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MODELING AND FORECASTING REALIZED VOLATILITY 

BY TORBENG. ANDERSEN, TIMBOLLERSLEV, 

FRANCISX. DIEBOLD,AND PAUL LABYS' 


We provide a framework for integration of high-frequency intraday data into the mea- 
surement, modeling, and forecasting of daily and lower frequency return volatilities and 
return distributions. Building on the theory of continuous-time arbitrage-free price pro- 
cesses and the theory of quadratic variation, we develop formal links between realized 
volatility and the conditional covariance matrix. Next, using continuously recorded obser- 
vations for the Deutschemark/Dollar and YenDollar spot exchange rates, we find that 
forecasts from a simple long-memory Gaussian vector autoregression for the logarithmic 
daily realized volatilities perform admirably. Moreover, the vector autoregressive volatil- 
ity forecast, coupled with a parametric lognormal-normal mixture distribution produces 
well-calibrated density forecasts of future returns, and correspondingly accurate quantile 
predictions. Our results hold promise for practical modeling and forecasting of the large 
covariance matrices relevant in asset pricing, asset allocation, and financial risk manage- 
ment applications. 

KEYWORDS: Continuous-time methods, quadratic variation, realized volatility, high- 
frequency data, long memory, volatility forecasting, density forecasting, risk management. 

1. INTRODUCTION 

THEJOINT DISTRIBUTIONAL characteristics of asset returns are pivotal for many 
issues in financial economics. They are the key ingredients for the pricing of 
financial instruments, and they speak directly to the risk-return tradeoff central 
to portfolio allocation, performance evaluation, and managerial decision-making. 
Moreover, they are intimately related to the fractiles of conditional portfolio 
return distributions, which govern the likelihood of extreme shifts in portfolio 
value and are therefore central to financial risk management, figuring promi- 
nently in both regulatory and private-sector initiatives. 

The most critical feature of the conditional return distribution is arguably its 
second moment structure, which is empirically the dominant time-varying char- 
acteristic of the distribution. This fact has spurred an enormous literature on 

'This research was supported by the National Science Foundation. We are grateful to Olsen and 
Associates, who generously made available their intraday exchange rate data. For insightful sug- 
gestions and comments we thank three anonymous referees and the Co-Editor, as well as Kobi 
Bodoukh, Sean Campbell, Rob Engle, Eric Ghysels, Atsushi Inoue, Eric Renault, Jeff Russell, Neil 
Shephard, Til Schuermann, Clara Vega, Ken West, and seminar participants at BIS (Basel), Chicago, 
CIRANOiMontreal, Emory, Iowa, Michigan, Minnesota, NYU, Penn, Rice, UCLA, UCSB, the June 
2000 Meeting of the WFA, the July 2001 NSFiNBER Conference on Forecasting and Empirical 
Methods in Macroeconomics and Finance, the November 2001 NBER Meeting on Financial Risk 
Management, and the January 2002 North American Meeting of the Econometric Society. The views 
expressed by Paul Labys are strictly his own and do not necessarily reflect the views or opinions of 
Charles River Associates. 
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the modeling and forecasting of return ~olat i l i ty .~ Over time, the availability of 
data for increasingly shorter return horizons has allowed the focus to shift from 
modeling at quarterly and monthly frequencies to the weekly and daily horizons. 
Forecasting performance has improved with the incorporation of more data, not 
only because high-frequency volatility turns out to be highly predictable, but also 
because the information in high-frequency data proves useful for forecasting at 
longer horizons, such as monthly or quarterly. 

In some respects, however, progress in volatility modeling has slowed in the 
last decade. First, the availability of truly high-frequency intraday data has made 
scant impact on the modeling of, say, daily return volatility. It has become appar- 
ent that standard volatility models used for forecasting at the daily level can- 
not readily accommodate the information in intraday data, and models specified 
directly for the intraday data generally fail to capture the longer interdaily volatil- 
ity movements sufficiently well. As a result, standard practice is still to produce 
forecasts of daily volatility from daily return observations, even when higher- 
frequency data are available. Second, the focus of volatility modeling continues 
to be decidedly very low-dimensional, if not universally univariate. Many multi- 
variate ARCH and stochastic volatility models for time-varying return volatilities 
and conditional distributions have, of course, been proposed (see, for example, 
the surveys by Bollerslev, Engle, and Nelson (1994) and Ghysels, Harvey, and 
Renault (1996)), but those models generally suffer from a curse-of-dimensionality 
problem that severely constrains their practical application. Consequently, it is 
rare to see substantive applications of those multivariate models dealing with 
more than a few assets simultaneously. 

In view of such difficulties, finance practitioners have largely eschewed for- 
mal volatility modeling and forecasting in the higher-dimensional situations of 
practical relevance, relying instead on ad hoc methods, such as simple exponen- 
tial smoothing coupled with an assumption of conditionally normally distributed 
return^.^ Although such methods rely on counterfactual assumptions and are 
almost surely suboptimal, practitioners have been swayed by considerations of 
feasibility, simplicity, and speed of implementation in high-dimensional environ- 
ments. 

Set against this rather discouraging background, we seek to improve matters. 
We propose a new and rigorous framework for volatility forecasting and condi- 
tional return fractile, or value-at-risk (VaR), calculation, with two key properties. 
First, it effectively exploits the information in intraday return data, without having 
to explicitly model the intraday data, producing significant improvements in pre- 
dictive performance relative to standard procedures that rely on daily data alone. 
Second, it achieves a simplicity and ease of implementation, that, for example, 
holds promise for high-dimensional return volatility modeling. 

Here and throughout, we use the generic term "volatilities" in reference both to variances (or 
standard deviations) and covariances (or correlations). When important, the precise meaning will be 
clear from the context. 

'This approach is exemplified by the highly influential "RiskMetrics" of J. P. Morgan (1997). 
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We progress by focusing on an empirical measure of daily return variabil- 
ity called realized volatility, which is easily computed from high-frequency intra- 
period returns. The theory of quadratic variation suggests that, under suitable 
conditions, realized volatility is an unbiased and highly efficient estimator of 
return volatility, as discussed in Andersen, Bollerslev, Diebold, and Labys (2001) 
(henceforth ABDL) as well as in concurrent work by Barndorff-Nielsen and 
Shephard (2002a, 2001).4 Building on the notion of continuous-time arbitrage- 
free price processes, we advance in several directions, including rigorous theoret- 
ical foundations, multivariate emphasis, explicit focus on forecasting, and links 
to modern risk management via modeling of the entire conditional density. 

Empirically, by treating volatility as observed rather than latent, our approach 
facilitates modeling and forecasting using simple methods based directly on 
observable variable^.^ We illustrate the ideas using the highly liquid U.S. dol- 
lar ($), Deutschemark (DM), and Japanese yen ( Y ) spot exchange rate mar- 
kets. Our full sample consists of nearly thirteen years of continuously recorded 
spot quotations from 1986 through 1999. During that period, the dollar, 
Deutschemark, and yen constituted the main axes of the international financial 
system, and thus spanned the majority of the systematic currency risk faced by 
large institutional investors and international corporations. 

We break the sample into a ten-year "in-sample" estimation period, and a sub- 
sequent two-and-a-half-year "out-of-sample" forecasting period. The basic distri- 
butional and dynamic characteristics of the foreign exchange returns and realized 
volatilities during the in-sample period have been analyzed in detail by ABDL 
(2000a, 2001).6 Three pieces of their results form the foundation on which the 
empirical analysis of this paper is built. First, although raw returns are clearly lep- 
tokurtic, returns standardized by realized volatilities are approximately Gaussian. 
Second, although the distributions of realized volatilities are clearly right-skewed, 
the distributions of the logarithms of realized volatilities are approximately Gaus- 
sian. Third, the long-run dynamics of realized logarithmic volatilities are well 
approximated by a fractionally-integrated long-memory process. 

Motivated by the three ABDL empirical regularities, we proceed to esti-
mate and evaluate a multivariate model for the logarithmic realized volatilities: 
a fractionally-integrated Gaussian vector autoregression (VAR). Importantly, 

Earlier work by Comte and Renault (1998), within the context of estimation of a long-memory 
stochastic volatility model, helped to elevate the discussion of realized and integrated volatility to a 
more rigorous theoretical level. 

The direct modeling of observable volatility proxies was pioneered by Taylor (1986), who fit 
ARMA models to absolute and squared returns. Subsequent empirical work exploiting related uni- 
variate approaches based on improved realized volatility measures from a heuristic perspective 
includes French, Schwert, and Stambaugh (1987) and Schwert (1989), who rely on daily returns to 
estimate models for monthly realized U.S. equity volatility, and Hsieh (1991), who fits an AR(5) 
model to a time series of daily realized logarithmic volatilities constructed from 15-minute S&P500 
returns. 

Strikingly similar and hence confirmatory qualitative findings have been obtained from a separate 
sample consisting of individual U.S. stock returns in Andersen, Bollerslev, Diebold, and Ebens (2001). 
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our approach explicitly permits measurement errors in the realized volatilities. 
Comparing the resulting volatility forecasts to those obtained from currently pop- 
ular daily volatility models and more complicated high-frequency models, we find 
that our simple Gaussian VAR forecasts generally produce superior forecasts. 
Furthermore, we show that, given the theoretically motivated and empirically 
plausible assumption of normally distributed returns conditional on the realized 
volatilities, the resulting lognormal-normal mixture forecast distribution provides 
conditionally well-calibrated density forecasts of returns, from which we obtain 
accurate estimates of conditional return quantiles. 

In the remainder of this paper, we proceed as follows. We begin in Section 2 
by formally developing the relevant quadratic variation theory within a standard 
frictionless arbitrage-free multivariate pricing environment. In Section 3 we dis- 
cuss the practical construction of realized volatilities from high-frequency foreign 
exchange returns. Next, in Section 4 we summarize the salient distributional fea- 
tures of returns and volatilities, which motivate the long-memory trivariate Gaus- 
sian VAR that we estimate in Section 5. In Section 6 we compare the resulting 
volatility point forecasts to those obtained from more traditional volatility mod- 
els. We also evaluate the success of the density forecasts and corresponding VaR 
estimates generated from the long-memory Gaussian VAR in conjunction with 
a lognormal-normal mixture distribution. In Section 7 we conclude with sugges- 
tions for future research and discussion of issues related to the practical imple- 
mentation of our approach for other financial instruments and markets. 

2. QUADRATIC RETURN VARIATION AND REALIZED VOLATILITY 

We consider an n-dimensional price process defined on a complete probabil- 
ity space, (R,8,P), evolving in continuous time over the interval [0, TI,  where 
T denotes a positive integer. We further consider an information filtration, i.e., 
an increasing family of a-fields, (9t),,,,,,1G9,which satisfies the usual condi- 
tions of P-completeness and right continuity. Finally, we assume that the asset 
prices through time t ,  including the relevant state variables, are included in the 
information set 3,. 

Under the standard assumptions that the return process does not allow for 
arbitrage and has a finite instantaneous mean, the asset price process, as well as 
smooth transformations thereof, belong to the class of special semi-martingales, 
as detailed by Back (1991).A fundamental result of stochastic integration theory 
states that such processes permit a unique canonical decomposition. In particu- 
lar, we have the following characterization of the logarithmic asset price vector 
process, p = ( P ( ~ ) ) ~ E [ O , T ] .  

PROPOSITION1: For any n-dimensional arbitrage-free vector price process with 
finite mean, the logarithmic vector price process, p, may be written uniquely as the 
sum of a finite variation and predictable mean component, A = ( A , ,  . . . ,A,), and 
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a local martingale, M = (MI, . . . ,M,,). These may each be decomposed into a 
continuous sample-path and jump part, 

where the finite-variation predictable components, A' and AA, are respectively con- 
tinuous and pure jump processes, while the local martingales, M c  and AM, are 
respectively continuous sample-path and compensated jump processes, and by defini- 
tion M (0) =A(0) -0. Moreover, the predictable jumps are associated with genuine 
jump risk, in the sense that if AA(t) # 0, then 

(2) P[sgn(AA(t)) = -sgn(AA(t) +AM (t))] > 0, 

where sgn(x) E 1for x 10 and sgn(x) - -1 for x < 0. 

