CHAPTERS

High-Frequency Data Analysis
and Market Microstructure

High-frequency data are observations taken at fine time intervals, In finance, they
often mean observations taken daily or at a finer time scale. These ammm have co.no_.:n
available primarily due to advances in data acquisition and .Eooomm:_m. Sogﬁﬁwg.
and they have attracted much attention because they are important in mS@E...E
study of market microstructure. The ultimate Emr-?ﬁcn:@ data in mumaom.ed
the transaction-by-transaction or trade-by-trade data in security markets. Here time
is often measured in seconds. The Trades and Quotes (TAQ) database of the Z,ni .l
York Stock Exchange (NYSE) contains all equity transactions 3@9.‘8& on the %
Consolidated Tape from 1992 to the present, which includes :m:mmncowm on the =
NYSE, AMEX, NASDAQ, and the regional exchanges. The Berkeley Options Data
Base provides similar data for options transactions from August 1976 to Umnwn&n.
1996. Transactions data for many other securities and markets, both aou.ﬁnmﬂo and .
foreign, are continuously collected and processed. Wood (2000) provides some
historical perspective of high-frequency financial study. . . e
High-frequency financial data are important in studying a variety of issues relate d
to the trading process and market microstructure. They can be used to compare ey
eficiency of different trading systems in price discovery (e.g., the open out-c
system of the NYSE and the computer trading system of Z>m_u>@. They
also be used to study the dynamics of bid and ask quotes of a vE.coEE. stock
(e.g., Hasbrouck, 1999; Zhang, Russell, and Tsay, 2001b). In an order-driven sto
market (e.g., the Taiwan Stock Exchange), Em:-?mnzw:ow data omb.cm Eu&
study the order dynamics and, more Interesting, to investigate the question w..; ‘wi
provides the market liquidity.” Cho, Russell, Tiao, and Tsay (2003) use int 2
5-minute returns of more than 340 stocks traded on the Taiwan Stock Exchange
study the impact of daily stock price limits and find significant evidence of ma
effects toward the price ceiling. o :
However, high-frequency data have some unique o.:mnmoﬁdm:om that do nok
appear in lower frequencies. Analysis of these data thus introduces new n__a
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ity that the security is not traded is 7, which is time-invariant and independent
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to financial economists and statisticians. In this chapter, we study these special
characteristics, consider methods for analyzing high-frequency data, and discuss
implications of the results obtained. In particular, we discuss nonsynchronous trad-

ing, bid—ask spread, duration models, price movements that are in multiples of tick

5.1 NONSYNCHRONOUS TRADING

We begin with nonsynchronous trading. Stock tradings such as those on the N YSE
do not occur in a synchronous manner; different stocks have different trading
frequencies, and even for a single stock the trading intensity varies from hour to
hour and from day to day. Yet we often analyze a return series in a fixed time
interval such as daily, weekly, or monthly. For daily series, price of a stock is its
closing price, which is the last transaction price of the stock in a trading day. The

: independent.

For daily stock returns, nonsynchronous trading can introduce (a) lag-1 cross-
correlation between stock returns, (b) lag-1 serial correlation in a portfolio return,
and (c) in some situations negative serial correlations of the return series of a
single stock. Consider stocks A and B. Assume that the two stocks are inde-

pendent and stock A is traded more frequently than stock B. For special news
-affecting the market that arrives near the closing hour on one day, stock A is

because A is traded more frequently. The effect of the news on B will eventu-
ally appear, but it may be delayed until the following trading day. If this situ-
ation indeed happens, return of stock A appears to lead that of stock B. Con-
Sequently, the return series may show a significant lag-1 cross-correlation from
A1o B even though the two stocks are independent. For a portfolio that holds
Slocks A and B, the prior cross-correlation would become 2 significant lag-1
serial correlation,

In a more complicated manner, nonsynchronous trading can also induce erro-
NeOUs negative serjal correlations for a single stock. There are several models
.eﬁﬂmza in the literature to study this phenomenon; see Campbell, Lo, and MacKin-
lay (1997) and the references therein. Here we adopt a simplified version of the
Model proposed in Lo and MacKinlay (1990). Let r, be the continuously com-
Pounded rerurn of 4 security at the time index 7. For simplicity, assume that {r:}
8 8 sequence of independent and identically distributed random variables with
= and variance Var(r,) = o2, For each time period, the probabil-
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of r;. Let r? be the observed return. When there is no trade at time index ¢, we
have r/ = 0 because there is no information available. Yet when there is a trade at
time index ¢, we define r/ as the cumulative return from the previous trade (i.e.,
rP=r4r_+. ..+ ri—k, where k, is the largest non-negative integer such that
no trade occurred in the periods r — k,, t — ke 1,1 - 1). Zw%mammo&_? the
relationship between r, and rl is

0 with probability s
r with probability (] — )2
rtr with probability (1 — )27
+ 7 -2 with probability (1 — 7)272
30” retr_y+r_; .cS p Hity ( ) (5.1)
o with probability (1 — 7 )2

These probabilities are easy to understand. For example, r{ = r, if and only if there
are trades at both ¢ and ¢ — Lor?=r +r_ if and only if there are trades at t
and r — 2, but no trade at f — Loand rf = r, + Ti—1 + 17 if and only if there are
trades at ¢ and + — 3, but no trades atr — 1 and ¢t - 2, and so on. As expected, the
total probability is 1 given by

1

-7

N+:lavNE.TN.TNN.T.;Ha.‘TCINVN

We are ready to consider the moment equations of the observed return series

{r?}. First, the expectation of rl is

@JAJQV = (1 I.NJNMQ,L.T: SQVNNMAJ.TJ!Z:T...
=(1-m?u+q = m)m2u + (1 — )B4
(1= m)2ull + 27 +wmm+§u+.;

1
T =H (5

il

I

(1—m)’p

In the prior derivation, we use the result 1 +2r + 37t 4 dnd 4. = _\Qél‘ T
Next, for the variance of r}, we use Var(r?y = E[(r2)?] — E?w:m and
(=Bl T+ (1= 07 ELry 470 4 .-
Af;i:aw+:y+asqﬁffa+axwm+oiv+:;
(=) o[ + 27 + 32 4 .. + U1 +4x + 972 4 .. )

2
1 -7

E(r))?

il

Il

]

-1

=0% 42

E(ror

: m,o.wsqv 1). Notice that JaxaL is zero if there ig no tr:
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In Eq. (5.3), we use

k E i k .

E MSI\ = Var MU\\L + | E MJl,

. =&+ Do 4 [(k 4 Dyp
=0 i=0 i=0

E,EQ the serial independence assumption of r,, Using techniques similar o that
of Eq. (5.2), we can show that the first term of Eq. (5.4) reduces to 2. For the
second term of Eq. (5.4), we use the identity

Itdmtonya6ndy. o 2 1

(I-m3 -5

which can be obtained as follows. Let

mn_+§+oaw+_§u+.: and Qu_+wa+§w+§u+:..

Then (1 —mYH = and

::iqu_+§+waw+waw+.:
uw:+a+aw+:.v1_nf~fl~.
(I —m)
Oosma@:m::v\, from Egs. (5.2) and (5.5), we have
2 2
Var(r®y — ~2 . 2 _ 2 _ 2mp
ar(r) = 02 4 4 gl § quﬁla. (5.6)

Consider next the lag-1 autocovariance of {r’}. Here we use Cov(r?

«Q
Y to ~r_v =
=

0
) — E(r, tw?wx_v = mﬁxw%f_v ~ 1% The question then reduces to finding

7 ade at ¢, no trade at ¢ — 1, or

N trade at both ¢ ang t—1. Therefore, we have

0 with probability 27 — 72
Firee with probability (1 — )3

reriy +r,_y) with probability (1 — )3

ropo b rr +ri_3) with probability (1 — )32

=g ) (5.7)
10D with probability (1 — 7)3 41

g;zﬁ total .EovmcEQ is unity. To understand the prior result, notice that
=1 =7y if and only if there are three consecutive trades at ¢ — 2, ; |

s
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and ¢. Using Eq. (5.7) and the fact that E(rir_j) = E(r)E(r;_;) = 12 for j >0,
we have

i

E(riri )= =) LE(rr_y) + mElr (r—y + ri_2)]

3

+72E | Mf + -

i=]
== Ul +27 +322 + ] = (1 — m)ul.
The lag-1 autocovariance of {r?} is then
Cov(r, ri_y) = —mpl. (5.8)

Provided that p is not zero, the nonsynchronous trading induces a negative lag-1
autocorrelation in r{ given by

—(1 —m)mp?
(1 —=m)o2 4 2mpu?’

pu(ry) =
In general, we can extend the prior result and show that

Cov(r/, ﬁal\.v = —pu’nl, j=1
The magnitude of the lag-1 ACF depends on the choices of #, 7, and o and can
be substantial. Thus, when p = 0, the nonsynchronous trading induces negative
autocorrelations in an observed security return series. . :
The previous discussion can be generalized to the return series of a portfolio
that consists of N securities; see Campbell, Lo, and MacKinlay (1997, Chapter 3). 3
In the time series literature, effects of nonsynchronous trading on the return mm a
single security are equivalent to that of random temporal aggregation on a E_“
series, with the trading probability = governing the mechanism of aggregation.

5.2 BID-ASK SPREAD

In some stock exchanges (e.g., NYSE), market makers play an important rolé
facilitating trades. They provide market liquidity by standing ready to buy oOF se
whenever the public wishes to buy or sell. By market liquidity, we mean the a
to buy or sell significant quantities of a security quickly, m:o:waocm_u: and
little price impact. In retum for providing liquidity, market makers are an_nu pe
monopoly rights by the exchange to post different prices for nﬁorm.mnm and e s
a security. They buy at the bid price P, and sell at a higher ask m:on Fy. “u .t

public, P; is the sale price and P, is the purchase price.) The difference n...
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is call the bid—ask spread, which is the primary source of compensation for market
makers. Typically, the bid—ask spread is small—namely, one or two ticks.

The existence of a bid—ask spread, although small in magnitude, has several
important consequences in time series properties of asset returns, We briefly discuss
the bid-ask bounce-—namely, the bid-ask spread introduces negative lag-1 serial
correlation in an asset return. Consider the simple model of Roil (1984). The
observed market price P; of an asset is assumed to satisfy

N

P= Py sm,

(5.9)
where § = P, — P, is the bid-ask spread, P is the time-t fundamental value of
the asset in a frictionless market, and {I,} is a sequence of independent binary
random variables with equal probabilities (ie. 7, = [ with probability 0.5 and
= —1 with probability 0.5). The I; can be interpreted as an order-type indicator,

with | signifying buyer-initiated transaction and —1 seller-initiated transaction.
Alternatively, the model can be written as

+S5/2 with probability 0.5,

F=F 4125 win probability 0.5,

If there is no change in P, then the observed process of price changes is

A
DNVNHQNINNI_VM. GA_OV

Under the assumption of /, in Eq. (5.9), E(1,) = 0 and Var(l;) = 1, and we have
E(AP) =0 and

Var(AP,) = §%/2, (5.11)
Cov(AP, AP ) = ~52/4, (5.12)
Cov(APL AP_j) =0, j>1. (5.13)

‘:_m:wmoﬁm, the autocorrelation function of AP is

piary =0 7= (5.14)
The bid-ask spread thus introduces a negative lag-1 serial correlation in the series
9f observed price changes. This is referred to as the bid-ask bounce in the finance
literature, Intuitively, the bounce can be seen as follows. Assume that the funda-
Mental price P is equal to (P, + P3)/2. Then P, assumes the value P, or P,. If
__.n, Previously observed price is P, (the higher value), then the current observed
Price is either unchanged or lower at Py. Thus, AP, is either 0 or -S§. However, if
the Previous observed price is Py (the lower value), then AP, is either O or S. The
fegative Jag. | correlation in A P, becomes apparent. The bid—ask spread does not
Miroduce any serial correlation beyond lag 1, however,

ERal ¥ ¥ P ——
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A more realistic formulation is to assume that P follows a random walk so that
AP’ = P! — P’ | = ¢, which forms a sequence of independent and identically
distributed random variables with mean zero and variance ¢ 2. In addition, {e,} is
independent of {/;}. In this case, Var(AP,) = g2 + §2/2, but Cov(AP,, AP}

remains unchanged. Therefore,

~§2/4 .
S22 402 =

PLAP) =

The magnitude of the lag-1 antocorrelation of AP, is reduced, but the negative
effect remains when § = P, — Py, > 0. In finance, it might be of interest to study
the components of the bid—ask spread. Interested readers are referred to Campbel],
Lo, and MacKinlay (1997) and the references therein.

The effect of bid-ask spread continues to exist in portfolio returns and in mul-
tivariate financial time series. Consider the bivariate case. Denote the bivariate
order-type indicator by I, = (/,, I)', where I, is for the first security and Q
for the second security. If I;, and Iy are contemporaneously positively correlated,
then the bid—ask spreads can introduce negative lag-1 cross-correlations. ¥

5.3 EMPIRICAL CHARACTERISTICS OF TRANSACTIONS DATA

Let 7 be the calendar time, measured in seconds from midnight, at which the ith
transaction of an asset takes place. Associated with the transaction are several vari-
ables such as the transaction price, the transaction volume, the prevailing bid and
ask quotes, and so on. The collection of t; and the associated measurements are
referred to as the transactions data. These data have several important characteris-
tics that do not exist when the observations are aggregated over time. Some of the
characteristics are given next.

1. Unequally Spaced Time Intervals. Transactions such as stock tradings on an
exchange do not occur at equally spaced time intervals. As such, the observed
transaction prices of an asset do not form an equally spaced time series, The
time duration between trades becomes important and might contain useful
information about market microstructure (e.g., trading intensity).
Discrete-Valued Prices. The price change of an asset from one transaction
to the next only occurs in multiples of tick size. On the NYSE, the tick size
was one-eighth of a dollar before June 24, 1997 and was one-sixteenth of # =
dollar before January 29, 2001. All NYSE and AMEX stocks started to. trade:
in decimals on Fanuary 29, 2001. Therefore, the price is a discrete-value
variable in transactions data. In some markets, price change may also b
subject to limit constraints set by regulators,

3. Existence of a Daily Periodic or Diurnal Pattern. Under the normal
conditions, transaction activity can exhibit a periodic pattern. For instané
on the NYSE, transactions are “heavier” at the beginning and closing |
the trading hours and “thinner” during lunch hour, resulting in a U-shé

I~

-S-minute time intervals over the 63 days. There are 78 such averages
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transaction intensity. Oo:mmp:g:v\.
exhibit a daily cyclical pattern.

