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Stock returns, aggregation
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Stock return data

I Monthly data.
Returns are defined as the return between last price of the previous month
and the last price of the current month.
Since the number of days vary in a deterministic way across months, returns
will tend to show a seasonal pattern, unless the number of trading days is
corrected for.

I Daily data.
Several prices are recorded:
Open, O, Close, C, High, H, Low, L.
Returns are commonly defined as the difference of the Close of the current
day and the Close of the previous day.
Weekends are generally ignored. Bank holidays are filled with the price of the
previous day.
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Stock return data

I Intraday data.
- Intraday data are collected at a frequency smaller than 24 hours, going down
to tick data Bid, Ask and Volume.
- In case of heavy trading even trades with different Bids/Asks and Prices at
the same tick are observed.
- Usually all data are discrete:
prices jump for discrete amounts like 1/4 Dollar;
there are minimal trade sizes;
there are always a finite number of trades per day.
- Tick data have generally to be controlled for data errors and institutional
idiosyncracies (e.g. finding of the opening price of a stock exchange) before
analysis.

[Plots of paths and distributions of returns: monthly, daily, intraday.]
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Aggregation of returns

We start with daily data. Daily returns, rt , are defined as the difference of the log
prices.

rt = log(Pt )− log(Pt−1) = pt − pt−1

Then the monthly return, r (m)
t , is the sum of all daily returns of this month with m

days:
Pt−m → Pt−m+1, . . . ,Pt−1 → Pt

r (m)
t = log(Pt )− log(Pt−m) =

= pt − pt−m = [pt − pt−1] + [pt−1 − pt−2] + . . .+ [pt−m+1 − pt−m] =

=
m∑

i=1

rt−i+1

This is a nice property of log-returns.
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Aggregation of returns: variances

E(rt ) = µ, E(r (m)
t ) = m µ

The variances of the daily and monthly returns are with rt = µ+ εt

V(rt ) = V(εt ) = σ2

V(r (m)
t ) = E

(
m∑

i=1

rt−i+1 −m µ

)2

= E

(
m∑

i=1

(rt−i+1 − µ)

)2

= E

(
m∑

i=1

εt−i+1

)2

Empirically, the variance of the monthly return is in general not equal to the sum of
the daily variances.
Only in case of rt = µ+ εt , with εt WN,

V(r (m)
t ) = E

(
m∑

i=1

εt−i+1

)2
(!)
=

m∑
i=1

E(εt−i+1)2 = m σ2 = m V(rt )

holds.
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Aggregation of returns: variances

For 2 rvs X and Y V(X + Y ) = V(X ) + 2Cov(X ,Y ) + V(Y ).
Whether V(X + Y ) is larger or smaller than V(X ) + V(Y ) depends on the sign of
the covariance.

If positive (negative) autocorr dominates in εt , than the monthly variance per day
(i.e. divided by m) is larger (smaller) than the daily variance.

It may happen that autocorrelations cancel out. (E.g. postive autocorr at lag 3
cancels with negative autocorr at lag 5.)
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Variance ratio test, VR-test
The Variance ratio test is a test for WN. It compares the variance of daily returns
with the variance of the data with monthly frequency.
Say we observe M months of equal length m, T = m M.
σ2

A is the variance of the daily returns,
σ2

B is the variance of the monthly returns per day.
µ̂ = (1/T )

∑T
t=1 rt

σ2
A =

1
T

T∑
t=1

(rt − µ̂)2, σ2
B(m) =

[
1
M

M∑
τ=1

(r (m)
τ −m µ̂)2

]
/m

VR(m) =
σ2

B(m)

σ2
A
− 1

Then under the null hypothesis of WN population values of σ2
A and σ2

B are equal.

√
T VR(m)

a∼ N(0,2(m − 1))
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Variance ratio test, VR-test

This is a non overlapping (months) version of the VR-test.
The overlapping one has a higher power as more observations for the ”monthly”
data are available.

The small sample distribution of the test statistic may be rather different especially
in case of heteroscedastic returns. Therefore simulation of the distribution via
resampling is recommended to obtain critical values, or to refer to special
tabulated values.

