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b. Explain why the results indicate that there may be a problem of positive autocorre-
lation. Can you give arguments why, in economic models, positive autocorrelation
is more likely than negative autocorrelation?

c. What are the effects of autocorrelation on the properties of the OLS estimator?
Think about unbiasedness, consistency and the BLUE property.

d. Describe two different approaches to handle the autocorrelation problem in the
above case. Which one would you prefer?

From now on, assume that S, and Y, are nonstationary I(1) series.

e. Are there indications that the relationship between the two variables is ‘spurious’ ?
f.  Explain what we mean by ‘spurious regressions’.
g Are there indications that there is a cointegrating relationship between §, and ¥,?
h. Explain what we mean by a ‘cointegrating relationship’.
i. Describe two different tests that can be used to test the null hypothesis that §,
and Y, are not cointegrated.
J. How do you interpret the coefficient estimate of 0.098 under the hypothesis that
S, and Y, are cointegrated?
k. Are there reasons to correct for autocorrelation in the error term when we estimate
a cointegrating regression?
. Explain intuitively why the estimator for a cointegrating parameter is
superconsistent.
m. Assuming that S, and Y, are cointegrated, describe what we mean by an error-
correction mechanism. Give an example. What do we learn from it?
n. How can we consistently estimate an error-correction model?

Exercise 9.3 (Cointegration - Empirical)

In the files INCOME we find quarterly data on UK nominal consumption and income,
for 1971:1 to 1985:2 (T = 58). Part of these data was used in Exercise 8.3.

a. Test for a unit root in the consumption series using several augmented

Dickey—~Fuller tests.

b. Perform a regression by OLS explaining consumption from income. Test m@a

cointegration using two different tests.

¢. Perform a regression by OLS explaining income from consumption. Test for
cointegration.

d. Compare the estimation results and R?s from the last two regressions.

e. Determine the error-correction term from one of the two regressions and esti-
mate an error-correction model for the change in consumption. Test whether the
adjustment coefficient is zero. i

f. Repeat the last question for the change in income. What do you conclude?

‘—C Models Based on
Panel Data

A panel data set contains repeated observations over the same units (individuals,
households, firms), collected over a number of periods. Although panel data are typ-
ically collected at the micro-economic level, it has become increasingly common to
pool individual time series of a number of countries or industries and analyse them
simultaneously. The availability of repeated observations on the same units allows
economists to specify and estimate more complicated and more realistic models than
a single cross-section or a single time series would do. The disadvantages are more
of a practical nature: because we repeatedly observe the same units, it is usually
no longer appropriate to assume that different observations are independent. This
may complicate the analysis, particularly in nonlinear and dynamic models. Fur-
thermore, panel data sets very often suffer from missing observations. Even if these
observations are missing in a random way (see below), the standard analysis has to
be adjusted.

This chapter provides an introduction to the analysis of panel data. A simple lin-
ear panel data model is presented in Section 10.1, and some advantages compared
with cross-sectional or time series data are discussed in the context of this model.
Section 10.2 pays attention to the so-called fixed effects and random effects models,
and discusses issues relating to the choice between these two basic models. An empir-
ical illustration is provided in Section 10.3. The introduction of a lagged dependent
variable in the linear model complicates consistent estimation, and, as will be dis-
cussed in Section 10.4, instrumental variables procedures or GMM provide interesting
alternatives. Section 10.5 provides an empirical example on the estimation of a partial
adjustment model for a firm’s capital structure. Increasingly, panel data approaches are
used in a macro-economic context to investigate the dynamic properties of economic
.<E.§Emm‘ Section 10.6 discusses the recent literature on unit root and cointegration tests
in heterogeneous panels. In micro-economic applications, the model of interest often

A involves limited dependent variables, and panel data extensions of logit, probit and tobit
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models are discussed in Section 10.7. The problems associated with incomplete panel
data and selection bias are discussed in Section 10.8, while Section 10.9 concludes this
chapter with a discussion on pseudo panel data and repeated cross-sections. Extensive
discussions of the econometrics of panel data can be found in Wooldridge (2002),
Hsiao (2003), Arellano (2003), Baltagi (2005) and Cameron and Trivedi (2005).

10.1 Introduction to Panel Data Modeling

An important advantage of panel data compared with time series or cross-sectional data
sets is that they allow identification of certain parameters or questions, without the need
to make restrictive assumptions. For example, panel data make it possible to analyse
changes on an individual level. Consider a situation in which the average consumption
level rises by 2% from one year to another. Panel data can identify whether this rise
is the resuit of, for example, an increase of 2% for all individuals or an increase of
4% for approximately one-half of the individuals and no change for the other half (or
any other combination). That is, panel data are not only suitable to model or explain
why individual units behave differently but also to model why a given unit behaves
differently at different time periods (for example, because of a different past).

We shall, below, index all variables with an i for the individual! (i=1,...,N)and

a ¢ for the time period (f = 1,..., T). The standard linear regression model can then
be written as

Yi = By +x,8 + Ei» (10.1)

where x;, is a K -dimensional vector of explanatory variables, which ~ for reasons that
will become clear below — does not contain an intercept term.2 This model imposes
that the intercept 8, and the slope coefficients in 8 are identical for all individuals and
time periods. The error term in (10.1) varies over individuals and time and captures all
unobservable factors that affect y,,. To estimate this model by OLS, the usual conditions
are required to achieve unbiasedness, consistency or efficiency; see Chapters 2, 4 and

5. For example, if E{¢,} = 0 and E{x,¢,} = 0, the OLS estimator is consistent for B

and B under weak regularity conditions. Given that we repeatedly observe the same
individuals, however, it is typically unrealistic to assume that the error terms from

different periods are uncorrelated. For example, a person’s wage will be affected by

unobservable characteristics that vary little over time. As a result, routinely computed

standard errors for OLS, based on the assumption of i.i.d. error terms, tend to be

misleading in panel data applications. Moreover, OLS is likely to be inefficient relative

to an estimator that exploits the correlation over time in s,. B
A very frequently employed panel data model assumes that

&y = oy +uy, GO,Mu

where u;, is assumed to be homoskedastic and not correlated over time. The component
; is time invariant and homoskedastic across individuals. The model specified by

! While we refer to the cross-sectional units as individuals, they could also refer to other units like firms,
countries, industries, households or assets. ;

2 The elements in B are irdexed as B, to B, where the first element, unlike in the previous chapters, does
not refer to the intercept. i
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(10.1)~(10.2) is referred to as an error components or random effects model, and we
shall Ewncmm it in more detail below. Estimation by (feasible) generalized Emwm squares
exploiting the imposed error structure (which implies that the serial correlation in ¢,
can completely be attributed to ;) typically leads to a more efficient estimator for .m:
and B than ordinary least squares. ’
The assumption that E {xi&;} = O states that the observable regressors in x,, are
uncorrelated with the unobservable characteristics in both «; and u,,. This Somum that
Eo explanatory variables are exogenous. In many applications this assumption is con-
sidered restrictive, and there are reasons to believe that £ {x;a;} # 0. That is, the
::ncmw:aa heterogeneity in @; is correlated with one or BQM of the nxn_mEWSQ
variables. For example, in a wage equation a person’s unobserved ability is likely to
w&,ooﬂ wages (y,), but also a person’s education level (included in x,). In a firm-level
investment equation, unobserved firm characteristics may affect investment decisions
(¥z) as well characteristics in X; {(e.g. the cost of capital). In a cross-sectional context,
the standard approach to handle this problem is the use of instrumental variables (see
Orwvan 5). With panel data, it is possible to exploit the particular nature of the data
owing to the availability of repeated observations on the same individuals.
. In a fixed effects model, this problem is addressed by including an individual-specific
intercept term in the model. In this case, we write the model as

Vi = + X8+ u,, {10.3)

where o, (i =1, ..., N) are fixed unknown constants that are estimated along with 8
and where u,, is typically assumed to be ijd. over individuals and time. The o<m7,
m:.EREnE term f; is omitted, as it is subsumed by the individual intercepts «;.
It is common to refer to o; as fixed (individual) effects. The fixed effects «. omm-
ture .m: (un)observable time-invariant differences across individuals. Tn this wvvwomo:.
consistent estimation does not impose that o; and x, are uncorrelated.

The possibility of treating the o;s as fixed parameters has some great advantages
but also some disadvantages. Most panel data models are estimated under either Eo.
mxoa effects or the random effects assumption, and we shall discuss this extensively
in Section 10.2. First, the next two subsections discuss some potential advantages of
panel data in more detail.

10.1.1 Efficiency of Parameter Estimators

Because panel data sets are typically larger than cross-sectional or time series data
sets, and explanatory variables vary over two dimensions (individuals and time) rather
than one, estimators based on panel data are quite often more accurate than from other
sources. Even with identical sample sizes, the use of a panel data set will often yield
more efficient estimators than a series of independent cross-sections (where different
units are sampled in each period). To illustrate this, consider the following special case
of the random effects model in (10.1)~(10.2) where we only include time dummies, i.e.

Yie = My Hoy +ouy, (10.4)

ﬁﬁ& each u, is an unknown parameter corresponding to the population mean in
period 7. Suppose we are not interested in the mean (4, in a particular period, but in
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the change of u, from one period to another. In general the variance of the efficient
estimator for u, — pu (s % 1), ft, — fi,, is given by

VIR, = i} = VIR + V(i) — 2covii,, f,)

with g, = 1/N MNzH_ Yi (¢ =1,...,T). Typically, if a panel data set is used, the
covariance between 1, and /i, will be positive. For oxm:%_mu under .5@ random effects
assumptions of equation (10.2) it equals 02/N. However, _.m two Eam.@o.:amzﬁ cross-
sectional data sets are used, different periods will contain A&@RE E.&Sacw_? 50 fi,
and /i, will have zero covariance. In other words, if one is E.S_dmaa in o:m:mom from
one period to another, a panel will yield more efficient estimators than a series of
Cross-sections. .

Note, however, that the reverse is also true, in the sense that repeated cross-sections
will be more informative than a panel when one is interested in a sum or average
of u, over several periods. At a more intuitive level, panel data may provide better
information because the same individuals are repeatedly observed. On the o&.ﬂ. ES@.
having the same individuals rather than different ones may imply less <E.Sao=.5
the explanatory variables and thus relatively inefficient mmgmﬁowm. A ooEu.erszo
analysis on the choice between a pure panel, a pure cross-section and a ooBcE.m:g of
these two data sources is provided in Nijman and Verbeek (1990), ,;.o:. results EPSE
that, when exogenous variables are included in the model and one is Eaﬂmﬁa in the
parameters that measure the effects of these variables, a vub&. data set will typically
yield more efficient estimators than a serfes of cross-sections with the same number of
observations.

10.1.2 ldentification of Parameters

A second advantage of the availability of panel data is that it Racomm, identification
problems. Although this advantage may come under &mw_.ma headings, in many cases
it involves identification in the presence of endogenous regressors or measurement
error, robustness to omitted variables and the identification of individual dynamics,

Let us start with an illustration of the last of these. There are two alternative expla-

nations for the often observed phenomenon that individuals who have experienced an
event in the past are more likely to experience that event in the future. The first expla-

nation is that the fact that an individual has experienced the event changes his or rnn,_
preferences, constraints, etc., in such a way that he or her is more likely to experience
that event in the future. The second explanation says that individuals may differ in

unobserved characteristics that influence the probability of experiencing the event E..:
are not influenced by the experience of the event). Heckman (1978a) terms @a former
explanation ‘true state dependence’ and the latter ‘spurious state aovm‘vaod.om . A well-
known example concemns the ‘event’ of being unemployed. The m<m.:mcEQ of _.._wun_
data will ease the problem of distinguishing between true and spurious state depen-
dence, because individual histories are observed and can be included in the model. )
Omitted variable bias arises if a variable that is correlated with the included vart.
ables is excluded from the model. A classical example is the estimation of an:ﬁ.g
functions (Mundlak, 1961). In many cases, especially in the case of E.EE ?d..uu it
is desirable to include management quality as an input in the production function.
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In general, however, management quality is unobservable, Suppose that a production
function of the Cobb-Douglas type is given by

Yie =Bo+xiB+mBy. +u, (10.5)

where v, denotes log output, x;, is a K-dimensional vector of log inputs, both for
firm i at time ¢, and m; denotes the management quality for firm i (which is assumed
to be constant over time). The unobserved variable m; is expected to be negatively
correlated with the other inputs in x,, since a high-quality management will probably
result in a more efficient use of inputs. Therefore, unless By 41 =0, deletion of m;
from (10.5) will lead to biased estimates of the other parameters in the model. If
panel data are available, this problem can be resolved by introducing a firm-specific
effect o; = B +m, Bk and considering this as a fixed unknown parameter. Note
that without additional information it is not possible to identify 8, +15 A restriction that
identifies By, is the imposition of constant returns to scale.’

In a similar way, a fixed time effect can be included in the model to capture the
effect of all (observed and unobserved) variables that do not vary over the individual
units. This illustrates the proposition that panel data can reduce the effects of omitted
variable bias, or ~ in other words — estimators from a panel data set may be more
robust to an incomplete model specification.

Finally, in many cases panel data will provide ‘internal’ instruments for regressors
that are endogenous or subject to measurement error. That is, transformations of the
original variables can often be argued to be uncorrelated with the model’s error term
and correlated with the explanatory variables themselves and no external instruments
are needed. For example, if X, is correlated with @;, it can be argued that X, — X,
where %, is the time average for individual i, is uncorrelated with o; and provides a
valid instrument for X;;. More generally, estimating the model under the fixed effects
assumption eliminates o; from the error term and, consequently, eliminates all endo-
geneity problems relating to it. This will be illustrated in the next section. An extensive
discussion of the benefits and limitations of panel data is provided in Hsiao (1985).

10.2 The Static Linear Model

In this section we discuss the static linear model in a panel data setting. We start with
the fixed effects model, and pay attention to the within estimator and the first-difference
estimator. Next, we present the random effects model. Subsequently, we discuss the
choice between fixed effects and random effects, as well as alternative estimation
procedures that can be considered to be somewhere between a fixed effects and random
effects treatment. This section also pays attention to goodness-of-fit, heteroskedasticity
and autocorrelation, and to robust covariance matrix estimation.

10.2.1 The Fixed Effects Model

The fixed effects model is simply a linear regression model in which the intercept
terms vary over the individual units i,ie.

Yi =+ 5B+ uy,  u, ~ 1D, o2), (10.6)
———
* Constant returns to scale implies that B, =1 — By + -+ By).
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where it is usually assumed that all x;, are independent of all u;,. We can write this in
the usual regression framework by including a dummy variable for each unit i in the
model. That is,

N
Ya =D _ady +xjB+uy, (10.7)
j=1
where d;; = 1if i = j and 0 elsewhere. We thus have a set of N dummy variables in the
model. The parameters &, ..., @y and § can be estimated by ordinary least squares in
(10.7). The implied estimator for B is referred to as the least squares dummy variable
(LSDV} estimator. It may, however, be numerically unattractive to have a regression
model with so many regressors. Fortunately one can compute the estimator for Bina
simpler way. It can be shown that exactly the same estimator for 8 is obtained if the
regression is performed in deviations from individual means. Essentially, this implies
that we eliminate the individual effects o, first by transforming the data. To see this,
first note that

Vo= B+, (10.8)

where , =T~'Y" v, and ¥, and i, are defined in a similar way. Consequently, we
can write
Vio = Vi = (xy = X)) B+ (uy — ;). (10.9)

This is a regression model in deviations from individual means and does not include the
individual effects ;. The transformation that produces observations in deviations from
individual means, as in (10.9), is called the within transformation. The OLS estimator
for B obtained from this transformed model is often called the within estimator or
fixed effects estimator, and it is exactly identical to the LSDV estimator described
above. It is given by

N

T Iy o7 :
Bre = 2D i =80 —2) ) 3N = 80, — ) (10.10)

i=1 t=1 i=1 t=1

If it is assumed that all x,, are independent of all u,, (compare assumption (A2) from
Chapter 2), the fixed effects estimator can be shown to be unbiased for B. If, in addition,
normality of u,, is imposed, mwm also has a normal distribution. For consistency,* it is
required that

E{(x; ~ X)u,} =0 (10.11)

(compare assumption (A7) in Chapters 2 and 5). Sufficient for this is that x;; is uncor-
related with u;, and that %, has no correlation with the error term. These conditions are
in turn implied by

E{xyu,} =0 foralls,¢, (10.12)

* Unless stated otherwise, we consider in this chapter consistency for the number of individuals N going to
infinity. This corresponds to the common situation that we have panels with large N and small T,
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in which case we call x;, strictly exogenous. A strictly exogenous variable is not
m:o«woa. to depend upon current, future and past values of the error term. In some
m%__nm:.o:m this may be restrictive. Clearly, it excludes the inclusion of lagged depen-
dent ,\.m:mznw in x;, but any X;; variable that depends upon the history of y, would
w_.mo violate the condition. For example, if we are explaining labour supply o%w: indi-
Sacﬂ, We may want to include years of experience in the model, while quite clearly
experience depends upon the person’s labour history.

5.:5 explanatory variables independent of all errors, the N intercepts are estimated
unbiasedly as

S 5 =1 A .
&G =Y —XPep., i=1,...,N.