4. Multiple Transactions Within 4 Single Second. 1t is
transactions, even with different prices, occur at the sa

due 6 the fact that time s measured in seconds that
scale in periods of heavy trading.

time durations between transactions also

possible that multiple
me time. This is partly
may be too long a time

To demonsirate these orﬁmoanmao? we consider first the IBM transactions data
from November |, 1990 to January 31, 1991, These data are f

) rom the Trad
Orders Reports, and Quotes (TORQ) dataset; see Hasbrouck (199 re are 61

percentages of price change measured in the tick size of $1/
8 = $0.125.
table, we make the following observations: 30.125. From the

1

2.

3. Only 2.6% of the transactions were associated with two
4.

bl
<)
(=9
e
g
=
=
=
Q
=
=]
=
=]
o
w
=
<
a
I
=
(=%
joul
a

Oo:.mEQ next the number of transactions in g 5.
the series by x,. That is, X; is the pumber of IBM transactions from 9:30 a
to 9:35 am on November 1, 1990 Eastern time, x, is the number of qm:m.m.ozo“
.@oE c“wm. am to 9:40 am, and so on, The time gaps between trading days are
ignored. Figure 5.1a shows the time plot of ¥, and Figure 5.1b the sam le >vmu1 of
Xt mQ. Emm. I'to 260. Of particular interest is the cyclical pattern of 5%}0_“ with
4 pertodicity of 78, which is the number of S-minute intervals in a trading da
dmn ::EJQ of transactions thus exhibits a daily pattern. To further Ecmﬁm@ 5%@.
daily trading pattern, Figure 5.2 shows the average number of transactions within

ML o ey » 1—1
M_E._u:m a “smiling” or U m&mﬁﬂ indicating heavier trading at the ovmiwm M”M

0Sing of the market and thinner trading during the funch hours,

Table 5.7, Frequencies of Price Change in Multiples of Tic

November 1, 1990 to January 31, 1991 K Size for IBM Stock from

T —, Mg e g i il i i
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Figure 5.1. IBM intraday transactions data from 11/01/90 to 1/31/91: (a) the number of transactions
in 5-minute time intervals and (b) the sample ACF of the series in part(a}.

average

Figure 5.2. Time plot of the average number of transactions in 5-minute time intervals. ﬁ,_n_.o are bt
observations, averaging over the 63 trading days from 11/01/90 to 1/31/91 for IBM stock.
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trading day, there are 59,838 time intervals in the data. These intervals are called
the intraday durations between trades. For [BM stock, there were 6531 zero time
intervals. That is, during the normal trading hours of the 63 trading days from
November 1, 1990 to January 31, 1991, multiple transactions in a second occurred
6531 times, which is about 10.91%. Among these muitiple transactions, 1002 of
them had different prices, which is about |.679% of the total number of intraday
transactions. Therefore, multiple transactions (i.e., zero durations) may become ap
issue in statistical modeling of the time durations between trades.

Table 5.2 provides a two-way classification of price movements. Here price
movements are classified into “up,” “unchanged,” and “down.” We denote them by
"+, %0,” and “- " respectively. The table shows the price movements between
W0 consecutive trades (i.e., from the (i — Dth to the ith transaction) in the sample.
From the table, trade-by-trade data show that:

-

- Consecutive price increases or decreases are relatively rare, which are about
441/59837 = 0.74% and 410/59837 = 0.69%, respectively,

. There is a slight edge to move from “up” to “unchanged” rather than to
“down”; see row | of the table.

. There is a high tendency for the price to remain “unchanged.”

The probabilities of moving from “down” to “up” or “unchanged” are about
the same; see row 3.

(S

oW

The first observation mentioned before is a clear demonstration of bid—ask
bounce, showing price reversals in intraday transactions data. To confirm this phe-
nomenon, we consider a directional series D; for price mmovements, where D;
assumes the value +1, 0, and —1 for up, unchanged, and down price movement,
respectively, for the jth transaction. The ACF of (D;} has a single spike at lag |
with value —0.389, which is highly significant for a sample size of 59,837 and
confirms the price reversal in consecutive trades,

As a second illustration, we consider the transactions data of IBM stock in

December 1999 obtained from the TAQ database. The normal trading hours are

Table 5.2, Two-Way Classification of Price Movements
in Consecutive Intraday Trades for IBM Stock?

ith Trade
—_— .
(i — 1)th Trade + 0 - Margin
+ 441 5498 3948 9887
0 4867 29779 5473 40119

S 4580 4841 410 9831

Margin 9888 40118 9831 59837

“The price movements are classified into “up,” “unchanged,” and
“down.” The data span is from 11/01/90 to 1/31/91.
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from 9:30 am to 4:00 pm Eastern time, except for December 31 when the market
closed at 1:00 pm. Comparing with the 1990—199] data, two important changes
have occurred. First, the number of intraday tradings has increased sixfold. There
were 134,120 intraday tradings in December 1999 alone. The increased trading
intensity also increased the chance of multiple transactions within a second. The
percentage of trades with zero time duration doubled to 22.98%. At the extreme,
there were 42 transactions within a given second that happened twice on Decem- 20
ber 3, 1999. Second, the tick size of price movement was $1/16 = $0.0625 instead
of $1/8. The change in tick size should reduce the bid-ask spread. Figure 5.3
shows the daily number of transactions in the new sample. Figure 5.4a shows the 40000 60000
time plot of time durations between trades, measured in seconds, and Figure 5.4b sequence
is the time plot of price changes in consecutive intraday trades, measured in multj-
ples of the tick size of $1/16. As expected, Figures 5.3 and 5.4a show clearly the

{a

)

duration
S
[

80000 100000 120000

(b)

inverse relationship between the daily number of transactions and the time interval - mw
between trades. Figure 5.4b shows two unusual price movements for IBM stock on 20
December 3, 1999. They were a drop of 63 ticks followed by an immediate jump m 0
of 64 ticks and a drop of 68 ticks followed immediately by a jump of 68 ticks, 220
Unusual price movements like these occurred infrequently in intraday transactions, °
Focusing on trades recorded within regular trading hours, we have 61,149 trades : 60

out of 133,475 with no price change. This is about 45.8% and substantially lower
than that between November 1990 and January 1991, It seems that reducing the
tick size increased the chance of a price change. Table 5.3 gives the percentages of
trades associated with a price change. The price movements remain approximately . plgure 8.4, IBM transactions data for Decernber 1999, (2) The time plot of time durations between

, . . .. . trades. (b) The time p t of price ¢ . . ]

symmetric with respect to zero. Large price movements in intraday tradings are of $1/16. Only data %:M:M :w”“”:rww%mm _% ooannci_a g Teasured in mltiples of the tik —
1 1 : ’ é ng hours inc

still relatively rare. g hours are included.

40000 60000

sequence

80000 100000 120000

Table 5.3, Percentages of Intraday Transa

ctions Associated wi i
B Stock preens in Decompn Ty 1 1ated with a Price Change for

72 After hours
53 Regular

Sooj J

8000 mm
- W N5

4000 — m Q) @

2000 -

L ﬁ

Figure 5.3. IBM transactions data for December 1999. The plot shows the number of transactions
each trading day with the after-hours portion denoting the number of trades with time stamp 85
4:00 pm.

Upward Movements

Percentage 18.03 5.80 179 0.66 0.25 0.15 0.09

Downward Movements

18.24 5.57 1.79 0.71 0.24 0.17 0.10 0.31
4 -
The Percentage of transactions without price chang
feeorded within reguiar trading hours is 133,475, T,

Percentage

number of trades
LA
|
L7

e ; 45.8% and the total number of transactions
€ 312€ IS measured in multiples of tick size $1/16.

day

Yonable for some trades. For example, recorded tradin

M Eagrery o & umes may be beyond 4:00

n before the opening of after-hours tradings. How to handle
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these observations deserves a careful study. A proper method of data cleaning
requires a deep understanding of the way in which the market operates. As such,
it is important to specify clearly and precisely the methods used in data cleaning.
These methods must be taken into consideration in making inference. a

Again, let ; be the calendar time, measured in seconds from midnight, when the
ith transaction took place. Let F,; be the transaction price. The price change from
the (i — 1)th to the ith trade is Yi = AP, = P, — P, | and the time duration is
Aty = t; — t;.,. Here it is understood that the subscript i in At; and y; denotes the
time sequence of transactions, not the calendar time. In what follows, we consider
models for y; and At; both individually and jointly.

54 MODELS FOR PRICE CHANGES

The discreteness and concentration on “no change” make it difficult to model
the intraday price changes. Campbell, Lo, and MacKinlay (1997) discuss several
econometric models that have been proposed in the literature. Here we mention
two models that have the advantage of employing explanatory variables to study
the intraday price movements. The first model is the ordered probit model used
by Hauseman, Lo, and MacKinlay (1992) to study the price movements in trans- X
actions data. The second model has been considered recently by McCulloch and’
Tsay (2000) and is a simplified version of the model proposed by Rydberg and
Shephard (2003); see also Ghysels (2000). b

5.41 Ordered Probit Model

Let y! be the unobservable price change of the asset under study (i.e., W= By l
P ), where P} is the virtual price of the asset at time . The ordered probit model
assumes that y? is a continuous random variable and follows the model ;

vuw H.ﬁmmnTm? Ambuv
where x; is a p-dimensional row vector of explanatory variables available at
time 4y, B is a p x | parameter vector, Eei|x;) =0, Var(e; |x;) HQMN, and
Cov(e;, €;) =0fori # J- The conditional variance Qm is assumed to be a positive
function of the explanatory variable w; —that is, ;
Qm = g(w;), (5.16)
where g(.) is a positive function. For financial transactions data, w; may contain
the time interval #; — 1;_; and some conditional heteroscedastic variables. Typically,
one also assumes that the conditional distribution of €; given x; and w; is Gaussian.
Suppose that the observed price change y; may assume & possible values. E._w. :
theory, k can be infinity, but countable. In practice, k is finite and may involve =S8
combining several categories into a single value. For example, we have k =T .
Table 5.1, where the first value “~3 ticks” means that the price change is —3 ti
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or lower. We denote the & possible values as {s1, .

. -+ S¢}. The ordered probit model
postulates the relationship between yi and y? as F ‘

Yi=sy if @iy < yf <, J=1 0k, (5.17)

where «; are real numbers satisfying —oo = ¢ < U< - <o | < =00
Under the assumption of conditional Gaussian distribution, we have

Pl =silx;, w) = Plajy <xif+¢ < a;lx;, w;)

PxiB+e <aix;, w) ifj=1.
= EAQ\.!_A.ﬂunTm\MQ\._k?EQ m»‘\.“N,f.,\m.}T
Pl < xiB +€lx;, w;) if = #,
2 —-x;8
o (w;)
a; —x;f ajy —x;B8
= 1) / — -1 ; G
oi(w;) i (w;) fj=2 . k-1,
oy f.ﬂmm
L= o (w;) if j =k, (5.18)

where ®(x) is the cumulative distribution function of the
variable evaluated at x, and we write a;(w;) to denote that o2 is a positive function
of w;. From the definition, an ordered probit model is n_z.ﬁ_w: by an unobservable
continuous random variable. The observed values, which have a natural ordering
can be regarded as categories representing the underlying process. ,

The ordered probit model contains parameters §, (i =1,....k - 1), and those

standard normal random

in .Em conditional variance function o; (w;) in Eq. (5.16). These parameters can be
estimated by the maximum likelihood or Markoy chain Monte Carlo methods.

Example 5.1, Hauseman, Lo, and MacKinlay (1992) apply the ordered probit
Eom_m_ to the 1988 transactions data of more than 100 stocks. Here we only report
nﬁ: result for IBM. There are 206,794 trades. The sample mean (standard devia-
tion) of price change y;, time duration At;, and bid—ask spread are —0.0010(0.753),

'27.21(34.13), and 1.9470(1.4625), respectively. The bid—ask spread is measured

I :mwm. dﬁ model used has nine categories for price movement, and the functional
‘Specifications are

3 3 3
KB =P+ Y Busivio+ Y BraaSPS,_, + D BuiIBS;,
v=] v=] =1
3
+ 2 BusiolTalViy) x IBS; ), (5.19)
v==]
2
9T (W) = L0+ yPAsk + y2AB;_,, (5.20)
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where Ty (V) = (V* — 1)/ is the Box—Cox (1964) transformation of V with A e
[0, 1] and the explanatory variables are defined by the following:

At! = (; — t;,_1)/100 is a rescaled time duration between the (i — 1)th and

ith trades with time measured in seconds.

+ AB;_; is the bid-ask spread prevailing at time #,_{ in ticks.

* iy (v =1,2,3) is the lagged value of price change at ¢, in ticks. With

k =9, the possible values of price changes are {—4, —3, -2, —1,0, 1,2, 3, 4}

in ticks.

Viu (v = 1,2, 3) is the lagged value of dollar volume at the (i — v)th trans-

action, defined as the price of the (i — v)th transaction in dollars times the

number of shares traded (denominated in hundreds of shares). That is, the
dollar volume is in hundreds of dollars.

e SP5;, (v =1,2,3) is the 5-minute continuously compounded returns of the
Standard and Poor’s 500 index futures price for the contract maturing in the
closest month beyond the month in which transaction (i — v) occurred, where
the return is computed with the futures price recorded | minute before the
nearest round minute prior to t;_, and the price recorded 5 minutes before
this.

* IBS;_, (v=1,2,3) is an indicator variable defined by

Lif Py > (PL + PE )2,
0if Py = (P, + Pt )2,
=1 if Py < (PE,+ PP /2,

—v

IBS;_, =

where ww and ww are the ask and bid price at time ¢ iz

The parameter estimates and their ¢-ratios are given in Table 5.4. All the r-ratios
are large except one, indicating that the estimates are highly significant. Such high
1-ratios are not surprising as the sample size is large. For the heavily traded IB

stock, the estimation results suggest the following conclusions:

1. The boundary partitions are not equally spaced, but are almost symmetrie
with respect to zero.

e

i

tional variance of y; in Egs. (5.19) and (5.20).

)

indicating price reversals.

4. As expected, the bid-ask spread at time ;_; significantly affects the o,o,a&-”_ sl

1

tional variance.