Resampling destroys possible time dependencies, but keeps the univariate
distributional properties, like fat tails.
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Volatilities for daily returns
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Measuring volatilities for daily data
Models for conditional heteroscedasticity like GARCH use often daily returns.
They interpret the squared error of rt after taking out possible linear effects,
(rt − E(rt |It−1))2, as local variance. It−1 stands for the information available at
(t − 1).
If information about the within day behavior is available, this estimate can be
improved.

If we assume that the underlying process is a continuous Brownian motion without
drift, then using the information of the daily High and Low instead can be backed
up theoretically.

A simple measure is

the range of the price, Ht − Lt .

It will, however, underestimate the true range if the tick size of the stock is large or
the stock is traded not frequently.

12 / 39



Estimates of the daily variance

Other simple estimates (in the notation of Tsay) are

σ̂2
0 = (Ct − Ct−1)2

σ̂2
2 = 0.3607(Ht − Lt )

2

σ̂2
5 = 0.5(Ht − Lt )

2 − 0.386(Ct −Ot )
2

The first, σ̂2
0, is the squared daily return. Relative efficiencies of these measures

are
V(σ̂2

0)/V(σ̂2
j ), j = 2,5

j 2 5
rel. eff. 5.2 7.4

I.e. under Brwonian motion without drift the variance of σ̂2
0 is 5.2 times larger than

the variance of σ̂2
2.
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Estimates of the daily variance

σ2
0 also covers the overnight period, while the other measures do not. So the

difference between them depends on the assumption about the behavior during
night: no new information, Brownian motion, or jumps.
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Autocorrelated intraday returns:
Bid-ask bounce
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Intraday data: Bid-Ask spread

The difference between the ask price and the bid price, S = Pa −Pb, is the bid-ask
spread. It is seen as a market friction necessary to make the market work.

The bid-ask spread introduces a negative lag-1 serial correlation in the observed
asset return, even if the underlying process is WN. This is referred to as the
bid-ask bounce.

Say, realized prices, Pt , are based on the underlying price, P∗t .

Pt = P∗t + It (S/2)

I P∗t is the true, but unobserved price. P∗t is a RW.
I It is an independent rv, which takes the values ±1 with prob 0.5 (and so is

stationary). It indicates whether the market maker sells (+1) or buys (−1) in a
trade.
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Bid-ask bounce

I t is a time point, where a trade takes place.
I Properties of P∗t :

We assume P∗t is a RW (without drift) with εt WN.
It and εt are independent.

P∗t = P∗t−1 + εt , ∆P∗t = εt is WN.
I Properties of It :

E(It ) = 0 and V(It ) = 1.
E(It − It−1) = E(∆It ) = 0 and V(It − It−1) = V(∆It ) = 2.
However, ∆It is not a WN, but a MA(1): Cov(∆It ,∆It−1) = −1.
Higher order auto-cov vanish: Cov(∆It ,∆It−j) = 0, j > 1.

For simplicity we assume time intervals of fixed length.
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Bid-ask bounce: 1-period returns

I Properties of the 1-period return process:

∆Pt = Pt − Pt−1, ∆Pt = ∆P∗t + ∆It (S/2).

Its variance is V(∆Pt ) = σ2
ε + 2 (S2/4).

Its order 1 auto-covariance Cov(∆Pt ,∆Pt−1) = −S2/4.

Its order 1 auto-correlation is [−S2/4]/[σ2
ε + S2/2].

Higher order auto-cov vanish Cov(∆Pt ,∆Pt−j) = 0, j > 1.

So, the observed 1-period return process is autocorrelated with order 1 (only).
This is similar to the problem of overdifferencing, as the difference of a WN is a
MA(1).
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Bid-ask bounce: k -period returns, σ2
ε (k) = k σ2

ε (1)
The k -period non overlapping return process, ∆kPτ , is

∆kPτ = Pτ − Pτ−k = ∆kP∗τ + ∆k Iτ (S/2)

τ = n k , n = 1,2, . . .: τ = k ,2 k ,3 k , . . . .
We investigate its autocorrelation structure.

I ∆kP∗τ : ∆kP∗τ =
∑τ

t=τ−k+1 εt

E(∆kP∗τ ) = 0, V(∆kP∗τ ) = k σ2
ε .