G.zam_. mmm_._Sv:ow (10.11) these estimators are consistent for the fixed effects «; pro-
vided T' goes to infinity. The reason why & is inconsistent for fixed T is clear: when

T m.m m.xm.a. the .E&iaca averages y; and ¥; do not converge to anything if the number
of individuals increases.

The covariance matrix for the fixed effects estimator Brg, assuming that u;, is i.i.d.
across individuals and time with variance o2, is given by

~1

N T
VBt =0l { D3, — E)(x, — )| (10.13)

i=1 1=}

Unless T is large, using the standard OLS estimate for the covariance matrix based
upon the within regression in (10.9) will underestimate the true variance. The reason
is that in this transformed regression the error covariance matrix is singular (as the T
transformed errors of each individual add up to zero) and the variance of u, — g, is
(T — 1)/To? rather than ;. A consistent estimator for o7 is obtained m.oS:Sn m.E.:
of squared residuals from the within estimator, divided by N(T — 1). Defining

). — o -~ . r A _— - —' -~
Rie = ¥y = @ ~ Xy Brg = y; ~ §; — (x;, — %) Brg.

we estimate o2 as

1 N T
A2 — ~72
%= .MUMusw (10.14)

i=1 r=1

It is possible to apply the usual degrees of freedom correction, in which case K
is subtracted from the denominator. Note that using the standard OLS covariance
matrix in model (10.7) with N individual dummies is reliable, because the degrees of
.@aaaoa correction involves N additional unknown parameters corresponding to the
individual intercept terms. Under weak regularity conditions, the fixed effects estimator
is asymptotically normal, so that the usual inference procedures can be used (like ¢
and Wald tests).

mmmﬂnsmm‘:%, the fixed effects medel concentrates on differences ‘within’ individuals.
w;w.ﬁ 18, 1t 1s explaining to what extent Y differs from 3; and does not explain why 3,
is different from ¥;- The parametric assumptions about S, on the other hand, impose
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that a change in x has the same (ceteris paribus) effect, whether it is a o_.gmsmo ?@E
one period to the other or a change from one individual to another. When interpreting
the results, however, from a fixed effects regression, it may be important to realize that
the parameters are identified only through the within dimension of the data.

10.2.2 The First-difference Estimator

An alternative way to eliminate the individual effects a; is to first-difference equation
(10.6). This results in

Yie = Yiger = O = X)) B+ gy —uy,_y)

or
Ay, = Ax; B + Auy, (10.15)

where Ay, =, — 3, ,. Applying OLS to this equation yields the first-difference

estimator .
N

N T T
Beo ={D_> Ax,Ax, .3 Ax,Ay,. (10.16)

i=1 t=2 i=] 1=2

Consistency of this estimator requires that
E{Ax,Au,} =0

or :
E{(xy = x;_ )ty — u;,_ )} = 0. (10.17)

This condition is weaker than the strict exogeneity condition in (10.12). For example,
it would allow correlation between x; and u; ,_,. To compute the standard errors for
Brp. it should be taken into account that Au;, exhibits serial correlation. While the
conditions for consistency of the first-differences estimator are slightly weaker than
those for the within estimator, it is, in general, somewhat less efficient. For 7' = 2,
both estimators are identical (see Exercise 10.1). If the two estimators provide very
different results, this suggests that assumption (10.12) is problematic.

A simple and sometimes attractive estimator is the differences-in-differences esti-
mator. Because it is an intuitively attractive approach, it also helps us to understand
the merits of panel data. Suppose we are interested in estimating the impact of a certain
‘treatment’ upon a given outcome variable (see Section 7.7). While the terminology
comes from medical sciences, treatment may also refer to social or economic interven-
tions, e.g. enrolment into a labour training programme, receipt of a transfer payment
from a social programme or being a member of a trade union. A typical outcome
variable is ‘earnings’. Let the binary regressor of interest be

r, = 1 if individual i receives a treatment in period f;

= 0 otherwise.
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Let us assume a fixed effects model for ¥, as
Yie =0ry +p, + o 4y,

where i, is a time-specific fixed effect. For simplicity, the only regressor is r, (in
addition to the time and individual fixed effects). In general, the impact of a treatment
can be inferred from a comparison of people receiving treatment with those who
do not and by a comparison of people before and after the treatment. Panel data
combines both.

The individual effects can be eliminated by a first-difference transformation. That is,
AYy = 8Ar, + Ap, + Auy,. (10.18)

Assuming that E{Ar, Au,} = 0, the treatment effect § can be estimated consistently
by OLS of Ay, upon Ar, and a set of time dummies. Because the individual effects
«; are eliminated, this procedure allows correlation between «; and the treatment indi-
cator. This is important, because in many applications one can argue that individuals
with certain (unobserved) characteristics are more likely to receive treatment (or to
participate in some programme). Obviously, this approach is very similar to the fixed
effects estimator, with the only difference that the first-difference transformation is
employed rather than the within transformation.

Let us consider a situation in which there are only two time periods and individuals
may receive a treatment in period 2. Thus r;p =0 for all i, while r,, = 1 for a subset
of the individuals. OLS in (10.18) corresponds to a regression of y,, — ¥;1 upon the
treatment dummy and a constant (corresponding to the time effect). The resulting
estimate for § corresponds to the sample average of Yiz — ¥y for the treated minus
the average for the nontreated. Define A yirared as the average for the treated (r;, = 1)
and Aji2eed a5 the average for the nontreated (riz = 0). Then the OLS estimate is
simply R ’ ,

% — D&W«E« — DW%NQ:?NEQ .

This estimator is called the differences-in-differences estimator, because one esti-
mates the time difference for the treated and untreated groups and then takes the
difference between the two. The first-differencing takes care of unobservable fixed
effects and controls for unobservable (time-invariant) differences between individuals
(e.g. health status, ability, intelligence, ...). The second difference compares treated
with untreated individuals. The formulation of the model in (10.18) makes clear that
we need to assume that the time effects #, are common across treated and untreated
individuals,

In economics the above methodology is often applied when the data arise from a
natural experiment. A natural experiment occurs when some exogenous event (often
a change in government policy or the passage of a law) changes the environment in
which individuals, families or firms operate. A natural experiment always has a control
8roup, which is not affected by the policy change, and a treatment group, which is
thought to be affected by the policy change. Unlike with a true experiment where
treatment and control groups can be randomly chosen, in a natural experiment these
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two groups arise from a particular policy change. In order to control for systematic
differences between the control and treatment group, we need two periods of data, one
before and one after the treatment. Thus the sample consists of four (sub)groups: the
control group before and after the treatment and the treatment group before and after
the treatment. Averages within these four subsamples are the building blocks of the
differences-in-differences estimator; see Cameron and Trivedi (2005, Chapter 22) for
more discussion.

10.2.3 The Random Effects Model

It is commonly assumed in regression analysis that all factors that affect the dependent
variable, but that have not been included as regressors, can be appropriately summarized
by a random error term. In our case, this leads to the assumption that the «; are random
factors, independently and identically distributed over individuals. Thus we write the
random effects model as

Ya=Po+xiB+ai+uy, w, ~IDO 62 a ~ D, 02), (10.19)

where a; + u,, is treated as an error term consisting of two components: an individual
specific component, which does not vary over time, and a remainder component, which
is assumed to be uncorrelated over time.5 That is, all correlation of the error terms
over time is attributed to the individual effects @;. It is assumed that o; and u,, are
mutually independent and independent of X, (for all j and s5). This implies that the OLS
estimator for g, and 8 from ( 10.19) is unbiased and consistent. The error components
structure implies that the composite error term @; + u,, exhibits a particular form of
autocorrelation (unless o2 = 0). Consequently, routinely computed standard errors for
the OLS estimator are incorrect and a more efficient (GLS) estimator can be obtained
by exploiting the structure of the error covariance matrix.

To derive the GLS estimator,® first note that for individual i all error terms can
be stacked as o;ty + u;, where tp = (1, 1,..., 1) of dimension T and u; = (u
;7). The covariance matrix of this vector is {see Hsiao, 2003, Section 3.3)

NIRRT

Viwr +u} = Q = 6lipdy + 021,
where I, is the T-dimensional identity matrix. This can be used to derive the general-
ized least squares (GLS) estimator for the parameters in (10.19). For each individual,
we can transform the data by premultiplying the vectors Yi = iy on yig)s ete., by
€271, which is given by

which can also be written as

1 1
Q' =g ﬁﬁ? - wusi\ﬂv + $m,;1m.“_ ,

® This model is sometimes referred to as a (one-way) error components model.
¢ It may be instructive to re-read the general introduction to GLS estimation in Section 4.2,
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where
o,

] 2
0s+To}?

Y=

Noting that I — (1/T)i;t; transforms the data in deviations from individua means
and (1/T)ey iy takes individual means, the GLS estimator for 8 can be written as

-1
Bers =

:

]

M=

T N
20 = E)xy = 5 + YT Y, — D), - 5y
1=21

i=1

N T N
x MM?WM_.?;§+§M9'@9;@ . (10.20)

i=1 r=1 fzx]

where ¥ = (1/(NT)) 2. x; denotes the overall average of x,. It is easy 1o gee that
for ¥ = 0 the fixed effects estimator arises. Because  — 0if T — 00, it follows that
the fixed and random effects estimators are equivalent for large 7. If ¥ = 1, the GLS
estimator is just the OLS estimator {and Q is diagonal). From the general formula for
the GLS estimator it can be derived that

WQE = Dmm + ANW - Dvm.ﬁm,

where ;

N N
Bo =Y G - - zy DG -DG -
i==1 i=]

is the so-called between estimator for B. It is the OLS estimator in the model for
individual means

&“mc,fmwm.*.ﬁ,‘fm? i=1,...,N. (10.21)

The matrix A is a weighting matrix and is proportional to the inverse of the covariance
matrix of B, (see Hsiao, 2003, Section 3.4, for details). That is, the GLS estimator jg g
matrix-weighted average of the between estimator and the within estimator, where the
weight depends upon the relative variances of the two estimators. (The more accurate
one gets, the higher the weight.)

The between estimator effectively discards the time series information in the data set,
The GLS estimator, under the current assumptions, is the optimal combination of the
within estimator and the between estimator, and is therefore more efficient than either
of these two estimators. The OLS estimator (with 3 = 1) is also a linear combination
of the two estimators, but not the efficient one. Thus, GLS will be more efficient than
OLS, as usual. If the explanatory variables are independent of all u;, and all a;, the GLS
estimator is unbiased. It is a consistent estimator for N or T or both, tending to infinity
if, in addition to (10.11), it also holds that E{%u,} = 0 and most importantly thag

E{fa;} = 0. (10.22)

Note that these conditions are also required for the between estimator to be consistent,
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An easy way to compute the GLS estimator is obtained by noting that it can be
determined as the OLS estimator in a transformed model (compare Chapter 4), given by

O = 93) = Bo(1 — 9) + (x, ~ 05 B + v, (10.23)

where © = 1 — ¢!/2. The error term in this transformed regression is i.i.d. over indi-
viduals and time. Note again that ¥ = 0 corresponds to the within estimator (2 =1).
In general, a fixed propertion ¢ of the individual means is subtracted from the data to
obtain this transformed model O<s <)

Of course, the variance components o2 and o} are unknown in practice. In this
case we can use the feasible GLS estimator (EGLS), where the unknown variances are
consistently estimated in a first step. The estimator for o2 is easily obtained from the
within residuals, as given in (10.14). For the between regression the error variance is
o2 4 (1/ T)o?2, which we can estimate consistently by

[:3

g N 5
6y = 5 D G~ Bos — £ (10.24)

i=}

where f,; is the between estimator for Bo- From this, a consistent estimator for a?
follows as

A7 ~2 ~ A2

= 0p — =07, (10.25)

Again, it is possible to adjust this estimator by applying a degrees of freedom correction,
implying that the number of regressors K -+ | is subtracted in the denominator of
(10.24) (see Hsiao, 2003, Section 3.3). The resulting EGLS estimator is referred to as
the random effects estimator for B (and B,), denoted below as mam. It is also known
as the Balestra—Nerlove estimator.

Under weak regularity conditions, the random effects estimator is asymptotically
normal. Its covariance matrix is given by :

N T N =
Vibre) =62 MM”EL;?smv\f\%M?lm:@s@\ , (10.26)
i=1 =] fe=}

which shows that the random effects estimator is more efficient than the fixed effects
estimator as long as ¥ > 0. The gain in efficiency is due to the use of the between

variation in the data (x; — X). The covariance matrix in (10.26) is routinely estimated

by the OLS expressions in the transformed model (10.23).

In summary, we have seen a range of estimators for the parameter vector B. The

basic two are:

1. The between estimator, exploiting the between dimension of the data (differences
between individuals), determined as the OLS estimator in a regression of individ-

ual averages of y on individual averages of x (and a constant). Consistency, for.

N — o0, requires that E{%;} = 0 and E {x;4;} = 0, Typically this means that the
explanatory variables are strictly exogenous and uncorrelated with the individual
specific effect o;.
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2. gm fixed effects (within) estimator, exploiting the within dimension of the data
E&nwosnmm within individuals), determined as the OLS estimator in a regression in
amsm..:ocm from individual means, It is consistent for Bfor T - coor N — fo)
provided that E{(x;, — X)u,} = 0. Again this requires the x variables to be mE.nzv“

oxomwzo:m, but it does not impose any restrictions upon the relationship between
@; and x,,.

Two estimators that combine the within and between dimension of the data are:

3. q..:m OLS estimator, exploiting both dimensions (within and between) but not effi-
n.maszv\. Determined (of course) as OLS in the original model given in (10.19). Con-
sistency for T — 00 or N — oo requires that £{x,(u, + @;}} = 0. This requires
Bm explanatory variables to be uncorrelated with «; but does not impose that they are
strictly exogenous. It suffices that X, and u;, are contemporaneously uncorrelated.

weighted average of the between and within estimator or as the OLS estimator in a

regression where the variables are transformed as y, — #5 3 i i
. . ¥;» where ¢ is an estimate
for ? =1y with y =02/(02 + T2y, "

Further, we have also considered:

5. The m.n.m?&m.m..m:na (FD) estimator, determined as OLS after mnm?&maonm:oim the
equation of interest. This estimator is an alternative to the fixed effects estimator
based on the within transformation, and it also only exploits the time variation in
the data. Consistency requires that E{(x, — - Wy =1, ) =0.Ifu. is iid
the first-difference estimator is less efficient than the within estimator: mm: T = N,
they are identical. . B

10.2.4 Fixed Effects or Random Effects?

.5@ distribution of y, given @;, where the ;s can be estimated. This makes sense
intuitively if the individuals in the sample are ‘one of a kind’, and cannot be viewed as
a E:aoﬂ draw from some underlying population. This interpretation is probably most
appropriate when i denotes countries, (large) companies or industries, and predictions
We want to make are for a particular country, company or industry. Inferences are thus
with respect to the effects that are in the sample,

In contrast, the random effects approach is not conditional upon the individual «;s,
but ‘integrates them out’. In this case, we are usually not interested in the ﬁE.nnEm:.
value of some person’s «;; we just focus on arbitrary individuals who have certain
characteristics. The random effects approach allows one to make inference with respect
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to the population characteristics. One way to formalize this is noting that the random
effects model states that

Ely,lx,) = k_pm,
while the fixed effects model estimates
E{y,lx;,, o) = x, 8 + ;.

Note that the B coefficients in these two conditional expectations are the same only
if E{eylx,} =0. Accordingly, a first reason why one may prefer the fixed effects
estimator is that some interest lies in @;, which makes sense if the number of units
is relatively small and of a specific nature. That is, identification of individual units
is important.

However, even if we are interested in the larger population of individual units, and
a random effects framework seems appropriate, the fixed effects estimator may be
preferred. The reason for this is that it may be the case that o; and x,, are correlated,
in which case the random effects approach, ignoring this correlation, leads to incon-
sistent estimators. We saw an example of this above, where @; included management
quality and was argued to be correlated with the other inputs included in the produc-
tion function. The problem of correlation between the individual effects a; and the
explanatory variables in x, can be handled by using the fixed effects approach, which
essentially eliminates the o; from the model, and thus eliminates any problems that
they may cause.

Hausman (1978) has suggested a test for the null hypothesis that x;, and e, are uncor-
related. The general idea of a Hausman test is that two estimators are compared: one
that is consistent under both the null and alternative hypothesis and one that is con-
sistent (and typically efficient) under the null hypothesis only. A significant difference
between the two estimators indicates that the null hypothesis is unlikely to hold. In the
present case, assume that E{u, x, } = 0 for all 5,7, so that the fixed effects estimator
Bre is consistent for B irrespective of the question as to whether x;, and «; are uncor-
related, while the random effects estimator Brg is consistent and efficient only if x,
and o; are not correlated. Let us consider the difference vector mwm - mxm. To evaluate
the significance of this difference, we need its covariance matrix. In general this would
require us to estimate the covariance between Bre and Bre. but, because the latter
estimator is efficient under the null hypothesis, it can be shown that (under the nuil) ,

V(Bre ~ Bre} = ViBre) = VBre). (10.27)

Consequently, we can compute the Hausman test statistic as
€ = Bre = Poe) 1V Bru) = V(Begl ™ Bre = Bre)e (1028)
where the Vs denote estimates of the true covariance matrices. Under the null EGOEM?,
sis, which implicitly says that pim(Bey — Bre) = 0, the statistic &y has an asymptotic

Chi-squared distribution with K degrees of freedom, where K is the number of ele-
ments in B.