The transaction duration Ar affects both the conditional mean and condi=

The coefficients of lagged price changes are negative and highly mmmamnﬁr g
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Table 5.4, Parameter Estimates of the Ord i
ered Probit Mode] in Eqgs.
for the 1988 Transaction Data of IBM, Where ¢ Denotes the M%m%cmn e 520

Boundary Partitions of the Probit Model

Parameter @
] A a ag

-1.34 1.33 3.13 4.21 4
. . 73
—~155.5 154.9 167.8 152.2 138.9

Estimate —-4.16

—157.8

=3.11
-171.6

Parameter

By, B3 Ba Bs Be

—L0I  -053 _go 112 -0.26
—1356 —85.0 ~47.2 542 —12.1

0.40 0.52
15.6 71.1

Estimate
t

-0.12
~11.4

Parameter

Estimate
t

0.12 0.05 0.02

“Reprinted with permission from Elsevier.,

542 A Decomposition Model

Yi=P -P = A; Dy S;, (5.21)
where A; is a binary variable defined as
A = 1 w.m 9.@3 is a price change at the ith trade, )
0 if price remains the same at the /th trade, (3.22)

]
U 1s mﬁmc a Q~MOHO~® vat ~m_u~0 mmm:;v\:— HTO &: ection of m_uﬂ U— 1Ice 0_ lange if a O_—N: (S
m W 1 £

1 if price increases at the ith trade,

Dif(A; =1) = e
! —1 if price drops at the it trade,

(5.23)

Mum&:bm :}, =1) Em,m:m that D; is defined under the condition of A; =1, and
- % 18 the size of the price change in ticks if there is a change at the ith :mmm and

51 = 0 if there is no pric ]

X f price change at the ith trade, When there i i

18 NHA bositive integer-valued random variable, B .

AocoMn E.m.ﬂ D; is uoa needed when 4; = 0, and there is a natural ordering in the
position. D; is well defined only when A; = | and S is meaningful when

Ai=1and D, is o P
iven. .
of the orderig m~ gwven. Model specification under the decomposition makes use
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Let F; be the information set available at the ith transaction. Examples of
elements in F; are At;_;, A;_, Di_j, and S;_; for j > 0. The evolution of price
change under model (5.21) can then be partitioned as

POitFioi) = P(A;D;SiFio1) = P(S;|Di, Ay, Fm ) P(D;|A;, FiZ1)P(Ai[Fi)).

(5.24)
Since A; is a binary variable, it suffices to consider the evolution of the probability
pi = P{A; = 1) over time. We assume that

8 XiB
=X; or P = y
1—p; ~ P B

Y (5.25)

where x; is a finite-dimensional vector consisting of elements of F;_; and Bisa
parameter vector. Conditioned on A; = 1, D; is also a binary variable, and we use
the following model for §; = P(D; = 1|A; = 1)

%‘. NN‘,Y

In g =Ziy or %M = g, AMNGV

where z; is a finite-dimensional vector consisting of elements of Fi_yand y is

a parameter vector. To allow for asymmetry between positive and negative price
changes, we assume that

g0u) if D=1, 4 =1,

Sl A =D~ U4 0 Dy = —1, Ay =1,

Il

where g(A) is a geometric distribution with parameter A and the parameters Aj;

evolve over time as

y..m E\QA
{2 V=wl, or A, ;=— ! . j=ud, (5.28)
J gy %
F—Aj, 1+ Wil

where w; is again a finite-dimensional explanatory variable in F;_; and 0 jisa
parameter vector.

In Eq. (5.27), the probability mass function of a random variable x, which
follows the geometric distribution g(A), is

prx=m)y=x1-0", m=012,....

We added 1 to the geometric distribution so that the price change, if it occurs, Y
is at least 1 tick. In Eq. (5.28), we take the logistic transformation to ensure that =~ =S

P.: S _”O, :

three categories:

1. No price change: A; = 0 and the associated probability is (1 — p;).

2. A price increase: A; = 1, D; = 1, and the associated probability is p;&;. The

size of the price increase is governed by 1 + gy ).

(5.27)

The previous specification classifies the ith trade, or transaction, into one of
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3. ».w:.m.m drop: A, = 1, D; = —1, and the associated probability is pi(l — &)
The size of the price drop is governed by 1+ g0, o

Let L;(j) for j = 1, 2,3 be the indicator variables of the prior three categories.

That is, I;(j) = 1 if the jth cate j i
That g0ry occurs and /;(j) = 0
likelihood function of Eq. (5.24) becomes v erterwise: The g

In[P(y;|F,_1)]

= LIl = p)l+ L)) +1n(8) + In(hy ) + (5, - DIn(l = A, )]
FAONIn(p) +In(l = 8) + In(ha,) + (S — Dt — 4, )

and the overall log likelihood function is

(POl POl = Y I[Py Fi ), (5.29)

i=]

which is a function of parameters 8, y, 8, and 6,.

mxmm:c_m 5.2. We illustrate the decomposition mode
transactions of IBM stock from November 1, 1990 to January 31, 1991, There were

M. >~lh. ﬁ_—ﬁ action ~BQ—OQHO—. Om.» H:@ previous Dm.&@ 1.e. :_0 i~ 1 :_ :m.;ﬂ with n
v A > A ‘v thi

- D;_y: the direction indicator of the previous trade.

Si-1: the size of the previous trade.

Vi—1: the volume of the previous trade, divided by 1000.

- Afi_y: time duration from the (i —=2)th to (j — 1)th trade.

. BA;: The bid-ask spread prevailing at the time of transaction.

B

= Y, }

Because we use lag-1 explanatory variables, the actual sample size is 59,775, It
turns out that V,_,, Ati_y, and BA; are not statistically significant for the model

entertained. Thus, only the first three explanat i
S planatory variables are used. The model

EA u v =Po+ BiAi_y,

n( 2
\Tg ) =rtnbi (5.30)

In wi\/:;.vn :.o...r%:;.mw.l_.
vum&o+$,_bi.

i
|
.
¥
{
i
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Table 5.5. Parameter Estimates of the ADS Model in Eq.
(5.30) for IBM Intraday Transactions from 11/01/90 to

1/31/91
Parameter Bo Bi Yo i
Estimate —1.057 0.962 —0.067 —2.307

Standard error 0.104 0.044 0.023 0.056

Parameter B0 Bu.1 640 a1

Estimate 2.235 —0.670 2.085 -0.509
Standard error 0.029 0.050 0.187 0.139

The parameter estimates, using the log likelihood function in m@ (5.29), are
given in Table 5.5. The estimated simple model shows some dynamic dependence
in the price change. In particular, the trade-by-trade price changes of IBM stock
exhibit some appealing features:

|. The probability of a price change depends on the previous price change.
Specifically, we have
P(A; =1|A;-; =0) =0258, P(A; = 1]A;-| = 1) = 0.476.
The result indicates that a price change may occur in clusters and, as expected, -
most transactions are without price change. When no price change occurred at .90 1
(i — Dth trade, then only about one out of four trades in the subsequent transaction

has a price change. When there is a price change at the (i — I)th transaction, the
probability of a price change in the ith trade increases to about 0.5.

2. The direction of price change is governed by o]

0.483 if D;_; =0 (ie., A;—; = 0),
0.085 if Dy =1, A; = 1,
0.904 if D;_,

FP(D; = HFiy, Aj) =

I
|
=
It

This result says that (a) if no price change occurred at the (i — I)th trade, then
the chances for a price increase or decrease at the ith trade are about even; and
(b) the probabilities of consecutive price increases or aoomm.ummm are very low. ﬁ
probability of a price increase at the ith trade given that a price change occurs at
ith trade and there was a price increase at the (i — 1)th trade is ow:« 8.6%. However,
the probability of a price increase is about 90% given that a price change Onn,_._.n“_ﬂ
the ith trade and there was a price decrease at the (i — 1)th trade. Conseque .q..
this result shows the effect of bid—ask bounce and supports price 8<2m,u._m n
high-frequency trading. ;

3. There is weak evidence suggesting that big price changes :N,Eo a ;z‘_m_ﬁ.
probability to be followed by another big price change. Consider the size of u price
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increase. We have

SilDi =D~ 1+ g(hui), Ay =2.235— 0.6705;_,.

Using the probability mass function of a geometric distribution, we obtain that the
probability of a price increase by one tick is 0.827 at the ith trade if the transaction
results in a price increase and S;—1 = 1. The probability reduces to 0.709 if Sio1 =2
and to 0.556 if §;_; = 3, Consequently, the probability of a large ; is proportional
to ;- given that there is a price increase at the th trade.

A difference between the ADS and ordered probit models is that the former
does not require any truncation or grouping in the size of a price change.

5.5 DURATION MODELS

Duration models are concerned with time intervals between trades. Longer dura-
tions indicate lack of trading activities, which in turn signify a period of no new
information. The dynamic behavior of durations thus contains useful information
about intraday market activities. Using concepts similar to the ARCH models for
volatility, Engle and Russell (1998) propose an autoregressive conditional dura-
tion (ACD) model to describe the evolution of time durations for (heavily traded)
stocks. Zhang, Russell, and Tsay (2001a) extend the ACD model to account for
nonlinearity and structural breaks in the data. In this section, we introduce some
simple duration models. As mentioned before, intraday transactions exhibit some
diurnal pattern. Therefore, we focus on the adjusted time duration

At = AL /f (1), (53D

where f(r;) is a deterministic function consisting of the cyclical component of

At;. Obviously, f(t;) depends on the underlying asset and the systematic behavior

of the market. In practice, there are many ways to estimate f(t;), but no single

method dominates the others in terms of statistical properties. A common approach

is to use smoothing spline. Here we use simple quadratic functions and indicator

variables to take care of the deterministic component of daily trading activities.
For the IBM data employed in the illustration of ADS models, we assume

7
flo) =expld(t)].  d(t) =B+ Y B, f,(t),

(5.32)
j=t
where
2
1; — 43200\ _ (138700
,\._C,LHI. 13400 , .\,w:;“ 7500 :ub < 43200
0 otherwise,
: 2 f; — 48600\
t; — 48300\ “ = i e 3
Chi) = - 00 L) = 9000 if 1; > 43200
; 0 otherwise,
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Figure 5.5. Quadratic functions used to remove the deterministic component of IBM intraday trading
durations: (a)-(d) are the functions f1(.) to fe(.) of Eg. (5.32), respectively.

J5(1;) and fg(1;) are indicator variables for the first and second 5 minutes of market

opening (i.e., fs(.) =1 if and only if #; is between 9:30 am and 9:35 am m.mmﬂ-
ern time), and f7(;) is the indicator for the last 30 minutes of daily trading (i.e.,
S7(t:) =1 if and only if the trade occurred between 3:30 pm and 4:00 pm m.mm?
ern time). Figure 5.5 shows the plot of f;(.) for i = 1,...,4, where the time
scale on the x-axis is in minutes. Note that f3(43200) = [f4(43200), where au_N@c
corresponds to 12:00 noon.

The coefficients 8; of Eq. (5.32) are obtained by the least squares method of
the linear regression

-
In(Af) = Bo + ) _ B fit) + <.
j=1
The fitted model is

In(A1;) = 2.555 + 0.159 1 (1:) + 0.270 £>.(1;) + 0.384 f3.(1,)
+ 0.061 £4(t;) — 0.611 f5(t;) — 0.157 fo(t;) + 0.073 fo(t;).

Figure 5.6 shows the time plot of average durations in 5-minute time intervals over
the 63 trading days before and after adjusting for the deterministic componenls

Figure 5.6a shows the average durations of At; and, as expected, exhibits a E.Enl. i
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Figure 5.6. IBM transactions data from 11/01/90 to 1/31/91: (a) the average durations in 5-minute time
intervals and (b) the average durations in 5-minute time intervals after adjusting for the deterministic
component.

pattern. Figure 5.6b shows the average durations of Atf (i.e., after the adjustment),
and the diurnal pattern is largely removed.

5.5.1 The ACD Model

The autoregressive conditional duration (ACD) model uses the idea of GARCH
models to study the dynamic structure of the adjusted duration At? of Eq. (5.31).
For ease in notation, we define xXi = At}

Let ¥y = E(x;|F;_|) be the conditional expectation of the adjusted duration
between the (i — 1)th and ith trades, where F;_, is the information set available
at the (i — 1)th trade. In other words, ¥; is the expected adjusted duration given

Fi_|. The basic ACD model is defined as

X = Y€, (5.33)

where [¢;} is a sequence of independent and identically distributed non-negative
random variables such that E (¢;) = 1. In Engle and Russell (1998), ¢, follows a

Standard exponential or a standardized Weibull distribution, and ; assumes the
form

r 5
Vi=o+) v+ o (5.34)
j=1 Jj=1
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Such a model is referred to as an ACD(r, s) model. When the &mﬁgawn of €
is exponential, the resulting model is called an EACD(r, 5) model. Similarly, if
¢; follows a Weibull distribution, the model is a WACD(r, s) an&. If :mnmmmuQ,
readers are referred to Appendix A for a quick review of exponential and Weibull
distributions. .

Similar to GARCH models, the process 7; = x; — v, is a martingale difference
sequence (i.e., E(n;j{F;—1) = 0), and the ACD(r, 5) model can be written as

max{r.s)

h
3H€+ M OQ..TELRT\) MUEET\. +§;
j=1 J=1

(5.35)

which is in the form of an ARMA process with non-Gaussian innovations. It is
understood here that y; = 0 for j > r and w; = 0 for j > s. Such a representation
can be used to obtain the basic conditions for weak stationarity of the ACD model.
For instance, taking expectation on both sides of Eq. (5.35) and assuming weak
stationarity, we have

w

mA.ﬁv - E” N
=Yy + w))

Therefore, we assume w >0 and 1> Y ;{yj +®;) because the mx@oa.:& dura-
tion is positive. As another application of Eq. (5.35), we study properties of the .
EACD(1,1) model. i

EACD(1,1) Model | g
An EACD(1,1) model can be written as 1

Xi= i€, Y=o+ yixio oo, G.wm;_
where ¢€; follows the standard exponential distribution. Using the Eon:G of a
standard exponential distribution in Appendix A, we have E(¢;) = 1, /.\mlmb = 1,
and mAmmv = Var(x;) + [E(x)? = 2. Assuming that x; is weakly stationary A._.n..
the first two moments of x; are time-invariant), we derive the variance of x;. First,
taking the expectation of Eq. (5.36), we have

E(f) = @+ i E(xi—1) + o1 EGi-1).
(5.37)

E(x;) = E[E(Yie;[Fim1)] = E(yr),

Under weak stationarity, E(y,) = E(y;_,) so that Eq. (5.37) gives

ty = E(x) = E(Y;) = © G_.um_

L=y —w

Next, because E(€}) = 2, we have E(x7) = E[E(Y2e?|F,_)] = 2E(YP).
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Taking the square of v; in Eq. (5.36) and the expectation and using weak sta-
tionarity of ¥; and x;, we have, after some algebra, that

1~ (1 + w))?
-2y — 0! ~ 2y,00,

E(Y) = p? x (5.39)

Finally, using Var(x;) = E(x?) — [E(x;))? and E(x}) = 2E(y}), we have

[ - of =20,

Var(x;) = 2E(yf) — pi? = 12 x - ,
L —wy -2y 10 — NS

where jt, is defined in Eq. (5.38). This result shows that, to have time-invariant
unconditional variance, the EACD(1,1) model in Eq. (5.36) must satisfy | > NSM +
w? + 2y1w;. The variance of a WACD(1,1) model can be obtained by using the
same techniques and the first two moments of a standardized Weibull distribution.