All auto-covariances of order greater zero of ∆kP∗τ vanish, since the εt ’s do
not overlap.

I ∆k Iτ = Iτ − Iτ−k :

E(∆k Iτ ) = 0, V(∆k Iτ ) = 2,

Cov(∆k Iτ ,∆k Iτ−k ) = E(Iτ − Iτ−k )(Iτ−k − Iτ−2k ) = −1

Higher order covariances are zero.
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Bid-ask bounce: k -period returns

I ∆kPτ :

E(∆kPτ ) = 0, V(∆kPτ ) = k σ2
ε + 2 (S2/4).

Cov(∆kPτ ,∆kPτ−k ) =

= Cov(∆kP∗τ ,∆kP∗τ−k ) + Cov(∆k Iτ ,∆k Iτ−k )S2/4 = −S2/4

1st order auto-corr in τ -time is
Corr(∆kPτ ,∆kPτ−k ) = [−S2/4]/[kσ2

ε + (S2/2)]

Higher order auto-covariances are zero:
Cov(∆kPτ ,∆kPτ−j k ) = 0, j > 1.

Here we also find order 1 auto-corr in the returns. But with S small and k large it is
negligible.

The k -period return is approximately WN for large k .
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Autocorrelated intraday returns:
Asynchronous trading
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Asynchronous trading

Asynchronous or nonsynchronous trading implies that the underlying (continuous)
return process is observed at irregular times. The consequences are serially
correlated observed returns, even if the underlying prices are a pure RW with drift
µ (the returns are iid).

We think of equidistant time points at which a trade can occur: t = 1,2,3, . . . .

We distinguish periods where a trade occurs and periods with no trade.

When we observe a return, ro
t , after k periods with no trade, it is the sum of all

time step underlying/unobserved returns since the last trade.

ro
t =

k∑
i=0

rt−i rj unobserved

If there is no trade in t , we refer to the last observed price, so that ro
t = 0.
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Asynchronous trading

I We assume the underlying return process rt is iid and �(µ, σ2).
I We distinguish

periods of no trade with prob π and
periods with a trade with prob (1− π).

I k is the number of ’no trade periods’ between 2 trades, k ≥ 0.
I In the periods with a trade: The probs for k = 0,1,2, . . . are assigned

according to the geometric distribution with density (1− π)πk = P(X = k).

k NO 0 1 . . . k . . .

prob π (1− π)2 (1− π)2π . . . (1− π)2πk . . .

ro
t 0 rt rt + rt−1 . . .

∑k
0 rt−i . . .
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Asynchronous trading

It can be shown after tedious calculations that

V(ro
t ) = σ2 +

2πµ2

1− π
, Cov(ro

t , r
o
t−j) = −µ2πj , j ≥ 1

The auto-covariances decrease with decreasing π, and increasing j .

The observed returns ro ’s are independent only if the drift µ is zero, or
synchronous trading takes place.
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Autocorrelated orders:
Parent and child orders
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Parent and child orders

Large orders (parent orders) are not activated at once, but are split in small orders
(child orders) in order to affect the stock price as little as possible.
By subsequently positing small orders of the same type ’positive autocorrelation’
of orders arises.

These parent orders are not observed by the public, but may be detected by
algorithms.
Ref: O’Hara(2015)
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Realized volatility
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Realized volatility

If a stock price P(t) evolves in continuous time according to a geometric Brownian
motion without jumps

dP(t)/P(t) = µ(t) dt + σ(t) dz

where µ(t) and σ(t) denote the drift and the instantaneous volatility process. The
integrated variance IV for a (predefined unit) time interval (t − 1, t) is

IVt =

∫ t

t−1
σ2(s)ds

The integrated variance is not directly observable. However, the realized variance
RV

RVt =
M∑

i=1

r2
i,t

where M = 1/∆, p(t) = log(P(t)) is.
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Realized volatility
ri,t is the ∆-period intraday return defined as

ri,t = pt−1+i ∆ − pt−1+(i−1) ∆

The RV provides a consistent estimator of IV as the number of intraday
observations increases, or equivalently

∆→ 0.