The Hausman test thus tests whether the fixed effects and random effects estima-
tors are significantly different. Computationally, this is relatively easy because the
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misspecification can also lead to rejection (we shall see an example of this below).
A practical problem when computing (10.28) is that the covariance matrix in square
brackets may not be positive definite in finite samples, such that its inverse cannot be
computed. As an alternative, it is possible to test for a subset of the elements in g.

10.2.5 Goodness-of-fit

The computation of goodness-of-fit measures in panel data applications is somewhat
uncommon. One reason is the fact that one may attach different importance to explain-
ing the within and between variation in the data. Another reason is that the usual R?
or adjusted R? criteria are only appropriate if the model is estimated by OLS.

Our starting point here is the definition of the R? in terms of the squared correlation
coefficient between actual and fitted values, as presented in Section 2.4. This definition
has the advantage that it produces values within the [0, 1] interval, irrespective of the
estimator that is used to generate the fitted values. Recall that it corresponds to the
standard definition of the R? (in terms of sums of squares) if the model is estimated
by OLS (provided that an intercept term is included). In the current context, the total

variation in y, can be written as the sum of the within variation and the between
variation, that is

1 ~ 1 _ 1 -
7 2O~ = A AL = 20— 9,
it it i

where y denotes the overall sample average. Now, we can define alternative versions
of an R? measure, depending upon the dimension of the data that we are interested in,

For example, the fixed effects estimator is chosen to explain the within variation as
well as possible, and thus maximizes the ‘within R? given by

2 5 N . -
Resinin (Bre) = cor? (9 — 5FE 1y 5y, (10.29)
where 3€ — $F m = (x; — %, Bz and corr? denotes the squared correlation coefficient.
The between estimator, being an OLS estimator in the model in terms of individual
means, maximizes the ‘between R2’, which we define as

Rienveen (By) = cor (52, 3, (10.30)

where §7 = X B 5- The OLS estimator maximizes the overall goodness-of-fit and thus
the overall R?, which is defined as

R era(B) = cor(5,,, v,,), (10.31)

i:&?ﬂ mmv. :mmuommwc_aHommmzoS:EPggmm: and overall R?s for an arbitrary

estimator 8 for B by using as fitted values Fu=xB,9 =)7T) >V, and § =
(1/(NT)) Mi Vi» where the intercept terms are omitted (and irrelevant).” For the

" These definitions correspond to the R? measures as computed in Stata.
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fixed effects estimator this ignores the variation captured by the &;s. If we take into
account the variation explained by the N estimated intercepts &;, the fixed effects
model perfectly fits the between variation. This is somewhat unsatisfactory, though, as
it is hard to argue that the fixed effects &; explain the variation between individuals,
they just capture it. Put differently, if we ask ourselves: why does individual i consume
on average more than another individual, the answer provided by &; is simply: because
it is individual i. Given this argument, and because the &;s are often not computed, it
seems appropriate to ignore this part of the model.

Taking the definition in terms of the squared correlation coefficients, the three mea-
sures above can be computed for any of the estimators that we considered. If we take
the random effects estimator, which is (asymptotically) the most efficient estimator
if the assumptions of the random effects model are valid, the within, between and
overall R?s are necessarily smaller than for the fixed effects, between and OLS esti-
mator respectively. This, again, stresses that goodness-of-fit measures are not adequate
to choose between alternative estimators. They provide, however, possible criteria for
choosing between alternative (potentially non-nested) specifications of the model.

10.2.6 Alternative Instrumental Variables Estimators

The fixed effects estimator eliminates anything that is time invariant from the model.
This may be a high price to pay for allowing the x variables to be correlated with the
individual specific heterogeneity o;. For example, we may be interested in the effect
of time-invariant variables (like gender) on a person’s wage. Actually, there is no need
to restrict attention to the fixed and random effects assumptions only, as it is possible
to derive instrumental variables estimators that can be considered to be in between a

fixed and random effects approach.
To see this, let us first of all note that we can write the fixed effects estimator as

N T

-1 Ny r
Bre =D 2 (=% =2 ) 0 30 ~ E) (v, = 3

i=] 1=t i=1 =1}

N T -1y 7

D% Gy — F)x 3% G = By (10.32)
1

i=1 r=1 i=] f=

Writing the estimator like this shows that it has the interpretation of an instrumental
variables estimator® for 8 in the model

Vi = Bo+xp B+ +uy,

where each explanatory variable is instrumented by its value in deviation from
the individual specific mean. That is, x; is instrumented by x, — %, Note that
E{(x; — X)a;} = 0 by construction (if we take expectations over / and ?), so that
the IV estimator is consistent provided Ef(x, — X,)u,} =0, which is implied by

the strict exogeneity of x;,. Clearly, if a particular element in x,, is known to be ;

® It may be instructive to re-read Section 5.3 for a general discussion of instrumental variables estimation.
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::o%_.a_wmm with o; there is no need to instrument it; that is, this variable can be
used as its own instrument. This route may also all sti
ised . oW us t
time-invariant variables. g o eotimate the effect of
To describe the general a i i
pproach, let us consider a linear model with fou

; r

explanatory variables (Hausman and Taylor, 1981): groups of

Vi = By + kM,:P + Rmz.:mw + E_\MS + EN\L\N +a; +u,, (10.33)

irwa the x <‘mnmc_om are time varying and the w variables are time invariant. Th

variables with index 1 are assumed to be uncorrelated with both e, and all 4. ,;m.< -
ables x, , and w,, are correlated with «; but not with any 4, . szﬂ these wW:E mom%m.
the fixed m.mmna estimator would be consistent for By m:mamf but would not M%aam@“
.Em oommmo_ozjm for the time-invariant variables, Moreover, it is inefficient because x

is =oo&om.m€ instrumented. Hausman and Taylor (1981) suggest that (10.33) be om_%
mated by EmnEmnoEE variables using the following variables as Emgﬁmma. Xp e W )
and T2, — Xa;» Xy;. That is, the exogenous variables serve as their own Em.q:_mmm,wa:.
Y2, 18 Instrumented by its deviation from individual means (as in the fixed amnom
wwnaomo:v Ea. Wy; 1s instrumented by the individual average of x; ... Obviously, iden

tification requires that the number of variables in X is at me_m_wm large mmwmrm: .
wy;. The resulting estimator, the Hausman-Taylor estimator. allows us to esti “:
the effect of time-invariant variables, even though the time-varying re mmOano
correlated with ;. The trick here is to use the time averages of those W:Woé rying
regressors mrmﬁ are uncorrelated with o as instruments for the time-invariant re EWEm
QQE?. this .8@:5% that sufficient time-varying variables are included that m_“uwwno“w
moq&m:oz with «;. Of course, it is a straightforward extension to include additional

work. A notable exception is Chowdhury and Nickell (1985).

Imcmm:m: and Taylor also show that the instrument set is equivalent to using
X = Xy Xy — m:m *1,ie» Wy;- This follows directly from the fact that taking
different linear combinations of the original instruments does not affect the estimator
Im:ﬂ:m: and Taylor also show how the nondiagonal covariance matrix of the 029“
5..5 in ( S.uwv. can be exploited to improve the efficiency of the estimator. Nowada s
E_m.io:_a typically be handled in a GMM framework, as we shall moo. in the wam
section (see Arellano and Bover, 1995).

. Two mcvman:o.a papers try to improve upon the efficiency of the Hausman-Taylor
Instrumental variables estimator by proposing a larger set of instruments. Amemi a
and Zmﬂ:&% Com@ suggest the use of the time-invariant instruments x, ,, .l Xy :@w\o
Mf.w — Xy;. This requires that E{(x, , — @LQL = 0 for each t. This mmmcmﬁzozrawwom

ense if the correlation between o; and x, ; is due to a time-invariant component in
X1 iy mco: that E{x, , o} for a given ¢ does not depend upon ¢. Breusch, Mizon and
Schmidt (1989) nicely summarize this literature and suggest as mm_&mozm_.m:m:danza
the use of the time-invariant variables X1 = X UP 1O Xy ;7 — Xy,

s i . 1
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10.2.6 Robust Inference

Both the random effects and the fixed effects models assume that the presence of
@; captures all correlation between the unobservables in different time periods. That
is, u;, is assumed to be uncorrelated over individuals and time. Provided that the X
variables are strictly exogenous, the presence of autocorrelation in u # does not result
in inconsistency of the standard estimators. It does, however, invalidate the standard
errors and resulting tests, just as we saw in Chapter 4. Moreover, it implies that the
estimators are no longer efficient. For example, if the true covariance matrix & does
have an error components structure, the random effects estimator no longer corresponds
to the feasible GLS estimator for 8. As we know, the presence of heteroskedasticity
in u,, or — for the random effects model — in @; has similar consequences.

One way to avoid misleading inferences, without the need to impose alternative
assumptions on the structure of the covariance matrix 2, is the use of the OLS, random
effects or fixed effects estimators for 8, while adjusting their standard errors for general
forms of heteroskedasticity and autocorrelation. Consider the model®

Yie = X B+ &y, (10.34)

without the assumption that ¢, has an error components structure. Consistency of the

{pooled) OLS estimator
N T

Ly or
b= _5& PRI (10.35)

i=} = i=1 t=1

for B requires that
Elxye;} =0. (10.36)

Assuming that error terms of different individuals are uncorrelated (E {e48;} = O for all
i # j), the OLS covariance matrix can be estimated by a variant of the Newey~-West
estimator from Chapter 4, given by ’

N T ot

' 771 N T
Vib) = MU XieXiy M M Mmamakaaw M Ma:\«_w ) (10.37)
1 i=1 r=1 s=1

i=l 1= i=1 =1

where ¢, denotes the OLS residual. This estimator allows for general forms of het-
eroskedasticity as well as arbitrary autocorrelation (within a given individual). Accord-
ingly, (10.37) is referred to as a panel-robust estimate for the covariance matrix of
the pooled OLS estimator. It is also known as a cluster-robust covariance matrix
(where the identifier i indexing the individuals is the cluster variable). In a similar
fashion, it is also possible to construct a robust estimator for the covariance matrix of
the random effects estimator g using the transformed model in (10.23). Note that

the random effects estimator is not the appropriate EGLS estimator under these more

general conditions.

When the model is estimated by the fixed effects estimator, a robust covariance

matrix is obtained in a similar way, by replacing the regressors x;, in (10.37) with

)

° For notational convenience, the constant is assumed to be included in x,.
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their within transformed counterparts, ¥, = x, — %, and the OLS
i

residuals from the within regression (Arellano, 1987). That is residuals with the

-1

. LA Ty or oy N T
w\TmﬁmW“ mm.&:km‘ MMM&:&EM&MW mmm_g\m& s A~Owwv

i=l t=} 5=

where Uy = Yy — &; — x},Bry denotes the within residual. For the first-difference estj
mator Be, the first-differenced variables are employed (and the summation is fro; ,
t,s =2 to T). The above covariance matrix estimators are consistent for fixed %
and N - 00 under weak regularity conditions, Bertrand, Duflo and Mullainath

ﬂo?c cnofan.m critical discussion on the computation of standard errors for h:
differences-in-differences estimator and, among other things, conclude that the ~m
robust approach works reasonably well for moderate . m,mS:E._w Petersen AWMMM-
advocates the use of panel-robust standard errors clustered by m:mm for mzmm&m:av
Wﬁmﬁww M, mww mﬁ OEM_. EEQ. N is small and T — 00, consistency can be moE.aSwM

ett weights i i i i
(003, Sectmay mom EoMo. Mwmuw_wv as discussed in Subsection 4.10.2; see Arellano

If one is &E:m to make specific assumptions about the form of :aﬁono%aammao:v\ or

Mm _wzov estimators, which are typically computationally unattractive, is provided in
altagi (2005, Chapter 5). Kmenta (1986) suggests a relatively simple feasible GLS
nmEden that allows for first-order autocorrelation in ¢, combined with individual
specific :Q.aBmwwammeQ. but does not allow for a mEM.Ea\mnmE component in ¢
(see Baltagi, 2005, Section 10.4). Kiefer (1930) proposes a GLS estimator for the mxmm

to 7 L] Q:m mmmwucmﬂ Qrm 0mE~.~N~O~ EMNV« pro ~Q0 an attracti e anm:.—muﬁ e to th €

10.2.7 Testing for Imumwom»&mﬂg.q and Autocorrelation

Most of the tests that can be used for :nSBmwoawmeQ or autocorrelation in the rando
o@noa. model are computationally burdensome. For the fixed effects model, which H
meoscmzw nm::.umaa by OLS, things are relatively less complex. 1o:§m~m€ as the

xed mmwno.a. estumator can be applied even if we make the random effects mmm:,B tion
that o; is i.id. and independent of the explanatory variables, the tests for the mxmm
am\oromm .=_5a£ can also be used in the random effects case. ,

fairly simple test for autocorrelation in the fixed effec i

Durbin-Watson test discussed in Chapter 4. The &ngma\w :%MMHMM%WM Mmmﬂwoz e

Uig = pu;, |+ vy, (10.39)
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where v, is i.i.d. across individuals and time. This allows for autocorrelation over time
with the restriction that each individual has the same autocorrelation coefficient p. The
null hypothesis under test is Hy,: o = 0 against the one-sided alternative p<0orp>0.
Let i, denote the residuals Jfrom the within regression (10.9) or - equivalently — from
(10.7). Then Bhargava, Franzini and Narendranathan (1983) suggest the following
generalization of the Durbin~Watson statistic:

.\ML Mw.ﬂw@m: - milvn
= e . (10.40)
M,\..nn M~H~ i

Using similar derivations as Durbin and Watson, the authors are able to derive lower
and upper bounds on the true critical values that depend upon N, T and K only. Unlike
the true time series case, the inconclusive region for the panel data Durbin—Watson
test is very small, particularly when the number of individuals in the panel is large. In
Table 10.1 we present some selected lower and upper bounds for the true 5% critical
values that can be used to test against the alternative of positive autocorrelation. The
numbers in the table confirm that the inconclusive regions are small and also indicate
that the variation with X, N or T is limited. In a model with three explanatory variables
estimated over six time periods, we reject Hy: p =0 at the 5% level if dw,, is smaller
than 1.859 for N = 100 and 1.957 for N = 1000, both against the one-sided alternative
of p > 0. For panels with very large N, Bhargava, Franzini and Narendranathan (1983)
suggest simply to test if the computed statistic dw, i3 less than two, when testing
against positive autocorrelation. Because the fixed effects estimator is also consistent
in the random effects model, it is also possible to use this panel data Durbin-Watson
test in the latter model.

To test for heteroskedasticity in u,,, we can again use the fixed effects residuals iy
The auxiliary regression of the test regresses the squared within residuals #2 upon a
constant and the J variables z,, that we think may affect heteroskedasticity. This is a
variant of the Breusch-Pagan test'® for heteroskedasticity discussed in Chapter 4. Its
alternative hypothesis is that ’

dw

Viu,} = QMNANM“QY :O.u:v_ .

Table 10.1 5% lower and upper bounds panel Durbin—Watson test

N =100 N =500 N = 1000
d; dy d, dy d, dy'
T=6 K=3 1.859 1.880 1.939 1.943 1.957 1959
K=9 1.839 1.902 1.935 1.947 1.954 1.961
T=10 K=3 1.891 1.904 1.952 1.954 1.967 1.968
K=9 1.878 1916 1.949 1.957 1.965 1.970

Source: Bhargava, A., Franzini, L. and Narendranathan, W., (1983), Serial Correlation and the Fixed mm.onn
Model, The Review of Economic Studies (49): 533-549. Reprinted by permission of Blackwell Publishing.

"%In a panel data context, the term Breusch-Pagan test is usually associated with a Lagrange multiplier test
in the random effects model for the null hypothesis that there are no individual specific effects (o2 = O);
see Wooldridge (2002, Subsection 10.4.4) or Baltagi (2005, Subsection 4.2.1). In applications, this test
almost always rejects the null hypothesis,
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where £ is an unknown continuously differentiable function with h(0) = 1 th,
the null Eﬁoﬁrwmmm that is tested is given by Hy: a = 0. Under the EEI: , mm_ "y
the test statistic, computed as N (T — 1) times the R? of the auxiliary Swwommv%: mmmw
have an asymptotic Chi-squared distribution, with J degrees of freedom. An u:ﬂd, Ms
Rmﬁnm: be oo_wﬁ.:oa from the residuals of the between regression m:a. is based M on
N times the R? of an auxiliary regression of the between residuals upon z; or EWMM
mw:.mn.w:%. upon z,;, ..., z;r. Under the null hypothesis of homoskedastic errors, the test
statistic has an asymptoric Chi-squared distribution, with degrees of freedom ‘ ual ¢
the number of variables included in the auxiliary regression (excludin e
The aiternative hypothesis of the latter test is less well defined.