Equation (1) is standard; see, for example, Protter (1992, Chapter 3). Equa-
tion (2) is an implication of the no-arbitrage condition. Whenever AA(t) # 0, 
there is a predictable jump in the price-the timing and size of the jump is 
perfectly known ('just) prior to the jump event- and hence there is a trivial arbi- 
trage (with probability one) unless there is a simultaneous jump in the martin- 
gale component, AM(t) # 0. Moreover, the concurrent martingale jump must be 
large enough (with strictly positive probability) to overturn the gain associated 
with a position dictated by sgn(AA(t)). 

Proposition 1 provides a general characterization of the asset return process. 
We denote the (continuously compounded) return over [t - h, t] by r(t ,  h) = 
p(t)  -p( t  -h). The cumulative return process from t =0 onward, r = (r(t)),,,,,,l, 
is then r(t) = r(t ,  t) = p(t)  -p(0) = A(t) +M (t). Clearly, r(t)  inherits all the 
main properties of p( t)  and may likewise be decomposed uniquely into the 
predictable and integrable mean component, A, and the local martingale, M.  
The predictability of A still allows for quite general properties in the (instanta- 
neous) mean process; for example, it may evolve stochastically and display jumps. 
Nonetheless, the continuous component of the mean return must have smooth 
sample paths compared to those of a nonconstant continuous martingale-such 
as a Brownian motion-and any jump in the mean must be accompanied by a 
corresponding predictable jump (of unknown magnitude) in the compensated 
jump martingale, AM. Consequently, there are two types of jumps in the return 
process, namely, predictable jumps where AA(t) # 0 and equation (2) applies, 
and purely unanticipated jumps where AA(t) =0 but AM(t) # 0. The latter jump 
event will typically occur when unanticipated news hit the market. In contrast, 
the former type of predictable jump may be associated with the release of infor- 
mation according to a predetermined schedule, such as macroeconomic news 
releases or company earnings reports. Nonetheless, it is worth noting that any 
slight uncertainty about the precise timing of the news (even to within a fraction 
of a second) invalidates the assumption of predictability and removes the jump 
in the mean process. If there are no such perfectly anticipated news releases, the 
predictable, finite variation mean return, A, may still evolve stochastically, but 



584 T. ANDERSEN, T. BOLLERSLEV,F. DIEBOLD,AND P. LABYS 

it will have continuous sample paths. This constraint is implicitly invoked in the 
vast majority of the continuous-time models employed in the literature.' 

Because the return process is a semi-martingale it has an associated quadratic 
variation process. Quadratic variation plays a critical role in our theoretical devel- 
opments. The following proposition enumerates some essential properties of the 
quadratic return variation process.' 

PROPOSITION2: For any n-dimensional arbitrage-free price process with finite 
mean, the quadratic variation n x n matrix process of the associated return pro- 
cess, [r, r] = {[r, r]t)rG,o,rl, is well-defined. The ith diagonal element is called the 
quadratic variation process of the ith asset return while the ijth off-diagonal ele- 
ment, [r,, r,], is called the quadratic covariation process between asset returns i and 
j. The quadratic variation and covariation processes have the following properties: 

(i) For an increasing sequence of random partitions of [0, TI, 0 = T,, ,5 
T,, ,5 . . . , such that sup,,, (T,, ,+,-T,,,) -+ 0 and sup,,, T,, -+ T for m -+ cc 
with probability one, we have that 

where t A T -min(t, T), t E [0, TI, and the convergence is uniform on [0, T] in 
probability. 

(ii) If the finite variation component, A, in the canonical return decomposition 
in Proposition 1 is continuous, then 

(4) [rr, rjlt = [Mi, M,l, = [M,C, Mflt + C AM,(s)AM,(s). 
0 5 ~ 5 1  

The terminology of quadratic variation is justified by property (i) of 
Proposition 2. Property (ii) reflects the fact that the quadratic variation of con- 
tinuous finite-variation processes is zero, so the mean component becomes irrel- 
evant for the quadratic ~a r i a t i on .~  Moreover, jump components only contribute 
to the quadratic covariation if there are simultaneous jumps in the price path 
for the ith and jth asset, whereas the squared jump size contributes one-for-one 
to the quadratic variation. The quadratic variation process measures the realized 
sample-path variation of the squared return processes. Under the weak auxiliary 

'This does not appear particularly restrictive. For example, if an announcement is pending, a nat- 
ural way to model the arrival time is according to a continuous hazard function. Then the probability 
of a jump within each (infinitesimal) instant of time is zero-there is no discrete probability mass- 
and by arbitrage there cannot be a predictable jump. 

All of the properties in Proposition 2 follow, for example, from Protter (1992, Chapter 2). 
In the general case with predictable jumps the last term in equation (4) is simply replaced by 

Cocscr AA, (s) + AM, (s) explicitly incorporates both types of jumps. Ar, (s)Ar, (s), where Ar, (s) E 
However, as discussed above, this case is arguably of little interest from a practical empirical 
perspective. 
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condition ensuring property (ii), this variation is exclusively induced by the inno- 
vations to the return process. As such, the quadratic covariation constitutes, in 
theory, a unique and invariant ex-post realized volatility measure that is essen- 
tially model free. Notice that property (i) also suggests that we may approximate 
the quadratic variation by cumulating cross-products of high-frequency returns.1° 
We refer to such measures, obtained from actual high-frequency data, as realized 
volatilities. 

The above results suggest that the quadratic variation is the dominant deter- 
minant of the return covariance matrix, especially for shorter horizons. Specifi- 
cally, the variation induced by the genuine return innovations, represented by the 
martingale component, locally is an order of magnitude larger than the return 
variation caused by changes in the conditional mean.'' We have the following 
theorem which generalizes previous results in ABDL (2001). 

THEOREM 1: Consider an n-dimensional square-integrable arbitrage-free log- 
arithmic price process with a continuous mean return, as in property (ii) of 
Proposition 2. The conditional return covariance matrix at time t over [t, t +h], 
where 0 5 t 5 t +h 5 T, is then given by 

where r A ( t  +h, h) = +h) -A(t) 1 yr) and rAM(t +h, h) =COV(A(~  E(A(t +h) 
[M(t +h) -M(t)]' 1 yr). 

PROOF: From equation (I), r(t  + h, h) = [A(t + h) -A(t)] + [M(t + h) -
M (t)]. The martingale property implies E (M (t +h) -M (t) I yr )  = E ([M (t + 
h) -M(t)]A(t) I Fr)=0, so, for i, j E (1, .  . . ,n), cov([Ai(t+ h) -Ai(t)], [M,(t+ 
h) -Mj(t)] 1 y r )  =E (Ai(t +h)[Mj(t +h) -Mj(t)] 1 Fr).  It therefore follows that 
cov(r(t+h, h) IFr)  =cov(M(t+h)-M(t )  ( y r ) + r A ( t + h ,  h ) + r A M ( t + h ,  h )+  
TAM(t+h, h). Hence, it only remains to show that the conditional covariance 
of the martingale term equals the expected value of the quadratic variation. 
We proceed by verifying the equality for an arbitrary element of the covariance 
matrix. If this is the ith diagonal element, we are studying a univariate square- 
integrable martingale and by Protter (1992, Chapter 11.6, Corollary 3), we have 
E(M:(t+ h)) = E([Mi, Milt+,), so 

loThis has previously been discussed by Comte and Renault (1998) in the context of estimating 
the spot volatility for a stochastic volatility model corresponding to the derivative of the quadratic 
variation (integrated volatility) process. 

l1  This same intuition underlies the consistent filtering results for continuous sample path diffusions 
in Merton (1980) and Nelson and Foster (1995). 
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where the second equality follows from equation (4) of Proposition 2. This con- 
firms the result for the diagonal elements of the covariance matrix. An identical 
argument works for the off-diagonal terms by noting that the sum of two square- 
integrable martingales remains a square-integrable martingale and then applying 
the reasoning to each component of the polarization identity, 

In particular, it follows as above that 

E([M,> M,lt+h - [M,, MI], I 9,) 
= 1/2[var([M, (t +h) +M1(t +h)] - [(M,(t) +MI (t)] I Ft)  

-var(M, (t  +h) -M, (t) I Y,) -var(M, (t +h) -MI (t) I Yt)] 

=cov([M,(t+h)-M,(t)],  [M,(t+h)-M,(t)] I y,). 

Equation (4) of Proposition 2 again ensures that this equals E([r,, r,],+, -
[ri, rlIt I yt). Q.E.D. 

Two scenarios highlight the role of the quadratic variation in driving the return 
volatility process. These important special cases are collected in a corollary that 
follows immediately from Theorem 1. 

COROLLARY 1: Consider an n-dimensional square-integrable arbitrage-free log- 
arithmic price process, as described in Theorem 1. If the mean process, {A(s) -
A(t))s,,t,,+hl, conditional on information at time t is independent of the return 
innovation process, {M(u)),,,,, ,+hl, then the conditional return covariance matriv 
reduces to the conditional expectation of the quadratic return variation plus the con- 
ditional variance of the mean component, i.e., for 0 5 t 5 t +h 5 T, 

cov(r(t +h, h) I TI) = E([r,  rIt+h - [r, rIt I 9, )  + r A ( t  +h, h). 

If the mean process, {A(s) -A(t))s,,t~,+hl,conditional on information at time t 
is a predetermined function over [t, t +h], then the conditional return covariance 
matrix equals the conditional expectation of the quadratic return variation process, 
i.e., for 0 5 t 5 t +h IT, 

Under the conditions leading to equation (6), the quadratic variation is the 
critical ingredient in volatility measurement and forecasting. This follows as the 
quadratic variation represents the actual variability of the return innovations, and 
the conditional covariance matrix is the conditional expectation of this quantity. 
Moreover, it implies that the time t +h ex-post realized quadratic variation is an 
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unbiased estimator for the return covariance matrix conditional on information 
at time t. 

Although the corollary's strong implications rely upon specific assumptions, 
these sufficient conditions are not as restrictive as an initial assessment may sug- 
gest, and they are satisfied for a wide set of popular models. For example, a con- 
stant mean is frequently invoked in daily or weekly return models. Equation (6) 
further allows for deterministic intra-period variation in the conditional mean, 
induced by time-of-day or other calendar effects. Of course, equation (6) also 
accommodates a stochastic mean process as long as it remains a function, over 
the interval [t, t +h], of variables in the time t information set. Specification (6) 
does, however, preclude feedback effects from the random intra-period evolution 
of the system to the instantaneous mean. Although such feedback effects may be 
present in high-frequency returns, they are likely trivial in magnitude over daily 
or weekly frequencies, as we argue subsequently. It is also worth stressing that 
(6) is compatible with the existence of an asymmetric return-volatility relation 
(sometimes called a leverage effect), which arises from a correlation between the 
return innovations, measured as deviations from the conditional mean, and the 
innovations to the volatility process. In other words, the leverage effect is sep- 
arate from a contemporaneous correlation between the return innovations and 
the instantaneous mean return. Furthermore, as emphasized above, equation (6) 
does allow for the return innovations over [t - h, t] to impact the conditional 
mean over [t, t +h] and onwards, so that the intra-period evolution of the system 
may still impact the future expected returns. In fact, this is how potential inter- 
action between risk and return is captured in discrete-time stochastic volatility 
or ARCH models with leverage effects. 

In contrast to equation (6), the first expression in Corollary 1 involving T, 
explicitly accommodates continually evolving random variation in the conditional 
mean process, although the random mean variation must be independent of the 
return innovations. Even with this feature present, the quadratic variation is likely 
an order of magnitude larger than the mean variation, and hence the former 
remains the critical determinant of the return volatility over shorter horizons. 
This observation follows from the fact that over horizons of length h, with h 
small, the variance of the mean return is of order h2, while the quadratic varia- 
tion is of order h. It is, of course, an empirical question whether these results are 
a good guide for volatility measurement at relevant frequencies.'* To illustrate 
the implications at a daily horizon, consider an asset return with standard devia- 
tion of 1% daily, or 15.8% annually, and a (large) mean return of 0.1%, or about 
25% annually. The squared mean return is still only one-hundredth of the vari- 
ance. The expected daily variation of the mean return is obviously smaller yet, 
unless the required daily return is assumed to behave truly erratically within the 
day. In fact, we would generally expect the within-day variance of the expected 

l2Merton (1982) provides a similar intuitive account of the continuous record h-asymptotics. These 
limiting results are also closely related to the theory rationalizing the quadratic variation formulas in 
Proposition 2 and Theorem 1. 
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daily return to be much smaller than the expected daily return itself. Hence, the 
daily return fluctuations induced by within-day variations in the mean return are 
almost certainly trivial. For a weekly horizon, similar calculations suggest that 
the identical conclusion applies. 