ACD Models with a Generalized Gamma Distribution

In the statistical literature, intensity function is often expressed in terms of hazard
function. As shown in Appendix B, the hazard function of an EACD model is
constant over time and that of a WACD model is a monotonous function. These
hazard functions are rather restrictive in application as the intensity function of
stock transactions might not be constant or monotone over time. To increase the
flexibility of the associated hazard function, Zhang, Russell, and Tsay (2001a)
employ a (standardized) generalized gamma distribution for €;. See Appendix A
for some basic properties of a generalized gamma distribution, The resulting hazard
function may assume various patterns, including U shape or inverted U shape.
We refer to an ACD model with innovations that foliow a generalized gamma
distribution as a GACD(r, s) model.

5.5.2 Simulation

To illustrate ACD processes, we generated 500 observations from the ACD(1, 1)
mode]

X = .ﬁ\\\mT .~\\m =03 -+ O.Nxﬁ.l_ + O.‘N‘\\ml_ AMA,OV

using two different innovational distributions for ¢;. In case I, ¢ is assumed to

follow a standardized Weibull distribution with parameter « = 1.5. In case 2, €;
follows a (standardized) generalized gamma distribution with parameters x = |.5
and o = (.5,

Figure 5.7a shows the time plot of the WACD(1,1) series, whereas Figure 5.8a
is the GACD(1,1) series. Figure 5.9 plots the histograms of both simulated series.
The difference between the two models is evident. Finally, the sample ACFs of
the two simulated series are shown in Figure 5.10a and Figure 5.11b, respectively.
The serial dependence of the data is clearly seen.
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(a) A simulated WACD(1,1) series
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Figure 5.7. A simulated WACD(1,1) series in Eg. (5.40): (a) the original series and (b) the standardized
series after estimation. There are 500 observations.

(a) A simulated GACD(1,1) series
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Figure 5.8. A simulated GACD(1,1) series in Eq. (5.40): (a) the original series and (b) the standardized

series after estimation. There are 500 observations.
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(a) WACD(1,1)

{b) GACD(1,1)
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Figure 5.9. Histograms of simulated duration processes with 500 observations: (a) WACD(1,1) model
and (b) GACD(1,1) model.
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v.._n_...a 5.10. The sample autocorrelation function of 1 simulated WACD(1,1) series with 500 observa-
cw...: (a) the original series and (b) the standardized residual series.
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(a) Original series

0.5

0.3

ACF
i

(b) Standardized residual series

ACF
!

Figure 5.11. The sample autocorrelation function of a simulated GACD(1,1) series with 500 observa-
tions: (a) the original series and (b) the standardized residual series.

5.5.3 Estimation

For an ACD(r, s) model, let i, = max(r, s) and x, = (x|, .

.., Xx). The likelihood .
function of the durations xi, ..., xr is 4

T
Farey = [ F@&lFio.0) | x fx;,10),

i=ip41 ,

where @ denotes the vector of model parameters, and T ﬁ the mew_m m.ﬁm. The
marginal probability density function f(x; |8) of the previous .o@:.m:ou is Bﬁnq
complicated for a general ACD model. Because its WBE_.Q on Eo.rw,o__rooa ?:oncn

is diminishing as the sample size T increases, this marginal density is often ignored,
resulting in use of the conditional likelihood method. For a /W<>Qu an.a«. EMM n_..ﬁ ¥
the probability density function (pdf) of Eq. (5.55) and obtain the conditional log
likelihood function

T
1
£xi8, x;,) =Y eln|l L+ —)+In

i=ip+1

amvn r{+ _\a:_.v...

+Q5A§ e

IR

(5.41)
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where ¥; = o + 2 vixin + Yiaiwivio;,0 = (w, Vi Ve @, ..., wq, )
and x = (Kiy+1y ..o, x7Y. When o = I, the (conditional) log likelihood function
reduces to that of an EACD(r, 5) model.

For a GACD(r, s) model, the conditional log likelihood function is

T

£xlf,x,)= > In

f=ig+1

Q - ’
INCD) * ke = Dln(x) ~ ko In(ry,) — Mﬂwwv 4

(5.42)
where A =T(«)/ Tk + 1 /a) and the parameter vector # now also includes «.

As expected, when « = [, A = 1/T(1+ 1/a) and the log likelihood function in
Eq. (5.42) reduces to that of a WACD(r, 5) model in Eq. (5.41). This log likelihood
function can be rewritten in many ways to simplify the estimation,

Under some regularity conditions, the conditional maximum likelihood estimates
are asymptotically normal; see Engle and Russell (1998) and the references therein.
In practice, simulation can be used to obtain finite-sample reference distributions
for the problem of interest once a duration model is specified.

Example 5.3. (Simulated ACD(1,1) series continued). Consider the simulated
WACD(1,1) and GACD(1,1) series of Eq. (5.40). We apply the conditional like-
lihood method and obtain the results in Table 5.6. The estimates appear to be
reasonable. Let «\,\M be the 1-step ahead prediction of y; and &; = X /¥ be the
standardized series, which can he regarded as standardized residuals of the series.
If the model is adequately specified, {¢;} should behave as a sequence of inde-
pendent and identically distributed random variables. Figure 5.7b and Figure 5.8b
show the time plot of & for both models. The sample ACF of & for both fitted
models are shown in Figure 5.10b and Figure 5.11b, respectively. It is evident that
no significant serial correlations are found in the ¢; series.

Table 5.6. Estimation Results for Simulated ACD(1,1) Series with 500 Observations
for WACD(1,1) Series and GACD(1,1) Series

WACD(1,1) Model

Parameter w Vi ) o

True 0.3 0.2 0.7 1.5

Estimate 0.364 0.100 0.767 1.477

Standard error (0.139) (0.025) (0.060) (0.052)

GACD(1,1) Model

Parameter w Vi w1 o K

True 0.3 0.2 0.7 0.5 1.5
ﬁ\mmnsam 0.401 0.343 0.561 0.436 2,077

Standard error 0.117) (0.074) (0.065) (0.078) (0.653)
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Example 5.4. As an illustration of duration models, we consider the transac- (@) Adjusted durations

tion durations of IBM stock on five consecutive trading days from November 1 0.20 -
to November 7, 1990. Focusing on positive transaction durations, we have u”muﬁ _
observations. In addition, the data have been adjusted by removing the %8:5.:;- L 010
tic component in Eq. (5.32). That is, we employ 3534 positive adjusted durations g -
as defined in Eq. (5.31). N . ) 0.0

Figure 5.12a shows the time plot of the adjusted (positive) durations for the first - =
five trading days of November 1990, and Figure 5.13a gives the mm,:ﬁ_m ACF of SUdOS ~ : «
the series. There exist some serial correlations in the adjusted durations. We fit a : 0 10 20 30
WACD(1,1) model to the data and obtain the model E Lag

X = e Y = 0.169 + 0.064x;_| + 0.885¢;_,, (5.43) {b) Normalized innovation series
* 0.20

where (€} is a sequence of independent and identically distributed random variates 010
that follow the standardized Weibull distribution with parameter & = o.muoﬁo.o_w.v, & :
where 0.012 is the estimated standard error. Standard errors of the estimates in < 004 - ~ ,,,,,,, R R S W A, S j
Eq. (5.43) are 0.039, 0.010, and 0.018, respectively. All ¢-ratios of the estimates ‘ e T T T T T T T
are greater than 4.2, indicating that the nmaamﬁwm are Em.imo&: at the _,.wo level. 0104 | | |
Figure 5.12b shows the time plot of & = x; /vy, and Figure 5.13b provides the 0 A . i
sample ACF of é;. The Ljung—Box statistics show Q(10) =4.96 and Q(20) = , Lag

Figure 5.13. The sample autocorrelation function of adjusted durations for IBM stock traded in the
(a) first five trading days of November 1990: (4) the adjusted series and (b) the normalized innovations for
a WACD(1,1) model.
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10.75 for the &; series. Clearly, the standardized innovations have no significant

serial correlations. In fact, the sample autocorrelations of the squared series ﬁmww

are also small with Q(10) = 6.20 and Q(20) = 11.16, further confirming lack of

serial dependence in the normalized innovations. In addition, the mean and standard

5 J 0 3000 deviation of a standardized Weibull distribution with o — 0.879 are 1.00 and 1.14,

0 1000 00 ] respectively. These numbers are close to the sample mean and standard deviation

At of {&;}, which are 1.0] and 1.22, respectively. The fitted model seems adequate.

(b) In model (5.43), the estimated coefficients show 71+ @y &~ 0.949, indicating

certain persistence in the adjusted durations. The expected adjusted duration is

= 0.169/(1 — 0.064 — 0.885) = 3.31 seconds, which is close to the sample mean 3.29

: of the adjusted durations. The estimated « of the standardized Weibull distribution

is 0.879, which is less than but close to 1. Thus, the conditional hazard function is
monotonously decreasing at a slow rate.

If a generalized gamma distribution function is used for the innovations, then

the fitted GACD(1,1) model is

adj

norm-dur

T I
0 1000 2000 3000

sequence

Xr=yi€, Y =0.141 4 0.063x;_; + 0.897v; _, (5.44)
Figure 5.12. Time plots of durations for IBM stock traded in the first five trading days of November ....__.n__
1990: (a) the adjusted series and (b) the normalized innovations of an WACD(1,1) model, There ar¢ w”

- Where {¢;} follows a standardized, generalized gamma distribution in Eq. (5.56)
3534 nonzero durations. :

With parameters « = 4.248(1.046) and o« = 0.395(0.053), where the number in
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parentheses denotes estimated standard error. Standard errors of the three parameters
in Eq. (5.44) are 0.041, 0.010, and 0.019, respectively. All of the estimates are sta-
tistically significant at the 1% level. Again, the normalized innovational process
{€;} and its squared series have no significant serial correlation, where €, = x;i/ ‘Ns.
based on model (5.44). Specifically, for the & process, we have Q(10) = 4.95 and
Q(20) = 10.28. For the mw series, we have 0(10) = 6.36 and Q(20) = 10.89.

The expected duration of model (5.44) is 3.52, which is slightly greater than
that of the WACD(1,1) model in Eq. (5.43). Similarly, the persistence parameter
¥t + & of model (5.44) is also slightly higher at 0.96.

Remark. Estimation of EACD models can be carried out by using programs for
ARCH models with some minor modification; see Engle and Russell (1998). In this
book, we use either the RATS program or some Fortran programs developed by the
author to estimate the duration models. Limited experience indicates that it is harder
to estimate a GACD mode! than an EACD or a WACD model. RATS programs
used to estimate WACD and GACD models are given in Appendix C. (]

5.6 NONLINEAR DURATION MODELS

Nonlinear features are also commonly found in high-frequency data. As an illus-
tration, we apply some nonlinearity tests discussed in Chapter 4 to the normalized
innovations €; of the WACD(1,1) model for the IBM transaction durations in -
Example 5.4; see Eq. (5.43). Based on an AR(4) model, the test results are given
in part (a) of Table 5.7. As expected from the model diagnostics of Example 5.4,
the Ori-F test indicates no quadratic nonlinearity in the normalized innovations,
However, the TAR-F test statistics suggest strong nonlinearity.

Based on the test results in Table 5.7, we entertain a threshold duration modei
with two regimes for the IBM intraday durations. The threshold variable is Xyj
(i.e., lag-1 adjusted duration). The estimated threshold value is 3.79. The fitted

Table 5.7. Nonlinearity Tests for IBM Transaction Durations from
November 1 to November 7, 1990¢

Type Ori-F TAR-F(1) TAR-F(2) TAR-F(3) TAR-F{4)
() Normalized Innovations of a WACD(1,1) Model
Test 0.343 3.288 3.142 3.128 0.297
p-Value 0.969 0.006 0.008 0.008 0.915
(b) Normalized Innovations of a Threshold WACD(1,1) Model 3
Test 0.163 0.746 1.899 1.752 0270
p-Value 0.998 0.589 0.091 0.119 0.929 =

“Only intraday durations are used. The number in parentheses of TAR-F tests denotes time delay.
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threshold WACD(1,1) model is X = y¢;, where

0.020 + 0.257x,_; + 0.847y,_,, € ~w(0.901) if x;_, < 3.79,
1.808 4 0.027x;_; + 0.501y,_,, €~ w(0.845) if x;_; > 3.79,

(5.45)
where w(a) denotes a standardized Weibull distribution with parameter «. The
number of observations in the two regimes are 2503 and 1030, respectively. In
Eq. (5.45), the standard errors of the parameters for the first regime are 0.043,
0.041, 0.024, and 0.014, whereas those for the second regime are 0.526, 0.020,
0.147, and 0.020, respectively.

Consider the normalized innovations € =x;/ AN:. of the threshold WACD(1,1)
model in Eq. (5.45). We obtain Q(12) = 9.8 and Q(24) = 23.9 for € and Q(12) =
8.0 and Q(24) = 16.7 for mm. Thus, there are no significant serial correlations in the
é; and mm series. Furthermore, applying the same nonlinearity tests as before to this
newly normalized innovational series €;, we detect no nonlinearity; see part (b) of
Table 5.7. Consequently, the two-regime threshold WACD( 1,1) model in Eq. (5.45)
is adequate.