10.3 lllustration: Explaining Individual Wages

F this section we shall apply a number of the above esti imati
individual wage equation. The data!! are taken from the Mwﬂﬂﬂw:ﬂﬁ:om Mﬂnmﬁhmwhm
Longitudinal Survey held in the USA and comprise a sample of 545 full-time workin
males who completed their schooling by 1980 and were then followed over the vonom
1980-1987. The males in the sample were young, with an age in 1980 ranging from
1710 mm,. and Jmn_ entered the labour market fairly recently, with an average of mw ears
of @xva:ono.n in the beginning of the sample period. The data and wvnoSommozw we
choose are similar to those in Vella and Verbeek (1998). Log wages are explained from
years of schooling, years of experience and its square, dummy variables for bein a
union Eaico_.., working in the public sector and being married and two racial QEEEWm
The nﬁ.::‘m:o: results'? for the between estimator, based upon individual avera mm.
and the within estimator, based upon deviations from individual means, are given 5%90.
mwmﬁ .26 o.o_EEa of Table 10.2. First of all, it should be noted that S.W fixed effects o
.E:En estimator eliminates any time-invariant variables from the model. Tn this ommo_.
1t means that the effects of schooling and race are wiped out. The &moan.zomm ca?dn:.
the two sets of estimates seem substantial, and we shall come back to this below. In the
next column the OLS resuits are presented applied to the random effects model .Erﬁd
the mﬁﬂaﬁa errors are adjusted for :anOmwaammm&Q and arbitrary forms ow serial
correlation based on the cluster-robust covariance matrix in (10.37). The last column
presents the random effects EGLS estimator. As discussed in Subsection 10.2.3, the
variances Om. the error components @; and u; can be estimated from the iw?wu,mza
between residuals. In particular, we have 62 = 0.1209 and 67 =0.1234. From this

e can consistently estimate 02 as 42 = 0.1209 — 0.1234/8 =
the factor  is estimated as : . 8= 0108 R

J= 0.1234
= s
0.1234 + 8 x 0.1055 ~ 1276,

Wm&:m 0% =1-~yi2 - 0.6428. This means that the EGLS estimator can be obtained
Tom a transformed regression where 0.64 times the individual mean is subtracted
—

1 Lo X
2 The %:.» used in this section are available as MALES.
The estimation results in this section are obtained by Stata 9.2,
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Table 10.2 Estimation results wage equation, males 19801987 (standard errors in
parentheses)

Dependent variable: log(wage)

Variable Between Fixed effects OLS Random effects
0.490 - —0.034 —-0.104
constant 0.221) (0.120) Amwmwv
i 0.095 - 0.099 X
schocling {0.011) (0.009) Aw.ﬁ_xwwv
i ~0.050 0.116 0.089 5
cperience {0.050) (0.008) (0.012) Aw%mv_
ience® 0.0051 ~0.0043 —0.0028 ~0.
perience (0.0032) (0.0006) (0.0009) (0.0006)
union member 0.274 0.081 0.180 0.106
{0.047) (0.019) (0.028) (0.018)
married 0.145 0.045 0.108 0.063
(0.041) (0.018) (0.026) (0.017)
black -0.139 - ~0.144 —0.144
(0.049) (0.050) (0.048)
hispanic 0.005 - 0.016 0.020
(0.043) (0.029) Aw.wwwv
i -0.056 0.035 0.004 !
public secter (0.109) (0.039) (0.050) (0.036)
0.1776
ithin R2 0.0470 0.1782 0.1679
Mngmoz R? 0.2196 0.0006 0.2027 0.1835
overall R? 0.1371 0.0642 0.1866 0.1808

from the original data. Recall that OLS imposes ©# = 0 while the fixed mﬁooa owﬂ:._w-
tor employs ©# = 1. Note that both the OLS and the random effects estimates are in
between and fixed effects estimates. . .
gwﬂﬂw mﬁwmcicmonm of the random effects model are mm,.ammoP all four estimators in
Table 10.2 are consistent, the random effects estimator being the most efficient one. If,
however, the individual offects o; are correlated with one or more of nﬁ mxn_m:mﬁoﬂ.
variables, the fixed effects estimator is the only one that mm.nozminmr This :«vwﬁcoma
can be tested by comparing the between and within mma:._m:oa. or En.cﬁzzn and
random effects estimators, which leads to tests that are equivalent. The simplest one
to perform is the Hausman test discussed in Subsection 10.2.4, cmmma. upon Em._unnn
comparison. The test statistic takes a value of 31.75 and reflects the differences in the

coefficients on experience, experience squared and the union, married and public sector

dummies. Under the null hypothesis, the statistic follows a Chi-squared distribution
with five degrees of freedom, so that we have to reject the null at any reasonable level
of significance.

Marital status is a variable that is likely to be correlated with the unobserved Jn?;,
erogeneity in a;. Typically one would not expect an important causal effect of being

married upon one’s wage, so that the marital 9_33« is typically nmﬁﬁ&:m other (unob+
servable) differences between married and unmarried workers. This is confirmed by
the results in the table. If we eliminate the individual effects from the model and con-
sider the fixed effects estimator, the effect of being married reduces to 4.5%, ﬂ?_n
for the between estimator, for example, it is almost 15%. Note that the effect of being
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married in the fixed effects approach is identified only through people who change
marital status over the sample period. Similar remar

ks can be made for the effect
of union status upon a person’s wage. Recall, howe

that the explanatory variables are uncorrelated with the idiosyncratic error term u;,.
If such correlations were to exi , i i

status on wages for this group of workers and consider alternative
cated, estimators.

The goodness-of-fit measures confirm that the fixed effects estimator results in the
largest within R? and thus explains the within variation as well as possible. The QLS
estimator maximizes the usual (overall) R?, while the random effects estimator results
in reasonable R2s in all dimensions. Recall that the OLS standard errors in Table 10.2
are adjusted for heteroskedasticity and arbitrary forms of serial correlation in the error
terms. Routinely computed standard errors assuming i.i.d. error terms are inappropriate,
and — in this application — sometimes less than half of the correct ones.

10.4 Dynamic Linear Models

Among the major advantages of panel data is the ability to model individual dynamics.
behaviour depends upon past behaviour
(persistence, habit formation, partial adjustment, etc.), so in many cases we would like

to estimate a dynamic model on an individual level. The ability to do so is unique for
panel data.

10.4.1 An Autoregressive Panel Data Model

Consider the linear dynamic model wi

th exogenous variables and a lagged dependent
variable, that is

Yie = \«h.\?m T VY + @+ Uy,

where it is assumed that Uy 18 1ID(0, 62). In the static model, we have seen arguments
of consistency (robustness) and efficiency for choosing between a fixed or random
;- In a dynamic model the situation is substantially different,
because y, ,_; will depend upon o, irrespective of the way we treat ;. To illustrate

the problems that this causes, we first consider the case where there are no exogenous
variables included and the model reads

Y = Vi +o +u,, |yl <1, (10.42)

Assume that we have observations on Yy forpedodst =0,1,.. ., 7. Because y, ,_, and
@; are positively correlated, applying OLS to (10.42) is inconsistent, overestimating the
true autoregressive coefficient (in the typical case where Y > 0). Similarly, the random
effects approach is inconsistent.

The fixed effects estimator for ¥ is given by

N T s o
Ppp = izl 2 O — Y)Wt = i)
FE = N =T =
imt 2m1 Yy = Vi

. (10.43)
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where 5, = (1/T) Y1, y, and 5, ., = (1/T) X, ¥;,_,. To analyse the properties of
Vpe, We can substitute (10.42) into (10.43) to obtain

ANTY) 5 30 g = ) gy = Fim)
A/NTH T, Muwu_Q.:L — ¥

This estimator, however, is biased and inconsistent for N — oo and fixed 7, as the

last term on the right-hand side of (10.44) does not have expectation zero and does not

converge to zero if N goes to infinity. In particular, it can be shown that (see Nickell,
1981; or Hsiao, 2003, Section 4.2)

(10.44)

wwwmﬂuxn*.

T
I=D=Tyay” o
(1—y)?

(10.45)

Thus, for fixed 7 we have an inconsistent estimator. Note that this inconsistency is not

caused by anything we assumed about the s, as these are eliminated in estimation.

The problem is that the within transformed lagged dependent variable is correlated

with the within transformed error. If T — o0, (10.45) converges to 0 so that the fixed
effects estimator is consistent for y if both T — oo and N — oo.

One could think that the asymptotic bias for fixed T is quite small and therefore not

a real problem. This is certainly not the case, as for finite T the bias can hardly be

ignored. For example, if the true value of y equals 0.5, it can easily be computed that

(for N - o0)

Zﬂ N
_ — » | Q
plim NT M w M ”A:; =)y =¥ = N,_w

N0 i=l f=l

plim Ppp = —0.25 if T =2

plimpp = -004 fT=3
plim fpp = 033 if T = 10,

so even for moderate values of T the bias is substantial. Portunately, there are relatively

easy ways to avoid these biases.
To solve the inconsistency problem, we first of all start with a different transformation
to eliminate the individual effects «;, in particular we take first differences. This gives

Yie ™ Yiud =V Wiper = Vigoa) + gy —0y,0), t=2,...,T. (10.46)

If we estimate this by OLS, we do not obtain a consistent estimator for y because
Vi1 and u,,_,; are, by definition, correlated, even if T — oc. In many applications,
this first-difference estimator appears to be severely biased. However, this transformed
specification suggests an instrumental variables approach. For example, Yis—p 18 corre-
lated with y;,_, — y;,_, but not with u; ,_,, unless u;, exhibits autocorrelation (which
we excluded by assumption). This suggests an instrumental variables estimator!> for
¥ as
M“,\i NJLWN Yiam2 O = Yiet)

—— . (10.47)

2ict =2 YiamaWiemt = Yigd)

Yiv =

'3 See Section 5.3 for a general introduction to instrumental variables estimation.
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A necessary condition for consistency of this estimator is that

) 1 N T
Plim 5 D2 D =t )y, = 0 (10.48)

i=1 =2

for T or N or both going to Ew:_:%. The estimator in (10.47) is one of the estimators
proposed by ».Eaaao: and Hsiao (1981). They also proposed an alternative, where
i1-2 7 Yiy~3 15 used as an instrument. This gives

N T
wv%wv = MMH_ MUNHwOw:IN = Vi) ¥y ~ Vi) 10.49
N T . ;
MUNHH =3(Viyg — Vie=3)Vigy — Yig-a) ¢ )

which is consistent (under regularity conditions) if

. i N T
phim % > Muc; i)y = Vi) = 0. (10.50)

i=1 1=

Note that Em second instrumental variables estimator requires an additional lag to con-
struct the instrument, such that the effective number of observations used in estimation
is reduced (one sample period is ‘lost’).

Consistency of both Anderson-Hsiao estimators is guaranteed by the assumption
that u;, has no autocorrelation. However, Arellano (1989) has shown that the nmEMmB_.
that uses the first-differenced instrument, when exogenous variables are added to the
model, suffers from large variances over a wide range of values for y. In addition
Monte Carlo evidence by Arellano and Bover (1995) shows that the _..w<m_m <m§o~h
of En Anderson—Hsiao estimator can have large biases and large standard errors
nE..:nEE_% when y is close to one. Alternative estimators have been developed Emm
build upon the Anderson—Hsiao approach. These approaches, formulated in a method
of moments framework, unify the above estimators and eliminate the disadvantages of
reduced sample sizes. The first step is to note that

1

N T
plim NG M MN?.. i = E{y, g, )y, 5l =0 (10.51)
=1 1=

is a moment condition (compare Chapter 5). Similarly,

. 1 LA
) M Wwe; Ui O = Yy 3)
= E{Q; —u;, )y, — Vi)l =0 (10.52)

18 a moment condition. Both IV estimators thus impose one moment condition in
omzﬂmzop It is well known that imposing more moment conditions increases the
efficiency of the estimators (provided the additional conditions are valid, of course)
Arellano and Bond (1991} suggest that the list of instruments can be mﬁo:&na cw.
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exploiting additional moment conditions and letting their number vary with r. To do
this, they keep T fixed. For example, when T = 4, we have

Ef(uy —u; )yl =0

o et T b e

as the moment condition for = 2. For ¢ — 3, we have

El(uyy - Uiyl =0,

but it also holds that
E{(u;3 ~ Uiz ¥} = 0.

For period t = 4, we have three moment conditions and three valid instruments;

1
Ef(uyy ~ u;3)y 0l =0 .“
E{(uig —uz)yy) =0 _.
Ef(uiy ~ u;3)y,5) = 0. 4

All these moment conditions can be exploited in a GMM framework. To introduce
the GMM estimator, define for general sample size T

Uipp — Uy
Ag, = (10.53)

1

Wpr — U1y
as the vector of transformed error terms, and

—.VRL 0 Qoo 0
0 :5, X,L 0

Z, = . . . (10.54)
: " 0

0 0 Iygr.-os Yir—2}

as the matrix of instruments. Each row in the matrix Z; contains the instruments that
are valid for a given period. Consequently, the set of all moment conditions can be
written concisely as

E{Z{Au,} = 0. (10.55)

Note that these are 1 +2 + 3 4 - .. + T — 1 conditions. To derive the GMM estimator, -

write this as
E{Z{(Ay; =y Ay, _)) = 0. (10.56)

Because the number of moment conditions will typically exceed the number of unknown
coefficients, we estimate y by minimizing a quadratic expression in terms of the cot-
responding sample moments (compare Chapter 5), that is,

2 \ 2 ,
. H \ ~ \ ;
:w:ww M N&DX!&DXHL:\Z N MU Zi(Ay; —yAy, _p |, Co.ud

i=1 i=1
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where W), is a symmetric positive defini ighti i
nite weighting matrix, !4 p; iati is wi
respect to ¥ and solving for y gives ¢ _mﬁoncmzzm s with

) N N il
Yomy = MD&].NN. Wy MUNMDX..L

i=l i=1

N N
X Ay, z Wy z/Ay, ). (10.58)

F=1 =1

The properties of this estimator depend upon the choice for W

. L. ; , although it is i
as long as W,, is Ppositive definite, for example, for W, 8 i

=/, the identity matrix.

PIm Wy = V(Zjau)™! = ElZjAuaujz,), (10.59)

Nooo

In ﬁww standard case where 10 restrictions are imposed upon the Covariance matrix of
u;, this can be mmnﬁmﬁa using a first-step consistent estimator of y and replacing the
€Xpectation operator with a sample average. This gives

~1

2

2 1

WoP M /A A P
N = >\<..l NN.DSD:_\.N\

i=]

i 18 1.i.d. over individuals and
without imposing these restric-

unresirictedly, it is also possible (and potentially advisa
the ,mcmozno of autocorrelation in 4;, combined with
Noting that under these restrictions

AU} = 626G = g2
E{Au;Au} = 02G = o (10.61)

0 -1 2
e ————

" The suffix & reflects that W,

the matrix. can depend upon the sampie size N and does not reflect the dimension of
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the optimal weighting matrix can be determined as
| -
W = v Y zigz,) . (10.62)
i=1
Note that this matrix does not involve unknown parameters, so that the optimal GMM
estimator can be computed in one step if the original errors u, are assumed to be
homoskedastic and exhibit no autocorrelation.
Under weak regularity conditions, the GMM estimator for y is asymptotically normal
for N > oo and fixed T, with its covariance matrix given by
1 1 S h
plim v M Ay; ,Z; v MU ZiAu; Auj 7, N M ZiAy;
=

N—~00 i=1 i=1

(10.63)
This follows from the more general expressions in Section 5.6. With i.i.d. errors the
middle term reduces to .
. -
1
WY =0l 5 M Z/Gz,
Alvarez and Arellano (2003) show that, in general, the GMM estimator is also consis-
tent when both N and T tend to infinity, despite the fact that the number of moment
conditions tends to infinity with the sample size. For large T, however, the GMM
estimator will be close to the fixed effects estimator, which provides a more attrac-
tive alternative. Moreover, Windmeijer (2005) and others warn against using too many
instruments in this context.