The general case, covered by Theorem 1, allows for direct intra-period inter- 
action between the return innovations and the instantaneous mean. This occurs, 
for example, when there is a leverage effect, or asymmetry, by which the volatility 
impacts the contemporaneous mean drift. In this-for some assets-empirically 
relevant case, a string of negative within-period return innovations will be asso- 
ciated with an increase in return volatility, which in turn raises the risk premium 
and the return drift. Relative to the corollary, the theorem involves the additional 
rAMterms. Nonetheless, the intuition discussed above remains intact. It is readily 
established that the ikth component of these terms may be bounded, {TAM(t + 
h, h)),,, {var(A,(t +h) - 1 +h) - 1A,(t) ~~)) ' l~{var (M,( t  Mk(t) Tt))lI2, where 
the latter terms are of order h and h1I2 respectively, so the TAM terms are at most 
of order h3I2, which again is dominated by the corresponding quadratic variation 
of order h. Moreover, this upper bound is quite conservative, because it allows 
for a correlation of unity, whereas typical correlations estimated from daily or 
weekly returns are much lower, de facto implying that the quadratic variation 
process is the main driving force behind the corresponding return volatility. 

We now turn towards a more ambitious goal. Because the above results carry 
implications for the measurement and modeling of return volatility, it is natural 
to ask whether we can also infer something about the appropriate specification 
of the return generating process that builds on the realized volatility measures. 
Obviously, at the present level of generality, requiring only square integrabil- 
ity and absence of arbitrage, we cannot derive specific distributional results. 
Nonetheless, we may obtain a useful benchmark under somewhat more restric- 
tive conditions, including a continuous price process, i.e., no jumps or, AM 0. 
We first recall the martingale representation theorem.13 

PROPOSITION3: For any n-dimensional square-integrable arbitrage-free logarith- 
mic price process, p, with continuous sample path and a $11 rank of the associated 
n x n quadratic variation process, [r,  r],, we have a.s. (P)for all 0 5 t 5 T, 

where p, denotes an integrable predictable n x 1 dimensional vector, a, = 
(a(,,,),,),,,=,, ..,,, is an n x n matrix, W(s) is an n x 1 dimensional standard 
Brownian motion, integration of a matrix or vector with respect to a scalar denotes 
component-wise integration, so that 

l3See, for example, Karatzas and Shreve (1991, Chapter 3). 
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and integration of a matrix with respect to a vector denotes component-wise integra- 
tion of the associated vector, so that 

. ,f E u,n,,,, t+sdW,(s))' . ]=I, . . .,n 

Moreover, we have 

Finally, letting 0,= u ,u~ ,the increments to the quadratic return variation process 
take the form 

The requirement that the n x n matrix [ r ,  r] ,  is of full rank for all t ,  implies 
that no asset is redundant at any time, so that no individual asset return can 
be spanned by a portfolio created by the remaining assets. This condition is not 
restrictive; if it fails, a parallel representation may be achieved on an extended 
probability space.14 

We are now in position to state a distributional result that inspires our empir- 
ical modeling of the full return generating process in Section 6 below. It extends 
the results recently discussed by Barndorff-Nielsen and Shephard (2002a) by 
allowing for a more general specification of the conditional mean process and by 
accommodating a multivariate setting. It should be noted that for volatility fore- 
casting, as discussed in Sections 5 and 6.1 below, we do not need the auxiliary 
assumptions invoked here. 

THEOREM2: For any n-dimensional square-integrable arbitrage-free price pro- 
cess with continuous sample paths satisfying Proposition 3, and thus representation 
(7), with conditional mean and volatility processes ps and us independent of the 
innovation process W(s)  over [ t ,  t +h] ,  we have 

l4 See Karatzas and Shreve (1991, Section 3.4). 
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PROOF: Clearly, r.(t + h, h)-J: ds = at+sd W(s) and E(&
h 

a,+,d W(s) /
a{~,+,,a,+,),,,,,hl) = 0. We proceed by establishing the normality of 

u,+,dW(s) conditional on the volatility path {q+s)st,o,hl. The integral is 
n-dimensional, and we define 

where u(,),,= (u(~ ,,),,, . . . , a(i,n).s)l,SO that J:(a( ,),, +,)'dW(s) denotes the ith 
element of the n x 1 vector in equation (8). The vector is multivariate normal 
if and only if any (nonzero) linear combination of the elements are univariate 
normal. Each element of the vector represents a sum of independent stochas- 
tic integrals, as detailed in equation (8). Any nonzero linear combination of this 
n-dimensional vector will thus produce another linear combination of the same 
n independent stochastic integrals. Moreover, the linear combination will be 
nonzero given the full rank condition of Proposition 3. It will therefore be nor- 
mally distributed if each constituent component of the original vector in equation 
(8) is normally distributed conditional on the volatility path. A typical element of 
the sums in equation (8), representing the jth volatility factor loading of asset i 
over [t, t + h], takes the form, I,,,(t + h, h) = Soh a(,,,), ,+,d W, (s), for 1 5 i, j 5 n. 
Obviously, I,,,(t)  -- I,,,(t ,  t) is a continuous local martingale, and then by the 
"change of time" result (see, e.g., Protter (1992, Chapter 11, Theorem 41)), it 
follows that I,,,(t) = B([I,,,, I,,,],), where B(t) denotes a standard univariate 
Brownian motion. In addition, 

I,,,(t  + h, h) = I,,,(t + h) - I,,,(t)  

= B([IL,,>zi,llt+h)-B([zL,j > Ii,j]t)> 

-and this increment to the Brownian motion is distributed N(0, [I,,, ,I,, 
[I,,,, I,,,],). Finally, the quadratic variation governing the variance of the 
Gaussian distribution is readily determined to be [I,,,,I,, - [I,,,, I,,,], = 
Jbh(a(,,,,,,+,)'ds (see, e.g., Protter (1992, Chapter 11.6)): which is finite by equa- 
tion (9) of Proposition 3. Conditional on the ex-post realization of the volatility 
path, the quadratic variation is given (measurable), and the conditional normality 
of I,,,(t  + h, h) follows. Because both the mean and the volatility paths are inde- 
pendent of the return innovations over [t, t + h], the mean is readily determined 
from the first line of the proof. This verifies the conditional normality asserted 
in equation (11). The only remaining issue is to identify the conditional return 
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covariance matrix. For the ikth element of the matrix we have 

This confirms that each element of the conditional return covariance matrix 
equals the corresponding element of the variance term in equation (11). Q.E.D. 

Notice that the distributional characterization in Theorem 2 is conditional on 
the ex-post sample-path realization of (p , ,  as)s,~t,t+hl. The theorem may thus 
appear to be of little practical relevance, because such realizations typically are 
not observable. However, Proposition 2 and equation (10) suggest that we may 
construct approximate measures of the realized quadratic variation, and hence of 
the conditional return variance, directly from high-frequency return observations. 
In addition, as discussed previously, for daily or weekly returns, the conditional 
mean variation is negligible relative to the return volatility. Consequently, ignor- 
ing the time variation of the conditional mean, it follows by Theorem 2 that the 
distribution of the daily returns, say, is determined by a normal mixture with the 
daily realized quadratic return variation governing the mixture. 

Given the auxiliary assumptions invoked in Theorem 2, the normal mixture 
distribution is strictly only applicable if the price process has continuous sam- 
ple paths and the volatility and mean processes are independent of the within- 
period return innovations. The latter implies a conditionally symmetric return 
distribution. This raises two main concerns. First, some recent evidence sug- 
gests the possibility of discrete jumps in asset prices, rendering sample paths 
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discontin~ous.'~But these studies also find that jumps are infrequent and have 
a jump size distribution about which there is little consensus. Second, for some 
asset classes there is evidence of leverage effects that may indicate a correlation 
between concurrent return and volatility innovations. However, as argued above, 
such contemporaneous correlation effects are likely to be unimportant quanti- 
tatively at the daily or weekly horizon. Indeed, Theorem 2 allows for the more 
critical impact leading from the current return innovations to the volatility in sub- 
sequent periods (beyond time t +h), corresponding to the effect captured in the 
related discrete-time ARCH and stochastic volatility literature. We thus retain 
the normal mixture distribution as a natural starting point for our empirical work. 
However, if the return-volatility asymmetry is important and the forecast horizon, 
h, relatively long, say monthly or quarterly, then one may expect the empirical 
return distribution to display asymmetries that are incompatible with the symmet- 
ric return distribution (conditional on time t information) implied by Theorem 2. 
One simple diagnostic is to check if the realized volatility-standardized returns 
over the relevant horizon fail to be normally distributed, as this will speak to the 
importance of incorporating jumps and/or contemporaneous return innovation- 
volatility interactions into the modeling framework. 

In summary, the arbitrage-free setting imposes a semi-martingale structure 
that leads directly to the representation in Proposition 1 and the associated 
quadratic variation in Proposition 2. In addition, property (i) and equation (3) 
in Proposition 2 suggest a practical way to approximate the quadratic variation. 
Theorem 1 and the associated Corollary 1 reveal the intimate relation between 
the quadratic variation and the return volatility process. For the continuous sam- 
ple path case, we further obtain the representation in equation (7), and the 
quadratic variation reduces by equation (10) to Jbh R,,, ds,which is often referred 
to as the integrated volatility. Theorem 2 consequently strengthens Theorem 1 by 
showing that the realized quadratic variation is not only a useful estimator of the 
ex-ante conditional volatility, but also, under auxiliary assumptions, identical to 
the realized integrated return volatility over the relevant horizon. Moreover, the 
theorem delivers a reference distribution for appropriately standardized returns. 
Taken as a whole, the results provide a general framework for integration of 
high-frequency intraday data into the measurement, modeling, and forecasting 
of daily and lower frequency return volatility and return distributions, tasks to 
which we now turn. 

3. MEASURING REALIZED EXCHANGE RATE VOLATILITY 

Practical implementation of the procedures suggested by the theory in Section 
2 must confront the fact that no financial market provides a frictionless trad- 
ing environment with continuous price recording. Consequently, the notion of 
quadratic return variation is an abstraction that, strictly speaking, cannot be 

l5 See, for example, Andersen, Benzoni, and Lund (2002), Bates (2000), Bakshi, Cao, and Chen 
(1997), Pan (2002), and Eraker, Johannes, and Polson (2002). 
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observed. Nevertheless, the continuous-time arbitrage-free framework directly 
motivates the creation of our return series and associated volatility measures 
from high-frequency data. We do not claim that this provides exact counterparts 
to the (nonexisting) corresponding continuous-time quantities. Instead, we use 
the theory to guide and inform collection of the data, transformation of the data 
into volatility measures, and selection of the models used to construct conditional 
return volatility and density forecasts, after which we assess the usefulness of the 
theory through the lens of predictive accuracy. 

3.1. Data 

Our empirical analysis focuses on the spot exchange rates for the U.S. dollar, 
the Deutschemark, and the Japanese yen.16 The raw data consist of all interbank 
DM/$ and Y/$bidlask quotes displayed on the Reuters FXFX screen during the 
sample period, December 1, 1986 through June 30, 1999.17 These quotes are 
merely indicative (that is, nonbinding) and subject to various market microstruc- 
ture "frictions," including strategic quote positioning and standardization of the 
size of the quoted bidlask spread. Such features are generally immaterial when 
analyzing longer horizon returns, but they may distort the statistical properties 
of the underlying "equilibrium" high-frequency intraday returns.18 The sampling 
frequency at which such considerations become a concern is intimately related to 
market activity. For our exchange rate series, preliminary analysis based on the 
methods of ABDL (2000b) suggests that the use of equally-spaced thirty-minute 
returns strikes a satisfactory balance between the accuracy of the continuous- 
record asymptotics underlying the construction of our realized volatility measures 
on the one hand, and the confounding influences from market microstructure 
frictions on the other.19 

The actual construction of the returns follows Miiller et al. (1990) and 
Dacorogna et al. (1993). First, we calculate thirty-minute prices from the lin- 
early interpolated logarithmic average of the bid and ask quotes for the two ticks 
immediately before and after the thirty-minute time stamps throughout the global 
24-hour trading day. Second, we obtain thirty-minute returns as the first differ- 
ence of the logarithmic prices.20 In order to avoid modeling specific weekend 

l6Before the advent of the Euro, the dollar, Deutschemark and yen were the most actively traded 
currencies in the foreign exchange market, with the DM/$ and f / $  accounting for nearly fifty percent 
of the daily trading volume, according to a 1996 survey by the Bank for International Settlements. 

l7 The data comprise several million quotes kindly supplied by Olsen & Associates. Average daily 
quotes number approximately 4,500 for the Deutschemark and 2,000 for the Yen. 

l a  See Bai, Russell, and Tiao (2000) and Zumbach, Corsi, and Trapletti (2002) for discussion and 
quantification of various aspects of microstructure bias in the context of realized volatility. 

l9An alternative approach would be to utilize all of the observations by explicitly modeling the 
high-frequency market microstructure. That approach, however, is much more complicated and sub- 
ject to numerous pitfalls of its own. 

