*) — 1 also. Finally, ' Consider the standard end constrained problem (9.4.1)—(9.4.3) with U an inter-
aV 8Ta— ak ar;ld H*(T) = ak*(T) = akoe®" = ako(kr [ ko) = akr. | val of the real line. Suppose the admissible pair (x*(z), u*(t)) satisfies all the
/9T = akr conditions (9.4.5)-(9.4.7) of the maximum principle, with the associated adjoint
function p(¢), and with py = 1. Then, if

PROBLEMS FOR SECTION 9.6

H(t,x,u, p(t)) isconcave w.r.t. (x,u) forall f in [z, t;] (1)
1. (a) Solve the control problem 1 the pair (x*(¢), u*(t) solves the problem.
T | If H(t, x, u, p(t)) is strictly concave w.r.t. (x, u), then the pair (x*(¢), u*(t)) is
max/ (x — su?ydt, x=u, x(0)=xo, x(T)free, u(t)€R the unique solution to the problem.
) .

(b) Compute the optimal value function V (xg, T), and verify the first and the last

o ' Suppose that U is an open interval (uo, u1). Then the concavity of H (¢, x, u, p(t))
equalities in (5).

in 1 implies that the maximization condition (A) in Theorem 9.4.1 is equivalent to the first-
2. Verify that V/(T) = H*(T) for Problem 9.4.1 order condition 0 H*/du = dH (¢, x*(t), u*(¢), p(t))/du = 0. (See Theorem 3.1.2.) The
. Verify tha = 4.1.
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concavity of H (¢, x,u, p(t)) in (x, u) is satisfied, for example, if f and g are concave in
(x,u) and p(¢) > 0, or if f is concave whereas g is linear in (x, u).

Suppose that U = [ug, u1]. fu*(¢) € (ug, u),thend H*/ou = 0. If thelower limitu*(¢) =
uo maximizes the Hamiltonian, then d H*/0u < 0, because otherwise if d H*/du > 0, then
the Hamiltonian would be increasing to the right of ug. If the upper limit u*(t) = u;
maximizes the Hamiltonian, then we see in a similar way that d H*/du > 0. Because the
Hamiltonian is concave in u, it follows that if U = [uq, 4], then the maximum condition
(9.4.5) is equivalent to the conditions:
<0 if u*@) =ug
H*
88 =0 if u*(r) € (uo, uy) 2

u
>0 if u*@) = u
These conditions are illustrated in Fig. 1.

H H H

T
/_ ' —\
'
' '
' '
| ' '
| ' '
' ' '
' ' '

uo uj uog  u*(@) u i uo uj
u*(t) = uo u*(t) € (ug, uy) u*(t) = u

Figure 1

If the Hamiltonian is concave in u, the maximization condition in (9.4.5) can be replaced
by the inequality
oH* 3
a—(u (t) —u) >0 forall u € [ug,u;] 3)
u

If u*(t) € (ug, uy), condition (3) reduces to d H*/ou = 0. If u*(¢t) = uo, then u*(¢) —u =
ug —u < 0forall u*(t) € [ug, u1], so (3) is equivalent to d H*/du < 0. On the other hand,
if u*(t) = uy, then u*(t) —u = uy —u > 0 for all u*(¢) € [ug, u1], so (3) is equivalent to
dH*/du > 0.

Proof of | e 9.7 Suppose that (x,u) = (x(¢), u(t)) is an arbitrary alternative ad-
missible pair. We must show that

I3 131
Dy =f f(t,x*(t),u*(t))dt—/ f@, x@t),u(t)dt >0
fo fo
First, simplify notation by writing H* instead of H (¢, x*(¢), u*(¢), p(¢)) and H instead
of H(t, x(t),u(t), p(t)), etc. Then, using the definition of the Hamiltonian and the fact
that x*(¢) = g(¢, x*(t), u*(t)) and x(¢t) = g(¢, x(¢), u(t)), we have f* = H* — px* and
f = H — px. Therefore

1 1
D, =/ (H* —H)a’t-i-/ p(x — x%)dt (%)
fo Iy

SECTION 9.7 / SUFFICIENT CONDITIONS

Because H is concave in (x, u), Theorem 2.4.1 implies that

* *

OH
H—-H* < (x—x*)+ (u —u*)
X u

Now, p = —9H*/dx, so (x) and (%) together imply that

4] 131 OH*
D, > / [p(x —x*) + px — X*)] dt -1-/ W —u)dt
o 4] ou
Because of (3), the second integral is > 0. Moreover, according to the rule for differentiz

a product, p(x — x*) 4+ p(¥ — x*) = (d/dt)(p(x — x*)). Hence,

13|

pOIx(0) = x* O] = p(t)(x(t) — x*(t) G

to

1 d .
Duz/ S [p(c —x)di =

fo

where the last equality holds because the contribution from the lower limit of integratic
0 because x (79) — x*(ty) = xg — xp = 0.

Now one can use the terminal condition (9.4.3) and the transversality condition (9.
to show that the last term in (s#:) is always > 0. Indeed, if (9.4.3)(a) holds, then x (¢,
x*(t;) = x; —x; = 0. But if (9.4.3)(b) holds, then p(t1) > 0 and so if x*(#) =
then p(t))(x(1;) — x*(#1)) = p(t)[x(t1) — x;] > 0 because x(t1) > x;. Alternativel
x*(t1) > x1, then p(t;) = 0, and the term is 0. Finally, if (9.4.3)(c) holds, then p(z;) =
and the term is 0. In all cases, therefore, one has D, > 0.

If H is strictly concave in (x, u), then the inequality () is strict for (x, u) # (x*, .
and so D, > O unless x (1) = x*(¢t) and u(t) = u*(¢) for all z. Hence (x*, u*) is the uni
solution to the problem.

Most of the control problems presented so far can be solved by using Mangasarian’s suffic
conditions. However, in many important economic models the Hamiltonian is not conc:
Arrow has suggested a weakening of this concavity condition. Define

ﬁ(r, x,p)=max H(t, x,u, p)
uelU

assuming that the maximum value is attained. The function H (z, x, p) is called the m:
mized Hamiltonian. Then one can show:

THEOREM 9.7.2 (ARROW'S SUFFICIENT CONDITIONS)

Suppose that (x*(¢), u*(¢)) is an admissible pair in the standard end constrained
problem (9.4.1)-(9.4.3) that satisfies all the requirements in the maximum prin-
ciple, with p(t) as the adjoint function, and with py = 1. Suppose further that

H(z, x, p(1)) is concave in x for every t € [ty, t;]

Then (x*(¢), u*(t)) solves the problem.

A proof and further discussion of this result is postponed to Section 10.1.
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EXAMPLE 1

EXAMPLE 2

NOTE 2 Here is an important generalization of the theorem: Suppose the problem imposes
the constraint that x(¢) belongs to a convex set A(¢) for all . Suppose also that x*(¢) is an
interior point of A(¢) for every ¢. Then Theorem 9.7.2 is still valid, and x ﬁ(t, x, p(t))
need only be concave for x in A(?).

Consider the problem
2
max/ u? —x)dt, x=u, x(0)=0, x(2)free, 0 <u <1
0

(a) Find the only possible solution candidate by using the maximum principle.
(b) Use Theorem 9.7.2 to prove that the pair found in (a) is optimal.