10.4.2 Dynamic Models with Exogenous Variables
If the model also contains exogenous variables, we have
Yie =X B+ VYo oy 4wy, (10.64)

which can also be estimated by the generalized instrumental variables or GMM
approach. Depending upon the assumptions made about x,,, different sets of additional
instruments can be constructed. If the x,, are strictly exogenous in the sense that the

are uncorrelated with any of the u;, error terms, we also have i

E{x;,Auy} =0 foreachs,1t, (10.65)

so that x;;, ..., x;r can be added to the instruments list for the first-differenced equation

£

in each period. This would make the number of rows in Z; quite large. Instead, almost
the same level of information may be retained when the first-differenced x;s are used
as their own instruments.' In this case, we impose the moment conditions

E{Ax,Au,} =0 for each (10.66)

5 We give up potential efficiency gains if some x;, variables help ‘explaining’ the lagged endogenous
variables. ox
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and the instrument matrix can be written ag

[¥i0, Ax),] 0 . 0
Y [vios Y1, D\«..\L 0

0
0 0 [y \
.<NO, sy .%}N..»we DH..N@

If the x,, variables are not strictly exogenous but predetermined, in which case current
w:a lagged x; s are uncorrelated with current error terms, we only have E{x,u }=0

v . . . U ; -
ors > n.‘mz E_m case,only x; ,_,,..., X;y are valid instruments for the man-&m%mnooa
equation in period . Thus, the moment conditions that can be imposed are

Etxi_jBu,} =0 for j=1,...,t = 1 (for each ). (10.67)

In practice, a combination of strictly exogenous and predetermined x variables may
occur rather than one of these two extreme cases. The matrix Z. should then be adjusted

&5 the Emgagﬁ variables estimators of Hausman and Taylor (1981) and others
discussed in m:cmoncoc E.N.m‘ Most importantly, they discuss how information in lev-
els can also be mxﬁ_o_:& In estimation. That is, in addition to the moment conditions

ments are weak (see Subsection 5.5.4); see also Blundell and

mga ﬁﬁ Windmeijer (2000) and Arellano (2003, Section o.@.w%mwamﬂowwmwnwhw“ﬁ”:“
tions, m.ESEM lagged differences of Yi can be used to instrument the e uation w:
levels, in addition to the instruments for the first-differenced equation. For mMEn le, if
E{Ay, ,_ e} =0, AY; ,~1 can be used to instrument Yig—y in (10.42) and P

m,:&.“ - VQ_,.T.LCRT_ = Yir-2)} =0

1s a valid moment condition that can be added (in the absence of serial correlation in
u;). The validity of this instrument depends upon the assumption that changes in
are uncorrelated with the fixed effects. This means that individuals are in a kind \ww
steady state, in the sense that deviations from long-term values, conditional u n the
€xogenous variables, are not systematically related to o;. i

10.5 Ilustration: Explaining Capital Structure

dﬁ capital structure of a firm tells us how a firm finances its operations, the most
lmportant sources being debt and equity. In their seminal paper, Modigliani MSQ Miller
,A 1958) m_..o€ that in a frictionless world with efficient capital markets a firm's capital
Structure is irrelevant for its value, In reality, however, market imperfections, like taxes
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and bankruptcy costs, may make firm value depend on capital structure, and it can be
argued that firms select optimal target debt ratios on the basis of a trade-off between the
costs and benefits of debt. For example, firms would make a trade-off between the tax
benefits of debt financing'® and the costs of financial distress when they ~.§<n U.oﬁoéon_
too much. In this section, we follow Flannery and Rangan (2006) and investigate ,:5
explanatory power of the trade-off theory taking into account that ?.BM may adjust
only partially towards their target capital structure. This leads to a dynamic panel data
model for the firm’s debt ratio. o .

A firm’s debt ratio measures the portion of a firm’s capitalization financed with debt
and can be defined as D,

DR, = —— T,
DRy Dy + 5, P,

where D, is the book value of a firm's interest-bearing debt, S, is the .E_Ewﬁ. of
ooBEoz.m:mRm outstanding and P, denotes the price per share, mﬁ at time ¢. If a
firm is financed by a relatively great deal of debt, it is said to be highly leveraged.
The optimal or target debt ratio of a firm at time ¢ is assumed to depend upon m:.B
characteristics, known at time 7 — 1 and related to the costs .mzm benefits of operating
with various leverage ratios. Accordingly, the target debt ratio is assumed to satisfy

MDR}, = x;, B + 1.

where 1, is a mean zero error term accounting for unobserved rmancmo:m&.
>&cm_552 costs may prevent firms from choosing their target debt ratio at each
point in time. To accommodate this, we specify a target adjustment model as

MDR, ~MDR;,_, = (1 — y)(MDR;, — MDR; ,_,),

where 0 < y <1 (compare (9.10)). The coefficient y measures .Eo m._&cm:JoE speed
and is assumed to be identical across firms. If y = o,.mme adjust E::.wn__ma_v\ and
completely to their target debt ratio. Combining the previous two equations, we can
write

MDR,, = yMDR,,_, +\«M.Nx_m: V) +eg

where ¢, = (1 — y)1,. Because it is likely that time-invariant unobserved firm-specific
heterogeneity plays a role, our final specification is written as

MDR, = yMDR,, | +x|,_,B* + o, +u,, 10.68

which corresponds to a standard dynamic panel data model-as discussed in the previous
section. . o .

The data we use and the choice of explanatory variables are similar to those in Em.m-
nery and Rangan (2006). Our sample of firms is taken from the Compustat Emcmﬁ.m_
Annual Tapes and covers the years 1987 to 2001 (T = 15), where we exclude financial

firms and regulated utilities whose financing decisions may reflect .mvooE factors. OE. :
final sample contains a random subsample of the larger panel covering N = 3777 mHEm

! In most countries interest payments are tax deductible.
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and 19573 firm-year observations.!” The panel is unbalanced, with the average firm

being observed for 5.2 years. To model the target debt ratio, the following variables
are used:

ebit_ta earnings before interest payments and taxes, divided
by total assets

mb ratio of market value to book value of assets

dep_ta depreciation expenses as a proportion of fixed assets

log (ta) log of total assets

Jfa_ta proportion of fixed assets

rd_ta research and development expenditures, divided by
total assets (0 if missing)

rd_dum dummy indicating whether rd_ta is missing

indmedian industry median debt ratio

rated dummy indicating whether the firm has a public debt rating

Because information on R&D expenditures is missing for a substantial proportion
of the firm-years, we follow Flannery and Rangan (2006)’s pragmatic solution to add

serial correlation (see Subsection 10.2.6). From Subsection 10.4.1, we expect that the
OLS estimator for y overestimates the true coefficient on the lagged dependent variable,

of the lagged dependent variable, particularly if y is large. This can be understood from
(10.45), noting that the first-difference estimator and the within estimator are identical
for T = 2. These expectations are confirmed in Table 10.3,

The differences between the OLS, within and first-difference results are substantial.
The OLS coefficient on lagged MDR of 0.883 implies that firms close only 11.7% of
the gap between the current and target debt ratio within 1 year. This slow adjustment is
consistent with the hypothesis that other considerations outweigh the cost of deviation
from optimal leverage. However, the fixed effects approach estimates adjustment to be
much faster, with an estimated adjustment speed of 46.5%. The first-difference estimate
of —0.114 is simply ridiculous and is mainly presented here to show that inappropriate
estimation techniques may yield strongly conflicting and economically senseless results.
Given that the OLS and within estimates are probably biased in the opposite direction,
we would expect the true adjustment speed to be between 0.535 and 0.884 (ignoring
sampling error). Another notable difference between the columns in Table 10.3 is the
estimated impact of firm size. The OLS estimate is statistically insignificant, while the
within and first-difference estimates both yield a highly significant positive coefficient
(¢t =12.39 and ¢ = 12.61 respectively). The latter results seem to make more sense,
because large firms tend to operate with more leverage, for example because they have
" The data for this illustration are available as DEBTRATIO.
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Table 10.3 OLS, within and OLS-FD estimation results dynamic
model (panel-robust standard errors in parentheses)

Variable OLS within first-difference
0.884 0.535 —-0.114
i (0.005) (0.012) Aw.wmv
i —0.032 —0.050 -0,
ebitta 0.007) (0.011) (0.010)
mb 0.0016 0.0023 0.0028
(0.0007) (0.0010) Aw.ﬁ_xwm 1
—0.261 —0.124 )
dep.1a (0.035) 0.071) (0.079)
log(ta) —0.0007 0.038 0.064
(0.0006) (0.003) (0.005)
fa_ta 0.020 0.059 0.106
- (0.006) (0.017) Aw.wwv
0.007 0.0001 ~0.
ri-dum (0.002) (0.0081) (0.009)
rd_ta ~0.120 ~0.066 —0.059
- (0.013) (0.026) Aw.wmwv
indmedi 0.032 0.167 !
dmedian (0.010) (0.022) (0.026)
rated 0.007 0.021 0.009
(0.003) (0.006) 0.007)
within R? m‘%
between R? !
overall R? 0.741 0.563 0.028

ss to public debt markets. The industry median is included 6 control mﬁ.u_.
W%%Mq“ommmmgﬁnﬂmnom that are not captured by Eo other mxv_m:mSQ ﬁwnm_www EMW _“
expected to have a positive coefficient. The magnitude of Em oommmﬂwa. or i ﬁmmﬁ.ﬂ
is larger for the within and first-difference results than for OLS, E:.* S0 is its mmm _mEm
significance. The variable rated is potentially endogenous, as a firm’s credit ra a:._m W
depend upon its capital structure. We follow Em::mQ and W.m:m.mz Qoo@ an mmhm_wow
include rated as additional explanatory variable, noting that its inclusion ﬂm exc W o
has little impact on the other coefficient mmnEmﬁam..Z.oﬁo that for most coefficien e
OLS robust-standard errors are smaller than the within and mnm?a_moasom. ones. ;-
makes sense as the latter two approaches allow for fixed effects and only identify the

coefficients from the within variation in the data. For example, rd_dum exhibits very .

litle time variation and therefore its effect is not very accurately estimated with the

fixed effects approaches. . . . :
As mentioned before, al! estimators in Table 10.3 are inconsistent. The first-difference

estimator, while allowing for correlation between «; and the explanatory variables, is.

severely biased because the first-differenced lagged dependent variable is Eme mﬁmwm
tively correlated with the first-differenced error term. gm OLS results are .Eooam_mﬂouﬁ
because of the correlation between the lagged debt ratio and «;. Both biases do no

disappear for 7 — oco. The within estimates also allow for fixed nmmoma and Ecﬂ.oh
correlation between the unobservables in «; and the explanatory variables, but ey
suffer from a small-T bias. Despite this, the latter results appear to make more sense

M
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than the OLS ones, suggesting that controlling for firm-specific fixed effects in the
target debt ratio is important.

for the Anderson-Hsiao estimator when AMDR;, , is used as an instrument for

i
AMDR;, |, while the second column presents the results when the level MDR,;, ,
is used to instrument AMDR, ,_|. The differences between the two columns are strik-
ing. The estimator using the first-differenced instrument suffers from very high standard
errors and extremely unrealistic parameter estimates. For example, the estimated value
for y is as high as 7.03 with a (panel-robust) standard error of 7.32. The estimator
using the level instrument seems to produce a bit more realistic results, although the
estimated coefficient on the lagged dependent variable is larger than one. A potential
explanation for the poor performance of the first-difference Anderson-Hsiao estimator
is a weak instrument problem.'®* We can easily check this by inspecting the under-
lying reduced-form equations (compare Subsection 5.5.4). In a regression explaining
AMDR, , _, from the first-differenced variables Ax,,_, as well as the proposed instru-
ment AMDR,; ,_,, the panel-robust t-value of the latter variable is only —1.00. This
suggest that the instrument AMDR,;, _, is basically irrelevant and we should not take
the corresponding resuits seriously. For the reduced form containing the instrument
MDR;,_,, the corresponding r-value is —14.15, Although this indicates that the Ander-
son—Hsiao results using the level instrument do not suffer from a weak instrument

dependent variable. A potential explanation for this outcome is that the exogeneity
of the instrument MDR;,_, is violated because of the presence of serial correlation
in uy,.

An alternative approach is the use of the Arellano and Bond (1991) estimator, where

The one-step GMM results correspond to an adjustment speed of 25.1%, while the two-
step estimates imply an annual adjustment of 22.8%. Overall, the standard errors of the
GMM estimates are relatively high, and a substantial number of explanatory variables
are individually statistically insignificant. Further, the GMM results suffer from two
additional problems. First, the Sargan test of overidentifying restrictions based on the
one-step estimates produces a highly significant test statistic of 781.20. Note, however,
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Table 10.4 1V and GMM estimation results dynamic model
Anderson-Hsiao IV Arellano-Bond GMM
Variable robust s.e.  robust s.e. one-step two-step
MDR,_, 7.033 1.358 0.749 0.772
(7.325) (0.091) (0.032) (0.036)
ebit_ta 1.208 0.203 0.099 0.098
(1.305) (0.026) (0.012) (0.015)
mb 0.244 0.047 0.029 0.026
0.247) (0.004) (0.002) (0.002)
dep _ta —1.858 -0.227 —0.066 —0.003
(2.116) 0.151) (0.087) (0.106)
log(ta) —0.521 -0.053 0.005 0.003
(0.607) (0.013) (0.005) (0.007)
fa_ta ~1.091 -0.166 —0.062 —0.052
(1.238) (0.039) (0.021) (0.025)
rd_dum -0.023 -0.021 —-0.0178 -0.017
(0.079) (0.016) (0.0100) (0.11)
rd_ta 0.882 0.127 0.064 0.055
(1.038) (0.050) (0.037) (0.035)
indmedian —-3.378 ~0.584 -0.061 -0.095
(3.668) (0.061) (0.034) (0.032)
rated —0.272 -0.052 -0.021 -0.029
(0.294) (0.012) (0.008) (0.008)
Overidentifying 887.17 437.11
restrictions test (df = 104) (p = 0.0000) (p = 0.0000)
Test for second-order -3.39 —2.73
autocorrelation in Au,, (p = 0.0007) (p = 0.0063)

instruments: AMDR, _, MDR, , MDR,_,, MDR,_,, ... (for each t)

that this test is only valid under homoskedasticity. The two-step estimates produce a
lower value for the test of overidentifying restrictions, but still highly significant. Sec-
ond, the hypothesis of no serial correlation in u ir» which is required for the instruments
to be valid, is strongly rejected for both GMM estimators. In addition, some of the
GMM estimates are counterintuitive. For example, the effect of the industry median is
estimated to be negative.

In summary, none of the reported estimates for the dynamic model to explain firms’

debt ratios is entirely convincing. The (inconsistent) OLS and within results from

Table 10.3 suggest that the true y coefficient should be in the range 0.535-0.884
(although this ignores the estimation error in both estimates). While GMM yields y
estimates around 0.75, the overidentifying restrictions tests reject both for the one-step
and for the two-step results and the coefficient estimates for several other variables are
economically unappealing.

It should be noted here that, if the true coefficient on the lagged dependent vari-

able is close to unity, lagged levels as employed in the Arellano~Bond procedure
are poor instruments for first differences. Arellano and Bover (1995) and Blundell
and Bond (1998) develop alternative estimators that are based on adding the orig-
inal equation in levels to the system and using suitably lagged first differences as
instruments. Obviously, these first differences should then be orthogonal to «;.
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10.6 Zo:m»m:o:mq#«e Unit Roots and Cointegration

q.,:n recent literature exhibits an increasing integration of techniques and ideas from
time mm:om.mzm_vﬁm, such as unit roots and cointegration, into the area of anel
ﬂwﬁm E.oao_:nm. H:n underlying reason for this development is that researchers ﬂwé
increasingly realized that Cross-sectional information is a useful additional source of

information that should be exploited. To analyse the effect of a certain policy mea-

and Symons (1992) and Pesaran and Smith ( 1995) stress the importance of parameter

relationships of the individual series may be completely destroyed,
As long as we consider each time series individually, and the series are of sufficient
length, there is nothing wrong «ﬁE applying the time series techniques from Chapters 8

the same parameters. For example, it is conceivable that Y;; is stationary for country
1 but Eamﬁmﬁ.oa of order one for country 2. Even when m: variables are integrated
of order one in each country, heterogeneity in cointegration properties may lead to
E.oEmEm. For example, if for each country i the variableg ¥y and x, are cointegrated
with parameter §,, it holds that Yie = Bix;, is 1(0) for each i, but in mononm_ there does
not €Xist a common cointegrating parameter B that makes y,, — Bx;, stationary for ail
i m:;E_E_S there is no guarantee that the cross-sectional m«mnmmmm w =({/N)Y .,y
and X, are cointegrated, even if all underlying individual series are omiamamaa o

.F m:cm.onmoam 10.6.1 and 10.6.2, we pay attention to panel data unit root ﬂommm and
oo_iomﬂm.:os tests respectively. Basically, the tests are directed at testing the joint null
Eﬁoamm_m of a unit root (or the absence of cointegration) for each of the countries
mvolved. In comparison with the single time series case, panel data tests raise a number
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of additional issues, including cross-sectional dependence, heterogeneity in dynamics
and error-term properties and the type of asymptotics that is employed. While most
asymptotic analysis is done with both N and T tending to infinity, there are various
ways that this can be done.

10.6.1 Panel Data Unit Root Tests

To introduce panel data unit root tests, consider the autoregressive model
Vie =0+ Y, vy +uy, (10.68)

which we can rewrite ag
Ay, =a; + T Yt + (10.69)

where 7; = y; — 1. The null hypothesis that all series have a unit root then becomes
Hy: ;=0 for all i. A first choice for the alternative hypothesis is that all series are
stationary with the same mean-reversion parameter, that is, H,: 7, = & < 0 for each
country £, and is used in the approaches of Levin and Lin (1993)," Quah (1994),
Harris and Tzavalis (1999) and Breitung (2000). A more general alternative allows the
mean-reversion parameters to be potentially different across countries and states that
Hy: m; < 0 for at least one country i. This alternative is nsed by Maddala and Wy
(1999), Choi (2001), Im, Pesaran and Shin (2003)*° and others. As in the time series
case discussed in Chapter 8, the properties of the test statistics (and their computation)
depend crucially upon the deterministic regressors included in the test equation. For
example, in (10.69) we have included a dummy for each country, corresponding to
the fixed effect. Alternative tests are available in cases where the equation includes a

and Fuertes (2007) note, if the hypothesis of interest is that all series are stationary
(for example, real exchange rates under purchasing power parity), it would be more

In addition to the choice of deterministic regressors in the test equations, panel data .

unit root tests offer three additional technical issues in comparison with the single
time series case. First, one has to make assumptions on the Cross-sectional dependence
between u,,s, noting that a majority of the existing nonstationary panel data literature
assumes cross-sectional independence. Second, we need to be specific on the properties

—_—
1% A revised version of the Levin and Lin (1993) paper is available in Levin, Lin and Chu (2002).