20 We follow the standard convention of the interbank market by measuring the exchange rates 
and computing the corresponding rates of return from the prices of $1 expressed in terms of DM 
and f ,  i.e., DM/$ and Y/$.Similarly, we express the cross rate as the price of one DM in terms of 
Y , i.e., f D M .  
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effects, we exclude all of the returns from Friday 21:OO GMT until Sunday 21:OO 
GMT Similarly, to avoid complicating the inference by the decidedly slower trad- 
ing activity during certain holiday periods, we delete a number of other inac- 
tive days from the sample. We are left with a bivariate series of thirty-minute 
DM/$ and Y/$returns spanning a total of 3,045 days. In order to explicitly distin- 
guish the empirically constructed continuously compounded discretely sampled 
returns and corresponding volatility measures from the theoretical counterparts 
in Section 2, we will refer to the former by time subscripts. Specifically, for the 
half-hour returns, r,,,, ,, t = A, 211,311, . . . ,3045, where A = 1/48 = 0.0208. Also, 
for notational simplicity we label the corresponding daily returns by a single time 
subscript, so that r,,, - r,,,, , - r,,,, ,+ r,,,,, ,+. . . r,+,,,for t = 1,2, . . . ,3045. 
Finally, we partition the full sample period into an "in-sample" estimation period 
covering the 2,449 days from December 1, 1986 through December 1, 1996, and 
a genuine "out-of-sample" forecast evaluation period covering the 596 days from 
December 2, 1996 through June 30, 1999.21 

3.2. Construction of Realized Volatilities 

The preceding discussion suggests that meaningful ex-post interdaily volatility 
measures may be constructed by cumulating cross-products of intraday returns 
sampled at an appropriate frequency, such as thirty minutes. In particular, based 
on the bivariate vector of thirty-minute DM/$ and Y/$returns, i.e., with n = 2, 
we define the h-day realized volatility, for t = 1,2,  . . . ,3045, 11 = 1/48, by 

where the (h/A) x n matrix, R,, ,, is defined by R:, ,= ,.,, r,-,+ ,,,, (r,-,+ ,, . . . , 

r,,,). As before, we simplify the notation for the daily horizon by defining 
V, = V,, ,. The V,, ,measure constitutes the empirical counterpart to the h-period 
quadratic return variation and, for the continuous sample path case, the inte- 
grated volatility. In fact, by Proposition 2, as the sampling frequency of the intra- 
day returns increases, or A -t 0, V,,, converges almost surely to the quadratic 
variation. 

One issue frequently encountered in multivariate volatility modeling is that 
constraints must be imposed to guarantee positive definiteness of estimated 
covariance matrices. Even for relatively low-dimensional cases such as three or 
four assets, imposition and verification of conditions that guarantee positive def- 
initeness can be challenging; see, for example, the treatment of multivariate 
GARCH processes in Engle and Kroner (1995). Interestingly, in contrast, it is 
straightforward to establish positive definiteness of V,, ,. The following lemma 
follows from the correspondence between our realized volatility measures and 

21 All of the empirical results in ABDL (2000a, 2001), which in part motivate our approach, were 
based on data for the in-sample period only, justifying the claim that our forecast evaluation truly is 
"out-of-sample." 
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standard unconditional sample covariance matrix estimators which, of course, are 
positive semi-definite by construction. 

LEMMA 1: If the columns of R,,, are linearly independent, then the realized 
covariance matrix, V,, ,,dejined in equation (12) is positive definite. 

PROOF: It suffices to show that alV,,,a > 0 for all nonzero a. Linear inde- 
pendence of the columns of R,, ,ensures that b,, ,= R,, ,a # 0, Va E Rn\{O), 
and in particular that at least one of the elements of b,,, is nonzero. Hence 
a'V,,ha = a1R:,,Rt,ha = bj, hb,,, = El=,, ,.,,h,,(bl,h): > 0, 'Ja E Rn\{O). Q.E.D. 

The fact that positive definiteness of the realized covariance matrix is virtually 
assured, even in high-dimensional settings, is encouraging. However, the lemma 
also points to a problem that will arise for extremely high-dimensional systems. 
The assumption of linear independence of the columns of R,,,, although weak, 
will ultimately be violated as the dimension of the price vector increases relative 
to the sampling frequency of the intraday returns. Specifically, for n > h/A the 
rank of the R,,, matrix is obviously less than n, so RiR, = V, will not have full 
rank and it will fail to be positive definite. Hence, although the use of V, facili- 
tates rigorous measurement of conditional volatility in much higher dimensions 
than is feasible with most alternative approaches, it does not allow the dimen- 
sionality to become arbitrarily large. Concretely, the use of thirty-minute returns, 
corresponding to l / A  =48 intraday observations, for construction of daily real- 
ized volatility measures, implies that positive definiteness of V, requires n, the 
number of assets, to be no larger than 48. 

Because realized volatility V, is observable, we can model and forecast it 
using standard and relatively straightforward time-series techniques. The diag- 
onal elements of V,, say v,,, and v,,,, correspond to the daily DM/$ and Y/$ 
realized variances, while the off-diagonal element, say v,,,,, represents the daily 
realized covariance between the two rates. We could then model vech(V,) = 
(v,,,, v,,,,, v,,,)' directly but, for reasons of symmetry, we replace the realized 
covariance with the realized variance of the Y P M  cross rate which may be done, 
without loss of generality, in the absence of triangular arbitrage, resulting in a 
system of three realized volatilities. 

Specifically, by absence of triangular arbitrage, the continuously compounded 
return on the Y P M  cross rate must be equal to the difference between the 
Y/$ and DM/$ returns, which has two key consequences. First, it implies that, 
even absent direct data on the Y P M  rate, we can infer the cross rate using the 
DM/$ and Yl$ data. Consequently, the realized cross-rate variance, v,,,, may be 
constructed by summing the implied thirty-minute squared cross-rate returns, 

Second, because this implies that v,,, = v,,,+v,,, -2v,, ,,, we can infer the real- 
ized covariance from the three realized volatilities, 
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TABLE I 
DAILY RETURN DISTRIBUTIONS 

Mean Std. Dev. Skewness Kurtosis ~ ( 2 0 ) ~  ~ ~ ( 2 0 ) ~  

Standardized Returnsa, 

DM/$ -0.007 0.993 0.032 2.57 19.42 23.32 
Y/$ 0.007 0.964 -0.053 2.66 32.13 24.83 
Portfolioc -0.005 0.993 0.028 2.61 25.13 29.20 

aThe daily returns cover December 1, 1986 through December 1, 1996. 
The bottom panel refers to the distribution of daily returns stdndard~zed by realized volatility. 
Portfolio refers to returns on an equally-weighted portfolio. 

* Ljung-Box test statistlcs for up to nventleth order ser~al correlation in returns. 
Ljung-Box test statistlcs for up to twentieth order serial correlation in squared returns. 

Building on this insight, we infer the covariance from the three variances, v, = 
(v,,,,v,,,,v,,,)', and the identity in equation (14) instead of directly modeling 
~ e c h ( V , ) . ~ ~  

We now turn to a discussion of the pertinent empirical regularities that guide 
our specification of the trivariate forecasting model for the three DM/$, Y/$, and 
Y P M  volatility series. 

4. PROPERTIES OF EXCHANGE RATE RETURNS 

AND REALIZED VOLATILITIES 

The in-sample distributional features of the DM/$ and Y/$  returns and the 
corresponding realized volatilities have been characterized previously by ABDL 
(2000a, 2001).23 Here we briefly summarize those parts of the ABDL results that 
are relevant for the present inquiry. We also provide new results for the Y P M  
cross rate volatility and an equally-weighted portfolio that explicitly incorporate 
the realized covariance measure discussed above. 

4.1. Returns 

The statistics in the top panel of Table I refer to the two daily 
dollar-denominated returns, r,,, and r,, ,, and the equally-weighted portfolio, 

22 The no-triangular-arbitrage restrictions are, of course, not available outside the world of foreign 
exchange. However, these restrictions are in no way crucial to our general approach, as the realized 
variances and covariances could all be modeled directly. We choose to substitute out the realized 
covariance in terms of the cross-rate because it makes for a clean and unified presentation of the 
empirical work, allowing us to exploit the approximate lognormality of the realized variances (dis- 
cussed below). 

2%or a prescient early contribution along these lines, see also Zhou (1996). 
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112.(r,,,+ r,,,). As regards unconditional distributions, all three return series are 
approximately symmetric with zero mean. However, the sample kurtoses indi- 
cate more probability mass in the center and in the tails of the distribution rel- 
ative to the normal, which is confirmed by the kernel density estimates shown 
in Figure 1. As regards conditional distributions, the Ljung-Box test statistics 
indicate no serial correlation in returns, but strong serial correlation in squared 
returns.24 The results are entirely consistent with the extensive literature docu- 
menting fat tails and volatility clustering in asset returns, dating at least to Man- 
delbrot (1963) and Fama (1965). 

The statistics in the bottom panel of Table I refer to the distribution of the 
standardized daily returns r,, ,.v,tf2 and r,,, .v,:I2, along with the standardized 
daily equally-weighted portfolio returns 112. (r,, ,+ r,,,) . (114. v,, ,+ 114. v,,, + 
112.v,, ,,)-'I2, or equivalently by equation (14), 112. (r,, ,+ r,, ,) . (112. v,, ,+112. 
v,,, - 114. v,,,)-'/~. The standardized-return results provide striking contrasts to 
the raw-return results. First, the sample kurtoses indicate that the standardized 
returns are well approximated by a Gaussian distribution, as confirmed by the 
kernel density estimates in Figure 1, which clearly convey the approximate nor- 
mality. Second, in contrast to the raw returns, the standardized returns display 
no evidence of volatility c l ~ s t e r i n g . ~ ~  

Of course, the realized volatility used for standardizing the returns is only 
observable ex-post. Nonetheless, the result is in stark contrast to the typical find- 
ing that, when standardizing daily returns by the one-day-ahead forecasted vari- 
ance from ARCH or stochastic volatility models, the resulting distributions are 
invariably leptokurtic, albeit less so than for the raw returns; see, for example, 
Baillie and Bollerslev (1989) and Hsieh (1989). In turn, this has motivated the 
widespread adoption of volatility models with non-Gaussian conditional densities, 
as suggested by Bollerslev (1987).,"he normality of the standardized returns 
in Table I and Figure 1 suggests a different approach: a fat-tailed normal mix- 
ture distribution governed by the realized volatilities, consistent with the results 
in Theorem 2.27 We now turn to a discussion of the distribution of the realized 
volatilities. 

4.2. Realized Volatilities 

The statistics in the top panel of Table I1 summarize the distribution of the 
realized volatilities, v;,li2, for each of the three exchange rates: DM/$, W$, and 

24 Under the null hypothesis of white noise, the reported Ljung-Box statistics are distributed as chi- 
squared with twenty degrees of freedom. The five percent critical value is 31.4, and the one percent 
critical value is 37.6. 

25 Similar results obtain for the multivariate standardization v;'I2r,,where [ . ] - ' I 2  refers to the 
Cholesky factor of the inverse matrix, as documented in ABDL (2000a). 

26 This same observation also underlies the ad hoc multiplication factors often employed by prac- 
tioners in the construction of VaR forecasts. 

