
Panel Data Models
Chapter 5

Financial Econometrics
Michael Hauser

WS17/18

1 / 63



Content

I Data structures:
Times series, cross sectional, panel data, pooled data

I Static linear panel data models:
fixed effects, random effects, estimation, testing

I Dynamic panel data models:
estimation

2 / 63



Data structures

3 / 63



Data structures

We distinguish the following data structures
I Time series data:

I {xt , t = 1, . . . ,T}, univariate series, e.g. a price series:
Its path over time is modeled. The path may also depend on third variables.

I Multivariate, e.g. several price series:
Their individual as well as their common dynamics is modeled. Third variables
may be included.

I Cross sectional data are observed at a single point of time for several
individuals, countries, assets, etc.,
xi , i = 1, . . . ,N.
The interest lies in modeling the distinction of single individuals, the
heterogeneity across individuals.
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Data structures: Pooling

Pooling data refers to two or more independent data sets of the same type.
I Pooled time series:

We observe e.g. return series of several sectors, which are assumed to be
independent of each other, together with explanatory variables. The number
of sectors, N, is usually small.
Observations are viewed as repeated measures at each point of time. So
parameters can be estimated with higher precision due to an increased
sample size.
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Data structures: Pooling

I Pooled cross sections:
Mostly these type of data arise in surveys, where people are asked about e.g.
their attitudes to political parties. This survey is repeated, T times, before
elections every week. T is usually small.
So we have several cross sections, but the persons asked are chosen
randomly. Hardly any person of one cross section is member of another one.
The cross sections are independent.
Only overall questions can be answered, like the attitudes within males or
women, but no individual (even anonymous) paths can be identified.
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Data structures: Panel data

A panel data set (also longitudinal data) has both a cross-sectional and a time
series dimension, where all cross section units are observed during the whole time
period.
xit , i = 1, . . . ,N, t = 1, . . . ,T . T is usually small.

We can distinguish between balanced and unbalanced panels.

Example for a balanced panel:
The Mikrozensus in Austria is a household, hh, survey, with the same size of
22.500 each quarter. Each hh has to record its consumption expenditures for 5
quarters. So each quarter 4500 members enter/leave the Mikrozensus. This is a
balanced panel.
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Data structures: Panel data

A special case of a balanced panel is a fixed panel. Here we require that all
individuals are present in all periods.

An unbalanced panel is one where individuals are observed a different number of
times, e.g. because of missing values.

We are concerned only with balanced/fixed panels.

In general panel data models are more ’efficient’ than pooling cross-sections,
since the observation of one individual for several periods reduces the variance
compared to repeated random selections of individuals.
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Pooling time series: estimation

We consider T relatively large, N small.

yit = α + β xit + uit

In case of heteroscedastic errors, σ2
i 6= σ2(= σ2

u), individuals with large errors will
dominate the fit. A correction is necessary. It is similar to a GLS and can be
performed in 2 steps.

First estimate under assumption of const variance for each indiv i and calculate
the individual residual variances, s2

i .

s2
i =

1
T − 2

∑
t

(yit − a− b xit )
2

9 / 63



Pooling time series: estimation

Secondly, normalize the data with si and estimate

(yit/si) = α (1/si) + β (xit/si) + ũit

ũit = uit/si has (possibly) the required constant variance, is homoscedastic.

Remark: V(ũit ) = V(uit/si) ≈ 1

Dummies may be used for different cross sectional intercepts.
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Panel data modeling
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Example

Say, we observe the weekly returns of 1000 stocks in two consecutive weeks.

The pooling model is appropriate, if the stocks are chosen randomly in each
period. The panel model applies, if the same stocks are observed in both periods.

We could ask the question, what are the characteristics of stocks with high/low
returns in general.