(a) The Hamiltonian with py = 1is H (¢, x, u, p) = u*> — x + pu. Because
H; = —1, the differential equation for p = p(¢) becomes p = —H] = 1. The solution
of this equation with p(2) = 0 is p(#) = t — 2. According to the maximum condition
(9.4.5), for each ¢ in [0, 2], an optimal control «*(¢) must maximize u® — x*(t) + (t —2)u =
—x*(@) + 42 + tu — 2u subject to u € [0, 1]. The term —x*(¢) is independent of u, so
u*(t) must maximize g(u) = u” + tu — 2u subject to u € [0, 1]. Note that g(u) is a strictly
convex function, so its maximum cannot occur at an interior point of [0, 1]. At the end
points, g(0) = 0 and g(1) = ¢t — 1. Thus the maximum of g depends on the value of ¢.
Clearly, if t < 1 the maximum of g occurs at u = 0, and if # > 1, the maximum occurs at
u = 1. Thus the only possible optimal control which is continuous on the left at t = 1 is
the bang-bang control
0 ifrel0,1]
1 ifre(1,2]
In the interval [0, 1] one has x*(¢) = u*(t) = 0 and x*(0) = 0, so x*(¢) = 0. In the interval
(1, 2] one has x*(t) = u*(¢r) = 1 and x*(1) = 0, so x*(¢r) = t — 1. We have found the only
possible pair that can solve the problem.
(b) The Hamiltonian with p(t) =t — 2 is H(t,x,u, p) = u?> — x + (t — 2)u, which is
convex in u. The maximized Hamiltonian is seen to be

u*(t) = {

—x ift €[0, 1]

ﬁt,, 1)) = max u’ — +t‘2“={
(tx,p@) =g W’ =X+ E=Du=\__ 1 ireq.]

Foreachtin [0, 2], the maximized Hamiltonian is linear in x, hence concave. The conclusion
follows from Theorem 9.7.2.

The following example illustrates an important aspect of Theorem 9.7.2: It suffices to show
that the maximized Hamiltonian is concave as a function of x with p(z) as the adjoint
function derived from the maximum principle.

Use Theorem 9.7.2 to prove that for the problem

1
max/ Budt, x =u’, x(0)=0, x(1) <0, ue[-2,00)
0

u*(t) = 1in [0, 8/9] and u*(r) = —2in (8/9, 1] is an optimal control with p(t) = —1.

EXAMPLE 3

SECTION 9.7 / SUFFICIENT CONDITIONS

soiution: The Hamiltonian with p(r) = —1is H(t, x, u, p) = 3u — u3, which
concave in (x, u). (See Fig. 2.) However, the maximized Hamiltonian is H (t, x, p(

max,e[—2,00)(3u — u®) = 2, which is concave. Note that p(t) = —1 satisfies
—9dH*/dx = 0. Moreover, both u*() = 1 and u*(t) = —2 maximize 3u — .
u € [-2,00) (see Fig. 2). Because p(l) = —1, the result in Note 9.4.2 implie.

x*(1) = 0. The function x*(¢) must satisfy the equation x*(¢) = (u*(z))? for each ;
alsohave x*(0) = 0 and x*(1) = 0. One possibility is x*(¢) = ¢ in [0, 8/9], with u*(¢)
and x*(¢) = 8 — 8¢ in (8/9, 1], with u*(t) = —2. Because all the conditions in The
9.7.2 are satisfied, this is a solution. (But the solution is not unique. One could also
for example, x*(¢) = —8¢ in [0, 1/9] with u*(1) = =2, and x*(t) = ¢ — 1 in (1/9, 1]
u*(t) =1.)

q
H A

Figure 2 Figure 3

Our final example makes use of Note 2.

Consider the capital accumulation model of Example 9.6.3(b). Prove that the prop
solution candidate is optimal.

The Hamiltonian is H (¢, k, s, p) = (1 — s)ak + pask = ak[1 + (p —
This function i}s\not concave in (k, s) for p # 1, because H; H — (H,é/y)2 =—a’(p—
The function A defined in (4) is ‘

H(t, k, p(t)) = ak max [1+ (p() = s]

Given 7 defined as in the solution to Example 9.6.3(b), we found that for t € [0, 7),
aiijoint variable is p(tr) > 1. It follows that ﬁ(z,k, p(t)) = ap(t)k for k > 0, w
H(t, k, p(t)) =Aak fork < 0. Fort € (f, T), however, the adjoint variable is p(¢) < 1,
it follows that H (¢, k, p(t)) = akAfork > 0, while ﬁ(t, k, p(t)) = ap(t)k for k < 0.
tempting to suggest that because H is linear in each case, H concave in k. But the grap
Fig. 3 shows that H is convex, and not concave.

Define A(t) = {k : k > 0}. Certainly, the optimal k*(¢) is positive for all ¢, so k*(1
an interior point of A(¢) for every z. For k > 0,

akp(t) if p(t) > 1

H(t, &, =
(k.20 {ak if p(t) <1

Thus for each ¢, ﬁ(t, k, p(t)) is concave as a function of k € A = [0, 00). According
Theorem 9.7.2 and Note 2, the suggested candidate in Example 9.6.3(b) is optimal.
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MUTE 3 To give a complete solution of an optimal control problem using the Mangasarian
(or Arrow) sufficiency results, it is necessary to prove that there is a pair (x*(r), u*(z))
satisfying all the requirements. In problems where it is impossible to find explicit solutions
for x*(¢) and u*(z), this means that we must prove that there exist admissible solutions of
the differential equations which are valid for the whole interval [y, #]. (This is almost never
done in economics literature.)

NOTE 4 (What to do if the Arrow condition fails) If the maximized Hamiltonian is not
concave, then the Mangasarian condition also fails. For the corresponding case in static op-
timization problems we turned next to the extreme value theorem, which promises that under
certain conditions, there exists an optimal solution. In Section 10.4 we discuss analogous
existence theorems for control problems.

PROBLEMS FOR SECTION 9.7

1. (a) Solve the control problem

I
max/ (100 — x — %uz)dt, Xx=u, x(0) =xp, x(1) = x1, u € (—00, 00)
0

(b) Verify that 9V /dxo = p(0) and 0V /dx; = —p(1), where V is the optimal value
function.

2. (a) Find the only possible solution to

10
max | (1 —s)Wkdt, k=svk, k@©) =1, k(10) free, s €0, 1]
0

(b) Use Theorem 9.7.2 to prove that the solution candidate in (a) is optimal.

3. Solve the problem (where T, «, and B are positive constants, a # 2)
T
maxf e‘ﬂ’\/;dt when x(f) = ax(t) —u(t), x(0O) =1, x(T) =0, u(t) >0
0

What happens if the terminal condition x(T) = 0 is changed to x(T) > 0?

4. Let f be a C'-function defined on a set A in R”, and let S be a convex set in the interior
of A. Show that if x” maximizes f(x) in S, then V f(x°) - (x® —x) > O for all x in S.
(Hint: Define the function g(t) = f(tx + (1 — £)x°) for ¢ in [0, 1]. Then g(0) > g(v)
for all ¢ in [0, 1].)

9.8

SECTION 9.8 / VARIABLE FINAL TIME

Variable Final Time

In the optimal control problems studied so far the time interval has been fixed. Yet for s
control problems in economics, the final time is a variable to be chosen optimally, along v
the path u(z), ¢ € [to, t;]. One instance is the optimal extraction problem of Example 9.
in which it is natural to have the length of the extraction period as a variable (in addi
to the rate of extraction). Another important case is the minimal time problem in which
objective is to steer a system from its initial state to a desired state as quickly as possib

The variable final time problem considered here can be briefly formulated as foll
(note that the choice variables u and #; are indicated below the max instruction):

" (@) x(n) = x
TE[IX/ f, x,u)ydt, x=g(@, x,u), x(ty) = xo, ) x(t) > x;
o (©) x(t)) free

The only difference from the standard end constrained problem is that ¢; can now be cho:
Thus, the problem is to maximize the integral in (1) over all admissible control functi
u(t) that, over the time interval [fo, #,], bring the system from xg to a point satisfying
terminal conditions. In contrast to the previous problems, the admissible control func
can be defined on different time intervals.

Suppose (x*(t), u*(¢)) is an optimal solution defined on [fg, t{]. Then the conditi
(9.4.5)-(9.4.7) in the maximum principle are still valid on the interval [z, 1], because
pair (x*(), u*(¢)) must be optimal for the corresponding fixed time problem with ¢; =
In fact, the result is this®:

THEOREM 9.8.1 (THE MAXIMUM PRINCIPLE WITH VARIABLE FINAL TIME)

Let (x*(¢), u*(t)) be an admissible pair defined on [, tf] which solves prob-
lem (1) with #; free (t; € (fy, 00)). Then all the conditions in the maximum
principle (Theorem 9.4.1) are satisfied on [1y, ¢{], and, in addition,

H (@, x* (), u™(#)), p(1f)) = 0

Compared with a fixed final time problem there is one additional unknown 7;. Fortunat
(2) is one extra condition.