27 Note that the mixed normality result in Theorem 2 does not generally follow by a standard 
central limit theorem except under special conditions as delineated in the theorem. 
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FIGURE1.-Return distributions. The figure shows kernel estimates of the density of daily returns 
on the DM/$ rate, the Y/$rate, and an equally-weighted portfolio. The sample period extends from 
December 1, 1986 through December 1, 1996. The solid line is the estimated density of raw returns, 
standardized using its (constant) sample mean and sample standard deviation. The dashed line is the 
estimated density of returns standardized using its constant sample mean and time-varying realized 
standard deviation. The dotted line is a N(0, 1) density for visual reference. 
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TABLE I1 
DAILY REALIZED VOLATILITY DISTRIBUTIONS 

Mean St Dev. Skewness Kurtosis ~ ( 2 0 ) ~  de 

Volatility" 

DM/$ 0.626 0.283 1.99 10.49 5249.2 -

Y/$ 0.618 0.290 2.20 12.94 4155.1 -

Y D M  0.571 0.234 1.49 7.86 10074.2 -

Logarithmic V~latility".~ 

DM/$ -0.554 0.405 0.251 3.29 7659.6 0.387 
Y/$  -0.572 0.419 0.191 3.44 5630.0 0.413 
Y D M  -0.637 0.388 0.058 3.04 12983.2 0.430 

aThe  sample covers December 1, 1986 through December 1, 1996. 
The top panel refers to the distribution of realized standard deviations, u:". 
The bottom panel refers to the distribution of logarithmic realized standard deviations, 1/2.log(v,). 

* Ljung-Box test statistics for up to twentieth order serial correlation. 
Log- eriodogram regression estimate of the fractional integration parameter, d, based on the 

m = 1 ~ 4 1 4= 514 lowest-frequency periodogram ordinates. The asymptotic standard error for all of the 
d estimates is (24-m)- ' I2  = 0.028. 

YDM. All the volatilities are severely right-skewed and leptokurtic. In contrast, 
the skewness and kurtosis for the three logarithmic standard deviations, Y , , ~= 
1 /2 . l og (~ , ,~ ) ,shown in the bottom panel of Table 11, appear remarkably Gaussian. 
Figure 2 confirms these impressions by presenting kernel density estimates for 
the logarithmic realized volatilities, which are almost indistinguishable from the 
normal reference densities. 

The log-normality of realized volatility suggests the use of standard lin-
ear Gaussian approaches for modeling and forecasting the realized logarithmic 
volatilities. Moreover, combining the results for the returns in Table I, which -suggest that rt . v;'I2 N(0, I),with the results for the realized volatilities in 
Table 11, which suggest that y, E (y,,,,y,,,, y,,,)' -N ( p ,R), we should expect the 
overall return distribution (not conditioned on the realized volatility) to be well 
approximated by a lognormal-normal mixture.28 Our density forecasts and VaR 
calculations presented below explicitly build on this insight. 

Turning again to Table 11, the Ljung-Box statistics indicate strong serial corre- 
lation in the realized daily volatilities, in accord with the significant Ljung-Box 
statistics for the squared (nonstandardized) returns in the top panel of Table I. 
It is noteworthy, however, that the Q2(20) statistics in Table I are orders of mag- 
nitude smaller than the Q(20) statistics in Table 11. This reflects the fact that, 
relative to the daily realized volatilities, the daily squared returns are very noisy 
volatility proxies, and this noise masks the strong persistence in the underlying 
(latent) volatility dynamics.29 

28 The lognormal-normal mixture distribution has previously been advocated by Clark (1973), with-
out any of the direct empirical justification provided here. 

29 See Andersen and Bollerslev (1998), Meddahi (2002), and Andersen, Bollerslev, and Meddahi 
(2002) for a detailed efficiency comparison of various volatility proxies. 
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FIGURE2.- Realized volatility distributions. The figure shows kernel estimates of the density of 
daily realized DM/$, Y/$,and YDM volatility. The sample period extends from December 1, 1986 
through December 1, 1996. The solid line is the estimated density of the realized standard deviation, 
standardized to have zero mean and unit variance. The dashed line is the estimated density of the 
realized logarithmic standard deviation, standardized to have zero mean and unit variance. The dotted 
line is a N(0,  1) density for visual reference. 
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Following early theoretical long-memory volatility work by Robinson (1991), 
many subsequent studies suggest the empirical relevance of long memory in asset 
return volatility, including for example Ding, Granger, and Engle (1993), Baillie, 
Bollerslev, and Mikkelsen (1996), and Andersen and Bollerslev (1997a). Long- 
memory, or fractionally-integrated, processes for the volatility also help to explain 
otherwise anomalous features in options data, such as volatility smiles even for 
long-dated options (see, for example, Renault (1997), Comte and Renault (1998), 
and Bollerslev and Mikkelsen (1999)). Hence in the last column of Table I1 
we report estimates of the degree of fractional integration, obtained using the 
Geweke and Porter-Hudak (1983) (GPH) log-periodogram regression estimator 
as formally developed by Robinson (1995). The three estimates of d are all sig- 
nificantly greater than zero and less than one half when judged by the standard 
error of 0.028 in the asymptotic normal distribution. Moreover, the three esti- 
mates are very close, indicative of a common degree of long-run dependence 
in the logarithmic volatilities. The multivariate extension of the GPH estima- 
tor developed by Robinson (1995) provides a formal framework for testing this 
hypothesis. On implementing Robinson's estimator we obtain a common estimate 
of 0.401, and the corresponding test statistic for identical values of d across the 
three volatilities has a p-value of 0.510 in the asymptotic chi-square distribution 
with three degrees of freedom. 

Figure 3 provides graphical confirmation and elaboration of the long-memory 
results. It displays the sample autocorrelations of the realized logarithmic volatil- 
ities out to a displacement of 70 days, or about one quarter. The slow hyperbolic 
autocorrelation decay symptomatic of long memory is evident, and the qualita- 
tively identical autocorrelation values across the three volatilities supports the 
assertion of a common degree of fractional integration. Figure 3 also shows the 
sample autocorrelations of the logarithmic volatilities fractionally differenced by 
applying the filter (1 -L)0.401. It is evident that this single fractional differencing 
operator eliminates the bulk of the univariate serial dependence in each of the 
three realized logarithmic volatilities, although Ljung-Box portmanteau tests (not 
reported here) do reject the hypothesis of white noise fractionally-differenced 
volatilities. 

It is possible that the three series are fractionally cointegrated, so that a linear 
combination will exhibit a degree of fractional integration less than 0.401. On 
heuristically testing for this by regressing each of the logarithmic volatilities on 
the two other logarithmic volatilities and a constant, and then estimating the 
degree of fractional integration in the residuals, the three estimates for d are 
0.356, 0.424, and 0.393, respectively, all of which are very close to the value of d 
for the original series in Table 11. Hence the realized logarithmic volatility series 
do not appear to be fractionally ~o in t eg ra t ed .~~  

Meanwhile, the realized logarithmic volatility series are all strongly contempo- 
raneously correlated. In particular, the sample correlations between y,,, and y,,, 

30 Formal semiparametric frequency domain based testing procedures for fractional cointegration 
have recently been developed by Robinson and Marinucci (2001). 
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FIGURE3.-Realized volatility autocorrelations. The figure shows the sample autocorrelation 
functions for daily DM/$, Y/$, and Y/DM realized volatility. The sample period extends from Decem- 
ber 1, 1986 through December 1, 1996. The solid line gives the autocorrelation function of realized 
logarithmic standard deviation, while the dashed line refers to the autocorrelation function of real- 
ized logarithmic standard deviation fractionally differenced by (1 -L)""'. The dotted lines are the 
Bartlett two standard error bands. 
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and y,,, are respectively 0.591 and 0.665, while the correlation between y,,, and 
y,,, equals 0.648. This is, of course, entirely consistent with the extant ARCH and 
stochastic volatility literatures. In the next section, we propose a simple multi- 
variate model capable of accommodating both the strong dynamics and contem- 
poraneous correlations in the realized volatilities. 

5. A VAR FOR MODELING AND FORECASTING REALIZED VOLATILITY 

The distributional features highlighted in the previous section suggest that 
a long-memory Gaussian VAR for the realized logarithmic volatilities should 
provide a good description of the volatility dynamics. We therefore consider the 
simple trivariate VAR (henceforth VAR-RV), 

where 6, is a vector white noise process.31 The model is easily estimated by 
applying OLS equation-by-equation. In so doing, we impose the normalization 
@(0)=I,and fix the value of d at the earlier-reported common estimate of 0.401. 
We also assume that the orders of the lag polynomials in @(L) are all equal to 
five days, or one week. This choice is somewhat arbitrary, and the model could 
easily be refined through a more detailed specification search explicitly allow- 
ing for zero parameter restrictions and/or different autoregressive lag lengths.32 
Additional explanatory variables, such as interest rate differentials, daily trading 
activity measures, lagged daily signed returns, etc., could also easily be included. 
However, in order to facilitate the comparison with the daily volatility models in 
common use, for which the mechanics of including additional explanatory vari- 
ables are much more complicated and typically not entertained, we restrict our 
attention to the simple unrestricted VAR in equation (15). 

Many of the estimated VAR coefficients (not shown) are statistically signif- 
icant, and all the roots of the estimated matrix lag polynomial @(L) are out- 
side the unit circle, consistent with covariance stationarity. Moreover, Ljung-Box 
tests for serial correlation in the VAR residuals reveal no evidence against the 
white noise hypothesis, indicating that the VAR has successfully accommodated 
all volatility dynamics not already captured by the first-stage long memory filter. 

It is interesting to note that the VAR evidently does not add a great deal 
relative to a stacked set of univariate ARs. In particular, much of the volatil- 
ity variation is explained by the univariate long-memory models (the R2 values 
are in the neighborhood of 50%), and little of the variation of the residuals 
from the univariate long-memory models is explained by the VAR (the R2 values 

31 Provided that all of the roots of i@(z)l = 0 lie outside the unit circle, the model is stationary, 
and the impulse response coefficients associated with the lag k shocks are simply given by the powers 
in the matrix lag polynomial F ( L )= @(L)- ' (1-L)'-d ,say lYk. Moreover, the cumulative impulse 
response coefficients, F, +%+.. . +Fk,eventually dissipate at the slow hyperbolic rate of kd-'. 

32 Both the Akaike and Schwarz information criteria select a first-order VAR. Degrees of freedom 
are plentiful, however, so we included a week's worth of lags to maintain conservatism. 
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are in the neighborhood of 2%). Effectively, the univariate one-parameter long- 
memory models are so successful at explaining the realized volatility dynamics 
that little is left for the VAR. This is also evident from the previously discussed 
plots of the autocorrelations in Figure 3. Nevertheless, the Ljung-Box statistics 
for the three univariate fractionally differenced volatility series all indicate sig- 
nificant serial correlation, while those for the residuals from the VAR do not. 
Moreover, the VAR does seem to capture some cross-rate linkages. In particular, 
Granger causality tests reveal some evidence of slight predictive enhancement 
from including lags of the logarithmic DM/$ and Y/$ volatility in the realized 
logarithmic Y/DM volatility equation. 

It is natural to conjecture that the VAR-RV based realized volatility forecasts 
will outperform those from traditional daily ARCH and related volatility mod- 
els. Our forecasts are based on explicitly-modeled long-memory dynamics, which 
seem to be a crucial feature of the data. Long-memory may, of course, also 
be incorporated in otherwise standard ARCH models, as proposed by Robin- 
son (1991) and Baillie, Bollerslev, and Mikkelsen (1996). As such, the genuinely 
distinctive feature of our approach is instead that it offers simple, yet effec- 
tive, incorporation of information contained in the high-frequency data. This 
should enable the realized volatilities and their forecasts to adapt more quickly 
to changes in the level of the underlying latent volatility. In the next section, we 
explore these conjectures in detail. 

6. EVALUATING AND COMPARING ALTERNATIVE 

VOLATILITY FORECASTS 

Volatility forecasts play a central role in the financial decision making pro- 
cess. In this section we assess the performance of the realized volatility forecasts 
generated from our simple VAR-RV model. For initial illustration, we plot, in 
Figure 4, the daily realized DM/$, Y/$, and Y D M  standard deviations, along 
with the corresponding one-day-ahead VAR-RV forecasts for the out-of-sample 
period, December 2, 1996, through June 30, 1999. It appears that the VAR-RV 
does a good job of capturing both the low-frequency and the high-frequency 
movements in the realized volatilities. We next proceed to a more thorough sta- 
tistical evaluation of the forecasts along with a comparison to several alternative 
volatility forecasting procedures currently in widespread use. 