For panel models we could further analyze, whether a stock with high/low return in
the first period also has a high/low return in the second.
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Panel data model

The standard static model with i = 1, . . . ,N, t = 1, . . . ,T is

yit = β0 + x ′itβ + εit

xit is a K -dimensional vector of explanatory variables, without a const term.
β0, the intercept, is independent of i and t .
β, a (K × 1) vector, the slopes, is independent of i and t .
εit , the error, varies over i and t .

Individual characteristics (which do not vary over time), zi , may be included

yit = β0 + x ′itβ1 + z ′i β2 + εit
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Two problems: endogeneity and autocorr in the errors

I Consistency/exogeneity:
Assuming iid errors and applying OLS we get consistent estimates, if
E(εit ) = 0 and E(xitεit ) = 0, if the xit are weakly exogenous.

I Autocorrelation in the errors:
Since individual i is repeatedly observed (contrary to pooled data)

Corr(εi,s, εi,t ) 6= 0

with s 6= t is very likely. Then,
I standard errors are misleading (similar to autocorr residuals),
I OLS is inefficient (cp. GLS).

14 / 63



Common solution for individual unobserved heterogeneity

Unobserved (const) individual factors, i.e. if not all zi variables are available, may
be captured by αi . E.g. we decompose εit in

εit = αi + uit with uit iid(0, σ2
u)

uit has mean 0, is homoscedastic and not serially correlated.

In this decomposition all individual characteristics - including all observed, z ′i β2, as
well as all unobserved ones, which do not vary over time - are summarized in the
αi ’s.

We distinguish fixed effects (FE), and random effects (RE) models.
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Fixed effects model, FE

I Fixed effects model, FE:
αi are individual intercepts (fixed for given N).

yit = αi + x ′itβ + uit

No overall intercept is (usually) included in the model.

Under FE, consistency does not require, that the individual intercepts (whose
coefficients are the αi ’s) and uit are uncorrelated. Only E(xituit ) = 0 must hold.

There are N − 1 additional parameters for capturing the individual
heteroscedasticity.
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Random effects model, RE

I Random effects model, RE:

αi ∼ iid(0, σ2
α)

yit = β0 + x ′itβ + αi + uit , uit ∼ iid(0, σ2
u)

The αi ’s are rvs with the same variance. The value αi is specific for individual
i . The α’s of different indivs are independent, have a mean of zero, and their
distribution is assumed to be not too far away from normality. The overall
mean is captured in β0.
αi is time invariant and homoscedastic across individuals.

There is only one additional parameter σ2
α.

Only αi contributes to Corr(εi,s, εi,t ). αi determines both εi,s and εi,t .
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RE some discussion

I Consistency:
As long as E[xitεit ] = E[xit (αi + uit )] = 0, i.e. xit are uncorrelated with αi

and uit , the explanatory vars are exogenous, the estimates are consistent.

There are relevant cases where this exogeneity assumption is likely to be
violated:
E.g. when modeling investment decisions the firm specific heteroscedasticity
αi might correlate with (the explanatory variable of) the cost of capital of firm i .
The resulting inconsistency can be avoided by considering a FE model
instead.

I Estimation:
The model can be estimated by (feasible) GLS which is in general more
’efficient’ than OLS.
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The static linear model
– the fixed effects model

3 Estimators:
– Least square dummy variable estimator, LSDV
– Within estimator, FE
– First difference estimator, FD
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[LSDV] Fixed effects model: LSDV estimator

We can write the FE model using N dummy vars indicating the individuals.

yit =
N∑

j=1

αjd
j
it + x ′itβ + uit uit ∼ iid(0, σ2

u)

with dummies d j , where d j
it = 1 if i = j , and 0 else.

The parameters can be estimated by OLS. The implied estimator for β is called
the LS dummy variable estimator, LSDV.
Instead of exploding computer storage by increasing the number of dummy
variables for large N the within estimator is used.
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[LSDV] Testing the significance of the group effects

Apart from t-tests for single αi (which are hardly used) we can test, whether the
indivs have ’the same intercepts’ wrt ’some have different intercepts’ by an F -test.