One method for solving variable final time problems is first to solve the problem w
1) fixed for every t; > to. The optimal final time ;" must then maximize the optii
value function V' as a function of ;. According to (9.6.5), if V is differentiable, tl
av/jon = H*(ty) = H*(t{, x*(t]), u*(t}), p(t})). Thus, condition (2) is precisely
expected.

% For a proof see Hestenes (1966).
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(A common misunderstanding) Concavity of the Hamiltonian in (x, u) is not
sufficient for optimality when #, is free. For sufficiency results when the final time is variable,
see Seierstad and Sydseter (1987), Sections 2.9 and 6.7.

Consider Problem II in Example 9.1.2 for the special case when the cost function C =
C(t, u) is independent of x and convex in u, with C;, > 0. Thus, the problem is

T
max/ [q(t)u(t) — C(t, u(t))]e_” dt, x(t) = —u(t), x(0) =K, x(T) >0, u(t) >0
0

u, T
What does the maximum principle imply for this problem?
Suppose (x*(t), u*(t)), defined on [0, T*], solves this problem. The Hamilto-

nian with pg = 1is H(t, x,u, p) = [q(t)u — C(t,u))e™"" + p(—u), and the maximum
principle states that there exists a continuous function p(z) such that

u*(r) maximizes [q(t)u — C(t,u)]e™"" — p(t)u subjectto u >0 ()
oH

pt) = BT 0, p(T*)=0(p(T*) =0ifx*(T*) > 0) (ii)

[q(THu*(T*) — C(T*, u*(T*)]e™™" = p(T*)u*(T*) (iii)

Because p(¢) is continuous, (ii) implies that p(¢) = p > 0, where p is a constant.

Put g(u) = [q(t)u — C(t,u)]e™"" — pu. Because C(t, u) is convex in u and the other
terms are linear in u, the function g(u) is concave. According to (i), u*(t) maximizes g(u)
subjecttou > 0. Ifu*(t) = 0,then g’'(u*(t)) = g’(0) < 0. Ifu*(¢) > 0, then g’ (u*(¢)) = 0.
Therefore (i) implies that

[¢(0) — Co(t,u* )]e™ = p <0 (=0ifu*(t) > 0) (iv)

Because g is concave, this condition is also sufficient for (i) to hold.
At any time ¢ where u*(t) > 0, equation (iv) implies that

q(t) — C,(t,u*(1)) = pe" )

The left hand side is the marginal profit from extraction, 37 /du. Therefore, whenever it
is optimal to have positive extraction, we have the following rule that was discovered by
Hotelling (1931).

(HOTELLING'S RULE)

Positive optimal extraction requires the marginal profit to increase exponentially 3)
at a rate equal to the discount factor r.

Putting ¢+ = T* in (v), and using (iii), we deduce that if u*(T*) > 0, then

(vi)
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If the problem has a solution with «*(¢) > 0, then (v) and (vi) both hold. If C(T*, 0) > 0,
then u*(T™*) > 0, because u*(T*) = 0 contradicts (iii).

We have not proved that there exists an optimal solution. (For a more thorough discussion
of this problem, see Seierstad and Sydsater (1987), Section 2.9, Example 11.)

PROBLEMS FOR SECTION 9.8

9.9

1. Find the only possible solution to the following variable final time problems:
.

(@ max [ (x—1 —1ud)dr, x=u, x(0)=0, x(T)free, uck

u, T 0

T
(b) me}rx/ (-9-tutdr,  i=u, x(0)=0 x(T)=16, uel
wT Jo

2. Solve problem 9.4.7 with T free.

3. Consider the optimal extraction problem over a fixed extraction period,

T
I}l;lxo/‘ [ae®u(t) — u(t))*e?" —cle™"dt, (1) = —u(t), x(0) =K, x(T) =0
u(t)=0Jq

Here x(r) and u(r) have the same interpretation as in Example 1, with ¢ (1) = ae®" as
the world market price, and (u(t))?e?" — ¢ as the cost of extraction, with ¢ > 0.

(a) One can prove that if u*(¢) is optimal, then u*(z) > Oforallz. (You are not required
to show this.) The adjoint function is a constant p. Find u*(¢) expressed in terms
of p. Then find x*(¢) and p forthe casea = 8 =0, r # 0.

(b) Let T > 0 be subject to choice (keeping the assumptions « = 8 = 0, r # 0).
Prove that the necessary conditions lead to an equation for determining the optimal
T* which has a unique positive solution. Assume that max, (au — u?—c¢) >0, ie.
2
a® > 4c.

Current Value Formulations
Many control problems in economics literature have the following structure:

(a) x(r) = x

n
rrbaécR/ f@, x,we " dt, % =gt x,u), x(t)=xo, () x(t) =x1 ()
uet <

0 (c) x(t1) free

The new feature is the explicit appearance of the discount factor e~"*. For such problems
it is often convenient to formulate the maximum principle in a slightly different form. The
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ordinary Hamiltonian is H = po f(t, x, u)e™"" + pg(t, x, u). Multiply it by '’ to obtain
the current value Hamiltonian H® = He™' = po f(t, x,u) + " pg(t, x, u). Introducing
A = €'’ p as the current value shadow price for the problem, one can write H¢ in the form
(where we put py = Ag)

HE(t, x,u, M) = Ao f(t, x,u) + Ag(t, x, u) 2)

Note that if A = e"'p, then A = re'p + €' p = ri + €' p and so p=e"(h—ri).
Also, H° = He'" implies that § H°/dx = €' (dH /dx). So p = —dH /dx takes the form

A —ri=—0H/dx. In fact, one can prove the following:

THEOREM 9.9.1 (THE MAXIMUM PRINCIPLE. CURRENT VALUE FORMULATION)

EXAMPLE 1

Suppose that the admissible pair (x*(), u*(t)) solves problem (1) and let H¢ be
the current value Hamiltonian (2). Then there exists a continuous function A1)
and a number Ao, either O or 1, such that for all ¢ € [z, £,] we have (Ao, (7)) #~
(0, 0), and:

(A) u = u*(t) maximizes H(t, x*(t), u, A(t)) for u € U 3)
®) i) - ra) = - X OO 20) )
(C) Finally, the transversality conditions are:

(a’) A(t;) no condition

(®) At1) =0 (A(r)) =0 ifx*(#) > x1) (5)

() Mt) =0

The Mangasarian and Arrow sufficiency results from Section 9.7 have immediate extensions
to problem (1). The conditions in Theorem 9.9.1 are sufficient for optimality if 1o = 1 and

He(t, x,u, A(t)) is concave in (x, u) (Mangasarian) (6)
or (more generally)

ﬁ"(t, X, A(1) = ma&& H(t, x,u, A(t)) is concave in x (Arrow) (7)
ue

Solve the following problem using the current value formulation.

20

max | (4K — ue OB dr, K = —025K +u, K(0)=Ko, K(20)is free
u=0 Jo

Economic interpretation: K (¢) is the value of a machine, u(7) is the repair effort, 4K — u?
is the instantaneous net profit at time ¢, and ¢~ is the discount factor.

SECTION 9.9 / CURRENT VALUE FORMULATIONS 3

Solution: The current value Hamiltonian is H¢ = 4K — u? + M—=0.25K + u) (w
Ao =1),andso dH /du = —2u +rand dH /9K = 4 — 0.25x. Assuming that u*(r) >
(we try this assumption in the following), d(H)*/du = 0, so u*(t) = 0.5A(¢). The adjo
function A satisfies

A—0.251=—3(H")" /0K = —4 + 0.25), 1(20) =0
It follows that
At) =8(1— €™ 1% and u*(r) = 0.5 = 4(1 — *5-10)

Note that u*(¢) > 01in [0, 20). The time path of K *(¢) is found from K* = —0.25K* +u*
—0.25K* 4 4(1 — ¢*3~10)_ Solving this linear differential equation with K *(0) = K,
get

K*() = (Ko — 16+ 16¢710),-0251 4 16 _ 16,40.51-10

Here H¢ = (4K — u?) + A(=0.25K + u) is concave in (K, u), so we have found t
complete solution.
Note that the pair (K*(z), A(¢)) must satisfy the system

A=051—4, A(20)=0
K =—025K +0.5%, K(0) =K,

A=0 (A=8)

Ko 16

Figure 1 Phase diagram for Example 1.