The resulting error in RV may be characterized by asymptotic distribution theory,
∆→ 0, as

RVt = IVt + ηt , ηt ∼ N(0,2 ∆ IQt )

where IQt =
∫ t

t−1 σ(s)4 ds denotes the integrated quadricity, IQ.
IQ may be consistently estimated by the realized quadricity, RQ,

RQt =
M
3

M∑
i=1

r4
it
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Realized volatility

Because of the microstructure of the market ∆ should not be chosen too small. ∆

should cover at least 50 trades.

Realized volatility is the square root of realized variance,
√

RV .

Example:
We construct for 1-minute intraday prices of Microsoft Corporation, MSFT, a series
of 1/2-hour realized variances. As the NASDAQ exchange trading hours are 9:30
to 16:00 13 1/2-hour intervals are available, and assume a unit period length of 1/2
hour. I.e. we get per day 13 intraday volatility estimates (ignoring overnight
changes).
If we set e.g. ∆ = 10min, M = 3. Since MSFT is a frequently traded stock, we
could reduce the step size ∆ to 2 - 3 minutes.
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Time scales

Empirically 3 different time scales make sense:
I time, as usual
I trading time
I volume time
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Forecasting daily intraday volatilities
Several people recommend the heterogenous autoregression (HAR) model of
Corsi(2009) instead of GARCH or stochastic volatility for forecasting the variance
of the returns.

RVt = β0 + β1RVt−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + ut

where

RVt−1|t−h =
1
h

h∑
i=1

RVt−i

Here the unit time interval is one day. So RVt−1|t−5 is the average RV of the last
week, RVt−1|t−22 is the average RV of the last month.

The model incorporates different types of investors, one with a decision horizon of
1 day, one with 1 week and another 1 month. It approximates conveniently a
long-memory dynamics as observed in most realized volatilities.

Estimation via OLS. It can be improved by including GARCH errors and assuming
an inverse Gaussian error distribution.
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Exercises and References
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Exercises

Choose 3.

1G Test stock returns of your choice for WN with the variance ratio test. Use
Ex3_1_month_daily_VRtest_R.txt.

2G Compare 3 different volatility measures for 2 return series of daily stock
prices. Use Ex3_2_DailyVola_R.txt.

3 Show that the bid-ask bounce effect does not vanish for (fixed) order k non
overlapping returns, if we assume that the underlying return process is WN.

4G Compare the distribution of
(a) daily and intraday log returns
(b) daily and intraday (realized) volatilities
for MSFT. Use Ex3_4_RealVola_msft_R.txt.
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Appendix: Asymptotics for Quadratic Variation
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Quadratic variation

Let the logarithmic price of a financial asset, denoted by pt = log(Pt ), follow the
stochastic-volatility process

pt = p0 +

∫ t

0
µ(s)ds +

∫ t

0
σ(s)dW (s)

where µ and σ are càdlàc. W is a standard Brownian motion and σ is assumed to
be independent of W .

The quadratic variation process, [p]t , of a sequence of partitions,
τ0 = 0 ≤ τ1 ≤ . . . ≤ τn = t , is defined by

[p]t =plim
n→∞

n−1∑
j=0

(pτj+1 − pτj )
2.
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Realized variance, one-day intervals
Focusing on one-day intervals, the continuously compounded within-day returns of
day t with sampling frequency M is

rt ,j = pt−1+j/M − pt−1+(j−1)/M , j = 1, . . . ,M

The realized variance over day t is defined by

RVt =
M∑

j=1

r2
t ,j

By the theory of quadratic variation of semimartingales, (daily) realized variance
converges uniformly in probability to the (daily) quadratic variation process as
sampling ferquency of returns approaches infinity, i.e. M →∞

RVt →
∫ t

t−1
σ2(s)ds

providing a consistent estimate.
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Asymptotics for the realized variance

The convergance rate is
√

M, and asymptotic normality holds.

√
M

RVt −
∫ t

t−1 σ
2(s)ds√

2
∫ t

t−1 σ
4(s)ds

d→ N(0,1)

where
∫ t

t−1 σ
4(s)ds denotes integrated quadricity.

The fourth-power variation or realized quadricity is a consistent estimator

RQt =
M
3

M∑
j=1

r4
t ,j →

∫ t

t−1
σ4(s)ds

for the integrated quadricity.
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