The pooled model (all intercepts are restricted to be the same), H0, is

yit = β0 + x ′itβ + uit

the fixed effects model (intercepts may be different, are unrestricted), HA,

yit = αi + x ′itβ + uit i = 1, . . . ,N

The F ratio for comparing the pooled with the FE model is

FN−1,N T−N−K =
(R2

LSDV − R2
Pooled )/(N − 1)

(1− R2
LSDV )/(N T − N − K )
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[FE] Within transformation, within estimator

The FE estimator for β is obtained, if we use the deviations from the individual
means as variables. The model in individual means is with ȳi =

∑
t yit/T and

ᾱi = αi , ūi = 0
ȳi = αi + x̄ ′i β + ūi

Subtraction from yit = αi + x ′itβ + uit gives

yit − ȳi = (xit − x̄i)
′β + (uit − ūi)

where the intercepts vanish. Here the deviation of yit from ȳi is explained (not the
difference between different individuals, ȳi and ȳj ).

The estimator for β is called the within or FE estimator.

Within refers to the variability (over time) among observations of individual i .
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[FE] Within/FE estimator β̂FE

The within/FE estimator is

β̂FE =

(∑
i

∑
t

(xit − x̄i)(xit − x̄i)
′

)−1∑
i

∑
t

(xit − x̄i)(yit − ȳi)

This expression is identical to the well known formula β̂ = (X ′X )−1X ′y for N
(demeaned wrt individual i) data with T repeated observations.
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[FE] Finite sample properties of β̂FE

Finite samples:
I Unbiasedness: if all xit are independent of all ujs, strictly exogenous.
I Normality: if in addition uit is normal.
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[FE] Asymptotic samples properties of β̂FE

Asymptotically:
I Consistency wrt N →∞, T fix: if E[(xit − x̄i)uit ] = 0.

I.e. both xit and x̄i are uncorrelated with the error, uit .
This (as x̄i =

∑
t xi,t/T ) implies that xit is strictly exogenous:

E[xisuit ] = 0 for all s, t

xit has not to depend on current, past or future values of the error term of
individual i . This excludes

I lagged dependent vars
I any xit , which depends on the history of y

Even large N do not mitigate possible violations.
I Asymptotic normality: under consistency and weak conditions on u.
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[FE] Properties of the N intercepts, α̂i , and V(β̂FE)

I Consistency of α̂i wrt T →∞: if E[(xit − x̄i)uit ] = 0.
There is no convergence wrt to N, even if N gets large. Cp. ȳi = (1/T )

∑
t yit .

The estimates for the N intercepts, α̂i , are simply

α̂i = ȳi − x̄ ′i β̂FE

Reliable estimates for V(β̂FE ) are obtained from the LSDV model. A consistent
estimate for σ2

u is

σ̂2
u =

1
N T − N − K

∑
i

∑
t

û2
it

with ûit = yit − α̂i − x ′it β̂FE
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[FD] The first difference, FD, estimator for the FE model

An alternative way to eliminate the individual effects αi is to take first differences
(wrt time) of the FE model.

yit − yi,t−1 = (xit − xi,t−1)′β + (uit − ui,t−1)

or
∆yit = ∆x ′itβ + ∆uit

Here also, all variables, which are only indiv specific - they do not change with t -
drop out.

Estimation with OLS gives the first-difference estimator

β̂FD =

(∑
i

T∑
t=2

∆xit ∆x ′it

)−1∑
i

T∑
t=2

∆xit ∆yit
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[FD] Properties of the FD estimator

I Consistency for N →∞: if E[∆xit ∆uit ] = 0.
This is slightly less demanding than for the within estimator, which is based on
strict exogeneity.
FD allows e.g. correlation between xit and ui,t−2.

I The FD estimator is slightly less efficient than the FE, as
∆uit exhibits serial correlation, even if uit ’s are uncorrelated.