6.1. Forecast Evaluation 

Many methods have been proposed for modeling and forecasting financial 
market volatility, and we compare our VAR-RV forecasts to those of several 
competitors, at both one-day and ten-day horizons.33 

33 The multi-step forecast horizons also provide a link to the literature on temporal aggregation 
of ARCH and stochastic volatility models, notably Drost and Nijman (1993), Drost and Werker 
(1996), and Meddahi and Renault (2002). In contrast to the parametric volatility models analyzed 
in these studies, the realized volatility approach affords a relatively simple solution to the temporal 
aggregation problem. 
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FIGURE4.-Realized volatility and out-of-sample VAR-RV forecasts. The figure shows time series 
of daily realized volatility for DM/$, f/$,and YDM, along with one-day-ahead VAR-RV forecasts. 
The plot spans the out-of-sample period from December 2, 1996 through June 30, 1999. The dotted 
line is realized volatility, while the solid line gives the corresponding one-day-ahead VAR-RV forecast 
from a long-memory vector autoregression for the daily realized volatility. See the main text for 
details. 

First, we compare the VAR-RV forecasts to those obtained from a fifth-order 
VAR for the long-memory filtered daily logarithmic absolute returns (henceforth 
VAR-ABS). This makes for an interesting comparison, as the model structures 
are identical in all respects except for the volatility proxy: one uses daily realized 
volatility, while the other uses daily absolute returns. 

Second, we compare the VAR-RV forecasts to those obtained from fifth-order 
univariate autoregressions for the long-memory filtered daily realized volatilities 
(henceforth AR-RV). This lets us assess our earlier finding from a forecasting 
perspective, that the multivariate interaction across the realized volatilities is 
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minimal, in which case the forecasting performance of the VAR-RV and AR-RV 
models should be comparable. 

Third, we compare the VAR-RV forecasts to those generated by the most 
widespread procedure in academic applications, the GARCH model of Engle 
(1982) and Bollerslev (1986), with GARCH(1,l) constituting the leading case. As 
with the VAR model discussed in the previous section, we base the GARCH(1, 1) 
model estimates on the 2,449 daily in-sample returns from December 1, 1996, 
through December 1,1996. Consistent with previous results reported in the litera- 
ture, the quasi-maximum likelihood parameter estimates indicate a strong degree 
of volatility persistence, with the autoregressive roots for each of the three rates 
equal to 0.986, 0.968, and 0.990, respectively. 

Fourth, we compare the VAR-RV forecasts to those of the most widespread 
procedure used by practitioners, J. P. Morgan's (1997) RiskMetrics. We calculate 
the RiskMetrics daily variances and covariances as exponentially weighted aver- 
ages of the cross products of daily returns, using a smoothing factor of h =0.94. 
This corresponds to an IGARCH(1, 1) filter in which the intercept is fixed at 
zero and the moving average coefficient in the ARIMA(0, 1, 1) representation 
for the squared returns equals -0.94. 

Fifth, we compare the VAR-RV forecasts to those of a variant of the GARCH 
model that incorporates long memory, the daily FIEGARCH(1, d, 0) model 
of Bollerslev and Mikkelsen (1996). The FIEGARCH model is a variant of 
the FIGARCH model of Baillie, Bollerslev, and Mikkelsen (1996), which, while 
retaining a long-memory component, employs a different volatility structure that 
enforces stationarity and coheres naturally with our modeling of the logarithmic 
volatility in the VAR-RV model. 

Finally, we compare the VAR-RV volatility forecasts to those produced from 
a high-frequency FIEGARCH model fit to the "deseasonalized" and "filtered" 
half-hour returns. The deseasonalization is motivated by the fact that the intraday 
volatilities contain strong "seasonal" components associated with the opening 
and closing hours of exchanges worldwide. As noted by Andersen and Bollerslev 
(1997b), Martens (2001), and Martens, Chang, and Taylor (2002) among others, 
these intraday patterns severely corrupt the estimation of traditional volatility 
models based on the raw high-frequency returns. For simplicity, we estimate 
the intraday patterns by simply averaging the individual squared returns in the 
various intra-day intervals, resulting in the "seasonal" factors 

where rif denotes the return in the ith interval on day t ,  based upon which we 
construct the "seasonally adjusted" high frequency returns, 

r .  - = -rir (i = 1, . . . ,48; t = 1, . . . ,T). 
Si 


Most high-frequency asset returns also display significant own serial correla- 
tion. These dependencies are generally directly attributable to various mar-
ket microstructure frictions (see, for example, the discussion in Andersen and 
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Bollerslev (1997b) and Bai, Russell, and Tiao (2000)). To reduce the impact 
of this "spurious" serial correlation we therefore also apply a simple first-order 
autoregressive "filter" to the high-frequency returns before the estimation of the 
FIEGARCH model. 

No universally acceptable loss function exists for the ex-post evaluation and 
comparison of nonlinear model forecasts, and in the context of volatility mod- 
eling, several statistical procedures have been used for assessing the quality of 
competing forecasts (see, for example, the discussion in Andersen, Bollerslev, 
and Lange (1999) and Christoffersen and Diebold (1999)). Following Andersen 
and Bollerslev (1998), and in the tradition of Mincer and Zarnowitz (1969) and 
Chong and Hendry (1986), we evaluate the alternative volatility forecasts by pro- 
jecting the realized volatilities on a constant and the various model forecasts. 

For the one-day-ahead in-sample and out-of-sample forecasts reported in 
Tables 1II.A and III.B, the forecast evaluation regressions take the form34 

The results are striking. For the in-sample regressions including just one volatility 
forecast, the regression R2 is always the highest for the VAR-RV model, and for 
almost none of the VAR-RV forecasts can we reject the hypothesis that b, =0 and 
b, = 1using the corresponding t tests.35 In contrast, we reject the hypothesis that 
b, = 0 and/or b2 = 1 for most of the VAR-ABS, AR-RV, GARCH, RiskMetrics, 
daily FIEGARCH, and intraday FIEGARCH in-sample forecasts. Moreover, on 
including both the VAR-RV and an alternate forecast in the same regression, 
the coefficient estimates for b, and b2 are generally close to unity and near zero, 
respectively. Finally, inclusion of the alternative forecasts improves the R2's very 
little relative to those based solely on the VAR-RV forecast^.^^ 

Things are only slightly less compelling for the one-day-ahead out-of-sample 
forecasts, shown in Table 1II.B. Although (in the single forecast regressions) the 
VAR-RV model has a higher R2 than most of the alternative forecasting methods, 

"Following standard practice in the literature, we focus on forecasts for the standard deviation, 
I J : / ~ .Of course, the transformed forecasts are not formally unbiased, so we also experimented with a 
first order Taylor series expansion of the square root and exponential functions to adjust for this bias. 
The resulting regression estimates and R2's were almost identical to the ones reported in Table 111. 
Similarly, the regressions for the realized variances, v,, and logarithmic standard deviations, y, E 
1/2.log(v,), produced very similar results to the ones reported here. Detailed tables appear in the 
supplemental Appendix to this paper, available at www.ssc.upenn.edu/-diebold.
"The reported (conventional) heteroskedasticity robust standard errors from the forecast evalua- 

tion regressions will generally be downward biased as they fail to incorporate the parameter estima- 
tion error uncertainty in the different volatility forecasting models; see West and McCracken (1998). 

"These results are consistent with Engle (2000), who reports that the inclusion of the lagged 
daily realized variance in the conditional variance equation of a GARCH(1, 1) model for the daily 
DM/$ returns analyzed here renders the coefficient associated with the lagged daily squared returns 
insignificant. The HARCH model in Miiller et al. (1997) also highlights the importance of intraday 
returns in modeling daily volatility. In contrast, the results in Taylor and Xu (1997), based on a limited 
one-year sample, suggest that the lagged daily realized variance offers little incremental explanatory 
power over a univariate GARCH(1, 1) model. 
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TABLE 1II.A 

FORECASTEVALUATION-IN-SAMPLE,ONE-DAY-AHEAD 

DMBb 
VAR- RV 
VAR-ABS 
AR-RV 
Daily GARCH 
Daily RiskMetrics 
Daily FIEGARCH 
Intraday FIEGARCH deseasonlfilter 

VAR-RV +VAR-ABS 
VAR- RV +AR- RV 
VAR-RV +Daily GARCH 
VAR-RV+ Daily RiskMetrics 
VAR-RV +Daily FIEGARCH 
VAR-RV +Intraday FIEGARCH 

deseasonlfilter 

YISb 
VAR- RV 
VAR-ABS 
AR-RV 
Daily GARCH 
Daily RiskMetrics 
Daily FIEGARCH 
Intraday FIEGARCH deseasonlfilter 

VAR-RV +VAR-ABS 
VAR- RV +AR- RV 
VAR-RV+Daily GARCH 
VAR-RV +Daily RiskMetrics 
VAR-RV +Daily FIEGARCH 
VAR-RV +Intraday FIEGARCH 

deseasonlfilter 

YlDW 
VAR- RV 
VAR-ABS 
AR-RV 
Daily GARCH 
Daily RiskMetrics 
Daily FIEGARCH 
Intraday FIEGARCH deseasonlfilter 

VAR-RV +VAR-ABS 
VAR- RV +AR- RV 
VAR-RV +Daily GARCH 
VAR-RV +Daily RiskMetrics 
VAR-RV +Daily FIEGARCH 
VAR-RV +Intraday FIEGARCH 

deseasonlfilter 

a OLS estimates from regressions of realized volatility on a constant and forecasts from different models with heteroskedastic~ty 
robust standard errors In parentheses. 

The forecast evaluation period is December 1, 1987 through December 1, 1996, for a total of 2,223 daily observations. All model 
parameter estimates are based on data from December 1, 1986 through December 1, 1996. 
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TABLE 1II.B 

FORECAST EVALUATION--OUT-OF-SAMPLE, ONE-DAY-AHEAD 

VAR-RV 
VAR-ABS 
AR-RV 
Daily GARCH 
Daily RiskMetrics 
Daily FIEGARCH 
Intraday FIEGARCH deseasonlfilter 

VAR-RV +VAR-ABS 
VAR- RV +AR- RV 
VAR-RV +Daily GARCH 
VAR-RV +Daily RiskMetrics 
VAR-RV +Daily FIEGARCH 
VAR-RV +Intraday FIEGARCH 

deseasonlfilter 

Wb 
VAR-RV 
VAR-ABS 
AR-RV 
Daily GARCH 
Daily RiskMetrics 
Daily FIEGARCH 
Intraday FIEGARCH deseasonifilter 

VAR-RV +VAR-ABS 
VAR- RV +AR- RV 
VAR-RV +Daily GARCH 
VAR-RV +Daily RiskMetrics 
VAR-RV +Daily FIEGARCH 
VAR-RV +Intraday FIEGARCH 

deseasonlfilter 

YID@ 
VAR- RV 
VAR-ABS 
AR-RV 
Daily GARCH 
Daily RiskMetrics 
Daily FIEGARCH 
Intraday FIEGARCH deseasonlfilter 

VAR-RV +VAR-ABS 
VAR- RV +AR- RV 
VAR-RV +Daily GARCH 
VAR-RV +Daily RiskMetrics 
VAR-RV+Daily FIEGARCH 
VAR-RV +Intraday FIEGARCH 

deseasonifilter 

a OLS estimates from regressions of realued volatil~ty on a constant and forecasts from different models with heteroskedasticity 
robust standard errors in parentheses. 

bThe forecast evaluation period IS December 2, 1996 through June 30, 1999, for a total of 596 daily observations. All model 
parameter estimates are based on data from December 1, 1986 through December 1, 1996. 



610 T. ANDERSEN, T. BOLLERSLEV, F. DIEBOLD, AND P. LABYS 

it is edged out by the intraday FIEGARCH predictions, which exhibit somewhat 
higher R,'s.~' However, while we cannot reject the hypothesis that b, = 0 and 
b, = 1for the VAR-RV forecasts, for some of the scenarios the hypothesis that 
b, =0 and b, = 1 is rejected for the intraday FIEGARCH model based on the 
conventional standard errors and traditional levels of significance. 