0 A first version of this paper dates back to 1995,
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of u, E.a how they are m.ﬁ:.eoa o vary across the ditferent units, Thig includes seria]
noqa_mﬁ._on and ﬂ.vo possibility of :Qmaomwmmmmm&a\ 4cross units. Third asymptotic

>=«Emn<o_% moS.m tests assume that both N and T tend to infinity along a specific
nmﬁﬂ% Aw.m.. ﬂ\.Z being fixed). While the type of asymptotics that ig applied may seery
a theoretical issue, remember that we are using asymptotic theory to approximate the

oversized. That is, when the null hypothesis is true, the tests tend to reject more
frequently than their nominal size (say, 5%) suggests. Further, many tests do not
perform very wej] when the error termg are cross-sectionally correlated, or in the
presence of Cross-country cointegration, For example, when real mxnvmawm rates are
1(1) and comtegrated across countries, the null hypothesis tends to be rejected too

1993); see Baltagi (2005, Section 12.2). While
allow for serial correlation in u,, they do not

is assumption jg rather strong, and, as stressed
on purchasing power panity, allowing for crogs-

; v.nmmnm: and Shin (2003) also propose a test
istics for 7, = 0, averaged over all countries.
mple: if you have N independent test Statistics,
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their average will be asymptotically normally distributed for N — oo. Consequently,
the tests are based on comparison of appropriately scaled cross-sectional averages with
critical values from a standard normal distribution.

An alternative approach to combining information from individual unit root tests
is employed by Maddala and Wu (1999) and Choi (2001), who propose panel data
unit root tests based on combining the p-values of the N cross-sectional tests. Let p,
denote the p-value of the (augmented) Dickey—Fuller test for unit ;. Under the null
hypothesis, p; will have a uniform distribution over the interval [0, 1], small values
corresponding to rejection. The combined test statistic is given by

N
P=-2%logp, (10.70)

i=l

For fixed N, this test statistic will have a Chi-squared distribution with 2N degrees of
freedom as T —> 0o, so that large values of P lead us to reject the null hypothesis.
While this test (sometimes referred to as the Fisher test) is attractive because it allows
the use of different ADF tests and different time-series lengths per unit, a disadvan-
tage is that it requires individual p-values that have to be derived by Monte Carlo
simulations.

While the latter tests may seem attractive and easy to use, a word of caution is
appropriate. Before one can apply the individual ADF tests underlying the Maddala
and Wu (1999) and Im, Pesaran and Shin (2003) approaches, one has to determine the
number of lags and determine whether a trend should be included. It is not obvious
how this should be done. For a single time series, a common approach is to perform the
ADF test for a range of alternative lag values. For example, in Table 8.2 we presented
26 different (augmented) Dickey-Fuller test statistics for the log price index. If we
were to combine the ADF tests for N different countries, in whatever way, this would
create a wide range of possible combinations. Smith and Fuertes (2007) warn for pretest
biases in this context.

10.6.2 Panel Data Cointegration Tests

A wide range of alternative tests is available to test for cointegration in a dynamic
panel data setting, and research in this area is evolving rapidly. A substantial number
of these tests are based on testing for a unit root in the residuals of a panel cointe-
grating regression. The drawbacks and complexities associated with the pane! unit root
tests are also relevant in the cointegration case. Several additional issues are of poten-
tial importance when testing for cointegration: heterogeneity in the parameters of the
cointegrating relationships, heterogeneity in the number of cointegrating relationships
across countries and the possibility of cointegration between the series from different

countries. A final issue is that of estimating the cointegrating vectors, for which several
alternative estimators are available, with different small- and large-sample properties.

(depending upon the type of asymptotics that is chosen).

When the cointegrating relationship is unknown, which is almost always the case,
most cointegration tests start with estimating the cointegrating regression. Let us focus
on the bivariate case and write the panel regression as ‘

Yo = + Bix; +uy, (10.71)

e

etz

34 o
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M%MR _uMS Vi E..n_ X;; are integrated of order one, Cointegration implies that 4 is sta-
o ”.Q AOW each 7. IoEo,monoo:m cointegration, in addition, requires that B = m If the

mtegrating parameter is heterogeneous, and homogeneity is imposed, orm mmmamﬂom
Yie =&+ Bxy +[(B; ~ B)x, + uyl, (10.72)

M”_M Mommwﬂ& Hﬂo noﬂwom:o eITor term is integrated of order one even if u, is station

. Ver, the problem of spurious regressions ma be ! . in this situation,

This is bessuse oo oF . y be less relevant in this situation,
mator will also average over i, so th ise i

i : : , at the noise in th

equation will co. attenuated. In many clrcumstances, when N — oo, the fixed wmnﬁm

the long-run average relation parameter, as

wwmnma.oaa averaged over countries (see Pesaran and Smith, 1995) Consequently, if
there is heterogeneous cointegration, it is much better to estimate the individual ow.m?

tegrating regressions rather than using a pooled estimator, Obviously, this

e requires

m”“, o:.mH Mo_zﬂomﬁwmzm relationship may exist for one or more of the countries. Further
With one cointegrating vector per country, th i itiv .

fith . , » the results will be sensitive to the
normalization constraint (left-hand-side variable) that is chosen, Finally, the existence

of gg@@ﬂ»ﬂo_.::mw Ooz—ﬂﬂmumm~0= m:m.t mO:Avﬁm_vw QmmnC—n n——@ _Ow_h:m of 2::—:»0::::%

A . : e discuss the estimati
of panel data logit, probit and tobit models. More details on panel data S&MM

with limited de dent i i
Chaptarr b, pendent variables can be found in Maddala (1987) or Hsiao (2003,

-

|
_
i
:
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10.7.1 Binary Choice Models

As in the cross-sectional case, the binary choice model is usually formulated in terms
of an underlying latent model. Typically, we write?!

Yi=xB+a; +u,, (10.73)

where we observe y, =1 if y} > 0 and Yz = 0 otherwise. For example, y, may indi-
cate whether person i is working in period ¢ or not. Let us assume that the idiosyncratic
error term u,, has a symmetric distribution with distribution function F (.), L.Ld. across
individuals and time and independent of all X;;- Even in this case the presence of «;
complicates estimation, both when we treat them as fixed unknown parameters and
when we treat them as random error terms.

If we treat @; as fixed unknown parameters, we are essentially including N dummy
variables in the model. The loglikelihood function is thus given by (compare (7.12))

log L(B,y,...,ap) =Yy, log F(a; +x,8)

it

+ (L=ylogll ~ Fla, +x,p)).  (10.74)

it

Maximizing this with respect to 8 and a; ({ = 1,..., N) results in consistent estimators
provided that the number of time periods T goes to infinity. For fixed T and N — o0,
the estimators are inconsistent. The reason is that, for fixed T, the number of parameters
grows with sample size N and we have what is known as an ‘incidental parameter’
problem. Clearly, we can only estimate «; consistently if the number of observations for
individual i grows, which requires that T tends to infinity. In general, the inconsistency
of &; for fixed T will carry over to the estimator for B.

The incidental parameter problem, where the number of parameters increases with the
number of observations, arises in any fixed effects model, including the linear model;
see Lancaster (2000) for a recent discussion. For the linear case, however, it was
possible to eliminate the o;s, such that 8 could be estimated consistently, even though
all the o; parameters could not. For most nonlinear models, however, the inconsistency
of &; leads to inconsistercy of the other parameter estimators as well. Also note that,
from a practical point of view, the estimation of more than N parameters may not be
very attractive if N is fairly large.

Although it is possible to transform the latent model such that the individual effects

a; are eliminated, this does not help in this context because there is no mapping from,
for example, y} ~ Y71 10 observables like y, — Yis—1- An alternative strategy is the
use of conditional maximum likelihood (see Andersen, 1970, or Chamberlain, 1980);
In this case, we consider the likelihood function conditional upon a set of statistics

that are sufficient for o;. This means that, conditional upon ¢;, an individual’s likelihood -
contribution no longer depends upon a; but still depends upon the other parameters n,,

210 simplify the notation, we shall assume that x,, includes a constant, whenever appropriate.
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At the general level let ug write the joint density or probability mass function of
Vit - - © Yir s NQ:v -+ Yirley, B), which depends upon the parameters 8 and o
If a sufficient statistic 4; exists, this means that there exists an observable variable M
such that SOy, Yirlt; o, B) = S, Yirlt;, B) and so does not depend :vom
«;. Consequently, we can maximize the conditional likelihood function, based upon
\. Q..._. e Yirlt, B), to get a consistent estimator for 8. Moreover. we nm,: use w:@%.m
&mn.._cc.aoum_ results from Chapter 6 if we replace the loglikelihood WSE the conditional
_omﬁ%n.gwoa function. For the linear model with normal errors, a sufficient statistic
for a; is ls..,;mﬂ is, the conditional distribution of ¥, given y, does not depend upon
«;, and Bﬁ_awmzm the conditional likelihood function can be .m:oin to anoacommm.w
fixed effects estimator for B. Unfortunately, this result does not automatically extend

10.7.2 The Fixed Effects Logit Model

For Bo. fixed effects logit model, the situation is different. In this model ¢, =
a sufficie;
imum :w@E.o.oa. It should be noted that the conditional distribution of y, ¥;
is Qnmnu.‘un.ma ift;, =0 or t; = 1. Consequently, such individuals do not oom_m,m.m&.n mm
the no.za:_oam_ likelihood and should be discarded in estimation. Pyt differently, their
cormﬁoﬁ, would be completely captured by their individual effect «;. This m:mmnm
.Emﬁ only individuals that change status at least once are relevant for mmmh:mnz B. To
illustrate Em. fixed effects logit model, we consider the case with 7 = 2, s
By conditioning upon f; = 1/2, we restrict the sample to the observations for which

Yir changes, and the two possible outcomes are 0, 1) and (1, 0). Th iti
probability of the first outcome js R

- P{O, Dla;,
P{O DIt =172, 0, B) = iﬁ. (10.75)
Using
P{©, Dia;, B} = Py, =0la,;, B3Py, = lle;, B}
with??

Ply, = lla;, ) = S¥Ploy +x/,8)
i 1 + exp{e, +x,8]

it follows that the conditional probability is given by

PAO, DIt = 1/2, 0, ) = %@E, (10.76)
i2 7T Ay

—_—
2 ;
See (7.6) in Chapter 7 for the logistic distribution function,
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which indeed does not depend upon «;. Similarly,

1
1 +exp{(x;; — x;,) B}

P{(1.0);; = 1/2,,, B} = (18.77)

These results show that the conditional distribution of (y;;, y;,), given f; and «;, is inde-
pendent of the individual specific effects. Accordingly, we can estimate the fixed effect
logit model for T = 2 using a standard logit with X;5 — X;; as explanatory variables
and the change in y, as the endogenous event (1 for a positive change, 0 for a negative
one). In a sense, conditioning upon ¢, = 1/2 has the same effect as first differencing (or
within transforming) the data in a linear panel data model. Note that in this fixed effects
binary choice model it is even more clear than in the linear case that the model is only
identified through the ‘within dimension’ of the data; individuals who do not change
status are simply discarded in estimation as they provide no information whatsoever
about B. For the case with larger T, it is a bit more cumbersome to derive all the
necessary conditional probabilities, but in principle it is a straightforward extension of
the above case (see Chamberlain, 1980, or Maddala, 1987). Chamberlain (1980) also
discusses how the conditional maximum likelihood approach can be extended to the
multinomial logit model.

If it can be assumed that the «; are independent of the explanatory variables in X
a random effects treatment seems more appropriate. This is most easily achieved in
the context of a probit model.

10.7.3 The Random Effects Probit Model
Let us start with the latert variable specification

Vi =x, B+ ey, (10.78)
with X
=1 if yi >0
Yi =0 if y; <0, (10.79)

where £, is an error term with mean zero and unit variance, independent of

(Xi1» - x;7). To estimate B by maximum likelihood, we will have to complement
this with an assumption about the joint distribution of &, ..., &;r. The likelihood
contribution of individual i is the (joint) probability of observing the 7 outcomes
Yit» - -+ Yir- This joint probability is determined from the joint distribution of the latent
variables y;, ..., y% by integrating over the appropriate intervals. In general, this will
thus imply T integrals, which in estimation are typically to be computed numerically.
When T =4 or more, this makes maximum likelihood estimation infeasible; It
is possible to circumvent this ‘curse of dimensionality’ by using simulation-based
estimators, as discussed in, for example, Keane (1993), Weeks (1995) and Hajivassiliou
and McFadden (1998). Their discussion is beyond the scope of this text.

Clearly, if it can be assumed that all £, are independent, we have S @i oo
Yl x7, B = [1, f(ylx,,, B), which involves T one-dimensional integrals
only (as in the cross-sectional case). If we make an error components assumption,
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and assume that &ip = a; +u,,, where u

¢ + 15 independent over ti indivi
we can write the joint probability as ! > e (and B

,\,Av\:‘ o

<o Virlxy,

....373”\&0 \CS,..._xﬂ_a:,A..i«i,ﬁ,mv\AQL&Qm

= \“ ) [1r0u1x,. 0., 8) fla)de;, (10.80)

different periods are independent,

In principle, arbitrary assumptions can be made about the distributions of «; and
i

#;,. For example, one could assume that u; is i.i.d. normal while o

; ; has a logistic

distribution. However, this may lead to distributi
, lea ons for «; + u_, that are nonstandard,
mwn owm.EEw, H.rn sum of ﬁiw logistically distributed 553__8 &Nmm:ﬂ,m_ does not have
N ogistic distribution. This implies that individual probabilities, like f£( Yilx,, B), are
ard to compute and do not correspond to a cross-sectional probit or N_aommﬁ :.:,z‘._&,

leads to the random effects probit model.

Let us assume that the Joint distribution of €ir> -+, &7 is normal with zero means

w%m” <mmm=%om mncm_N to 1 and .ooimE &5} =02,5 s t. This corresponds to assuming
at a; 18 NID(0, ;) and u,, is NID(0, 1 — 52). Recall that, as in the cross-sectional

I
case, we need a normalization on the errors’ variances. The normalization chosen here

implies that the error variance in a given period i i i

: ¢ pertod is unity, such that the estimated
coefficients are directly comparable with estimates obtained from estimating the BOQM
from one wave of E@ panel using cross-sectional probit maximum likelihood. For the
random effects probit model, the expressions in the likelihood function are given by

\Qa_\«?n«_;mv =¢ a1 to ify =1
\Ij ,QQM it
_ X8+ .
=]1-9 /\J‘Hﬂ ify, =0, (10.81)

where & denotes the cumulative density function of the

. d Tr
The density s B standard normal distribution,

1 * _QN~
exp{-—--L1,

V2ro? 207

The integral in (10.80) has to be computed numerically, which can be done using

flay) =

(10.82)

,,Bn algorithm described in Butler and Moffitt ( 1982). Several software packages (for
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i imating the random effects
example, LIMDEP and Stata) have standard routines for estimating

it model. . . . . .
wzmw Mm: be shown (Robinson, 1982) that ignoring the wc:d_mm_onm. across um“oam Mwa
estimating the f coefficients using standard probit EP%:EB _%wﬂrmﬁwmawwa anwmwuho

i i i i r, routinely compute .

onsistent, though inefficient. Moreover, ly ; . r
@MMMM Nevertheless, these values can be used as initial estimates in an iterative
inc . ,

maximum likelihood procedure based on (10.80).

10.7.4 Tobit Models

it i imi the random effects probit model,
dom effects tobi: model is very similar to : .
MN@QMM difference being in the observation rule. Consequently, we can be fairly brief
here. Let us start with

wm = k“:m +o; +u,, (10.83)
" Yo =y ify; >0
Yy =0 ify; <0. (10.84)

We make the usual random effects assumption that «, and u; are iid. %Qﬁmww
distributed, independent of x;;, ..., x,;, with zero means and variances Qnm:wbm B
Rmuooaﬁ_w Using f as generic notation for a density or probability mass function,
the likelihood function can be written as in ( 10.803:

FOi ey Yirlxits oo X, B) = .\ :\Q:_\«:.Qt B) f(e)day,

where f(a;) is given by (10.82) and f(y,lx,, o;, B) is given by

1 |WC$|RM8E.IQL~ ﬁ.%: >0
fOulxy 0, B) = |zM|MdQ_W P13 o} 7
X B+ Q_,v iy, =0.  (10.85)
—1-o - )

Note that the latter two expressions are similar to the :Wn,::ooa oﬁ:ﬁ.@:.:mﬂm “..ouu =
cross-sectional case, as discussed in Chapter 7. The only difference is the in

; in the conditional mean. . . o
N In a completely similar fashion, other forms of censoring can be considered, to o 3

for example, the random effects ordered probit model. In all cases, the Eﬁmmwnon, oﬁq
@; has to be done numerically.