I FD looses one time dimension for each i .
FE looses one degree of freedom for each i by using ȳi , x̄i .
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The static linear model
– estimation of the random effects model
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Estimation of the random effects model

yit = β0 + x ′itβ + αi + uit , uit ∼ iid(0, σ2
u), αi ∼ iid(0, σ2

α)

where (αi + uit ) is an error consisting of 2 components:
I an individual specific component, which does not vary over time, αi .
I a remainder, which is uncorrelated wrt i and t , uit .
I αi and uit are mutually independent, and indep of all xjs.

As simple OLS does not take this specific error structure into account, so GLS is
used.
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[RE] GLS estimation

In the following we stack the errors of individual i , αi and uit . Ie, we put each of
them into a column vector. (αi + uit ) reads then as

αi ιT + ui

αi is constant for individual i
ιT = (1, . . . ,1)′ is a (T × 1) vector of only ones.
ui = (ui1, . . . ,uiT )′ is a vector collecting all uit ’s for indiv i .
IT is the T -dimensional identity matrix.

Since the errors of different indiv’s are independent, the covar-matrix consists of N
identical blocks in the diagonal. Block i is

V(αi ιT + ui) = Ω = σ2
α ιT ι

′
T + σ2

u IT

Remark: The inverse of a block-diag matrix is a block-diag matrix with the inverse blocks in
the diag. So it is enough to consider indiv blocks.
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[RE] GLS estimation

GLS corresponds to premultiplying the vectors (yi1, . . . , yiT )′, etc. by Ω−1/2. Where

Ω−1 = σ−2
u

[
IT − ψ̃ ιT ι

′
T

]
with ψ̃ =

σ2
α

σ2
u + Tσ2

α

and

ψ =
σ2

u

σ2
u + Tσ2

α

Remark: The GLS for the classical regression model is

β̂GLS = (X ′Ω−1X )−1X ′Ω−1y

where u ∼ .(0,Ω) is heteroscedastic.
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[RE] GLS estimator
The GLS estimator can be written as

β̂GLS =

(∑
i

∑
t

(xit − x̄i)(xit − x̄i)
′ + ψ

∑
i

T (x̄i − x̄)(x̄i − x̄)′

)−1

×

(∑
i

∑
t

(xit − x̄i)(yit − ȳi)
′ + ψ

∑
i

T (x̄i − x̄)(ȳi − ȳ)′

)

I If ψ = 0, (σ2
u = 0), the GLS estimator is equal to the FE estimator. As if N

individual intercepts were included.
I If ψ = 1, (σ2

α = 0). The GLS becomes the OLS estimator. Only 1 overall
intercept is included, as in the pooled model.

I If T →∞ then ψ → 0. I.e.: The FE and RE estimators for β are equivalent for
large T . (But not for T fix and N →∞.)
Remark: (

∑
i
∑

t +
∑

i T )/(N T ) is finite as N or T or both→∞ .
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Interpretation of within and between, ψ = 1

Within refers to the variation within one individual (over time),
between measures the variation between the individuals.

The within and between components

(yit − ȳ) = (yit − ȳi) + (ȳi − ȳ)

are orthogonal. So∑
i

∑
t

(yit − ȳ)2 =
∑

i

∑
t

(yit − ȳi)
2 + T

∑
i

(ȳi − ȳ)2

The variance of y may be decomposed into the sum of variance within and the
variance between.

ȳi = (1/T )
∑

t yit and ȳ = (1/(N T )
∑

i
∑

t yit
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[RE] Properties of the GLS

I GLS is unbiased, if the x ’s are independent of all uit and αi .
I The GLS will be more efficient than OLS in general under the RE

assumptions.
I Consistency for N →∞ (T fix, or T →∞):

if E[(xit − x̄i)uit ] = 0 and E[x̄iαi ] = 0
holds.