Turning to the ten-day-ahead forecasts, the VAR-RV results are still good. The 
evaluation regressions are 

Most of the in-sample and out-of-sample results in Tables 1II.C and III.D, respec- 
tively, favor the VAR-RV forecasts.38 In almost every (single-regression) case the 
VAR-RV forecast exhibits a higher R2 than the alternative methods. As with 
the one-day-ahead regressions discussed above, the estimates for b, are gener- 
ally not significantly different from unity, while very few of the estimates for b, 
and b, in the multiple regressions including both the VAR-RV forecasts and the 
other forecasts are statistically significantly different from zero. These results are 
especially noteworthy insofar as several previous studies have found it difficult to 
outperform simple daily GARCH(1, 1) based exchange rate volatility forecasts 
using more complicated univariate or multivariate models (for example, Hansen 
and Lunde (2001) and Sheedy (1998)), or ARCH models estimated directly from 
high-frequency data (for example, Beltratti and Morana (1999)). 

In closing this subsection, we note that the good forecasting performance of 
the VAR-RV model appears robust to a much larger set of models and scenarios 
than those reported here. The supplemental Appendix contains extensive results 
for many other volatility models, as well as scenarios involving alternative volatil- 
ity measures and exclusion of the "once-in-a-generation" anomalous yen move- 
ment on October 7-9, 1998 (see, Cai, Cheung, Lee, and Melvin (2000)). Overall, 
across the many scenarios examined, the VAR-RV forecasts are usually the most 
accurate and consistently among the very best. Of course, in a few instances, one 
or another competitor may perform comparatively well, but those exceptions sim- 
ply prove the rule: the VAR-RV based forecasts are ~ystematicallybest or nearly 
best in all cases. 

37 In a related context, Bollerslev and Wright (2001) find the forecasts from a simple univariate AR 
model for the realized DM/$ volatility to be only slightly inferior to the forecasts from a much more 
complicated frequency domain procedure applied directly to the underlying high-frequency squared 
returns. 

38 To account for the overlap in the multi-day forecasts, we use robust standard errors, calculated 
using an unweighted covariance matrix estimator allowing for up to ninth order serial correlation in 

Ul+li l , , .  
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TABLE 1II.C 

FORECASTEVALUATION-IN-SAMPLE,TEN-DAYS-AHEAD 

-

VAR-RV 
VAR-ABS 
AR-RV 
Daily GARCH 
Daily RiskMetrics 
Daily FIEGARCH 
Intraday FIEGARCH deseasonlfilter 

VAR-RV +VAR-ABS 
VAR-RV +AR-RV 
VAR-RV +Daily GARCH 
VAR-RV +Daily RiskMetrics 
VAR-RV +Daily FIEGARCH 
VAR-RV + Intraday FIEGARCH 

deseasonlfilter 

Wb 
VAR- RV 
VAR-ABS 
AR-RV 
Daily GARCH 
Daily RiskMetrics 
Daily FIEGARCH 
Intraday FIEGARCH deseasonlfilter 

VAR-RV +VAR-ABS 
VAR-RV +AR-RV 
VAR-RV +Daily GARCH 
VAR-RV +Daily RiskMetrics 
VAR-RV +Daily FIEGARCH 
VAR-RV +Intraday FIEGARCH 

deseasonlfilter 

Y/ D w  
VAR-RV 
VAR-ABS 
AR-RV 
Daily GARCH 
Daily RiskMetrics 
Daily FIEGARCH 
Intraday FIEGARCH deseasonlfilter 

VAR-RV +VAR-ABS 
VAR-RV +AR-RV 
VAR-RV +Daily GARCH 
VAR-RV +Daily RiskMetrics 
VAR-RV +Daily FIEGARCH 
VAR-RV +Intraday FIEGARCH 

deseasonlfilter 

a OLS estimates from regressions of realized volatility on a constant and forecasts from different models with heteroskedasticity 
robust standard errors, calculated using an unweighted covariance matrix estimator allowing for up to ninth order serial correlation In 
the error term, in parentheses. 

b ~ h eforecast evaluation period is December 1, 1987 through December 1, 1996, for a total of 2,223 daily observations. All model 
parameter estimates are based on data from December 1, 1986 through December 1, 1996. 



612 T. ANDERSEN, T. BOLLERSLEV, F. DIEBOLD, AND P. LABYS 

TABLE 1II.D 

FORECASTEVALUATION-OUT-OF-SAMPLE,TEN-DAYS-AHEAD 

DMlSb 
VAR- RV 
VAR-ABS 
AR-RV 
Daily GARCH 
Daily RiskMetrics 
Daily FIEGARCH 
Intraday FIEGARCH deseasonlfilter 

VAR-RV +VAR-ABS 
VAR-RV +AR-RV 
VAR-RV +Daily GARCH 
VAR-RV +Daily RiskMetrics 
VAR-RV+Daily FIEGARCH 
VAR-RV +Intraday FIEGARCH 

deseasonlfilter 

Yl$b 
VAR-RV 
VAR-ABS 
AR-RV 
Daily GARCH 
Daily RiskMetrics 
Daily FIEGARCH 
Intraday FIEGARCH 

deseasonlfilter 

VAR-RV +VAR-ABS 
VAR-RV +AR-RV 
VAR-RV +Daily GARCH 
VAR-RV +Daily RiskMetrics 
VAR-RV +Daily FIEGARCH 
VAR-RV +Intraday FIEGARCH 

deseasonlfilter 

Y /DM 
VAR- RV 
VAR-ABS 
AR-RV 
Daily GARCH 
Daily RiskMetrics 
Daily FIEGARCH 
Intraday FIEGARCH 

deseasonlfilter 

VAR-RV +VAR-ABS 
VAR-RV+AR-RV 
VAR-RV +Daily GARCH 
VAR-RV +Daily RiskMetrics 
VAR-RV +Daily FIEGARCH 
VAR-RV +Intraday FIEGARCH 

deseasonlfilter 

a OLS estimates from regressions of realized volatility on a constant and forecasts from different models with heteroskedasticity 
robust standard errors, calculated using an unweighted covariance matrix estimator allowing for up to ninth order serial correlation in 
the error term, in parentheses. 

bThe forecast evaluation period is December 2, 1996 through June 30, 1999, for a total of 596 daily observations. All model 
parameter estimates are based on data from December 1, 1986 through December 1, 1996. 
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6.2. On the Superiority of VAR-RV Forecasts 

Why does the VAR-RV produce superior forecasts? We have identified the 
quadratic variation and its empirical counterpart, the realized volatility, as the 
key objects of interest for volatility measurement, and we consequently assess our 
various volatility forecast relative to this measure. It is perhaps not surprising that 
models built directly for the realized volatility produce forecasts superior to those 
obtained from less direct methods, a conjecture consistent with the literature on 
forecasting under the relevant loss function, such as Christoffersen and Diebold 
(1997). 

There is a more direct reason for the superior performance of the VAR-RV 
forecasts, however. The essence of forecasting is quantification of the map- 
ping from the past and present into the future. Hence, quite generally, superior 
estimates of present conditions translate into superior forecasts of the future. 
Realized volatility excels in this dimension: it provides a relatively precise and 
quickly-adapting estimate of current volatility, because it exploits valuable intra- 
day information. Standard models based on daily data such as GARCH and 
RiskMetrics rely on long and slowly decaying weighted moving averages of past 
squared returns and therefore adapt only gradually to volatility movements. 
Suppose, for example, that the true volatility has been low for many days, 
t = 1, . . . ,T -1, so that both realized and GARCH volatilities are presently low 
as well. Now suppose that the true volatility increases sharply on day T and that 
the effect is highly persistent as is typical. Realized volatility for day T, which 
makes effective use of the day-T information, will increase sharply as well, as is 
appropriate. GARCH or RiskMetrics volatility, in contrast, will not change at all 
on day T, as they depend only on squared returns from days T - 1, T -2, . . . , 
and they will increase only gradually on subsequent days, as they approximate 
volatility via a long and slowly decaying exponentially weighted moving average. 

Figure 5 confirms the above assertions graphically. We display the realized 
standard deviations for DM/$ returns, #/$ returns, and YDM returns, along 
with the corresponding one-day-ahead GARCH forecasts for the out-of-sample 
period, December 2,1996, through June 30, 1999. The GARCH forecasts appear 
to track the low-frequency variation adequately, matching the broad temporal 
movements in the volatilities, but they track much less well at higher frequencies. 
Note the striking contrast with Figure 4 which, as discussed earlier, reveals a 
close coherence between the daily realized volatilities and the VAR-RV forecasts 
at high as well as low frequencies. 

We provide a more detailed illustration of the comparative superiority of the 
VAR-RV forecasts in Figure 6, which depicts four illustrative DM/$ episodes of 
thirty-five days each.39 First, for days one through twenty-five (the non-shaded 
region) we show the daily realized volatility together with the one-day-ahead 
forecasts made on the previous day using the VAR-RV and GARCH models. The 

39The actual start dates for the forecasts in each of the four panels are 1111611988, 31611989, 
5/13/1991, and 812811998, respectively. 
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FIGURE5.-Realized volatility and out-of-sample GARCH forecasts. The figure shows time series 
of daily realized volatility for DM/$, Y/$,and YDM, along with one-day-ahead GARCH(1, 1) fore-
casts. The plot spans the out-of-sample period, running from December 2, 1996 through June 30, 
1999. The dotted line is realized volatility, while the solid line gives the corresponding one-day-ahead 
GARCH forecast. See the main text for details. 

accuracy of the VAR-RV forecasts is striking, as is the inaccuracy of the GARCH 
forecasts, and their inability to adapt to high-frequency movements. Second, for 
days twenty-six through thirty-five (the shaded region), we continue to display 
the daily realized volatility, but we show one- through ten-day-ahead VAR-RV 
and GARCH forecasts based on information available on day twenty-five. Hence 
the forecasts for day twenty-six are one-day-ahead, the forecasts for day twenty- 
seven are two-day-ahead, and so on. Examination of these multi-step trajecto- 
ries makes clear the forecasting benefit of having a superior estimate of current 
volatility: in each case the VAR-RV forecasts "take off" from a good estimate 
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Time Time 

Time Time 

Solid: Realized Volatility Dash: VAR-RV Forecast Dot: GARCH Forecast 

FIGURE6.-Realized volatility and two out-of-sample forecasts. The figure shows four out-of- 
sample episodes of thirty-five days each. For each of the first twenty-five days, we show the daily 
realized volatility together with the one-day-ahead forecasts made on the previous day using the VAR- 
RV and GARCH(1, 1) models. Then, for days twenty-six through thirty-five (shaded), we continue 
to show daily realized volatility, but we show multi-step VAR-RV and GARCH forecasts based on 
information available on day twenty-five. Hence the forecasts for day twenty-six are one-day-ahead, 
the forecasts for day twenty-seven are two-day-ahead, and so on. See the main text for details. 

of current (day twenty-five) volatility, and then revert to the unconditional mean 
of approximately 0.6 in a fashion consistent with historical experience. In con- 
trast, the lack of an equally accurate assessment of current volatility within the 
GARCH setting results in markedly inferior longer-run volatility forecasts. 

The above findings do not reflect a failure of the GARCH model per se, 
but rather the efficacy of exploiting volatility measures based on intraday return 
observations. In fact, in a related empirical study Andersen and Bollerslev (1998) 
find that a daily GARCH(1, 1) model explains about as much of the future varia- 
tion in daily exchange rate volatility as is theoretically feasible if the model were 
true in population. The point is that the noise in daily squared returns neces- 
sarily renders the measurements of the current volatility innovation imprecise, 
independent of the correct model for the daily volatility. 
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6.3. On the Role of Smoothing in the Construction 
of Realized Volatility Forecasts 

Although the realized volatility is less noisy than, for example, the daily 
squared or absolute returns, it nevertheless contains measurement error, as 
emphasized in recent work by Andreou and Ghysels (2002), Bai, Russell, and 
Tiao (2000), Barndorff-Nielsen and Shephard (2002a, b), and Meddahi (2002) 
among others; see also the discussion in Andersen, Bollerslev, and Diebold 
(2002). Importantly, the approach to volatility modeling and forecasting that we 
advocate here remains appropriate in the presence of such measurement errors. 