10.7.5 Dynamics and the Problem of Initial Conditions

The possibility of including a lagged dependent <E.._mc_m in the mvo<o~ “ommmm&n:l_
econormic interest. For example, suppose we are explaining iva:ﬁ_.. or nol e
is unemployed over a number of consecutive months. It is typically the .. _,

MODELS Wit Limyitep DEPENDENT VARIABLES

characteristics are Jess likely to leave unemployment. The fact that we observe a
spurious state dependence in the data is simply due to a selection mechanism: the
long-term. unemployed have certain unobservable {time-invariant) characteristics that
make it less likely for them to find a job anyhow. In the binary choice modeis discussed
above, the individual effects «; capture the unobserved heterogeneity. If we include a
lagged dependent variable, we can distinguish between the above two explanations.
Let us consider the random effect probit model, although similar results hold for the
random effects tobit case. Suppose the latent variable specification is changed into

Vi =XiBt vy, a4,

with y, =1 if Yi >0 and 0 otherwise, In this model y > @ indicates positive state
dependence: the ceteris paribus probability that Yir = L is larger if Y-t is also one.
Let us consider maximum likelihood estimation of this dynamic random effects probit
model, making the same distributional assumptions as before. I general terms, the
likelihood contribution of individual i is given by

.\.A.&.T ....v\ﬁ;.&:, 3

s X, B)
x
“\, \Q:,I.,v‘:.‘k:,IJﬁ?Qva\,AQL&QN
—00

T

o 1 T FOulsn o, B f (@), (1087)
T L=
where

XBYyy, +e .
FOulyiioi x 00, B) = & [ 2B T Viios + oy £y,

I

I
|
&
]/
=
=
1
<

cand y,,_, is simply included as an
additional explanatory variable. However, the term Sy, o, B) in the likelihood
function may cause problems. It gives the probability of observing y,, = 1 or 0 without
knowing the previous state but conditional upon the unobserved heterogeneity term Q.

If the initial value is exogenous in the sense that its distribution does not depend

Upon o, we can put the term \Q:_x:,Q:mv = \Q:_\«:,E outside the integral.

.8’/!).

= For notational convenience, the time index is defined such that the first observation is ST
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In this case, we can simply consider the likelihood function conditional upon Vit
and ignore the term f(y,ix;;, 8) in estimation. The only consequence may be a loss
of efficiency if f(y;|x;y, B) provides information about 8. This approach would be
appropriate if the initial state were necessarily the same for all individuals or if it were
randomly assigned to individuals. An example of the first situation is given in Nijman
and Verbeek (1992), who model nonresponse with respect to consumption. In their
application the initial period refers to the month before the panel and no nonresponse
was necessarily observed.

However, it may be hard to argue in many applications that the initial value Yi
is exogenous and does not depend upon a person’s unobserved heterogeneity. In that
case we would need an expression for f(y;|x;,, «;, B), and this is problematic. If the
process that we are estimating has been going on for a number of periods before the
current sample period, f(y; |x;;,a;, 8) is a complicated function that depends upon
person i’s unobserved history. This means that it is typically impossible to derive
an expression for the marginal probability f(y;]x;;, «;, B) that is consistent with the
rest of the model. Heckman (1981) suggests an approximate solution to this initial
conditions problem that appears to work reasonably well in practice. It requires an
approximation for the marginal probability of the initial state by a probit function, using
as much presample information as available, without imposing restrictions between
its coefficients and the structural 8 and y parameters. Hyslop (1999) employs this
approach to estimate a dynamic model of female labour force participation; Vella and
Verbeek (1999a) provide an illustration in the context of a dynamic random effects
tobit model. The impact of the initial conditions diminishes if the number of sample
periods T increases, so one may decide to ignore the problem when T is fairly large;
see Hsiao (2003, Subsection 7.5.2) for more discussion.

10.7.6 Semi-parametric Alternatives

The binary choice and censored regression models discussed above suffer from two
important drawbacks. First, the distribution of u,, conditional upon x; (and ;) needs
to be specified, and second, with the exception of the fixed effects logit model, there
is no simple way to estimate the models treating a; as fixed unknown parameters.
Several semi-parametric approaches have been suggested for these models that do not
require strong distributional assumptions on u,, and somehow allow a; to be eliminated
before estimation.

In the binary choice model, it is possible to obtain semi-parametric estimators for
B that are consistent up to a scaling factor whether or not @; is treated as fixed or
random. For example, Manski (1987) suggests a maximum score estimator (compare

Subsection 7.1.8), while l.ee (1999) provides a +/N-consistent estimator for the mSmn‘;
binary choice model; see Hsiao (2003, Section 7.4) for more discussion. Honoré and

Kyriazidou (2000) propose a semi-parametric estimator for discrete choice models with

a lagged dependent variable. .
A tobit model as well as a truncated regression model with fixed effects can be

estimated consistently using the generalized method of moments exploiting the moment:

conditions given by Honoré (1992) or Honoré (1993) for the dynamic model. The
essential trick of these estimators is that a first-difference transformation, for appropriate
subsets of the observations, no longer involves the incidental parameters «;; see Hsiao
(2003, Sections 8.4 and 8.6) for more discussion. .

INCOMPLETE PANELS AND SELECTION BIAS

10.8 Incomplete Panels and Selection Bias

MMW»“WmQ of reasons, empirical panel data sets are often incomplete. For example

b a Mmimiwém of the panel, moov_n may refuse cooperation, households may :om

et EEWM_“M %Mnnww: rw<.n split up, firms may have finished business or may have
. Or investment funds may be closed down. On th

firms may enter business at a later stage, refreshment samples Ba.% ﬁﬁo@ﬂﬂ”&rwﬂﬂ

number of observations is substantially smaller than NT
Z.Mymﬁmawﬁhoumﬂcnzmm of working @5 an incomplete panel is a computational one
Of the expressions for the estimators given above are no longer appropriate mm

observations are missing. A simple ‘solution’ is to discard any individual from the panel

that has incomplete information and to w i

: infor ork with the completely ob i
In E»m. approach, mms.am:oz uses the balanced subpanel o_.ﬂw. q.wmw mmmwwhvm“wmomm_w :
attractive but potentially highly inefficient: a substantial amount of information Emw

be ‘thrown away’. This loss in efficiency can be prevented by using all observations

Another potential and even more serious
. ¢ Consequence of using incomplet
ammm is the danger of selection bias. If individuals are 58:6_2%% ocmnuwanmwwn mM_
endogenous reason, the use of either the balanced subpanel or the unbalanced panel

may lead to biased estimators and misleadin
tests. i
that the model of interest is given by § {05 o claborate R

Yie =X+ o +uy,. (10.88)

Furthermore, define the indicator variable i (‘response’) as r, =11if (x,,y,) is
it = it Vit

wvmmﬁo%o Ma:aao %:Mmgwmmm The observations on (xi, y,;) are missing at random if
i ndent of o; and u,,. This means that condition;
; ns mng upon the outcome of the
selection process does not affect the conditional distribution of Y given x,,. If we want
i it"
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10.8.1 Estimation with Randomly Missing Data

i i d to

The expressions for the fixed and random effects estimators are oww:w MMM_M_MM& ©
o i fi can ete

timator, as before,
ced case. The fixed effects es s bef . . ”
%o %WM_HQBNHQ in the linear model where each individual has its _osm: _:S_nnw%m
. . . a

SMB Alternatively, the resulting estimator for 8 can be ovﬁ:mam a:wﬁaMSMn %% NQ:

Orm. to the within transformed model, where now all variables maocE viadon from

the mean over the available observations. E&ﬁn_cw_m E,mﬁ are o Umwma\ws .N:M: once
provide no information on § and should be discarded in estimation. ning

» 24 r
e - Mwu_ Tudu. & _ 2ot T

i T
& MWH_ Ty ~ MNH_ T

the fixed effects estimator can be concisely written as

»

TN or
MU MU\:Q: =X}y — ¥)-  (10.89)

i=1 =1

N

T
mwm = MUMU? (e = %) (x;, = %)

i=1 r=1
i i ilable observations only.
is, all sums are simply over the avai A . tom
,:,MM a similar way, the random effects estimator can be generalized. The ran

effects estimator for the unbalanced case can be obtained from
-1

N
N T o
Pors =\ 20Dl = F) e = 5 + 3 WiT G = D - B)
i=1 1=1 i=1
N
»i y 5 -0 -y 10.90
X {2 rlx = B0y =)+ Y TG — DG~ P ), (1090)
j=1 t==1 i=1
where T, = Y_I_, r,, denotes the number of periods individual i is observed and
i 1=t

2

Iy

Y= s
"ol + 0}

i 10
Alternatively, it is obtained by applying OLS to the following transformed mode 9

Oy = 0;3;) = Bo(1 — ) + (x;, — 8,%,) B+ vy, :po:;

where ¥, = 1 — ,\\: ?. Note that the transformation applied here is individual specific

0 he i individual {.

n the number of observations for in i

&Mmﬂ”ﬁwﬂgﬁn more general formulae for the mxmn_. effects and Bnawnw ,WMM i

estimators E‘m characterized by the fact that all summations and H_nnm:m m“a.cmga:s

available observations only and that 7, replaces ﬂ.. Completely anal omocw _.m.d iy
apply to the expressions for the covariance matrices of the two estimators gi 1

r i individual is observed at least once.
** We assume that 3__ r, > |, i.e. each individu
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(10.13) and (10.26). Consistent estimators for the unknown variances o2 and o2 are
given by

) i N T ) 2
S5 D B M R R 1 30
i=§ 44 i=] r=1
and
~2 1 o - 5 N IRY ~)N
" =5 MU (¥ ~ Byg — X Bg)* — 7 O (10.93)
i=1 s

respectively, where .mm is the between estimator for B, and mow is the between estimator
for the intercept (both computed as the QLS estimator in (10.21), where the means

asymptotically has no impact on the efficiency of the random effects estimator, it g
possible to use computationally simpler estimators for o2 and o2 that are consistent. For
example, one could use the standard estimators computed from the residuals obtained

from estimating with the balanced subpanel only, and then use (10.90) or ( 10.91) to
compute the random effects estimator.

10.8.2 Selection Bias and Some Simple Tests

In addition to the usual conditions for consistency of the random effects and fixed
effects estimator, based on either the balanced subpanel or the unbalanced panel, it was
assumed above that the response indicator variable Ty was independent of all unob-
servables in the model. This assumption may be unrealistic, For example, explaining
the performance of hedge funds may suffer from the fact that funds with a bad per-
formance are less Iikely to survive (Baguero, ter Horst and Verbeek, 2005), analysing
the effect of an income policy experiment may suffer from biases if people that benefit
less from the €Xperiment are more likely to drop out of the panel (Hausman and Wise,
1979) or estimating the impact of the unemployment rate on individual wages may
be disturbed by the possibility that people with relatively high wages are more likely

to leave the labour market in case of increasing unemployment (Keane, Moffitt and
Runkle, 1988).

m.:kz '\mmv::_x:. s ) =0, (10.94)

This means that the fixed effects estimator is inconsistent if whether an individual is
in the sample or not tells us something about the expected value of the error term that
is related with *;p- Clearly, if (10.11) holds and r; 18 independent of o; and all u,
(for given X;;), the above condition is satisfied. Note that sample selection may depend
upon «; without affecting consistency of the fixed effects estimator for B. In fact, u,

:

S
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may even depend upon r;, as long as their relationship is time invariant (see Verbeek
and Nijman, 1992a, 1996 for additional details).

In addition to (10.94), the conditions for consistency of the random effects estimator
are now given by E{Xu,lr,,...,r;} =0 and

E{xalr,,....,ry} =0. (10.95)
This does not allow the expected value of either error component to depend on the
selection indicators. If individuals with certain values for their unobserved heterogene-
ity a; are less likely to be observed in some wave of the panel, this will typically bias
the random effects estimator. Similarly, if individuals with certain shocks u, are more
likely to drop out, the random effects estimator is typically inconsistent. Note that,
because the fixed effects estimator allows selection to depend upon «; and upon u;, in
a time-invariant way, it is more robust against selection bias than the random effects
estimator. Another important observation made by Verbeek and Nijman (1992a) is that
estimators from the unbalanced panel do not necessarily suffer less from selection bias
than those from the balanced subpanel. In general, the selection biases in the estimators
from the unbalanced and balanced samples need not be the same, and their relative
magnitude is not known a priori.

Verbeek and Nijman (1992a) suggest a number of simple tests for selection bias
based upon the above observations. First, as the conditions for consistency state that the
error terms should — in one sense or another — not depend upon the selection indicators,
one can test this by simply including some function of r;;, ..., r; in the model and’
checking its significance. Clearly, the null hypothesis says that whether an individual
was observed in any of the periods 1 to 7 should not give us any information about
his or her unobservables in the model. Obviously, adding r,, to the model in (10.88)
leads to multicollinearity as r;, = 1 for all observations in the sample. Instead, one
could add functions of 7, , ..., 1,7, like r;,_y, ¢; = 7_,r, or T, = Y"_ r,, indicating
whether unit { was observed in the previous period, whether it was observed over all
periods and the total number of periods unit i is observed respectively. Note that in the
balanced subpanel ail variables are identical for all individuals and thus incorporated in
the intercept term. Verbeek and Nijman (1992a) suggest that the inclusion of ¢; and T}
may provide a reasonable procedure to check for the presence of selection bias. Note
that this requires that the model be estimated under the random effects assumption, a8
the within transformation would wipe out both ¢; and 7;. Of course, if the tests do not
reject, there is no reason to accept the null hypothesis of no selection bias, becanse the
power of the tests may be low. “a

Another group of tests is based upon the idea that the four different estimators, rafn=
dom effects and fixed effects, using either the balanced subpanel or unbalanced panel;
usually all suffer differently from selection bias. A comparison of these estimators
may therefore give an indication for the likelihood of selection bias. Although any
pair of estimators can be compared (see Verbeek and Nijman, 1992a, or Baltagi, 2005,
Section 11.4), it is known that fixed effects and random effects estimators may be

most natural to compare either the fixed effects or the random effects estimator using =

the balanced subpanel, with its counterpart using the unbalanced panel. If differeat

s T
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effects estimator. Further, (10.99) is zero if cov{a;, §;} = 0, while (10.100) is zero if
cov{u;, 1, } = 0, so that the random effects estimator is consistent if the unobservables
in the primary equation and the selection equation are uncorrelated.

Estimation in the more general case is relatively complicated. Hausman and Wise
(1979) consider a case wkere the panel has two periods and attrition only takes place
in the second period. In the more general case, using maximum likelihood to estimate
the two equations simultaneously requires numerical integration over two dimensions
(to integrate out the two individual effects). Nijman and Verbeek (1992) and Vella
and Verbeek (1999a) present alternative estimators based upon the two-step estimation
method for the cross-sectional sample-selection model. Essentially, the idea is that the
terms in (10.99) and (10.100), apart from a constant, can be determined from the pro-
bit model in (10.97), so that estimates of these terms can be included in the primary
equation. Wooldridge (1995) presents some alternative estimators based on somewhat
different assumptions. Das (2004) extends these approaches to cover flexible func-
tional forms in both (10.97) and (10.98) and unknown distributions for the unobserved
components.

Identification of (10.98) with attrition or selection bias using the approaches dis-

cussed above depends crucially upon the availability of one or more instruments in
(10.97). That is, the variables in z,, that are not included in (10.98) should be orthogo-
nal to the unobservables in @; and (most importantly) u,,. In this case, the occurrence of
selection bias is driven by the correlations between the unobservables in both equations,
a case which is sometimes referred to as ‘selection upon unobservables’. An alternative
approach to handle nonrandom attrition in panel data requires that z;, in (10.97) can be
chosen in such a way that the unobservables &; and 7, are unrelated to the unobserv-
ables in (10.98), while z; may depend upon «; and u,. This says that a (potentially
large) set of observables can be found that are relevant for the selection process such
that, conditional upon those variables, selection no longer depends upon the unob-
servables in (10.98). This case is referred to as ‘selection upon observables’ and is
exploited in Fitzgerald, Gottschalk and Moffitt (1998) to evaluate attrition bias in the
Panel Study of Income Dynamics (PSID). In their case, z,, contains all available lags of
¥;;- Consistent estimation of (10.98) is achieved by attaching weights to each observa-
tion in the panel, where the weights depend upon the selection probability (propensity
score). Because the two approaches impose different identification conditions, they
cannot be tested against each other. Hirano, Imbens, Ridder and Rubin (2001) show
how the availability of refreshment samples (new units randomly sampled from the
original population) can be used to distinguish between selection upon unobservables
and selection upon observables.