Figure 1 shows a phase diagram for this system. When Ky < 16 as in the figure, tl
curve drawn with a solid line is consistent with the indicated arrows. Initially the vah
of the machine increases, and the repair effort is reduced. Then, after the curve hits ti
line K = 0, the value decreases and the repair effort is reduced till it eventually is 0. Tt
dotted curve is also consistent with the arrows, but there is no way the curve can satis’
A(20) = O—the required repair effort is too high to lead to an optimal solution. (When A
large, so is u = 0.5A, and the integrand 4K — u? becomes large negative.)

The diagrammatic analysis related to Fig. 1 in the last example is in a way superfluous sin
the solution has already been completely specified. But it is very useful in some problen
where explicit solutions are unobtainable. See Section 9.12.
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PROBLEMS FOR SECTION 9.9

9.10

1. Find the solution to the following problem using the current value formulation:

T
max f (=x* = Lu?)e ¥ dt, ¥ =x+u, x(0)=1, x(T) free
u(hHeR Jo

2. Find the solution of Problem 9.4.6 using the current value formulation.

3. Find the solution of Problem 9.5.3 using the current value formulation.

Scrap Values

In some economic optimization problems it is natural to include within the optimality
criterion an additional function representing the value or utility associated with the terminal
state. This gives the typical problem

14l
max {f f(f,x(t),u(t))dt+S(x(t1))}, x(1) =g, x(1),u)), x(to) =xo (1)

u(t)elU fo

The function S(x) is called a scrap value function, and we shall assume that it is C'.

Suppose that (x*(t), u*(¢)) solves this problem (with no additional condition on x (¢)).
Then, in particular, that pair is a solution to the corresponding problem with fixed terminal
point (1, x*(¢;)). For all admissible pairs in this new problem, the scrap value function
S(x*(t)) is constant. But then (x*(¢), u*(#)) must satisfy all the conditions in the maximum
principle, except the transversality conditions. Then the correct transversality condition for
“normal” problems is

p(t) = S'(x* (1)) 2)

This is quite natural if we use the general economic interpretation explained in Section 9.6.
In fact, if x (¢) denotes the capital stock of a firm, then according to (2), the shadow price of

capital at the end of the planning period is equal to the marginal scrap value of the terminal
stock.

If S(x) = 0, then (2) reduces to p(z;) = 0, which is precisely as expected in a
problem with no restrictions on x (¢;).

One way to show that (2) is the correct transversality condition involves transforming
problem (1) into one studied before. Indeed, suppose that (x(¢), u(t)) is an admissible
pair for the problem (1). Then %S(x(t)) = S (x(@)x(¢) = S'(x(2))g(t, x(t), u(t)). So by
integration,

S(X(tl))—S(X(Io))=/ S'(x()g(t, x(1), u(1)) dt

To

THEOREM 9.
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Here S(x(tp)) = S(x¢) is a constant, so if the objective function in (1) is replaced by
3
/ [f(t, x(t), u(r)) + S (x(2)g(t, x(t), u(t))] dt (3)
o

then the new problem is of a type studied previously with no scrap value, still with x (1) free.
Let the Hamiltonian for this new problembe H; = f+S'(x)g+qg = f+(g+5'(x))g, with
adjoint variable g. An optimal pair (x*(t), u*(t)) for this problem must have the properties:

(a) u*(t) maximizes Hy (¢, x*(t), u,q(t)) foru e U

(b) q(1) = —dH[/dx, q(t) =0

Define p(t) = q(t) + S’ (x*(¢)). Problem 7 asks you to prove that, if H = f + pg is the
ordinary Hamiltonian associated with problem (1), then u*(¢) maximizes H (x*(t), u, p(t))

foru € U and p(t) = —0H*/dx, with p(t;) = 0.
Appropriate concavity conditions again ensure optimality as shown in the next theorem.

10.1 (SUFFICIENT CONDITIONS WITH SCRAP VALUE)

Suppose (x*(#), u*(t)) is an admissible pair for the scrap-value problem (1) and
suppose there exists a continuous function p(t) such that for all ¢ in [fo, #1],

(A) u*(¢) maximizes H (¢, x*(t), u, p(t)) wrt.u € U
(B) p(t) = —H,(t, x*(1),u*(1), p(1)), p(t) =S (x*(1))
(C) H(t,x,u, p(t)) is concave in (x, ) and S(x) is concave

Then (x*(t), u*(t)) solves the problem.

Suppose that (x, ) = (x(t), u(t)) is an arbitrary admissible pair. We must show
that

1 1
D, =/ F@, x* @), u* () dt + S(x*(t1)) —/ ft, x(t),u(t))dt — S(x(t1)) =0
1o o

Because S(x) is C! and concave, S(x*(t;)) — S(x(t1)) > S (x(t))[x* (1) — x(t1)]. COH'I-
bining this with the inequality f,f)‘ (f* — f)dt > p(t))(x(ty — x*(#1)) that was derived in
the proof of the Theorem 9.7.1, we get

D, > [p(n) — S'(x*(t1))](x (1) = x*(11)) =0

where the last equality follows from (B). So D, > 0. ]
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nOTE 2 The theorem still holds if the concavity of H in (x, u) is replaced by the Arrow
condition requiring H (¢, x, p(t)) to exist and be concave in x.

EXAMPLE 1 Solve the problem

1
max {/ —%uzdt—i-«/x(l)}, x=x4u, x(0)=0, x(1)free
0

Ue(—00,00)

5 Wehave H = —%u2+p(x+u)and S(x) = /x = x'/2. Hence H, = —u+p
and H] = p. Since u € (—00, 00), H,, = 0, which gives u = p, and we have the following

differential equations, X = x +u = x + p, p = —H, = —p. The latter has the solution
p(t) = Ae™". Then X = x + p = x + Ae™’, and this linear differential equation has the
solution x = Be' — %Ae" , where the constant B is determined by x(0) = B — %A =0.

Hence, B = %A, so that x(¢) = %A(e’ — e "). The constant A is determined by the
transversality condition p(1) = Ae™! = §'(x(1)) = 1(x(1))7/2 = {[JA(e! —e D]/
Solving for A we find A = e[2(e? — 1)]7!/3. Thus we have the following candidate for an
optimal solution:

u(t) =p@t) =Ae™", x(t)=3A —e), A=el2(e* - D]/
Because the Hamiltonian is concave in (x, u) and the scrap value function is concave in x,

this is the solution.

Current Value Formulation

Many control problems in economics literature have the following structure:

gl
max {f f, x,we™ di + S(x(m))e™™ ), k=g, x,u), x()=x0 (4
fo

ucUCR 0

(@x(t) =x1 (b)x()=x1 or (c)x(f) free (5

The new features compared to problem (1) are the discount factor (or interest rate) r, and
the reintroduction of the alternative terminal conditions in the standard problem. (If x(#;)
is fixed as in 5(a), the scrap value function is a constant.)

The current value Hamiltonian for the problem is

H(t, x,u, M) = Ao f(t, x,u) + Ag(t, x,u) (6)

and the correct necessary conditions are as follows:

SECTION 9.10 / SCRAP VALUES

THEOREM 9.10.2 (CURRENT VALUE MAXIMUM PRINCIPLE WITH SCRAP VALUE)

Suppose that the admissible pair (x*(¢), u*(¢)) solves problem (4)—(5). Then
there exists a continuous function A(¢) and a number A, either O or 1, such that
for all t € [1, t;] we have (L9, A(?)) # (0, 0), and:

(A) u = u*(t) maximizes H(t, x*(t), u, A(t)) for u e U
AHE(t, x*(t), u*(t), A(1))

B ox

(C) Finally, the transversality conditions are:

(B) A(t) — ri(t) =

(a’) A(#7) no condition

IS (x* (1))
d

(®) A1) = Ao (with = if x*(1;) > x1)

3S(x* (1))

() A(t1) = %o o

The following sufficiency result is a straightforward extension of Theorem 9.10.1:

THEOREM 9.10.3 (SUFFICIENT CONDITIONS)

The conditions in Theorem 9.10.2 with Ay = 1 are sufficient if U is convex,
HE(t, x,u, M(t)) is concave in (x, u), and S(x) is concave in x.