If we classify the two regimes as heavy and thin trading periods, then the thresh-
old model suggests that the trading dynamics measured by intraday transaction
durations are different between heavy and thin trading periods for IBM stock even
after the adjustment of diurnal pattern. This is not surprising as market activities
are often driven by the arrival of news and other information.

The estimated threshold WACD(1,1) model in Eq. (5.45) contains some insignif-
icant parameters. We refine the model and obtain the result:

0.225x; 4 + 0.867y;_,, €~ w(0.902) if Xi-1 <3.79,

4 1618 +0.614v,_1, € ~ w(0.846) if x,_; > 3.79.
All of the estimates of the refined model are highly significant. The Ljung-Box
statistics of the standardized innovations € = x; \:_? show Q(10) = 5.91(0.82)
and ((20) = 16.04(0.71) and those of mm give Q(10) = 5.35(0.87) and Q20) =
15.20(0.76), where the number in parentheses is the p-value, Therefore, the refined
,Soaﬂ is adequate. The RATS program used to estimate the prior mode] is given
in Appendix C.

5.7 BIVARIATE MODELS FOR PRICE CHANGE AND DURATION

In this section, we introduce a model that considers jointly the process of price
a.rmzmo and the associated duration. As mentioned before, many intraday transac-
tions of a stock result in no price change. Those transactions are highly relevant
1o trading intensity, but they do not contain direct information on price move-

- ment. Therefore, to simplify the complexity involved in modeling price change,
‘We focus on transactions that result in a price change and consider a price change
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and duration (PCD) model to describe the multivariate dynamics of price change
and the associated time duration.

We continue to use the same notation as before, but the definition is changed to
transactions with a price change. Let t; be the calendar time of the ith price change
of an asset. As before, #; is measured in seconds from midnight of a trading day. Let
P, be the transaction price when the ith price change occurred and At; = ¢; — ti—y
be the time duration between price changes. In addition, let N; be the number of
trades in the time interval (#;_1, #;) that result in no price change. This new variable
is used to represent trading intensity during a period of no price change. Finally,
let D; be the direction of the ith price change with D; = | when price goes up
and D; = —1 when the price comes down, and let S; be the size of the ith price
change measured in ticks. Under the new definitions, the price of a stock evolves
over time by

P, = P, |+ D;S;, (5.46)

and the transactions data consist of {At;, N;, D;, 8;) for the ith price change. The
PCD model is concerned with the joint analysis of (At;, N;, D;, S;).

Remark. Focusing on transactions associated with a price change can reduce
the sample size dramatically. For example, consider the intraday data of IBM stock
from November 1, 1990 to January 31, 1991. There were 60,265 intraday trades,
but only 19,022 of them resulted in a price change. In addition, there is no diurnal
pattern in time durations between price changes. 0

To illustrate the relationship among the price movements of all transactions
and those of transactions associated with a price change, we consider the intraday
tradings of IBM stock on November 21, 1990. There were 726 transactions on that
day during normal trading hours, but only 195 trades resulted in a price change.
Figure 5.14 shows the time plot of the price series for both cases. As expected, the
price series are the same.

The PCD model decomposes the joint distribution of (Ag, N;, D;, S;) given’

Fi .y as

FAL N Dy, SiTFi2y) “
= f(SilDi, Ni, Ati, Fimy) f(Di|N;, At Fizy) f (N AL, Fis) fAL | Fisy):

(5.47)

This partition enables us to specify suitable econometric models for the condi-
tional distributions and, hence, to simplify the modeling task. There are many
ways to specify models for the conditional distributions. A proper specification
might depend on the asset under study. Here we employ the specifications used by
McCulloch and Tsay (2000), who use generalized linear models for the discrete-
valued variables and a time series model for the continuous variable In(A#;).

For the time duration between price changes, we use the model

In(An) = By + B1 In(Ati_y) + BaSi—) + o, (548
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Figure 5.14. Time plots of the intraday transaction prices of IBM stock on November 21, 1990:

;., A (ay all
transactions and (b) transactions that resulted in a price change.

ir,m:,w gisa n,oaaﬁw number and {¢;} is a sequence of itd N (0, 1) random variables.
d.:.m 1s a multiple linear regression model with lagged variables. Other explanatory
<m:.mEom can be added if necessary. The log transformation is used to ensure the
positiveness of time duration.

The conditional model for N; is further partitioned into two parts because empir-

ical data suggest a concentration of N; at 0. The first part of the model for N, is
the logit model N

PN = 0|A;, Fi_p) = logitfag + In(A)], (5.49)
where logit(x) = exp(x}/[1 + exp(x)], whereas the second part of the model is

NAN; > 0, Ak, Fio) ~ 14 g(h), 3y = —SP0 + 31 In(Ar)] (5.50)

I+ explyy + yi In(Ar)]

where ~ means .:mm distributed as,” and &(}) denotes a geometric distribution with
Parameter A, which is in the interval O, 1).
The model for direction D; is

Dil(Ni, Ay, Fi_y) = sign(u; + aje), (5.51)
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where € is a N(O, 1) random variable, and

i = wy +8_b~.l_ +€N—BADN_.V<

4
In(o;) = B MGT\. = BIDiy + Dia+ Di_3 + D;_4].
=1

In other words, D; is governed by the sign of a normal random variable with mean
w1 and variance QN.N. A special characteristic of the prior model is the function
for In(o;). For intraday transactions, a key feature is the price reversal between
consecutive price changes. This feature is modeled by the dependence of D; on
D;_y in the mean equation with a negative w; parameter. However, there exists
an occasional local trend in the price movement. The previous variance equation
allows for such a local trend by increasing the uncertainty in the direction of price
moverment when the past data showed evidence of a local trend. For a normal
distribution with a fixed mean, increasing its variance makes a random draw have
the same chance 1o be positive and negative. This in turn increases the chance for
a sequence of all positive or all negative draws. Such a sequence produces a local
trend in price movement.

To allow for different dynamics between positive and negative price movements,
we use different models for the size of a price change. Specifically, we have

Sil(Di = —1, Ni, Ati, i) ~ p(hgi) + 1, with
In(hai) = ng0+ naaNi + naa In(AL) + 1438~ (5.52)

Sil(D; =1, Ni, At Fioy) ~ p(hyi) + 1, with
In(hui) = nuo + nuaNi + 12 (ALY + 7,351, (5.53)

where p(1) denotes a Poisson distribution with parameter A, and | is added to the
size because the minimum size is 1 tick when there is a price change.

The specified models in Egs. (5.48)—(5.53) can be estimated jointly by either
the maximum likelihood method or the Markov chain Monte Carlo methods. Based
on Eq. (5.47), the models consist of six conditional models that can be estimated
separately.

Example 5.5. Consider the intraday transactions of IBM stock on Novem-
ber 21, 1990. There are 194 price changes within normal trading hours. Figure 5.15
shows the histograms of In(At;), N;, D;, and S;. The data for D; are about equally

distributed between “upward” and “downward” movements. Only a few transac~
tions resulted in a price change of more than 1 tick; as a matter of fact, there
were seven changes with two ticks and one change with three ticks. Using Markov
chain Monte Carlo (MCMC) methods (see Chapter 12), we obtained the following Yo
models for the data. The reported estimates and their standard deviations are the
posterior means and standard deviations of MCMC draws with 9500 iterations. The ==

model for the time duration between price changes is

In{(Af;) =4.023 +0.032In(Az; 1) — 0.0258,_; + 1.403¢;,
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Figure 5.15. Histograms of intraday transactions data for IBM stock on November 21, 1990: (a) log

a:qm:oa g?ow: price changes, (b) direction of price movement, (c) size of price change measured
in ticks, and (d) number of trades without a price change.

where .&m:mm& deviations of the coefficients are 0.415, 0.073, 0.384, and 0.073
respectively. The fitted model indicates that there was no dynamic dependence in
the time duration. For the N; variable, we have

Pr(¥; > 0jay, Filp) = logit[—~0.637 + 1.7401n(A1)],

where standard deviations of the estimates are 0.238 and 0.248, respectively. Thus,
as expected, ‘Em number of trades with no price change in the time interval (i1, 1)
depends positively on the length of the interval. The magnitude of N; when it is

positive is
= expl[0.178 — 0.910In(A)]

Nil(N; >0, Ay, Fi_p) ~ T+ g(As), =
1 4 exp[0.178 — 0.910In(AL)]’

srm:w. standard deviations of the estimates are 0.246 and 0.138, respectively. The
Degative and significant coefficient of In(A#;) means that N; is positively related
mc the length of the duration At; because a large In(Ar) implies a small A;, which
0 turn implies higher probabilities for larger N;; see the geometric distribution in

Eq. (5.27),
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The fitted model for D; is
w; = 0.049 —0.840D;_, — 0.004 In(Ay),
In(o;) = 0.244{D; 1 + Dj_2 + Di—3 + Di-al,

where standard deviations of the parameters in the mean equation are 0.129, 0.132,
and 0.082, respectively, whereas the standard deviation for the parameter in the
variance equation is 0.182. The price reversal is clearly shown by the highly sig-
nificant negative coefficient of Dj_i. The marginally significant parameter in the
variance equation is exactly as expected. Finally, the fitied models for the size of
a price change are

In(hg) = 1.024 — 0.327N; + 0.4121n(At;) — 44748y,
In(h,,;) = ~3.683 — 1.542N; + 0.4191n(Ar) +0.9218; -1,

where standard deviations of the parameters for the “down size” are 3.350, 0.319,
0.599, and 3.188, respectively, whereas those for the “up size” are 1.734, 0.976,
0.453, and 1.459. The interesting estimates of the prior two equations are the
negative estimates of the coefficient of N;. A large N; means there were more
transactions in the time interval (f_y, %) with no price change. This can be taken
as evidence of no new information available in the time interval (), #;). Conse-
quently, the size for the price change at f; should be small. A small A, ; or A4 for
a Poisson distribution gives precisely that.

In summary, granted that a sample of 194 observations in a given day may not

contain sufficient information about the trading dynamics of IBM stock, but the.

fitted models appear to provide some sensible results. McCulloch and Tsay (2000)
extend the PCD model to a hierarchical framework to handle all the data of the
63 trading days between November 1, 1990 and January 31, 1991. Many of the
parameter estimates become significant in this extended sample, which has more
than 19,000 observations. For example, the overall estimate of the coefficient of

In(Af;—,) in the model for time duration ranges from 0.04 to 0.1, which is small;.

but significant.

Finally, using transactions data to fest microstructure theory often requires a
careful specification of the variables used. It also requires a deep understanding of
the way by which the market operates and the data are collected. However, ideas of
the econometric models discussed in this chapter are useful and widely applicable
in analysis of high-frequency data.

APPENDIX A: REVIEW OF SOME PROBABILITY DISTRIBUTIONS

Exponential Distribution
A random variable X has an exponential distribution with parameter g > 0 if its
probability density function (pdf) is given by
I
—e™ P ifx >0,
fipy=3 B -

0 otherwise.
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Uozomammco:m&miw::osd
: y X ~ exp(B), we have E(X) = = g2
The cumulative distribution function (CDF) of X is ()= frand Yo = 7

_}o if x <0,
F(x|B) = L /% ifx = 0.

When B = 1, X is said to have a standard exponential distribution.

Gamma Function
For « > 0, the gamma function I'(x) is defined by

[2.¢]
k) = \ *lewvdy,
0
The most important properties of the gamma function are:

1. Forany x > 1, I'(k) = (x — DI (k ~ 1).
2. For any positive integer m, ['(m) = (m — 1)!.

3.r) =7

The integration

v
S_SH\ e N
i)

M an incomplete gamma function. Its values have been tabulated in the literature
omputer programs are now available to evaluate the incomplete gamma ?:ozo:.

Gamma Distribution
A random variable X has a istributi i
m gamma distribution with :
B > 0) if its pdf is given by parameter  and (e > 0.

I
\,A&“R, Qv — mkul A.'va«xlﬂml.y\u if x > O,
0

otherwise.

By changing variable y == x/8, one can easily obtain the moments of X:

mﬁxz~v“|\8k‘=\AH_ s dx = [|~ln\.oo K+m—1_—x
o R.mwv X QR_JARV ) RY e \EQ\«

— .mw:_ oov\+=~l_m1.<&< — E
—JARV o - H,ARV

M_Wmn:oz_mb.ﬁo. B@.m: and variance of X are E(X) = «f and Var(X) = amm When
= 1, the distribution is called a standard gamma distribution with UE.&:.QQ K
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We use the notation G ~ gamma(x) to denote that G follows a standard gamma
distribution with parameter x. The moments of G are

Cik +m)

E(G™y = )

, om=>0. (5.54)

Weibull Distribution
A random variable X has a Weibull distribution with parameters « and B (a > 0,
B > 0) if its pdf is given by

B AT

filxla, By =1 g
0 ifx <0,

where 8 and « are the scale and shape parameters of the distribution. The mean
and variance of X are

1 X 2 1\7?
mcouEAIsv, Var(X) = B AIMV[ ﬁAI; .

¢4

and the CDF of X is

0 if x <0,
AT ~ L—e~WA" if x >0,
When « = 1, the Weibull distribution reduces to an exponential distribution.
Define ¥ = X/|AT(1 + 1/a)]. We have E(Y) =1 and the pdf of Y is

o[22 on ()T

0 otherwise,

(5.55)
where the scale parameter 8 disappears due to standardization. The CDF of the
standardized Weibull distribution is ,

0 if y <0,

F(yle) = _lnxmﬁl—HﬁAI,vau_ “ ify >0,

and we have E(Y) = 1 and Var(Y) = I'(1 + 2/a)/[T(1 + 1/@))* — 1. For a aci.
tion model with Weibull innovations, the pdf in Eq. (5.55) is used in the maximum
likelihood estimation.

Myt 11y
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Generalized Gamma Distribution
A random variable X has a generalized gamma distribution with parameter o, 8, «
{@ >0, B>0,and «k > 0) if its pdf is given by

e exp|— ‘MVQ if x >0
fixle, B, ) = %lém,ﬂw p Am if x >0,

otherwise,

where B is a scale parameter, and « and x are shape parameters. This distribution

can be written as ye
oG
B

where G is a standard gamma random variable with parameter «. The pdf of X
can be obtained from that of G by the technique of changing variables. Similarly,
the moments of X can be obtained from that of G in Eq. (5.54) by

E(X™) = E[(BG'*)"] = B"E(G"/*) = g™ :ﬁw\& N %:_mws\&

When « = 1, the generalized gamma distribution reduces to that of a Weibull
distribution. Thus, the exponential and Weibull distributions are special cases of
the generalized gamma distribution.