10.9 Pseudo Panels and Repeated Cross-sections

In many countries there is a lack of genuine panel data where specific individuals ,

or firms are followed over time. However, repeated cross-sectional surveys may be
available, where a random sample is taken from the population at consecutive points
in time. Important examples of this are the Current Population Survey in the USA
and the Family Expenditure Survey in the Upited Kingdom. While many types of
model can be estimated on the basis of a series of independent cross-sections in 4
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If we aggregate all observations to cohort level, the resulting model can be written as

(10.102)

%Q”\mﬁmlfmﬁl_wmﬁ, NH—.....N..,

c=1,...,C;
where y,, is the average value of all observed y,s in cohort ¢ in period ¢, and similarly
for the other variables in the model. The resulting data set is a pseudo panel or
synthetic panel with repeated observations over T periods and C cohorts. The main
problem with estimating 8 from (10.102) is that &, depends on 7, is unobserved and is
likely to be correlated with X, (if o, is correlated with ;). Therefore, treating @,, as
part of the random error term is likely to lead to inconsistent estimators, Alternatively,
one can treat @, as fixed unknown parameters assuming that variation over time can
be ignored (&, = ). If cohort averages are based on a large number of individual
observations, this assumption seems reasonable and a natural estimator for B is the
within estimator on the pseudo panel, given by

c e r

DD E — Z)Gy - 5,

c=l 1=}

(10.103)

where X, = T~! Mwwnb X 1s the time average of the observed cohort means for cohort
c. The properties of this estimator depend, among other things, upon the type of
asymptotics that one is willing to employ. In addition to the two dimensions in genuine
panel data (N and T'), there are two additional dimensions: the number of cohorts C
and the number of observations per cohort #,. A convenient choice is to let N —» 00,
with C fixed, so that n, -> co. Then the fixed effects estimator based on the pseudo

panel, ms: is consistent for 8, provided that

C T
1 - . .
plim = D ) (% = £)(E, — ) (10.104)
N> 00 c=1 1=1
is finite and invertible, and that
1 C T
plim = > 3 (%, — %)@, =0. (10.105)

Re>00 c=1 f=1

While the first of these two conditions is similar to a standard regularity condition
(compare assumption (A6) in Section 2.6), in this context it is somewhat less innocent.
It states that the cohort averages exhibit genuine time variation, even with very large

cohorts. Whether or not this condition is satisfied depends upon the way the cohorts

are constructed, a point to which we shall return below.

Because &, ~ e, for some o, if the number of observations per cohort tends to-

infinity, (10.105) will be satisfied automatically. Consequently, letting n.,—ooisa
convenient choice to arrive at a consistent estimator for B; see Moffitt (1993) and Ridder
and Moffitt (2007). However, as argued by Verbeek and Nijman (1992b) and Devereux
(2007), even if cohort sizes are large, the small-sample bias in the within estimator on
the pseudo panel may still be substantial. Deaton (1985) considers alternative errors-
in-variables estimators for 8 that do not depend upon n, — oo but instead impose that
N — 00 and C — o0, with n, fixed. .
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10.9.2 An Instrumental Variables Interpretation

To appreciate the role of the way in which the cg

We can write .
c
%= az tu, (10.106)
c=]
Evho_m can be Eamuamﬁm as an orthogonal projection. Defining ¢ = (o )
4 =@y, 2¢) and mcamn:&:m (10.106) into (10.101), we obtain b el and
Yo = X8+ Zla + v +u,. (10.107)

Ifo; and x, are correlated, we ma
ncwazvn estimating (10.107) by ordinary least squares would
estimators. Now, suppose that instruments for X, can be foun

a consistent estimator for Band o .

In z;, interacted with time, as instruments, in whi
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X ir Hmmux.*.:\».? k= L., Kt = L...,T, (10.108)

where §,_
ke 18 @ vector of unknown parameters. The linear predictor for x, by construction
it

equals ¥, the vector of averages withi i i
! ! n cohort ¢ in ing i
variables estimator for B is then given by period . The it

. N T -1 N T
—_— bl - 14 -
\.Hw:\_ M MP«Q = Xc)x;, M MA.HQ =X )V,
i=1 r=} i=1 =] -

variables. Most importantly, however, the instrumentaj variables ap

8rouping data into cohorts requires i i
‘ ‘ grouping variables th i i
Tequirements for instrument €xogeneity and relevance, o should saisfy the pieat

In wnmomoﬂ cohorts should be defined on the bas;

Rt e

—pre s,

"

T




410 MODELS BASED ON PANEL DATA

region.”’ Identification of the parameters in the model requires that the reduced forms in
(10.108) generate sufficient variation over time. This requirement puts a heavy burden
on the cohort identifying variables. In particular, it requires that groups are defined
whose explanatory variables all have changed differentially over time. Suppose, as an
extreme example, that cohorts are defined on the basis of a variable that is independent
of the variables in the model. That is, cohorts are constructed by randomly grouping
individuals. In this case, the true population cohort means x,, would be identical for
each cohort ¢ (and equal the overall population mean). This leaves only the time
variation in x,, to identify the parameters of interest.

10.9.3 Dynamic Models

An important situation where the availability of panel data seems essential to identify
and estimate the model of interest is the case where a lagged dependent variable enters
the model. Let us consider a simple extension of (10.101) given by

Ve =¥V FxBra;tu,, t=1,...,T, (10.110)

where the K -dimensional vector x;, may include time-invariant and time-varying vari-
ables. When genuine panel data are available, the parameters y and 8 can be estimated
consistently (for fixed 7 and N — o0) using the instrumental variables estimators
and GMM estimators discussed in Section 10.4, These estimators are based on first-
differencing (10.110) and then using lagged values of y;,_; as instruments.

In the present context, y;, , refers to the value of y at + — 1 for an individual
who is only observed in cross-section f. Thus, an observation for y, ,_, is unavailable.
Therefore, the first step is to construct an estimate by using information on the y values
of other individuals observed at 1 — 1. A convenient approach is to use the average
value of y; ,_, from individuals in the same cohort, . ,_,, say. Inserting these predicted
values into the original model, we obtain

Vi = V¥ +xB+E, t=1,...T, (10.111)

where
G =0 T uy + ¥V Vimy = Yesmr)- (10.112)
The unobserved prediction error y;,_; — ¥.,_, is part of the error term and is also

likely to be correlated with x;,. As a result, OLS estimation of (10.111) is typically
inconsistent (see Verbeek and Vella, 2003, for more discussion and exceptions). To

overcome this problem, one can use an instrumental variables approach. Note that -

now we need instruments for x;, even though these variables are exogenous in the
original model. As before, a natural choice is to use the cohort dummies, interacted
with time, as instruments for x,,. These instruments are uncorrelated with Yieet = Yoyt

by construction.

When the instruments z; are a set of cohort dummies, estimation of (10.111) by

instrumental variables is identical to applying OLS to the original model where all

*7 Note that residential location may be endogenous in certain applications.
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EXERCISES
411

variables are replaced by their (time. i
riap. p y their (time specific) cohort sample averages. We can write

.<2”vx%n;i~+\m.mlm+m2< 0“?....6. t=1,....T :O—wuv

wh . . .

mv%ﬂmnﬂﬂ%ﬂnom“mowﬂﬂwwm voﬂoa%wﬁoﬁoa averages within each cohort. For this
»weneed y ., and £_ not to be collinear, which i

to capture variation in ¥, indep ation fn 5 1o

( i.—1 Independently of the variation i i

Wo%m%ﬁ V\B _Hz_amam omgvo: fixed effects in essentially the same way as in m.asm“w_m‘«n:_‘_.mwhw
Dy including the cohort dummies in the i i ith time-i i

coefficients. This imposes (10.106) and Em:_wwwcmcon o teresi,with tone uvastan

et =V Fepeq + 3,8 + a +i,,, (10.114)

2?0_0 Qa. Qﬂnzgﬂm a OC_~C~ numﬁamu:mﬁ :NQQ G:OOM. }ﬁuvmw:— AVHLW 1T mbo=
g to Amo. 1 _.Av cotre Qm
to 50 mﬂm:ﬁ—mﬂﬁ s:.m:ﬁ estimator AOA Y and \W @NMGQ Cg: QONBBW EO OOSWE H|~0<0~ Qmﬂm

unlikely, it is not impossible. When gz, j i

: Zi 1s uncorrelated with u,,, it is typicail i
that the means of the €xogenous variables, conditional :@o:.w. ﬁmJ%:m <VN m_wmmm_na
Verbeek and Vella (2005) for more details ; e see

McKenzie (2004) considers the linear dynamic model with cohort-specific coef.

»

MS Mmﬂwmgmm mcommon. O_..Z_oc.m@. relaxing specification (10.110) by having cohort-
Awwo : coefficients puts an wan_zozm_ burden upon the identifying conditions Verbeek
) provides additional discussion and references on pseudo panel data . ¢

Exercises
Exercise 10.1 (Linear Model)
Consider the following simple panel data model
Y =xpB+of +u,, i= LN, =1, T (10.115)

—
2%
R .

ecall that, asymptotically, the number of cohorts is fixed and the number of individuals goes to infinity
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where B is one-dimensional, and where it is assumed that
2
af =5 h+a, with a; ~ NID(0, Qﬁwv, u, ~NID(0, a;).
1 H 1

The two error components «; and u,, are mutually independent and independent of all

x:,m—.,ro parameter £ in (10.101) can be estimated by the fixed effects (or within) esti-

mator given by i i
frp = MWH Mwn_cﬁ: = X)(y — x.v‘
E szn_ Muwu_oqa - X)?

As an alternative, the correlation between the error term o} + u,, and x;, can be handled
by an instrumental variables approach.

a. Give an expression for the IV estimator m? for f in (10.101) using x,, — &; as an
instrument for x;,. Show that B, and B, are identical.

Another way to eliminate the individual effects o from the model is to take first-
differences. This results in

i=1,...,N, r=2...T.
(10.116)

b. Denote the OLS estirnator based on (10.116) by msu. Show that m@._m identical to
By and fpg if T = 2. This identity no longer holds for T > 2. Which of the two
mmmamﬁo; would you prefer in that case? Explain. (Note: for additional discussion,
see Verbeek, 1995.) R . .

¢ Consider the between estimator B, for 8 in (10.115). Give an expression for gy
and show that it is unbiased for 8 + A. . N

d. Finally, suppose we substitute the expression for o] into (10.115), giving

Yie = Yigo1 = (5 = X, )B + (uy, — Ui 1),

Yo =XgB+XAte+u,, i=1,....N, r=1,...,T. (10.117)

The vector (8, A)’ can be estimated by GLS Qm:aoﬁ .am,mn.av _uwmnm on ( E;N.W
It can be shown that the implied estimator for 8 is identical to uwmn._ UOmW no_a
imply that there is no real distinction cm?.&a: the mxwa effects and ran wﬂ wmv
approaches? (Note: for additional discussion, see Hsiao, 2003, Section 3.4.2a.

Exercise 10.2 (Hausman-Taylor Model)

Consider the following linear panel data model:

f ; (10,118
Yie = X By + X008y + W] iv1 + Wy Vs Hoy tuy, (10.118)

ime-i i ime- i lanatory variables. The vari- -
where w, ; are time-invariant and X, ;; are time-varying exp ry

ith i i in the sense that E{x, ,0;} =
ables with index 1 (x{, and w, ;) are strictly exogenous in : ) :
0, E{x ;,u;,} =0 for mw 5,1, E{wy ;) = 0 and E{w, ;u,} = 0. It is also assumed that

EXERCISES o3

E{w, ;u,} = 0 and that the usual regularity conditions (for consistency and asymptotic
normality) are met.

a. Under which additional assumptions would QLS applied to (10.118) provide a
consistent estimator for B = (8. 8,) and Y =y, )?

b. Consider the fixed effects (within) estimator. Under which additional assumption(s)
would it provide a consistent estimator for 87

. Consider the OLS estimator for B based upon a regression in first-differences,
Under which additional assumption(s) will this provide a consistent estimator
for B?

d. Discuss one or more alternative consistent estimators for 8 and y if it can be
assumed that E{xy;ou,) = 0 (forall s, 1), and E{w, ;u,} = 0. What are the restric-
tions, in this case, on the number of variables in each of the categories?

€. Discuss estimation of B if x, ;, equals Yiy_i-

f.  Discuss estimation of B it x, ;, includes Vi1

g Would it be possible to estimate both 8 and ¥ consistently if X, ;; includes Yiga?
If so, how? If not, why not? (Make additional assumptions, if necessary.)

Exercise 10.3 (Linear Model - Empirical)

a.  Produce summary statistics of the data set and produce a histogram of 7;. How
many individuals do you have in the panel? How many of them are continuously
working over the entire period 1980-19879

b. Estimate a simple wage equation using pooled OLS, with clustered (panel-robust)
standard errors. Explain a person’s log wage from marital status, black, hispanic,
schooling, experience and experience-squared, rural and union membership. Esti-

dummies make sense economically?

¢ Use the fixed effects and random effects estimators to estimate the same equation,
Interpret and compare the results. (You may also want to compare the results with
those for males reported in Table 10.2)

d.  Perform a Hausman test and interpret the result. What exactly is the null hypothesis
that you test?

€. On the basis of the random effects results, interpret the estimates for o2 and o2
and use them to estimate the transformation factor ¢ in (10.23). How important is
the individual effect in this equation?

f. Re-estimate the wage equation, using the random effects estimator, including

i
;
I
i
¢
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Let us focus on the random effects model including experience and experience-

squared. Re-estimate this model including T; and interpret the results. Evaluate the

t-test on the included variable. What does it test? Does the result surprise you?

Why doesn’t this test work with the fixed effects model? Repeat the estimation

but include a dummy for 7, = 8. Interpret.

h. Re-estimate the base model (with experience and experience-squared) from ¢ using
the random effects estimator, using the unbalanced panel and the balanced subpanel
(characterized by T, = 8). Compare the results. Does it appear that the loss in
efficiency is substantial? What about the coefficient estimates?

i. Perform a Hausman test on the difference between the two estimators in h and
interpret the results.

j. Repeat the previous test using the fixed effects estimator. Interpret and compare

with i. If you experience problems calculating the Hausman test statistic, try using

panel-robust covariance matrices.

Exercise 10.4 (Dynamic and Binary Choice Models)
Consider the following dvnamic wage equation

Wy =X B+ yw, |+ +u,, (10.119)
where w;, denotes an individual’s log hourly wage rate and x,, is a vector of personal
and job characteristics (age, schooling, gender, industry, etc.).

a. Explain in words why OLS applied to (10.119) is inconsistent.

b.  Also explain why the fixed effects estimator applied to (10.119) is inconsistent for
N — o0 and fixed T. but consistent for N — oo and T —» 00. (Assume that u,,
is i.i.d.)

¢. Explain why the results from a and b also imply that the random effects (GLS)
estimator in (10.119) is inconsistent for fixed T.

d. Describe a simple consistent (for N — o) estimator for 8, y, assuming that o
and u;, are i.i.d. and independent of all X5,

e. Describe a more efficient estimator for B, v under the same assumptions.

In addition to the wage equation, assume there is a binary choice model explaining
whether an individual is working or not. Let ry = 1 if individual { was working in
period ¢ and zero otherwise. Then the model can be described as

re =284+ &+,

b ifr;>0

il

e
i

={ otherwise,

where z, is a vector of personal characteristics. Assume that & ~ NID(0, Q%v and
Ny ~NID©, 1 - va, mautually independent and independent of all z;,8. The model in
(10.120) can be estimated by maximum likelihood. :

Eo._mov, ,
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f. Give an expression for the probability that Iy =1 given z, and 3
it i

B Use the expression from f to obtain a co i
'Se | mputal i
. e A putationaily tractable expression for the

h. Explain why it is not i
, . possible to treat the §;s as fixed unknown
estimate § consistently (for fixed T') from this fixed effects probit parameters and

From now on, assum th ] Lo .
with y — 0, € that the appropriate wage “quation is static and given by (10, 19)

L What are the consequences for the rando ffe ; . .
u, are correlated? Why? m eHects estimator in (10.119) jf n,, and

J- What are the consequences for the fixed eff, i i
¢ ects estimat if €
are correlated (while 1 and u; are not)? Why? o (it and "

Exercise 10.5 (Binary Choice Models - Empirical)

Mwhwowxmﬁhwmc Empxmm _zwomom MWM» for young females from the Nationa] Longitudinal
ample) for 0-1987, als i i i
model umion Pl el 0 used in Exercise 10.3. Our goal is to

a - .
_una,a:oa Summary statistics for unjon status. How many observations relate to

and a dummy for living in the North E
. ast. Interpret the resul i i
consistent? What about its standard errors? ? 18 ths estimator

¢ Re-estimate the pooled probit usin
anel-
resalts wit 1o interpn g p robust standard errors, Compare the
d. mmc_ﬂmnm a uoo_ﬁ logit modei explaining union statug from the same explanatory
variables, m_mw s.\::. panel-robust standard errors. Compare the estimated coeffi-
clents and their significance with those obtained in ¢, Why are the logit coefficients

pooled probit mode].
f. Perform a likelihood ratio test on the restriction that o2 — 0. Interpret
N : .

g. Mxﬁ:a the Eni.o:m .ano_ with a lagged dependent variable (lagged union status)
ompare the omcnw_m:on H.m_:a with those obtained under e. Also compare the wmn..
mated value of ;- Explain. Under what conditions is jt appropriate to include a

=T
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