I Under weak conditions (errors need not be normal) the feasible GLS is
asymptotically normal.
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Comparison and testing of FE and RE
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Interpretation: FE and RE

I Fixed effects: The distribution of yit is seen conditional on xit and individual
dummies di .

E[yit |xit ,di ] = xitβ + αi

This is plausible if the individuals are not a random draw, like in samples of
large companies, countries, sectors.

I Random effects: The distribution of yit is not conditional on single individual
characteristics. Arbitrary indiv effects have a fixed variance. Conclusions wrt a
population are drawn.

E[yit |xit ,1] = xitβ + β0

If the di are expected to be correlated with the x ’s, FE is preferred. RE increases
only efficiency, if exogeneity is guaranteed.
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Interpretation: FE and RE (T fix)

The FE estimator, β̂FE , is
I consistent (N →∞) and efficient under the FE model assumptions.
I consistent, but not efficient, under the RE model assumptions, as the

correlation structure of the errors is not taken into account (replaced only by
different intercepts). As the error variance is not estimated consistently, the
t-values are not correct.

The RE estimator is
I consistent (N →∞) and efficient under the assumptions of the RE model.
I not consistent under the FE assumptions, as the true explanatory vars (di ,xit )

are correlated with (αi + uit ) [with ψ̂ 6= 0 and x̄i 6= x̄ biased for fix T ].
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Hausman test

Hausman tests the H0 that xit and αi are uncorrelated. We compare therefore two
estimators

I one, that is consistent under both hypotheses, and
I one, that is consistent (and efficient) only under the null.

A significant difference between both indicates that H0 is unlikely to hold.

H0 is the RE model
yit = β0 + x ′itβ + αi + uit

HA is the FE model
yit = αi + x ′itβ + uit

I β̂RE is consistent (and efficient), under H0, not under HA.
I β̂FE is consistent, under H0 and HA.

39 / 63



Test FE against RE: Hausman test

We consider the difference of both estimators. If it is large, we reject the null.

β̂FE − β̂RE

Since β̂RE is efficient under H0, it holds

V(β̂FE − β̂RE ) = V(β̂FE )− V(β̂RE )

The Hausman statistic under H0 is

(β̂FE − β̂RE )′[V̂(β̂FE )− V̂(β̂RE )]−1(β̂FE − β̂RE )
asy∼ χ2(K )

If in finite samples [V̂(β̂FE )− V̂(β̂RE )] is not positive definite, testing is
performed only for a subset of β.
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Comparison via goodness-of-fit, R2 wrt β̂

We are often interested in a distinction between the within R2 and the between R2.
The within R2 for any arbitrary estimator is given by

R2
within(β̂) = Corr2[ŷit − ŷi , yit − ȳi ]

and between R2 by
R2

between(β̂) = Corr2[ŷi , ȳi ]

where ŷit = x ′it β̂, ŷi = x̄ ′i β̂ and ŷit − ŷi = (xit − x̄i)
′β̂.

The overall R2 is
R2

overall(β̂) = Corr2[ŷit , yit ]
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Goodness-of-fit, R2

I The usual R2 is valid for comparison of the pooled model estimated by OLS
and the FE model.

I The comparison of the FE and RE via R2 is not valid as in the FE the αi ’s are
considered as explanatory variables, while in the RE model they belong to the
unexplained error.

I Comparison via R2 should be done only within the same class of models and
estimators.
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Testing for autocorrelation

A generalization of the Durbin-Watson statistic for autocorr of order 1 can be
formulated

DWp =

∑
i
∑T

t=2(ûit − ûi,t−1)2∑
i
∑

t û2
it

The critical values depend on T ,N and K . For T ∈ [6,10] and K ∈ [3,9] the
following approximate lower and upper bounds can be used.

N = 100 N = 500 N = 1000
dL dU dL dU dL dU

1.86 1.89 1.94 1.95 1.96 1.97
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Testing for heteroscedasticity

A generalization of the Breusch-Pagan test is applicable.
σ2

u is tested whether it depends on a set of J third variables z .