The expectation of a generalized gamma distribution is £ (X) = Bl k + 1/a)/
I'(x). In duration models, we need a distribution with unit expectation. Therefore,
defining a random variable ¥ = AX/B, where A =T'(k)/T(k + 1/a), we have
E(Y) =1 and the pdf of Y is

Qv\xnlm ﬁ %Q 3
.l.ltvfgﬂ?v exp AMV g it y > 0,
0 otherwise,

Fyla, ) = (5.56)

where again the scale parameter g disappears and A = I'(k)/ " (k + 1/a).

APPENDIX B: HAZARD FUNCTION

A useful concept in modeling duration is the hazard function implied by a distri-
bution function. For a random variable X » the survival function is defined as
S =PX>x)=1-PX<x)=1 - CDF(x), x>0,
which gives the probability that a subject, which follows the distribution of X ,
survives at the time x. The hazard function (or intensity function) of X is then
defined by
fx)

h(x) = =—/=

SG)’ (5.57)

where £(.) and S(.) are the pdf and survival function of X, respectively.
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Example 5.6. For the Weibull distribution with parameters o and B, the sur-
vival function and hazard function are

S(xla, p) =exp| — AWV , hixia, B) = Wm\«n;_. x > 0.

In particular, when o = 1, we have h(x|B) = 1/B. Therefore, for an exponential
distribution, the hazard function is constant. For a Weibull distribution, the haz-
ard is a monotone function. If o > 1, then the hazard function is monotonously
increasing. If o < 1, the hazard function is monotonously decreasing. For the
generalized gamma distribution, the survival function and, hence, the hazard func-
tion involve the incomplete gamma function. Yet the hazard function may exhibit
various patterns, including U shape or inverted U shape. Thus, the generalized
gamma distribution provides a flexible approach to modeling the duration of stock
transactions.

For the standardized Weibull distribution, the survival and hazard functions are

S(yla) =exp {— _JA:Q&L _ E(yle) = o ﬁAwai y 7l oy >0

APPENDIX C: SOME RATS PROGRAMS FOR DURATION MODELS

The data used are adjusted time durations of intraday transactions of IBM stock
from November 1 to November 9, 1990. The file name is ibmltoS5. txt and it has
3534 observations.

Program for Estimating a WACD( 1,1) Model

all 0 3534:1

open data ibmlto5.txt

data{org=obs) / x ri

set psi = 1.0

nonlin a0 al bl al

frml gvar = al+al*x(t-1)+bl*psi(t-1)
frml gma = ¥LNGAMMA(1.0+1.0/al)

frml gln =al*gma(t)+log(al)-log(x(t)) 5

+mH*HomAxAnv\AUmHAnvnmdeAﬁvvv‘AmwamSmAnvv;xAnv\@mMAnvv**mw
smpl 2 3534 ;
compute a0 = 0.2, al = 0.1, bl = 0.1, al = 0.8
SmxHBWNmAanUOQnUdrw\HmOCHmH<m~HnmwmnMOSmnHmov gln

set fv = gvar(t)

set resid = x(t)/fv(t)

set residsq = resid(t)*resid(t)
oowAmmwmnm~zc3UmHnwo~m@manwov resid
cor{gstats, number=20, span=10) residsg
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Program for Estimating a GACD(1,1 ) Model

all 0 3534:1

open data ibmltoS.txt

data(org=obs) / x r1

set psi = 1.0

nonlin a0 ai bl al ka

frml cv = mo+mH*xAn-Hv+Uu*@mHAn|Hv

frml gma $LNGAMMA (ka)

frml lam = mwamEmAnvV\mxvAthO>ZZbem+AH.O\mHVvv

frml xlam = xAnv\AmeAmv+A@mHAnvno<Aﬁvvv

frml gln n-mamAnv+HomAmH\xAnvv+xm*mw*womﬁxpm3AnvV,Axwmaﬁan**wH
smpl 2 3534

compute al = 0.238, al = 0.075, b1 = 0.857, al = 0.5, ka = 4.0
zwwwwAQHHHmHHOSn<mHCm\o<OHHnuo.oooopv
amxwawmmAamnwoanvswv\wmacwmw<m~Hnmwmnwonmuwmov gln

set fv = cv(t)

set resid = x(t)/fv(t)

set residsqg = resid(t) *resid(t)

oonA@mwmnm\dcavmwuwo~mwmbnwov resid
oouA@mnmnm\scsvmwuwo~m@mmuwov residsg

H

Program for Estimating a TAR- WACD(1,1) Model
The threshold 3.79 is prespecified,

all 0 3534:1

open data ibmltoS5.txt

data({org=obs) / x rt

set psi = 1.0

nonlin al a2 al b0 b2 bl

frml u = AAxﬁnlwv;u.qmv\mUmAxAn-Hv-u.qu+wlov\m.o
frml cpl = al*x(t-1)+a2*psi(t-1)

frml gmal = SLNGAMMA (1.0+1.0/al)

frml cp2 = b0+b2%psi (t-1)

frml gma2 = SLNGAMMA (1.0+1.0/bl)

frml cp = CPL{t)* (1-u(t))+cp2(t) *u(t)

frml glni ump*@BmHAnv+HomﬁmHv|HomAxAnvv S
+mH*HomAwav\AﬁmwﬁnvnowAnvvv-AmxﬁAmamwAnvvwamv\@mwAnvv**mH
frml glnz nvw+mammAﬁv+HomﬁUHv-HO@AxAnvv $
+wH*HomAxAmv\AUmMAnvuowAnvVV-AmeA@Emmﬁmvv*xAnv\@mHAmvv**UH
frml gln = glnl{t)*(1-u(t))+glnz (t) *u(t)

smpl 2 3534

compute al 0.2, a2 = 0.85, al = 0.9

Compute b0 = 1.8, b2 = 0.5, bl = 0.8

amxHEHNmAamnroanvwdr\wmocwmw<m~Mnmﬁwnwonmnwmov gln
8et fv = cp(t)

8et resid = x(t)/fv(t)

set residsqg = resid(t) *resid(t)

oOHA@mnmnm\scavmﬂumo‘mvmzuwov resid

nowAmmnmnm~ScaUmHumo\mUmSHHcv residsg

il

b
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EXERCISES

5.1

5

5

5

5

3

5

.

Let r, be the log return of an asset at time 7. Assume that {r;} is a Gaussian
white noise series with mean 0.05 and variance 1.5. Suppose that the proba-
bility of a trade at each time point is 40% and is independent of r,. Denote
the observed return by r;’. Is r/ serially correlated? If yes, calculate the first
three lags of autocorrelations of r{.

Let P, be the observed market price of an asset, which is related to the fun-
damental value of the asset P* via Eq. (5.9). Assume that AP} = P — P},
forms a Gaussian white noise series with mean zero and variance 1.0. Sup-
pose that the bid—ask spread is two ticks. What is the lag-1 autocorrelation
of the price change series AP, = P, — P,_, when the tick size is $1/87 What
is the lag-1 autocorrelation of the price change when the tick size is $1/16?

The file ibm-d2-dur. txt contains the adjusted durations between trades of

IBM stock on November 2, 1990. The file has three columns consisting of

day, time of trade measured in seconds from midnight, and adjusted durations.

(a) Build an EACD model for the adjusted duration and check the fitted
model.

(b) Build a WACD model for the adjusted duration and check the fitted
model.

(¢) Build a GACD model for the adjusted duration and check the fitted
model.

{d) Compare the prior three duration models.

The file mmm9912 -dtp. txt contains the transactions data of the stock of 3M

Company in December 1999. There are three columns: day of the month, time

of transaction in seconds from midnight, and transaction price. Transactions

that occurred after 4:00 pm Eastern time are excluded.

(a) Is there a diurnal pattern in 3M stock trading? You may construct a time
series n,;, which denotes the number of trades in a 5-minute time interval
to answer this question.

(b) Use the price series to confirm the existence of a bid—ask bounce in
intraday trading of 3M stock.

(c) Tabulate the frequencies of price change in multiples of tick size $1/16.

You may combine changes with 5 ticks or more into a category and those -

with —5 ticks or beyond into another category.

Consider again the transactions data of 3M stock in December 1999.

(a) Use the data to construct an intraday 5-minute log return series. Use the
simple average of all transaction prices within a 5-minute interval as the
stock price for the interval. Is the series serially correlated? You may use
Ljung—Box statistics to test the hypothesis with the first 10 lags of the
sample autocorrelation function.

EXERCISES

5.6.

5.7.

5.8.

5.9

5.10.
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(b) There are seventy-seven 5-minute returns in a normal trading day. Some
researchers suggest that the sum of squares of the intraday 5-minute returns
can be used as a measure of daily volatility. Apply this approach and
calculate the daily volatility of the log return of 3M stock in December
1999. Discuss the validity of such a procedure to estimate daily volatility.

The file mmm9912-adur. txt contains an adjusted intraday trading duration

of 3M stock in December 1999. There are thirty-nine 10-minute time intervals

in a trading day. Let d; be the average of all log durations for the ith 10-

minute interval across all trading days in December 1999. Define an adjusted

duration as t;/exp(d;), where j is in the ith 10-minute interval. Note that

more sophisticated methods can be used to adjust the diurnal pattern of

trading duration. Here we simply use a local average.

(a) Is there a diurnal pattern in the adjusted duration series? Why?

(b) Build a duration model for the adjusted series using exponential innova-
tions. Check the fitted model.

(c) Build a duration model for the adjusted series using Weibull innovations.

Check the fitted model.

Build a duration model for the adjusted series using generalized gamma

innovations. Check the fitted model.

{e) Compare and comment on the three duration models built before.

(d)

To gain experience in analyzing high-frequency financial data, consider the
trade data of GE stock from December 1 to December 5, 2003 in the file
tag-t-ge-decs.txt. The file has four major columns; day, time (hour,
minute, second), price, and volume. Ignore all transactions outside normal
trading hours (9:30 am to 4:00 pm Eastern time). Construct a time series
of the number of trades in an intraday 5-minute time interval. Is there any
diurnal pattern in the constructed series? You can simply compute the sample
ACF of the series to answer this question. The number of trades is in the file
tag-ge-decS-nt.txt.

Again, consider the high-frequency data of GE stock from December 1 to
December 5, 2003 and ignore the transactions outside normal trading hours.
Construct an intraday 5-minute return series. Note that the price of the stock
in a 5-minute interval (e.g., 9:30 and 9:35 am) is the last transaction price
within the time interval. For simplicity, ignore overnight returns. Are there
serial correlations in the 5-minute return series? Use 10 lags of the ACF and
5% level to perform the test. See file tag-ge-decs-5m. txt.

Consider the same problem as in Exercise 5.8, but use 10-minute time inter-
vals. See file tag-ge-dec5-10m. txt.

Again, consider the high-frequency data of GE stock and ignore transac-
tions outside normal trading hours. Compute the percentage of consecutive
transactions without price change in the sample.
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CHAPTER 6

Continuous-Time Models
and Their Applications

The price of a financial asset evolves over time and forms a stochastic process,
which is a statistical term used to describe the evolution of a random variable over
time. The observed prices are a realization of the underlying stochastic process. The
theory of stochastic process is the basis on which the observed prices are analyzed
and statistical inference is made.

There are two types of stochastic process for modeling the price of an asset. The
first type is called the discrete-time stochastic process, in which the price changes at
discrete time points. All the processes discussed in the previous chapters belong to
this category. For example, the daily closing price of IBM stock on the New York
Stock Exchange forms a discrete-time stochastic process. Here the price changes
only at the closing of a trading day. Price movements within a trading day are
not necessarily relevant to the observed daily price. The second type of stochastic
process is the continuous-time process, in which the price changes continuously,
even though the price is only observed at discrete time points. One can think of
the price as the “true value” of the stock that always exists and is time varying.

For both types of process, the price can be continuous or discrete. A continuous
price can assume any positive real number, whereas a discrete price can only
assume a countable number of possible values. Assume that the price of an asset is
a continuous-time stochastic process. If the price is a continuous random variable,
then we have a continuous-time continuous process. If the price itself is discrete,
then we have a continuous-time discrete process. Similar classifications apply to
discrete-time processes. The series of price change in Chapter 5 is an example of
a discrete-time discrete process.

In this chapter, we treat the price of an asset as a continuous-time continuous
Stochastic process. Our goal is to introduce the statistical theory and tools needed
to model financial assets and to price options. We begin the chapter with some

terminologies of stock options used in the chapter. In Section 6.2, we provide a brief
S
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CHAPTER 8

Multivariate Time Series Analysis
and Its Applications

Economic  globalization and internet communication have accelerated the
integration of world financial markets in recent years. Price movements in one
market can spread easily and instantly to another market. For this reason, financial
markets are more dependent on each other than ever before, and one must con-
sider them jointly to better understand the dynamic structure of global finance. One
market may lead the other market under some circumstances, yet the relationship
may be reversed under other circamstances. Consequently, knowing how the mar-
kets are interrelated is of great importance in finance. Similarly, for an investor or
a financial institution holding multiple assets, the dynamic relationships between
returns of the assets play an important role in decision making. In this and the next
two chapters, we introduce econometric models and methods useful for studying
jointly multiple return series. In the statistical literature, these models and methods
belong to vector or multivariate time series analysis.

A multivariate time series consists of multiple single series referred to as com-
ponents. As such, concepts of vector and matrix are important in multivariate time
series analysis. We use boldface notation to indicate vectors and matrices. If nec-
essary, readers may consult Appendix A of this chapter for some basic operations
and properties of vectors and matrices. Appendix B provides some results of multi-
variate normal distribution, which is widely used in multivariate statistical analysis
{e.g.. Johnson and Wichern, 1998).