EXAMPLE 2 Consider the following problem:

T
max{/ (x —u®)e " dt + ax(T)e *1T ]
0

x=-04x4+u, x0)=1, x(T)isfree, uecR

where a is a positive constant. Solve the problem.

Solution: The current value Hamiltonian, with Ag = 1,1is H(¢, x, u,A) = x —u

3I

2

A(—0.4x + u), which is concave in (x, u). Moreover, S(x) = ax is linear, and hen
concave in x. The conditions in the maximum principle are therefore sufficient. Becau

H¢ is concave in # and u € R, the maximum of the Hamiltonian occurs when

QHE (1, x*(1), u* (1), (1)) _
ou B

=2u*@) + 1) =0

Next, the differential equation for A is

c

@) —0.1A(r) = ~83H =—140.4A0)
X
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EXAMPLE 3

Because x(7T') is free and S(x) = ax, condition (C)(c’) yields
MT)=a (iii)
By integrating the linear differential equation (ii), using (iii), we obtain
At) = (@—2)e %00 4 2

From (i), u*(t) = %A(t). Because x*(t) satisfies the linear differential equation x* =
—0.4x* + u* = —0.4x* + $(a — 2)e 3T~ 4 1, with x*(0) = 1, one has

x*(t) = % + g(a —2)e~05T-1) _ (% + g(a — 2)g~05T) 04

All the sufficient conditions are satisfied, so this is the solution.

(Optimal Feeding of Fish) Let x(¢) be the weight of a fish at time ¢ and let P(z, x) be
the price per kilogram of a fish whose weight is x at time ¢. Furthermore, let u(¢) denote
the amount of fish food per unit of time measured as a proportion of the weight of a fish,
and let ¢ be a cost of a kilogram of fish food. If the interest rate is r, then the present value
of the profit from feeding the fish and then catching it at the fixed time T is

T
x(T)P(T, x(T))e™ " -/ ex(Out)e " dt )
0

Suppose that
X)) =x(@)g(t,u(t), x0)=x9>0 (ii)

so that the proportional rate of growth in the weight of the fish is a known function g (¢, u(t)).

Assuming that u(¢) > 0, the natural problem is to find the feeding function u*(¢) and the

corresponding weight function x*(¢) that maximize (i) subject to the constraint (ii) and

u(t) > 0.

(a) Write down necessary conditions for (x*(z), u*(¢)), with corresponding adjoint function
A(1), to solve the problem. Deduce an equation that u*(¢) must satisfy if u*(z) > 0.

(b) Suppose c(t) = ¢, P(t,x) = ap + ajx, and g(t,u) = a — be*' /u, where all the
constants are positive, with s > r. Characterize the only possible solution.

Soiution: (a) The current value Hamiltonianis H€ (¢, x, u, A) = —cxu+ixg(t, u), and
the scrap value function is S(x) = x P (¢, x). Thus dH/dx = —cu + Ag(t, u), dH /du =
x(—c+Ag,(t,u)), and S,(t,x) = P(t, x) + x P/(t, x).

According to the maximum principle, there exists a continuous function A(¢) such that

u*(t) maximizes x*(¢)(—cu + A(t)g(t, u)) for u >0 (iii)

and
B(HC)*

A —rA(t) = — = cu*(t) — Mn)g(t, u*(1)) (iv)

SECTION 9.10 / SCRAP VALUES

Furthermore, condition (C)(¢’) takes the form
MT) = P(T, x*(T)) + x*(T) P (T, x*(T))
From (iii) it follows that if 4*(7) > 0, then A(H)*/ou = 0. If x*(¢) is not O then
Mb)g, (t, u*(1)) = ¢

(b) We have g, (1, u) = be*’ Ju?, so (vi) yields AD)be*! J(u*(1))? = ¢. Then A(t) > 0,
with u*(t) > 0, we obtain

u*(t) = V/b/c e (A(1))"/?
Equation (iv) is now A(1) — ri(t) = cu*(t) — A(t)[a — be* /u*(¢)], which reduces to
At) = (r — a)A(t) + 2Vbe e (A (1)) /2 ‘
Finally, (v) reduces to
MT) = ap + aix*(T) + a\x*(T) = ag + 2a,x*(T) (

The standard trick for solving the Bernoulli equation (vii) is to introduce a new variab
defined by z = A'/%. (See (5.6.2).) Then A = 2, s0 i = 272, and (vii) yields

222 = (r —a)? + 2Vbce?™z, or 3= L(r — a)z + v/bc e2*

According to (5.4.4) this has the solution

Z=Ae%(r~a)t+ /bcezl(r—a)r/eé(s—r-#a)tdt=Ae%(r—a)r+ 2vbc efl‘”
s—r-+a

where A is a constant. Since u*(¢) = ./b/ce%“"z, we get
2b

est
s—r+a

Lt*(t) = A b/Ce%(S-H‘—[l)t +

Inserting u*(¢) into (i) yields a separable differential equation for x*(¢), with a uni
solution satisfying x*(0) = xo. The constant A is finally determined by equation (viii).

PROBLEMS FOR SECTION 9.10

1. Find the solution to the control problem

1
max{/(; (1 —tu —u®)dr +2x(1) +3}, t=u, x(0)=1, ue(—00,00

2. In a study of savings and inheritance, Atkinson (1971) considers the problem

T
max {/ U(rA®) +w —u(0)e™ dt + e "Tp(A(T))}, A=u, AQ©)=.
0
An economic interpretation is given in Example 8.5.3, except that the objective functi
now includes an extra term which measures the individual’s discounted benefit frc
bequeathing A(T'). Suppose that ¢’ > 0, ¢” < 0. Give a set of sufficient conditic

for the solution of this problem.
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3. Solve the following control problem from economic growth theory: § 9 1

10
max{/ (1 — s)Vkdt + 10/k(10) ], k=svk, k@O)=1, sel0,1]
0

where k = k(¢) is the capital stock, and s = s(t) is the savings ratio. (See Problem
9.7.2))

. (a) Solve the problem

1
max{f (x—u)dt+%x(l)], x=u, x(0)=1%, x(1)free, uel0,1]
0

(b) Solve the problem with the objective function f0] (x —u)dt — %(x(l) — P

. Consider the problem:

T
max[/ —u2dt—x(T)2], Xx=—-x+u, x(0)=xp, uecR
0

(a) Solve the problem using Theorem 9.10.3.

(b) Compute the optimal value function, V (xo, T'), and show that 3V /dxg = p(0) and
oV /T = H*(T).

. Solve the following problem using the current value formulation

T
max{/ —e T (x —u)dr — e‘rTx(T)zl st x=u—x+a, x(0) =0, x(T) free
0

ueR

The constants r, a, and T are all positive.

. Consider the control problem

3]
max / [f@t, x,u)+ S (x)g(t, x,w)]dt, x=g(t, x,u), x(g)=xy, uclU

fo

(See (3).) Let the Hamiltonian be H; = f + S'(x)g +qg = f + (¢ + S'(x))g,
with g as the adjoint variable. Then an optimal pair (x*, u*) for this problem must
satisfy conditions (a) and (b) above Theorem 9.10.1. Define p = g + §’(x*) and let
H = f + pg. Prove that properties (a) and (b) imply that «* maximizes H (¢, x*, u, p)
foru € U, while p = —9H*/dx, with p(t;) = S’(x*(¢;)). Thus conditions (A)—(C)
in Theorem 9.10.1 are satisfied.