Intuitively, because the realized volatility is subject to measurement error, it 
seems desirable that fitted and forecasted realized volatilities should--one way 
or another-involve smoothing, to reduce the effects of the error. Indeed, this is 
the basic message of much recent work on realized volatility measurement. For 
example, Andreou and Ghysels (2002) recommend smoothing in a nonparametric 
fashion, while Barndorff-Nielsen and Shephard (2002a) work with a specific 
stochastic volatility model, which allows them to quantify the distribution of the 
measurement error in the realized volatility proxy, and then to fit and forecast 
the corresponding latent integrated volatility (quadratic variation) using an opti- 
mal nonlinear smoother and filter based on a state-space representation of the 
model. As such, both the fitted and forecasted volatilities are ultimately smoothed 
functions of the history of the daily realized volatilities. Meanwhile, the measure- 
ment errors in the (unsmoothed) realized volatilities are (approximately) serially 
uncorrelated under quite general conditions. This justifies our fitting of a reduced 
form model directly to the realized volatility without explicitly accounting for 
the measurement error in the dependent variable. Of course, our approach also 
involves smoothing, if only implicitly, as both the fitted and forecasted volatilities 
become smoothed functions of the history of the daily realized volatilities. 

This direct approach to volatility modeling and forecasting is further corrob- 
orated by the recent theoretical results in Andersen, Bollerslev, and Meddahi 
(2002) for the general class of eigenfunction stochastic volatility models. In partic- 
ular, population forecasts of the (latent) integrated volatility formed by projecting 
the volatility on the history of the realized volatilities are almost as accurate as 
forecasts formed by projecting on the (unattainable) history of integrated volatil- 
ities. This implies, among other things, that the measurement error component is 
largely irrelevant for forecasting: "feasible" forecasts based on the history of the 
realized volatilities are approximately as accurate as "infeasible" forecasts based 
on the history of the integrated volatilities, or on any other empirical smoothed 
volatility measures, including for example those of Andreou and Ghysels (2002). 
Moreover, the theoretical difference between the projection on current realized 
volatility versus current and past realized volatilities is small, suggesting that par- 
simonious ARMA-type models fit directly to the realized volatility-precisely as 
advocated in this paper-should perform well in practical forecasting situations. 
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6.4. Density Forecasts and Quantile Calculations: a VAR for I/aR 

In light of the good performance of the VAR-RV volatility forecasts, we now 
turn to an investigation of the corresponding return density forecasts and VaR 
calculations, in which we explicitly incorporate the theoretically motivated distri- 
butional features of the realized volatilities and standardized returns highlighted 
in Section 4. 

Measuring and forecasting portfolio Value-at-Risk, or VaR, and fluctuations 
in VaR due to changing market conditions and/or portfolio shares, is an impor- 
tant part of modern financial risk management; see, e.g., GouriCroux, Laurent, 
and Scaillet (2000).40 Our results suggest that accurate return density forecasts 
and associated VaR estimates may be obtained from a long-memory VAR for 
realized volatility, coupled with the assumption of normally distributed standard- 
ized returns. We assess this conjecture using the methods of Diebold, Gunther, 
and Tay (1998). The basic idea is that a good density forecast should satisfy two 
criteria. First, the nominal p percent VaR should be exceeded only p percent 
of the time, for all p, which we call correct unconditional calibration. Second, a 
violation of nominal p, percent VaR today should convey no information as to 
whether nominal p, percent VaR will be violated tomorrow, for all p, and p,. If 
a density forecast satisfies the two criteria, we say that it is correctly conditionally 
calibrated. More formally, suppose that the daily returns, r,, are generated from 
the series of one-day-ahead conditional densities, f (r, I denotes9,-,), where 9,-, 
the full information set available at time t - 1. If the series of one-day-ahead 
conditional density forecasts, f,,,-,(r,), coincides with f (r, I 9,-,), it then follows 
under weak conditions that the sequence of probability integral transforms of r, 
with respect to ftlt-,(.) should be iid uniformly distributed on the unit interval. 
That is, {z,) is distributed as iid U(0, I),  where we define the probability integral 
transform, z,, as the cumulative density function corresponding to ftlt-,(.) eval- 
uated at r,; i.e., z, = f,,,-,(u) du. Hence the adequacy of the VAR-RV based 
volatility forecast and the lognormal-normal mixture distribution may be assessed 
by checking whether the corresponding distribution of {z,) is iid U(0, l ) .  

To this end, we report in Table IV the percentage of the realized DM/$, W$, 
and equally-weighted portfolio returns that are less than various quantiles fore- 
cast by the long-memory lognormal-normal mixture model. The close correspon- 
dence between the percentages in each column and the implied quantiles by 
the model, both in-sample and out-of-sample, is striking. It is evident that the 
VAR-RV lognormal-normal mixture model affords a very close fit for all of the 
relevant VaRs. 

Although uniformity of the z, sequences is necessary for adequacy of the den- 
sity forecasts, it is not sufficient. The 2,'s must be independent as well, to guaran- 
tee, for example, that violation of a particular quantile forecast on day t conveys 

40 Portfolio VaR at confidence level p percent and horizon k is simply the pth percentile of the 
k-step-ahead portfolio return density forecast. For an overview, see Duffie and Pan (1997). When 
calculating VaR at confidence level p and horizon k, the appropriate values of p and k are generally 
situation-specific, although the Basel Committee on Banking Supervision has advocated the system- 
atic use of five- and one-percent VaR, and one- and ten-day horizons. 
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TABLE IV 
DISTRIBUTIONS PROBABILITY TRANSFORMSOF ONE-DAY-AHEAD INTEGRAL 

a Selected points of the empirical cumulative distribution function for the probabil~ty integral transform of returns with respect to 
the denslty forecasts from our VAR-RV long-memory lognormal-normal mixture model. 

The in-sample forecast evaluation period is December 1, 1987 through December 1. 1996. 
'The out-of-sample period is December 2, 1996 through June 30. 1999. 
*Portfolio 1s an equally-weighted DM/$, Y/$ portfolio. 

no information regarding its likely violation on day t +1.In general, dependence 
in 2,  would indicate that dynamics have been inadequately modeled and captured 
by the forecasts. To assess independence, Figure 7 therefore plots the sample 
autocorrelation functions for ( z ,-2 )  and ( z ,-2)2  corresponding to the one-day 
ahead out-of-sample density forecasts for the DM/$, the Y/$,and the equally- 
weighted portfolio returns. All told, there is no evidence of serial correlation in 
any of the six series, indicating that the model's density forecasts are not only 
correctly unconditionally calibrated, but also correctly conditionally calibrated. 
This apparent lack of dependence is confirmed by formal Ljung-Box portmanteau 
tests for the joint significance of the depicted autocorrelations and also carries 
over to the in-sample period, as further detailed in the supplemental Appendix. 

Finally, it is worth noting that although the lognormal distribution is very 
convenient from an empirical modeling perspective, it is not closed under tem- 
poral aggregation. Consequently, the lognormal-normal mixture distribution is 
formally horizon specific. However, as shown in the Appendix, almost identical 
results obtain both in- and out-of-sample for the one- and ten-day horizons using 
an inverse Gaussian-normal mixture d i~ t r ibu t ion .~~ This latter distribution is, of 
course, closed under temporal aggregation. 

7. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

Guided by a general theory for continuous-time arbitrage-free price processes, 
we develop a framework for the direct modeling and forecasting of realized 
volatility and correlation. Our methods are simple to implement empirically, even 
in multivariate situations. We illustrate the idea in the context of the foreign 

41 This parallels the findings related to the unconditional distribution of the realized volatility in 
Barndorff-Nielsen and Shephard (2002a), who find the inverse Gaussian and the lognormal distribu- 
tions to be virtually indistinguishable empirically. 
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FIGURE7.-Dependence structure of probability integral transforms, out-of-sample one-day- 
ahead density forecasts. The figure graphs the sample autocorrelation functions of ( 2 ,-i) and 
(2, - Z ) 2 ,  where z ,  denotes the probability integral transform of returns with respect to the one-day- 
ahead density forecasts from our long-memory lognormal-normal mixture model; see the main text 
for details. The out-of-sample period is December 2, 1996 through June 30, 1999. The three subplots 
correspond to DM/$ returns, Y/$ returns, and equally-weighted portfolio returns. The dashed lines 
are Bartlett two standard error bands. 

exchange market, specifying and estimating a long-memory Gaussian VAR for a 
set of daily logarithmic realized volatilities. The model produces very successful 
volatility forecasts, generally dominating those from conventional GARCH and 
related approaches. It also generates well-calibrated density forecasts and asso- 
ciated quantile, or VaR, estimates for our multivariate foreign exchange applica- 
tion. Numerous interesting directions for future research remain. 

First, the realized volatility measures used in this paper do not distinguish 
between variability originating from continuous price movements or jumps. 
However, as discussed in Section 2, the dynamic impact may differ across 
the two sources of variability. Hence, it is possible that improved volatility 
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forecasting models may be constructed by explicitly modeling the jump compo- 
nent, if present. Recent results in Maheu and McCurdy (2002) based on Markov 
switching models also suggest that explicitly accounting for nonlinear features in 
the realized volatility may result in even better volatility forecasts. 

Second, although the lognormal-normal and inverse Gaussian-normal mixture 
distributions both work very well in the present context, the predictive distribu- 
tion could be refined and adapted to more challenging environments using the 
numerical simulation methods of Geweke (1989), the Cornish-Fisher expansion 
of Baillie and Bollerslev (1992), or the recalibration methods of Diebold, Hahn, 
and Tay (1999). This would, for example, be required to deal with conditionally 
asymmetric return distributions over longer horizons arising from a significant 
correlation between volatility and return innovations. 

Third, although we focused on using density forecasts to obtain VaR estimates 
(quantiles), the same density forecasts could of course be used to calculate other 
objects of interest in financial risk management. Examples include the probability 
of loss exceeding a specified threshold (shortfall probabilities), and the expected 
loss conditional upon loss exceeding a pre-specified threshold (expected short- 
fall), as discussed for example in Heath, Delbaen, Eber, and Artzner (1999) and 
Basak and Shapiro (2001). 

Fourth, our approach to exchange rate density forecasting could be extended to 
other classes of financial assets. Although the structure of our proposed modeling 
framework builds directly on the empirical regularities for the foreign exchange 
markets documented in Section 4, the empirical features characterizing other 
asset markets appear remarkably similar, as shown for example by Andersen, 
Bollerslev, Diebold, and Ebens (2001) for U.S. equities. 

Fifth, and perhaps most importantly, volatility forecasts figure prominently in 
many practical financial decisions extending well beyond risk management into 
spot and derivative asset pricing (see, for example, Bollerslev and Mikkelsen 
(1999)) and portfolio allocation (see, for example, Busse (1999) and Fleming, 
Kirby, and Ostdiek (2001, 2002)). It will be of interest to explore the gains 
afforded by the simple volatility modeling and forecasting procedures developed 
here, particularly in high-dimensional settings, and to compare the results to 
those arising from more standard recent multivariate volatility modeling pro- 
cedures such as Engle (2002) and Tse and Tsui (2002). In this regard, a cou- 
ple of issues merit particular attention. One critical task is to develop realized 
volatility forecasting models that are parameterized in ways that guarantee pos- 
itive definiteness of forecasted covariance matrices within high-dimensional set- 
tings. Because the in-sample realized covariance matrix is positive definite under 
quite general conditions, one approach would be to model the Cholesky fac- 
tors rather than the realized covariance matrix itself. The corresponding fore- 
casts for the Cholesky factors are then readily transformed into forecasts for 
the future variances and covariances by simple matrix multiplications. More pre- 
cisely, under the conditions of Lemma 1 it follows that Vl is positive definite, 
t = 1,2, . . . ,T. Hence, there exists a corresponding unique sequence of lower 
triangular Cholesky factors, PI, such that V, =P,P:, t = 1,2, . . . ,T. The resulting 
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data vector, vech(P,), t = 1,2, . . . ,T, may be modeled directly and used to pro- 
duce a forecast, say vech(PT+,,,), which may in turn be converted back into a 
forecast of VT+hIT r PT+hITP&+hIT. 

Finally, and also of particular relevance in high-dimensional situations, allow- 
ing for factor structure in the modeling and forecasting of realized volatility 
may prove useful, as factor structure is central to both empirical and theoretical 
financial economics. Previous research on factor volatility models has typically 
relied on complex procedures involving a latent volatility factor, as for example 
in Diebold and Nerlove (1989), Engle, Ng, and Rothschild (1990), King, Sen- 
tana, and Wadhwani (1994), and Meddahi and Renault (2002). In contrast, factor 
analysis of realized volatility should be relatively straightforward, even in high- 
dimensional environments. Moreover, the identification of explicit volatility fac- 
tors, and associated market-wide variables that underlie the systematic volatility 
movements, may help to provide an important step towards a better understand- 
ing of "the economics of volatility." 
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