Let ry = (riray, .. ., i) be the log returns of % assets at time r, where a’
denotes the transpose of a. For example, an investor holding stocks of IBM,
Microsoft, Exxon Mobil, General Motors, and Wal-Mart Stores may consider the
five-dimensional daily log returns of these companies. Here r;, denotes the daily
log return of IBM stock, r is that of Microsoft, and so on. As a second example,
an investor who is interested in global investment may consider the return series
of the S&P 500 index of the United States, the FTSE 100 index of the United

Analysis of Financial Time Series, Second Edition By Ruey S. Tsay
Copyright © 2005 John Wiley & Sons, Inc,

339




340 MULTIVARIATE TIME SERIES ANALYSIS AND ITS APPLICATIONS

Kingdom, and the Nikkei 225 index of Japan. Here the series is three-dimensional,
with ry; denoting the return of the S&P 500 index, ry, the return of the FTSE 100
index, and ry, the return of the Nikkei 225. The goal of this chapter is to study
econometric models for analyzing the multivariate process r,.

Many of the models and methods discussed in previous chapters can be gen-
eralized directly to the multivariate case. But there are situations in which the
generalization requires some attention. In some situations, one needs new models
and methods to handle the complicated relationships between multiple series. In
this chapter, we discuss these issues with emphasis on intuition and applications.
For statistical theory of multivariate time series analysis, readers are referred to
Liitkepohl (1991) and Reinsel ( 1993).

8.1 WEAK STATIONARITY AND CROSS-CORRELATION MATRICES

Consider a k-dimensional time series re = (ru,...,ry). The series r, is weakly
stationary if its first and second moments are time-invariant, In particular, the mean
vector and covariance matrix of a weakly stationary series are constant over time.
Unless stated explicitly to the contrary, we assume that the return series of financial
assets are weakly stationary.

For a weakly stationary time series r,, we define its mean vector and covariance
matrix as

p=E(r), To=E[(r, —pu(r, -p] (8.1)

where the expectation is taken element by element over the joint distribution of r.
The mean pu is a k-dimensional vector consisting of the unconditional expectations
of the components of r,. The covariance matrix Ty is a k x k matrix. The ith
diagonal element of Ty is the variance of rit, Whereas the (i, j)th element of Ty is
the covariance between r;, and rjr- We write gt = (uy, ..., ue) and Ty = [T (0)]
when the elements are needed.

8.1.1 Cross-Correlation Matrices

Let D be a k x k diagonal matrix consisting of the standard deviations of r;, for
i=1,...,k In other words, D = diag{</T'|;(0), ..., vTx(0)}. The concurrent,
or lag-zero, cross-correlation matrix of r, is defined as

Py = Lpij @] =D7'TyD.
More specifically, the (i, j)th element of Py 18
I (0) Cov(ris, rjp)
0ij(0) = = 5
_J:,AOvﬂt. (1) maA\:vm&q?v

which is the correlation coefficient between rir and rj;. In time series analysis, .

such a correlation coefficient is referred to as a concurrent, or contemporaneous,

correlation coefficient because it is the correlation of the two series at time ¢. It is :
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easy to see that p;;(0) = p;;(0), —1 < £ii{0) < 1, and p;;(0) = | for | < i,j <k
Thus, p(0) is a symmetric matrix with unit diagonal elements.

An important topic in multivariate time series analysis is the lead—lag relation-
ships between component series. To this end, the cross-correlation matrices are
used to measure the strength of linear dependence between time series. The lag-£
cross-covariance matrix of r, is defined as

Lo =[Ty(O] = El(r, — p)(ri—y — p)'], (8.2)

where t is the mean vector of r,. Therefore, the (i, j)th element of T'; is the covari-
ance between r;; and r j.—¢- For a weakly stationary series, the cross-covariance
matrix [y is a function of ¢, not the time index ¢.

The lag-£ cross-correlation matrix (CCM) of r, is defined as

pe = [pij ()] = D7'T, D!, (8.3)
where, as before, D is the diagonal matrix of standard deviations of the individual

series ;. From the definition,

I'ij£ iy T ja—t
bC.ASH \A ) _ Cov(r;, Vit &)

TiOT;0)  std(ri)std(r;,)’

(8.4)

which is the correlation coefficient between ri; and r;;_p;. When £ > 0, this corre-
lation coefficient measures the linear dependence of r;, on r j,1—2, Which occurred
prior to time ¢. Consequently, if p; j(€) # 0 and € > 0, we say that the series r it
leads the series ry; at lag €. Similarly, p i (€) measures the linear dependence of r i
and r;,_¢, and we say that the series rir leads the series rj: at lag £ if pji(€)#£0
and £ > 0. Equation (8.4) also shows that the diagonal element pj; (£) is simply the
lag-£ autocorrelation coefficient of ;.

Based on this discussion, we obtain some important properties of the cross-
correlations when £ > 0. First, in general, p j(€) % p;i(€) for i # j because the
two correlation coefficients measure different linear relationships between {r;}
and {r;}. Therefore, I'y and p, are in general not symmetric. Second, using
Cov(x, y) = Cov(y, x) and the weak stationarity assumption, we have

Coviri, rji—e) = Cov(rj,_¢, ris) = Cov(rj/, ripe) = Cov(rjr, ri—i-p),

so that I';; (£) = I'j;;(—£). Because ['ji(—£) is the (j, i)th element of the matrix I'_,
and the equality holds for 1 < i, j < k, we have T = I, and p, = p’_,. Conse-
quently, unlike the univariate case, p, # p_, for a general vector time series when
€ > 0. Because p, = p'_,, it suffices in practice to consider the cross-correlation
matrices p, for £ > 0.

8.1.2 Linear Dependence
Considered jointly, the cross-correlation matrices {pel€ =0,1,...} of a weakly
Stationary vector time series contain the following information:

1. The diagonal elements {p;(€)}|¢ =0, I, ...} are the autocorrelation func-
tion of r;;.
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2. The off-diagonal element £i;(0) measures the concurrent linear relationship
between r;, and s

3. For £ > 0, the off-diagonal element pi;(£) measures the linear dependence
of ri; on the past value Fiieg.

Therefore, if p, j(€) =0 forall ¢ > 0, then r;; does not depend linearly on any past
value r;,_, of the rj; series,

In general, the linear relationship between two time series {ri;} and {rj} can be
summarized as follows:

1. r; and rj have no linear S_m:osmaw if pijl)y = Lji€) =0 for all ¢ > 0.

2. ry; and r J¢ are concurrently correlated if pi;(0) £ 0.

3. ri and rj; have no lead-lag relationship if Pij(€) = 0 and pji(€) =0 for all
€ > 0. In this case, we say the two series are uncoupled.

4. There is a unidirectional relationship from Tie W rje if p(8) =0 for all
£ >0, but Pji(v) # 0 for some y > 0. In this case, r;; does not depend on
any past value of r;,, but r j+ depends on some past values of r;,.

5. There is a Sfeedback relationship between Tie and rj; if p; i (€) 7 0 for some
£ >0 and Pji(v) % 0 for some v > 0,

The conditions stated earlier are sufficient conditions. A more informative approach
to study the relationship between time series is to build a multivariate model for
the series because g properly specified model considers E.BEB:mocm_v\ the serial
and cross-correlations among the serjes.

8.1.3 Sample Cross-Correlation Matrices

Given the data {rir=1,..., T}, the cross-covariance matrix T, can be estj-
mated by
T
T, = N,Mm_ i =) ree ~ 7Y, €0, ®.5)

where F = AMM"_ r)/T is the vector of sample means. The cross-correlation
matrix p, is estimated by

- =]

Pe=D"TD”', is0 (8.6)

-~

where D is the k x k diagonal matrix of the sample standard deviations of the
component series,

Similar to the univariate case, asymptotic properties of the sample cross-
correlation matrix 0, have been investigated under various assumptions; see, for
instance, Fuiler (1976, Chapter 6). The estimate is consistent but is biased in
a finite sample. For asset return series, the finite sample distribution of Pe is

O T

i

=4
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rather complicated partly because of the presence of conditional :Qnﬂomomamm:o:v\
and high kurtosis. If the finite-sample distribution of cross-correlations jg needed,

Example 8.1. Consider the monthly log returns of IBM stock and the S&P 500
index from Tanuary 1926 to December 1999 with 888 observations, The returns
include dividend pPayments and are in percentages. Denote the returns of IBM stock
and the S&P 500 index by ri; and ry,, respectively. These two returns form a bivari-
ate time series r, = (rir, r2Y. Figure 8.1 shows the time plots of r, using the same
scale. Figure 8.2 shows some scatterplots of the two series. The plots show that the
two return series are concurrently correlated. Indeed, the sample concurrent corre-
lation coefficient between the two returns is 0.64, which is statistically significant
at the 5% level. However, the Cross-correlations at lag I are weak if any.

Table 8.1 provides Some summary statistics and Cross-correlation matrices of the

1960 1980 2000
year

(b} Monthly log returns of gp 500 index: 1/1926 to 12/1999

1940 1960 1980 2000
year

,Em:.,m 8.1. Time plots of (a) monthly log returns in percentages for IBM stock and (b) the S&P 500
index from January 1926 to December 1999,
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Figure 8.2. Some scatterplots for monthly log returns of IBM stock and the S&P 500 index:
(a) concurrent plot of 1BM versus S&P 500 (b) S&P 500 versus lag-1 IBM, (c) IBM versus lag-1
S&P 500, and (d) S&P 500 versus lag-1 S&P 500.

and define a simplified cross-correlation matrix consisting of three symbols “+,”
“=,” and “.,” where
1. “4” means that the corresponding correlation coefficient is greater than or
equal to 2/4/T,
2. “—" means that the corresponding correlation coefficient is less than or equal
to —2/+/T, and
3. *”" means that the corresponding correlation coefficient is between —2/T

and 2/VT,

where 1/+/T is the asymptotic 5% critical value of the sample correlation under
the assumption that r, is a white noise series.

Table 8.1c shows the simplified CCM for the monthly log returns of IBM stock
and the S&P 500 index. It is easily seen that significant cross-correlations at the
approximate 5% level appear mainly at lags 1 and 3. An examination of the sam-
ple CCMs at these two lags indicates that (a) S&P 500 index returns have some
marginal autocorrelations at lags | and 3, and (b) IBM stock returns depend weakly
on the previous returns of the S&P 500 index. The latter observation is based on the
significance of cross-correlations at the (1, 2)th element of lag-1 and lag-3 CCMs.
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Table 8.1. Summary Statistics and Cross-Correlation Matrices of Monthly Log
Returns of IBM Stock and the S&P 500 Index: January 1926 to December 1999

(a) Summary Statistics

Ticker Mean Standard Error Skewness Excess Kurtosis Minimum Maximum

IBM 1.240 6.729 -0.237 1917 —30.37 30.10
S&P 500 0.537 5.645 —0.521 8.117 —35.58 35.22

(b) Cross-Correlation Matrices

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

0.08 0.10 0.02 -0.06 -0.02 —0.07 —0.02 -0.03 0.00 0.07
004 008 002 ~0.02 ~0.07 —0.11 0.04 0.02 0.00 0.08

[T 7] T;Wﬂm; (1]

Figure 8.3 shows the sample autocorrelations and cross-correlations of the two
series. Since the ACF is symmetric with respect to lag 0, only those of positive lags
are shown. Because lagged values of the S&P 500 index return are used to compute
the cross-correlations, the plot associated with positive lags in Figure 8.3c shows
the dependence of IBM stock return on the past S&P 500 index returns, and the plot
associated with negative lags shows the linear dependence of the index return on
the past IBM stock returns. The horizontal lines in the plots are the asymptotic two
standard-error limits of the sample auto- and cross-correlation coefficients. From
the plots, the dynamic relationship is weak between the two return series, but their
contemporaneous correlation is statistically significant.

Example 8.2. Consider the simple returns of monthly indexes of U.S. govern-
ment bonds with maturities in 30 years, 20 years, 10 years, 5 years, and | year, The
data obtained from the CRSP database have 696 observations starting from J anuary
1942 to December 1999. Let re = (ry,...,rs) be the return séries with decreas-
ing time to maturity. Figure 8.4 shows the time plots of r; on the same scale. The
variability of the I-year bond returns is much smaller than that of returns with
longer maturities. The sample means and standard deviations of the data are ji =
1072(0.43, 0.45, 0.45, 0.46, 0.44) and & = 1072(2.53, 2.43, 1.97, 1.39,0.53)". The
concurrent correlation matrix of the series is

1.00 0.98 0.92 0.85 0.63
0.98 1.00 0.91 0.86 0.64

P 0.92 0.91 1.00 0.90 0.68 | .
0.85 0.86 0.90 1.00 0.82
0.63 0.64 0.68 0.82 1.00

»
=)
it
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(a) Sample ACF of IBM stock return
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Figure 8.3. Sample auto- and cross-correlation functions of two monthly log returns: (a) sample ACF

of IBM stock retums, (b) sample ACF of S&P 500 index returns, and (¢} cross-correlations between
IBM stock return and lagged S&P 500 index returns.

It is not surprising that (a) the series have high concurrent correlations, and
(b) the correlations between long-term bonds are higher than those between short-
term bonds.

Table 8.2 gives the lag-1 and lag-2 cross-correlation matrices of r; and the
corresponding simplified matrices. Most of the significant cross-correlations are at
lag 1, and the five return series appear to be intercorrelated. In addition, lag-1 and
lag-2 sample ACFs of the I-year bond returns are substantially higher than those
of other series with longer maturities.

