Summary of important EViews-Commands

Import of data from EXCEL:

if the xlsx-format does not work, use File.xls

Choice of sample period:

Sample /
@all
@first @last
19902010
$1981232005 \mathrm{Q1}$
1960M1 2000M11
in command line e.g.: smpl @first 1990

Univariate statistics:

Click series / View /
Spreadsheet data as numbers
Graph Graphics
Descriptive Statistics\&Tests z.B. histogram, mean, etc.
Correlogram autocorrelationen

Generation/Transformation of series:

Generate / x = 0 generates a series with zeros Generate / pi = (pc - pc(-1))/pc(-1)*100

Generates the inflation rate in \% based on prices pc
Generate / $x=\log (y)$ taking logs
Generate / dlx $=d \log (x) \quad d l x=\log (x)-\log (x(-1))$
Growth rate in continuous time
Generate / y = exp(x) exp(x)
as command: series $x=0$

Trend variable (linear):
Generate / t = @trend

Standard normal distributed realizations:
Generate / x = nrnd

Lags, lagged variables, taking differences:

```
Generate / x1 = x(-1) x1(t) = x(t-1), Lag 1 of x
Generate / dx = d(x) dx(t) = x(t) - x(t-1) = (1-B)x(t)
    first difference
Generate / d2x = d(x,2) d2x(t) = dx(t) - dx(t-1) = (1-B)^(2)x(t)
    taking first differences twice
Generate / d12x = d(x,0,12) d12x(t) = x(t) - x(t-12) = [1-B^(12)] x(t)
    seasonal difference for monthly data
Generate d12_1x = d(x,1,12) d12_1x(t) = (1-B)[1-B^(12)]x(t)
```

Geneartion of dummy variables:
seasonal dummies: $s=1,2,3, \ldots$..
Generate / ds = @seas(s)
as command: series ds = @seas(s)
Generate / d1 = 0 and manually in View/Spreadsheet
use Edit+/-
p-value for x of a test statistic as command:

```
(N-, t-, Chi2-, F-distribution)
scalar p = 1 - @cnorm(x) 1-sided, right
scalar p = 1 - @cnorm(abs(x))*2
2-sided
scalar p = 1 - @ctdist(x,df)
scalar p = 1 - @cchisq(x,df)
scalar p = 1 - @cfdist(x,df1,df2)
df ... degrees of freedom
```

Determinant of correlation matrix: (as command)
group grpx x1 x2 x3 x4
matrix $x=@ c o n v e r t(g r p x)$
group assigned to a data matrix
scalar det $=$ @det(@cor(x))
@cor(X) makes correlation matrix
Statistics for 2 or more series:
Correlation matrix:
Mark the series by klicking / right mouse / Open as Group / View /
/ Covariance Analysis (z.B. Correlation)
as command e.g.: scalar corrxy $=$ @cor(x,y) bivariate correlation coeff

Estimation:

Quick / Estimate Equation / y c x1 x2 $y=a 1+a 2 * x 1+a 3 * x 2+u$
Option: LS ... OLS
Enter the estimation period
as command: ls y c x1 x2
with storage in equation "eq3": eq3.ls y c x1 x2
ARMA Model:
Option: LS
Model specification:
y c AR(1) AR(2) MA (1) MA (2) MA (3) ARMA $(2,3)$ with non zero mean
with heteroscedasticity robust standard errors:
Options: Covariance Coefficient Matrix / White (z.B.)

System estimation:

Open a multivariate equation system:
Object / New Object / System
Equations e.g.:
$\mathrm{y} 1=\mathrm{c}(1)+\mathrm{c}(2) * \mathrm{x} 1+\mathrm{c}(3) * \mathrm{y}^{2}$
$y^{2}=c(4)+c(5) * x 2+c(6) * x 3$
Instruments if needed e.g.:
inst x2 z7
Choose estimation method

Forecasting with LS, ...:

in LS Output (Equation) / Forecast
Forecast period, enter series name for forecasted values (e.g. yf) and
forecast error stdev (e.g. syf).
Plot of the forecast:
Object in Workfile menu / New Object / Group /
(or mark series with mouse / right click Open / as Group)
Enter the elements:
yf forecasted values
y
(yf - 1.96*syf)
(yf + 1.96*syf)

Testing for structural breaks:

```
in Equation / View / Stability Diagnostics /
/ Chow Breakpoint Test / Enter: Start of 2., 3., ... period
/ Chow Forecast Test / Enter: Start of 2.period, ...
/ Recursive Estimates / CUSUM
```

Statistics for residuals: autocorrelation, heteroscedasticity
in Equation / View / Residual Diagnostics / ...
Autocorrelation, Heteroscedasticity

Storing residuals:

in Equation / Proc / Make Residual Series
Testing for Unit Roots:
View / Unit Root Test (Augmented Dickey Fuller)
Testing for cointegration:
Collect the variables in a group /
View / Cointegration Test (Johansen)

Estimation of a VAR or CIVAR:
Mark dependent variables / Open as VAR
(with right mouse-button)