SECTION 9.11 / INFINITE HORIZON

Infinite Horizon

Most of the optimal growth models appearing in literature have an infinite time hor
The Nobel laureate Ragnar Frisch (1970) has the following to say about infinite ho
growth models:

Questions of convergence under an infinite time horizon will depend so much on epsi
refinements in the system of assumptions—and on the infinite constancy of these refinements-
we are humanly speaking absolutely certain of getting infinite time horizon results which ha
relevance to concrete reality. And in particular we are absolutely certain of getting irrelevant r
if such epsilontic exercises are made under the assumption of a constant technology. “In the lor
we are all dead”. These words by Keynes ought to be engraved in marble and put on the desk
epsilontologists in growth theory under an infinite horizon.

Clearly, choosing an infinite horizon makes sense in economic models only if the di
future has no significant influence on the optimal path for the near future in which w
most interested. Nevertheless, the infinite horizon assumption often does simplify forn
and conclusions, though at the expense of some new mathematical problems that ne
be sorted out.

A typical infinite horizon optimal control problem in economics literature take
following form:

max/ f, x@®),u@)e™dt, x(t)= gt,x(),u()), x(ty) = xo, u®) e U
fo

Often no condition is placed on x (#) as ¢ — 00, but many problems do impose the const

tl_i)lgox(t) > X1 (x1 is a fixed number)
The pair (x(¢), u(t)) is admissible if it satisfies x(¢) = g(t, x(¢), u(t)), x(ty) =
u(t) € U, along with (2) when this is imposed. Suppose the integral (1) converges wher
the pair (x(¢), u(t)) is admissible. For example, the integral will converge for al
missible (x(¢), u(t)) if r is a positive constant, and if there exists a number M such
| f(t, x,u)] < M forall (x, u).

One can then show (Halkin (1974)) that all the necessary conditions in the maxi
principle hold, except the transversality conditions. With no transversality condition w
too many solution candidates.

NOTE 1 Itis tempting to assume that all results for finite horizon problems can be ca
over in a simple way to the infinite horizon case. This is wrong. For example, in a 1
horizon problem with x(z1) free, the transversality condition is p(¢;) = 0. However,
no terminal condition, the “natural” transversality condition, p(t) — 0 ast — oo, i
correct. A well known counterexample is due to Halkin (1974). This example also s}
that the condition p(t)x () — 0 is not a necessary condition for optimality, contrary
widespread belief in economic literature, including some popular textbooks.
However, in economic models with x(c0) free, it is in most cases a sensible wor
hypothesis that p(#) does tend to 0 as ¢ tends to co. But ultimately, this must be confin
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THEOREM 9.

Because of the presence of the discount factor ¢~"* in the problem above, it is convenient
to use the current value formulation with the current value Hamiltonian

H(t, x,u,0) = Ao f(t, x, u) + Ag(t, x, u)

and with A as the current value shadow price.

11.1 (SUFFICIENT CONDITIONS WITH AN INFINITE HORIZON)
Suppose that an admissible pair (x*(¢), u*(¢)) for problem (1), with or without
terminal condition (2), satisfies the following conditions for some A(z) for all
> ty, with Ag = 1:
(a) u*(¢) maximizes HE(t, x*(t), u, A\(t)) wrt. u € U
(b) A(t) — rr = —OH(t, x*(t), u*(r), M(1))/dx
() HE(t, x,u, A(r)) is concave w.r.t. (x, u)
(d) [1_1)1‘20 At)e™ " [x(t) — x*(¢)] > O for all admissible x(1)
Then (x*(¢), u*(r)) is optimal.
For any admissible pair (x(¢), u(z)) and for all ¢ > 1y, define
t t !
D, (1) =/f o, x*(t), u*(t))e " dr —/ ST, x(v), u(r))e™ " dt =/ (f*—= fHe " dr
0 10 )
in simplified notation. Now, f* = (H®)* — Ag* = (H)* — x*and f = H® — A%, so
t t
D,(t) = / [(H)* — Hle™" " dt +/ AT (x — xM)dr
1o 10
By concavity of H¢, one has
oy ¢ I(H)* 9(H )"
(H)" —H" > - —x" f -
o (x —x%) 4+ P (u u)
. a H(' *
=X —=rA)(x—x*+ () W™ —u)
u
SO

! t €\ *
D = [ UG =t =) i - ide+ [ g
[

0 u

As in the proof of Theorem 9.7. 1, we see that the second integral is > 0 and so

eTA(T)(x(T) = x*(1))

o

"d
Dy (1) z/ E[e_”?»(f)(X(f)—x*(f))]df =

o

The contribution from the lower limit of integration is 0 because x*(fy) — x(fo) = X0 — xo = 0, so
Dy (t) = e A1) (x(t) — x*(1)). Passing to the limit as t — oo in this inequality and using (d), one
concludes that (x*(z), u*(1)) is optimal. , n

EXAMPLE 1

SECTION 9.11 / INFINITE HORIZON

nOTE 2 Condition (d) is well known in economics literature, but is often not prop
checked. Note that the inequality (d) must be shown for all admissible x(¢), which is o
problematic. Suppose for example that lim,_, oo A(t)e™"" > 0, lim;— 00 A(2)e ™" x*(2) =
and x(z) > O for all ¢. Do these conditions ensure that (d) is satisfied? The answer is
For a counterexample consider what happens when A(t) = —1,r = 1, x(t) = ¢,
x*(#) = 1. Then A(H)e '[x(t) —x*(®)] = —e (' = 1) =e ' —1 — —last — oo.

Suppose the terminal condition is lim,;_, . x(¢) > x;. Rewrite the brack
expression in (d) as

A)e " (x (1) = x1) + A)e (xp — x*(1))

We claim that, provided the following three conditions are all satisfied, then condition

is satisfied.
(A) limy 00 A()e ™" (x; — x*(2)) 2 0
(B) There exists a number M such that |A(t)e™""| < M forallt > 1

(C) There exists a number ¢’ such that A(z) > 0 for all ¢ > ¢’

Because of (A), in order to prove (d), it suffices to show that the first term in (%) tends
number > 0. If lim;_, o x(¢) = x1, then x(¢) — x| tends to O as ¢ tends to 0o, so becaus
(B), the first term in (x) tends to 0. If lim;_, oo X () > x1, then x(¢) —x; > 0 for ¢ sufficie
large. Then, because of (C), A(t)e™"" (x(z) — x;) tends to a number > 0. We conclude
if (A)—(C) are all satisfied for all admissible pairs, then (d) holds.

( Suppose that we introduce additional conditions for admissibility in Theo
9.11.1. Then the inequality in Theorem 9.11.1(d) needs to hold only for pairs satisfying

additional conditions.
In particular, if it is required that x (¢) > x; for all ¢, then it suffices to check condit

(A) and (C) in Note 3. This result is referred to as the Malinvaud transversality conditi

Consider the problem
o0
max/ —ule " dt, x =ue ™, x(0)=0, tlim x(t)> K, ueR
0 >

The constants r, a, and K are positive, with @ > r/2. Find the optimal solution.

Xells, The current value Hamiltonian is H¢ = —u? + Aue~%, which is obvio
concave in x and u. We find 8 H¢/dx = 0 and 0H/du = —2u + e~ . It follows
u = %)\e"‘” . The differential equation for A is A — rA = —3d H®/dx = 0, with the solu
A = Ae"', where A is a constant. Thus u = %Ae(’_“)’ . The differential equation for x 1

becomes

¥ =ue ™ =L1Ae" 2", x(0)=0, withsolution x(t)= (1 — r—2a

2(2a —r)
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Thus x (#) converges to A /2(2a—r) as t approaches co. Hence we musthave A/2(2a—r) >
K,or A > 2K (2a — r). In particular, A > 0, and (B) and (C) in Note 3 are satisfied. To
check condition (A) requires considering

A(t)e_”(K - x(t)) = Ae'le™"! |:K = - e(r—Za)t)]

2(2a —r)
which tends to A[K — A/2(2a — r)] as ¢ tends to co. We conclude that if we choose
A = 2K (2a — r), all the conditions in Theorem 9.11.1 are satisfied and we have found the
optimal solution. Note that p(t) = Ae™"" = 2K (2a —r), which does not tend to 0 as ¢ tends
to 0o. Nor does p(t)x*(t).