V(uit ) = σ2h(z ′itγ)

where for the function h(.), h(0) = 1 and h(.) > 0 holds.

The null hypothesis is γ = 0.

The N(T − 1) multiple of R2
u of the auxiliary regression

û2
it = σ2h(z ′itγ) + vit

is distributed under the H0 asymptotically χ2(J) with J degrees of freedom.

N(T − 1)R2
u

a∼ χ2(J)
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Dynamic panel data models
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Dynamic panel data models

The dynamic model with one lagged dependent without exogenous variables,
|γ| < 1, is

yit = γ yi,t−1 + αi + uit , uit ∼ iid(0, σ2
u)
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Endogeneity problem

Here, yi,t−1 depends positively on αi :
This is simple to see, when inspecting the model for period (t − 1)

yi,t−1 = γ yi,t−2 + αi + ui,t−1

There is an endogeneity problem. OLS or GLS will be inconsistent for N →∞ and
T fixed, both for FE and RE. (Easy to see for RE.)

The finite sample bias can be substantial for small T . E.g. if γ = 0.5, T = 10, and
N →∞

plimN→∞ γ̂FE = 0.33

However, as in the univariate model, if in addition T →∞, we obtain a consistent
estimator. But T is i.g. small for panel data.
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The first difference estimator (FD)

Using the 1st difference estimator (FD), which eliminates the αi ’s

∆yit = γ∆yi,t−1 + ∆uit

yit − yi,t−1 = γ(yi,t−1 − yi,t−2) + (uit − ui,t−1)

is no help, since yi,t−1 and ui,t−1 are correlated even when T →∞.

We stay with the FD model, as the exogeneity requirements are less restrictive,
and use an IV estimator.

For that purpose we look also at ∆yi,t−1

yi,t−1 − yi,t−2 = γ(yi,t−2 − yi,t−3) + (ui,t−1 − ui,t−2)
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[FD] IV estimation, Anderson-Hsiao

Instrumental variable estimators, IV, have been proposed by Anderson-Hsiao, as
they are consistent with N →∞ and finite T .

Choice of the instruments for (yi,t−1 − yi,t−2):
I Instrument yi,t−2 as proxy is correlated with (yi,t−1 − yi,t−2), but not with ui,t−1

or ui,t , and so ∆ui,t .
I Instrument (yi,t−2 − yi,t−3) as proxy for (yi,t−1 − yi,t−2) sacrifies one more

sample period.
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[FD] GMM estimation, Arellano-Bond

The Arellano-Bond (also Arellano-Bover) method of moments estimator is
consistent.
The moment conditions use the properties of the instruments

yi,t−j , j ≥ 2

to be uncorrelated with the future errors uit and ui,t−1. We obtain an increasing
number of moment conditions for t = 3,4, . . . ,T .

t = 3 : E[(ui,3 − ui,2)yi,1] = 0

t = 4 : E[(ui,4 − ui,3)yi,2] = 0, E[(ui,4 − ui,3)yi,1] = 0

t = 5 : E[(ui,5 − ui,4)yi,3] = 0, . . . , E[(ui,5 − ui,4)yi,1] = 0

. . . . . . . . .
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[FD] GMM estimation, Arellano-Bond

We define the (T − 2)× 1 vector

∆ui = [(ui,3 − ui,2), . . . , (ui,T − ui,T−1)]′

and a (T − 2)× (T − 2) matrix of instruments

Z ′i =


yi,1 yi,1 . . . yi,1

0 yi,2 . . . yi,2

0 0
. . .