Consider the following version of Example 8.5.3:

o0
1
maxf - [rA@) +w —u()] 2 " dt
, 1—

A() =u@), A) = A >0, lim A@) = ~w/r, ueR
Assume that 0 < § < 1 and 0 < r < p, and then solve the problem.

Sofution: The current value Hamiltonian is H¢ = ]—l-g(rA +w — u)! =% + Au, and the
differential equation for A(¢) is

. o(H* - :
A(t) = pA(t) = — (BA) = —r[rA* ) +w —u* @] (i)

The control function u*(¢) maximizes
o) = FA* &) +w—ul' +2u for ueR (ii)

1-6

Now the function H€¢ is concave in (A, u), as a concave function of a linear function.
(Alternatively, look at the Hessian.) In particular, (1) is concave in u, so #*(¢) maximizes
@(u) provided ¢’ (u*(t)) = 0, or if

—[FA* O +w — O]+ A =0, or ut(t) =rA*@)+w— A1)V (i)
Combining (i) and (iii), it follows that A(f) — pA(t) = —rA(t), s0 A = (p — r)A(t), with

solution
A(t) = Cre?™" (iv)

for some constant C;. Because A* = u*, it follows that
A*(t) —rA*(t) =w — C; '’ where a=(p—r)/8
The general solution of this linear differential equation is

A*(t) = Coet —w/r + Cl_l/‘se_‘”/(a +r)

THEOREM 9.

SECTION 9.11 / INFINITE HORIZON

We must now find suitable values of the constants C; and C,. It seems reasonable to ass
that lim;_, oo A*(t) = —w/r. This is only possible if C; = 0. Then C; is determinec
the initial condition A*(0) = Ay, which gives Ay = —w/r + C; '/°/(a + r). Hence
find that C,_l/a/(a +7r) = Ap + w/r. We therefore have the following candidate fo
optimum:

A*(t) = (Ao +w/r)e™ —w/r, u*(t) = —a(Ag+w/r)e™™, At) =re® ")

where A = ((a + r)(Ao + w/r))_a.
It remains to verify (d) in Theorem 9.11.1. According to Note 3 it suffices to show
conditions (A), (B), and (C) are satisfied. In our case (A) holds because

lim A(t)(w/r + A*(t)) = A(Ag + w/r) lim e~ "+ =0
1—00 t—00

and (B) and (C) are evidently satisfied. Hence we have shown that (A*(¢), u*(¢)) solves
problem.

Many economists seem to believe that for problems with an infinite horizon, no neces:
transversality conditions are generally valid. This is wrong. But certain growth conditi
are needed for such conditions to hold. A special result of this type is given in the 1
theorem. (See Seierstad and Sydsater (1987), Section 3.9, Theorem 16 for a more gen
result. Please correct a misprint in that theorem: Replace b > k by b > (n — m)k.)

11.2 (NECESSARY CONDITION FOR AN INFINITE HORIZON)

Assume that (x*(¢), u*(¢)) is optimal in problem (1), with no condition on the limiting
behaviour of x (¢) ast — 00. Assume that ft;’o | f(t, x(t), u(t))|dt < oo forall admissible
(x(2), u(t)). Suppose too that there exist positive constants A and k with r > k such that

[af (¢, x, u* (1)) /x| < A forall x

and
dg(t, x,u*(t))/dx < k forall x

Then there exists a continuous function A(¢) such that, with Ao = 1,
HE(@t, x*(t), u, M) < H°(t, x* (), u™(t), M(t)) forallu € U

The function A(¢) equals lim7_, o A(¢, T), where A(t, T) is the solution of

A—rk=—=0H(, x*(t),u*(),r)/dx, MT,T)=0

NGTE 5 In fact, if G(r) is a set containing x(¢) for all admissible x(z), and N is some posi
number, then, for any ¢, (3) need only hold for x € B(x*(r), 2Ne*") N G(¢) and (4) need only
for |[x| > N, x € G(¢).
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PROBLEMS FOR SECTION 9.11

9.12

EXAMPLE 1

1. Solve the problem

(o)
maxf (nu)e %% dr, % =0.1x —u, x(0) =10, tlim x(#) >0, u>0
0 —>00
using Theorem 9.11.1 and Note 3.
2. Find the only possible solution to the problem
o
max/ xQ2—we"dt, x=uxe", x(0)=1, x(co)isfree, ue[0,1]

0

3. Compute the optimal value V of the objective function in Example 2. How does V
change when p increases and when w increases? Show that 9V /9 Ay = A(0).

4. Solve the problem

[ee]
max/ (x —we"dt, x=ue", x(=1)=0, x(co0)isfree, ue[0,]1]
-1

Phase Diagrams

Consider the following problem
131
max / f,wedt, x=g(x,u), x(t)=xp, uclUCR (1)
]

with the standard end constraints, and with #; finite or co. In this case the functions f and
g do not depend explicitly on ¢. Nor, therefore, does the current value Hamiltonian H°.

Suppose that ¥ = u(x, A) maximizes H® = f(x,u) + Ag(x,u) wrt. u foru € U.
Replacing u by u = u(x, ) in the differential equations for x and A gives

x=F(x, L)

q 2
A=G(x, 1)) &

This is an autonomous system that is simpler to handle than one in which % and A depend
explicitly on ¢ as well as on x and A. In particular, phase plane analysis (see Section 6.7)
can be used to shed light on the evolution of an autonomous system even when explicit
solutions are not obtainable. Example 9.9.1 showed a simple case.

We study two examples.

Write down the system of equations (2), and draw a phase diagram for the problem
oo
max/ (x —ute ™ ™dr, % =—04x4u, x(0) =1, x(c0) is free, u € (0, c0)
0

Try to find the solution of the problem. (See Example 9.10.2.)

SECTION 9.12 / PHASE DIAGRAMS

Solution: 1In this case the Hamiltonian HC(¢, x, u, A) = (x — u?) + A(—0.4x +
concave in (x, u). The maximization of H¢ w.r.t. u gives u = 0.5, assuming that A is
(We try this assumption in the following.) Hence, X = —0.4x + 0.5). System (2) is h

X =-04x +0.5%, x(0) =1
A=051—1

N

1(5/2,2)

I 7l

Figure 1: Phase diagram for system () in Example 1.

Figure 1 shows a phase diagram for (x). Any path (x(¢), 2(¢)) that solves the problem
start at some point on the vertical line x = 1, but no restrictions are imposed on x (i
t — oo. If we start above or below the line A = 2, it appears that (x(¢), A(z)) will “wa
off to infinity”, which makes it difficult to satisfy requirement (d) in Theorem 9.11.1.

In fact, the general solution of (x) is x*(1) = 3A4e™" + 3 — (FA + 3)e 0%
A1) = Ae®S 2. The expression we need to consider in Theorem 9.11.1(d) is the differ:
of the two terms, A(#)e "1 x(¢) and A(¢)e ™% x*(¢). For large values of 7, the latter pro
is dominated by the term 3A%e%%, which tends to infinity as ¢ tends to infinity v
A # 0; and that does not seem promising. It approaches 0 as ¢ approaches infinity if A
(then A = 2), and then the product is equal to 5e 1" — 3¢9 which does approach 0
approaches infinity. Itis easy to see that x(¢) > Oforall# > 0so r)e O x (1) is > 0fc
t > 0. It follows that condition (d) in Theorem 9.11.1 is satisfied, and x*(¢) = —%e‘o"“
is therefore optimal.

Coming back to the phase diagram, if we start at the point (x, 1) = (1, 2), then A(¢) :
while x(¢) converges to the value % which is x-coordinate of the point of intersec
between the curves A = 0 and * = 0. The phase diagram therefore suggests the opt
solution to the problem.