...
0 . . . 0 yi,T−2
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[FD] GMM estimation, Arellano-Bond, without x’s

Ignoring exogenous variables, for ∆yit = γ∆yi,t−1 + ∆uit ,

E[Z ′i ∆ui ] = E[Z ′i (∆yi − γ∆yi,−1)] = 0

The number of moment conditions are 1 + 2 + . . .+ (T − 2).
This number exceeds i.g. the number of unknown coefficients, so γ is estimated by
minimizing the quadratic expression

min
γ

[
1
N

∑
i

Z ′i (∆yi − γ∆yi,−1)

]′
WN

[
1
N

∑
i

Z ′i (∆yi − γ∆yi,−1)

]
with a weighting matrix WN .
The optimal matrix WN yielding an asy efficient estimator is the inverse of the
covariance matrix of the sample moments.
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[FD] GMM estimation, Arellano-Bond, without x’s

I The WN matrix can be estimated directly from the data after a first consistent
estimation step.

I Under weak regularity conditions the GMM estimator is asy normal for
N →∞ for fixed T , T > 2 using our instruments.

I It is also consistent for N →∞ and T →∞, though the number of moment
conditions→∞ as T →∞.

I It is advisable to limit the number of moment conditions.
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[FD] GMM estimation, Arellano-Bond, with x’s

The dynamic panel data model with exogenous variables is

yit = xitβ + γ yi,t−1 + αi + uit , uit ∼ iid(0, σ2
u)

As also exogenous x ’s are included in the model additional moment conditions
can be formulated:

I For strictly exogenous vars, E[xis uit ] = 0 for all s, t ,

E[xis ∆uit ] = 0

I For predetermined (not strictly exogenous) vars, E[xisuit ] = 0 for s ≤ t

E[xi,t−j ∆uit ] = 0 j = 1, . . . , t − 1
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GMM estimation, Arellano-Bond, with x’s

So there are a lot of possible moment restrictions both for differences as well as
for levels, and so a variety of GMM estimators.

GMM estimation may be combined with both FE and RE.
Here also, the RE estimator is identical to the FE estimator with T →∞.
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Further topics
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Further topics

I We augment the FE model with dummy variables indicating both individuals
and time periods.

yit =
∑

δidi +
∑

δtdt + xitβ + uit

I Common unit roots can be tested and modeled.

yit = αi + γiyi,t−1 + uit

which is transformed to

∆yit = αi + πiyi,t−1 + uit

and tested wrt H0 : πi = 0 for all i
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Panel data models: further topics

I Cointegration tests.
I Limited dependent models, like binary choice, logit, probit models, etc.
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Exercises and References
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Exercises

Choose one out of (1, 2), and 3 out of (3G, 4G, 5G, 6G). 7G is compulsory.

1 The fixed effects model with group and time effects is

yit = αidi + δtdt + xitβ + uit

where di are dummies for individuals, and dt dummies for time periods.
Specify the model correctly when an overall intercept is included.

2 Show that ∑
i

∑
t

(yit − ȳ)2 =
∑

i

∑
t

(yit − ȳi)
2 + T

∑
i

(ȳi − ȳ)2

holds.
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Exercises

3G Choose a subset of firms for the Grunfeld data and compare the pooling and
the fixed effects model.
Use Ex5_panel_data_R.txt.

4G Choose a subset of firms for the Grunfeld data and compare the fixed effects
and the random effects model.
Use Ex5_panel_data_R.txt.

5G Choose a subset of firms for the Grunfeld/EmplUK data and estimate a
suitable dynamic panel data model.
Use Ex5_panel_data_R.txt.

6G Compute the Durbin-Watson statistic for panel data in R. Test for serial
correlation in the fixed effects model of a data set of your choice.
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Exercises

7G (Compulsory) Prepare a short summary about the ’Illustration 10.5: Explaining
capital structure’, in Verbeek, p.383-388, covering the following issues:

I the empirical problem/question posed
I the model(s) under consideration/ the relations between the variables suggested

by economic theory
I the formal model
I the data (source, coverage, proxies for the variables in the theoretical model)
I the estimation method(s), empirical specification of the model, comparison of

models
I results/conclusions

Delivery of an electronic version of 7G not later than 1 week after the final test.
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