The point (%, 2) is an equilibrium point for system (x). Let us see what Theorem ¢
says about this equilibrium point. Defining f(x, 1) = —0.4x+0.51 and g(x, A) = 0.5X1
we find that the determinant of the Jacobian matrix in Theorem 6.9.1 is

' —-04 05

‘ =-02<0
0 05

SO (%, 2) really is a saddle point.
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Consider an economy with capital stock K = K (¢) and production per unit of time
Y = Y(t), where Y = aK — bK?, with a and b as positive constants. Consumption is
C > 0, whereas Y — C = aK? — bK — C is investment. Over the period [0, 00), the
objective is to maximize total discounted utility. Specially, the problem is

Oo .
/ ] : C'"Ve'dt, K =aK —bK?>—C, K(0)=Ky>0
0 — v

where a > r > 0 and v > 0, and C is the control variable. We require that
lim K(t) >0
11— 00
The current value Hamiltonian is H¢ = - C'"+A(aK —bK*—C). Aninterior maximum
of H¢ requires 9 H¢/dc = 0, i.e.
C V=2 @)

The differential equation for A = A(t) is A= —A(a —2bK) +rk, or

X:A(r—a+2bK)=2bA<K—a2_br) (ii)

Now (i) implies that C = A~!/?, which inserted into the differential equation for K yields

K =aK —bK?> ="V (iii)

A
r
-
Figure 2 Figure 3

Figure 2 presents a phase diagram for the system given by (ii) and (iii). We see that
K =0for A = (aK —bK?) ™", with v > 0. Here z = aK — bK? represents a concave
parabola with z = 0 for K = 0 and for K = a/b. For z = 0, one has A = oo. The graph
of K = 0 is symmetrical about K = a/2b. Note that A = 0 when K = (a —r)/2b,
which gives a straight line parallel to the A-axis. Because 0 < (a —r)/2b < a/2b, the
graph of A = 0 will be as suggested in the figure. The equilibrium point (K, 1) is given by
K =(a—r)/2b, »=[(a®—r?/4b]".

SECTION 9.12 / PHASE DIAGRAMS 3

Figure 2 shows the K A-plane divided into four parts. The arrows indicate the directic
of the integral curves in each of these four parts. From (ii) we see that K > (a —r)/
implies A > 0, whereas K < (a — r)/2b implies A < 0. Also, the right-hand side of (i
aK — bK? — A=Y increases as A increases for each fixed K, so that K > 0 above
curve K = 0, and K < 0 below this curve.

Figure 3 shows some integral curves that (K (¢), A(¢)) could follow as ¢ increases. In t
figure we have assumed that Ko < K. Of particular interest are paths that start at K = |
but other curves, which start with larger values of K, are also drawn. Note that, although
is known, the quantity A(0) must be regarded as an unknown parameter. In this particu
problem A(0) can be determined as follows: If 1(0) is large, the point (K (¢), A(t)) ste
high up on the line K = K and moves along a curve like that marked I in Figure 3.
A(0) is small, then (K (¢), A(t)) starts low down on the line K = K( and moves alon
the curve like III in the figure. If 1(0) is even smaller, and (Ko, A(0)) lies below the cu
K =0, then (K (1), A(f)) moves steadily “southwest”, like curve IV. At some point on
line K = K, continuity suggests that there should be some particular value 1*(0) of A
such that the resultant curve is of type II, which converges to the stationary point (K, A’

Here is a more precise argument: Curve [ was obtained using a high initial value for A (
Along curve I the point (K (¢), A(¢)) moves down to the right until it reaches a minim
point where it crosses the line A = 0. Let A(0) decrease. Then curve I shifts downwar
Its minimum point on the line A = 0 will then shift downwards to the equilibrium pc
(K, X). Actually, A*(0) is precisely that value of A(0) which makes this minimum occw
the point (K, A). This initial value A*(0) leads to a special path (K*(¢), A*(¢)). Both K*
and A*(¢) approach zero as t — oc. For all finite ¢, the path (K*(t), A*(t)) never reac!
the point (K, 1), but (K*(), A*(t)) — (K, ) ast — oo.

So far we have argued that the conditions of the maximum principle are satisfied alc
acurve (K*(t), A*(t)) of type Il in Figure 3, where K*(¢) — K and A*(t) —> Aast —
Let us prove that this candidate solution is optimal.

The present value Hamiltonian H € is concave as a function of (K, C). With A(t) given ¢
C*(1) = (A1)~ /", the first-order condition for a maximum of H° is satisfied, and beca
HF¢ is concave in C, it reaches a maximum at C*(¢). Moreover, (A) in Note 9.11.3 is a
satisfied: A(t)e " K*(¢t) — Oast — ooand lim; o A(1)e " K (¢) > 0 as lim,—, o0 K (¢,
0, because A(t)e™"" is positive and bounded (it even approaches 0). These properties im
that

Jim A)e K (@) — KX ()] =0

for all admissible K (¢). This verifies all the sufficient conditions, so (K*(t), C*(t))
optimal.’

Any solution of the system (ii) and (iii) will depend on Ky and on A(0) = 20, s
can be denoted by K (r) = K (t; Ko, A°) and A() = A(t; Ko, A"). In this problem, K|
given, whereas 1° is determined by the requirement that lim,_, oo A(#; Ko, 20) = X. Figut
actually shows two curves of type II that converge to (K, ). The alternative solution of
differential equations converges to (K, ) from the “southeast”. This path does not so

7 We did not formally require K (t) > 0 for all ¢, but it is indeed a natural requirement. Then
need to check only conditions (A) and (C) in Note 9.11.3.
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the optimization problem, however, because it must start from the wrong value of K at time
t = 0. (It does solve the problem when K, > K, however.)

The equilibrium point (K, %) = ((a — r)/2b, [(a* — r?)/4b] ") is an example of a
saddle point (see Section 6.9). We show this by applying Theorem 6.9.1. To do so, define the
functions f (K, 1) = aK —bK?—1""Vand g(K, 1) = 2bA(K — (a—r)/2b) corresponding
to the right-hand sides of (iii) and (ii) respectively. Then at the point (K, }) one has 9 /0K =
a—2bK =r,af/dr = (1/v)A"1/""1 9g/0K = 2b} and dg /oA = 2b(K — (a —r)/2b) =
0. The determinant of the matrix A in Theorem 6.9.1 is therefore

ro (1/v)a-/vl _ _%i_l/v o
2bX 0 v

This confirms that (K, 1) really is a saddle point.

PROBLEMS FOR SECTION 9.12

1. (a) Consider the problem
oo
max/ (ax — %uz)e‘” dt, X = —=bx +u, x(0)=xy, x(co)free, ueR
0

where a, r, and b are all positive. Write down the current value Hamiltonian H¢
for this problem, and determine the system (2). What is the equilibrium point?

(b) Draw a phase diagram for (x(z), A(¢)) and show that for the two solutions which
converge to the equilibrium point, A(¢) is a constant.

(¢) Use sufficient conditions to solve the problem.

(d) Show that 0V /dxy = 1(0), where V is the optimal value function.

2. In Problem 9.9.1 we studied a problem closely related to
T
maxf (—x2 - %uz)e_zt dt, x=x4u, x(O=1, x(T)>0, ueR
0

Solve this problem in the case T' = co. (Hint: lim;_. o, p(t) = 0.)
3. (a) Consider the problem
T
max/ e "Inc(t)dt
0
K@) = A(K@)* —c(t), K(0) = Ko. K(T) =Ky

where the constants A and r are positive, and « € (0, 1). Here K (¢) denotes the
capital stock of an economy and the control variable ¢(¢) denotes consumption

SECTION 9.12 / PHASE DIAGRAMS

at time ¢. The horizon T is fixed and finite. Prove that if K = K*(r) >
¢ = ¢*(t) > 0 solve the problem, then

K =AK" —¢
é=cl@AK* " =)
(b) Suppose A = 2, @ = 1/2, and r = 0.05. Prove that the equilibrium is a
point. In Problem 6.7.3 you were asked to draw a phase diagram of the syst

(¢) Indicate in the diagram for Problem 6.7.3 a possible integral curve for th
Ko =100 and K7 = 600? What is the solution when Ko = 100 and 7 =
K(T) > O forall ¢?

4. Consider the problem

o0
maﬁ(/ [—(x — 1)? = %uz]e_’ dt, x=x-—u, x(0) = %, x(00) free
ue 0

(a) Solve the problem qualitatively by a saddle point argument.

(b) Find an explicit solution.