8.1.4 Multivariate Portmanteau Tests

The univariate Ljung~Box statistic Q(m) has been generalized to the multivariate
case by Hosking (1980, 1981) and Li and McLeod (1981). For a multivariate
series, the null hypothesis of the test statistic is Hy:py=---=p, =0, and the

=

£

s

e b
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Figure 8.4, Time plots of monthly simple returns of five indexes of U.S. government bonds with
maturities in (a) 30 years, (b) 20 years, (¢) 10 years, (d) 5 years, and () | year. The sample period is
from January 1942 to December 1999,

alternative hypothesis H, : p; # 0 for some i € {1 -...m}. Thus, the statistic is
used to test that there are no auto- and cross-correlations in the vector series r.
The test statistic assumes the form

t PPN

~—
N..|N\\A—xa—1c —..m—..c ), (8.7)

Qulm) =723
t=1

where T is the sample size, k is the dimension of r;, and 1r(A) is the trace
of the matrix A, which is the sum of the diagonal elements of A. Under the
null hypothesis and some regularity conditions, Q;(m) follows asymptotically a
chi-squared distribution with k2m degrees of freedom.
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Table 8.2. Sample Cross-Correlation Matrices of Monthly Simple Returns of Five
Indexes of U.S. Government Bonds: January 1942 to December 1999

Lag 1 Lag 2
Cross-Correlations
0.10 0.08 0.1 0.12 0.16 —-0.01 0.00 0.00 -0.03 0.03
0.10 0.08 0.12 0.14 0.17 -0.01 0.00 0.00 -0.04 0.02

0.09 0.08 0.09 0.13 0.18 0.01 0.01 0.01 -0.02 0.07
0.14 0.12 0.15 0.14 0.22 -0.02 -0.01 0.00 ~0.04 0.07
0.17 0.15 0.21 0.22 0.40 —0.02 0.00 0.02 0.02 0.22

Simplified Cross-Correlation Matrices

I ]
+ + 4+ +
+ 4+ +
4+ +

L+ + + + + |

o+ o+ o+ 4

* ]

Remark. The Qi (m) statistics can be rewritten in terms of the sample cross-
correlation matrixes Pe. Using the Kronecker product ® and vectorization of
matrices discussed in Appendix A of this chapter, we have

m

I e
Qulmy =T} ——bi35" @ 55 )b,
=1

where by = vec(p)). The test statistic proposed by Li and McLeod (1981) is

Km@m + 1)
2T ’

Qim) =T 3 b3y @By be +
£=}

which is asymptotically equivalent to O, (m). O

Applying the Q(m) statistics to the bivariate monthly log returns of IBM stock
and the S&P 500 index of Example 8.1, we have Q2(1) = 9.81, 0,(5) = 47.06,
and Q»(10) = 71.65. Based on asymptotic chi-squared distributions with degrees
of freedom 4, 20, and 40, the p-values of these Q,(m) statistics are 0.044, 0.001,
and 0.002, respectively. The portmanteau tests thus confirm the existence of serial
dependence in the bivariate return series at the 5% significance level. For the
five-dimensional monthly simple returns of bond indexes in Example 8.2, we

B et N
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have Qs(5) = 1065.63, which is highly significant compared with a chi-squared
distribution with 125 degrees of freedom.

The Qy(m) statistic is a joint test for checking the first m cross-correlation
matrices of r,. If it rejects the null hypothesis, then we build a multivariate model
for the series to study the lead-lag relationships between the component series. In
what follows, we discuss some simple vector models useful for modeling the linear
dynamic structure of a multivariate financial time series.

8.2 VECTOR AUTOREGRESSIVE MODELS

A simple vector model useful in modeling asset returns is the vector autoregressive
(VAR) model. A multivariate time series r, is a VAR process of order 1, or VAR( 1)
for short, if it follows the model

3H$Q+GJL+§? (8.8)

where @, is a k-dimensional vector, @ is a k x k matrix, and {a} is a sequence of
serially uncorrelated random vectors with mean zero and covariance matrix ¥. In
application, the covariance matrix ¥ is required to be positive definite; otherwise,
the dimension of r; can be reduced. In the literature, it is often assumed that a; is
multivariate normal.

Consider the bivariate case (i.e., k = 2,r;=(ry,ry), and a, = (ai;, ax)’). The
VAR(1) model consists of the following two equations:

re =g+ Pury, + Puray +ay,
rae =0 + Puri o + Pora oy +ay,

where &;; is the (i, j)th element of & and ¢y is the ith element of . Based
on the first equation, &, denotes the linear dependence of ryy on rp,y in the
presence of ry,_;. Therefore, ¢ 12 18 the conditional effect of Fa:—y ON ry, given
rig—1. If @15 =0, then ry, does not depend on ry,_|, and the model shows that
ri, only depends on its own past. Similarly, if ®;; = 0, then the second equation
shows that r;, does not depend on r; ,_; when 72,11 18 given,

Consider the two equations Jointly. If ®1; =0 and @, # 0, then there is a
unidirectional relationship from 7y, to ry. If @ 12 = P31 =0, then r, and ry, are
uncoupled. If ¢y, # 0 and ®, # 0, then there is a feedback relationship between
the two series.

8.2.1 Reduced and Structural Forms

In general, the coefficient matrix @ of Eq. (8.8) measures the dynamic dependence
of r,. The concurrent relationship between ry, and ry; is shown by the off-diagonal
element oy, of the covariance matrix T of a,. If o5 = 0, then there is no con-
Current linear relationship between the two component series. In the econometric
literature, the VAR(1) model in Eq. (8.8) is called a reduced-form model because it
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does not show explicitly the concurrent dependence between the component series.
If necessary, an explicit expression involving the concurrent relationship can be
deduced from the reduced-form model by a simple linear transformation. Because
Y is positive definite, there exists a lower triangular matrix L with unit diago-
nal elements and a diagonal matrix G such that ¥ — LGL'; see Appendix A on
Cholesky decomposition. Therefore, hl_MAh\vL = @.

Define b; = (by,, ..., by) = L™ 'a,. Then

E(b)=L""E(a)=0, Cov(b,) = L7'E(@L Y =Ly = 6.

Since G is a diagonal matrix, the components of b, are uncorrelated, Multiplying
L~ from the lef: to model (8.8), we obtain

L7r =L+ L™ ®r,_ + L 'q, = o5+ d'r,_ 4+ b, (8.9)

where ¢ = L™'@ is a k-dimensional vector and ®* = L~'® is a k x k matrix.
Because of the special matrix structure, the kth row of L7 is in the form

(Wi, w2, ., we gy, 1). Consequently, the kth equation of model (8.9) is
k—1 k
The + M Whilis = @ o + M Dri—y + by, (8.10)

i=] i=]

where @ , is the kth element of ®g and @, is the (k, i)th element of $*. Because
by, is uncorrelated with by, for 1 < < k, Eq. (8.10) shows explicitly the concurrent
linear dependence of ry, on r;;, where 1 < i =k — 1. This equation is referred to
as a structural equation for ry, in the econometric literature.

For any other component r;; of r,, we can rearrange the VAR(1) model so that
rir becomes the last component of r;. The prior transformation method can then be
applied to obtain a structural equation for r;,. Therefore, the reduced-form model
(8.8) is equivalent to the structural form used in the econometric literature. In time
series analysis, the reduced-form model is commonly used for two reasons. The
first reason is ease in estimation. The second and main reason is that the concurrent
correlations cannot be used in forecasting.

Example 8.3. To illustrate the transformation from a reduced-form model to
structural equations, consider the bivariate AR(1) model

I _ 0.2
ra - OA .

0.2 0.3 rii—1 + ay; “ - 21

—-0.6 1.1 T -1 ay; 11
For this particular covariance matrix X, the lower triangular matrix

1.0 0.0

-1 _
L= = -05 1.0

2 Saaea e

idm vl 3
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provides a Cholesky decomposition (i.e., L'yt is a diagonal matrix).
Premultiplying L~! to the previous bivariate AR(1) model, we obtain

100071 n ] _[027, 7 02 037, bis
0.5 1.0 || ry | =1 03 —0.7 095 || rapy | T by |
2 0
G=100s|

where G = Cov(b,). The second equation of this transformed model gives
ry =0.340.5r, — 0.7r) ,_y + 0.95rp s + by,

which shows explicitly the linear dependence of ry; on ry,.
Rearranging the order of elements in r;, the bivariate AR(1) model becomes
a; 11

03 02| r,o | THa, " 25|12

L7 04 1.1 ~0.6 72—
i - 0.2 .

The lower triangular matrix needed in the Cholesky decomposition of ¥ becomes

4 _[ rooo
L7=1 1010

Premultiplying L™ to the earlier rearranged VAR(1) model, we obtain

1.0 0.0 | 0.4 " 1.1 -0.6 -
—10 10 |lr, |1 -02

Ciy
0.8 08| ro | T ey |°

10
G=1o|

where G = Cov(¢,). The second equation now gives
ry=-=02+1.0ry —08r,_, + 0.8ry -1 + c2.
Again this equation shows explicitly the concurrent linear dependence of ry, on ry,.

8.2.2 Stationarity Condition and Moments of a VAR(1) Model

Assume that the VAR(1) model in Eq. (8.8) is weakly stationary. Taking expectation
of the model and using E(a,) = 0, we obtain

E(r) =¢q+ ®FE(r,_)).
Since E(r,) is time-invariant, we have
p=Er)=0-8) ¢,

provided that the matrix I — & is nonsingular, where I is the £ x k identity matrix.
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Using ¢y = (I — ®), the VAR(1) model in Eq. (8.8) can be written as
ry—p)=®r_; ~ p) +a,.

Let 7o =r; —p be the mean-corrected time series. Then the VAR(1) model
becomes

F, = ®F,_ +a,. (8.11)

This model can be used to derive properties of a VAR( 1) model. By repeated
substitutions, we can rewrite Eq. (8.11) as

Fr=a;+ ®a,_ + eNnTN + OuaTw + -

This expression shows several characteristics of a VAR(1) process. First, since
a, is serially uncorrelated, it follows that Covia,, r,_;) = 0. In fact, a, is not
correlated with r, _, for all £ > 0, For this reason, a, is referred to as the shock
or innovation of the series at time ¢. It turns out that, similar to the univariate
case, a, is uncorrelated with the past value r,_ j (j > 0) for all time series models.
Second, postmultiplying the expression by a;, taking expectation, and using the
fact of no serial correlations in the a, process, we obtain Cov(r,, a,) = . Third,
for a VAR(1) model, r, depends on the past innovation a,_; with coefficient matrix
&/, For such dependence to be meaningful, &/ must converge to zero as j — 00.
This means that the k eigenvalues of ® must be less than 1 in modulus; otherwise,
&/ will either explode or converge to a nonzero matrix as J = 00. As a matter 9
of fact, the requirement that all eigenvalues of ® are less than 1 in modulus is
the necessary and sufficient condition for weak stationarity of r, provided that the |
covariance matrix of a, exists. Notice that this stationarity condition reduces to
that of the univariate AR(1) case in which the condition is l¢| < 1. Furthermore,
because NN S Lrﬂmgx\@ m_
1

\ (,,ioeuy:ne:‘ }
\& -hpi=l ! P

the eigenvalues of @ are the inverses of the zeros of the determinant I — ®B|.
Thus, an equivalent sufficient and necessary condition for stationarity of r, is that
all zeros of the determinant |®(B)| are greater than one in modulus; that is, all
zeros are outside the unit circle in the complex plane. Fourth, using the expression,
we have

o0
Covir) =To =X +®Td' + &’E(®?) ... = Mue%mﬁe;\.
i={)

where it is understood that ®° = I, the k x & identity matrix.
Postmultiplying 7,_, to Eq. (8.11), taking expectation, and using the result
Covia;,ri_j) = m«,a\mhl\.v = 0 for j > 0, we obtain

E(FF,_y) = ®FE(F,_ Fi_g), £>0.
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Therefore,
Fe=®T,_;, ¢£>0, (8.12)

where I'; is the lag-j cross-covariance matrix of r;. Again this result is a
generalization of that of a univariate AR(1) process. By repeated substitutions,
Eq. (8.12) shows that

T;=®Ty, for {>0.
Pre- and postmultiplying Eq. (8.12) by D~!/2, we obtain
p, =D '2@r,_ DV = bx_\web_\wbl_bﬂ?_bl_\u =Tp,_,,
where T = D~1/2p pl/?, Consequently, the CCM of a VAR(1) model satisfies
pe="Yp, for ¢>0.

8.2.3 Vector AR(p) Models

The generalization of VAR(1) to VAR( p) models is straightforward. The time series
r, follows a VAR(p) model if it satisfies

3H$o+@_31_+.:+0m3:u+5. p >0, (8.13)

where @y and a, are defined as before, and ® j are k x k matrices. Using the
back-shift operator B, the VAR(p) model can be written as

(I—-®18~- —&,B"r, = ¢, +a,,

where [ is the k x k identity matrix. This representation can be written in a compact
form as

®(B)r, = ¢y +ay,

where ®(B) =1 ~ ®,B —--- — ®,B” is a matrix polynomial. If r, is weakly
stationary, then we have

R=Er)=I~® - —&,) ¢, =[(1)] ¢,
provided that the inverse exists. Let 7, = r, — yt. The VAR( p) model becomes
Fro=®F_, +...+0nm~lw+h? (8.14)

Using this equation and the same techniques as those for VAR(1) models, we
obtain that:

» Cov(r;,a;) = Z, the covariance matrix of a,;
e Cov(ry_¢,a,) =0 for ¢ > 0;
. H.NHAv_ﬂm|~+..,+$w~1mlh for £ > 0.
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The last property is called the moment equations of a VAR(p) model. It is a
multivariate version of the Yule-Walker equation of a univariate AR(p) model. [n
terms of CCM, the moment equations become

EH%_P:_IT:..TR.nE% for ¢ 0,

where Y; = D™'/2¢, /2,

A simple approach to understanding properties of the VAR(p) model in Eq.
(8.13) is to make use of the results of the VAR(!) model in Eq. (8.8). This can be
achieved by transforming the VAR( p) model of r, into a kp-dimensional VAR(1)
model. Specifically, let x, = Amnéﬁ. mﬂx\l@ conF) and by = (0, ... 0, a,) be
two kp-dimensional processes. The mean of b, is zero and the covariance matrix
of b; is a kp x kp matrix with Zero everywhere except for the lower right corner,
which is X. The VAR( p) model for r, can then be written in the form

X, =®"x, | +p,, (8.15)

where ®* is a kp x kp matrix given by

O I 0 o .. ¢
0 0 1 0 . 0

=1 1 E E
0 0 o o .. g

® b, D, b, ... @,

where 0 and I are the & x k zero matrix and identity matrix, respectively. In the
literature, ®* is called the companion matrix of the matrix polynomial &(B).

Equation (8.15) is a VAR(1) model for X:, which contains r, as its last k
components. The results of a VAR(1) model shown in the previous subsection
can now be used o derive properties of the VAR(p) model via Eq. (8.15). For
example, from the definition, ¥, is weakly stationary if and only if r, is weakly
stationary. Therefore, the necessary and sufficient condition of weak stationarity
for the VAR(p) model in Eq. (8.13) is that all eigenvalues of &* in Eq. (8.15)
are less than 1 in modulus. Similar to the VAR(1) case, it can be shown that the
condition is equivalent to all zeros of the determinant |®(B)| being outside the
unit circle.

Of particular relevance to financial time series analysis is the structure of the
coefficient matrices ®, of a VAR(p) model. For instance, if the (/, J)th element
D;;(£) of ¥, is zero for all £, then r;, does not depend on the past values of 7. The
structure of the coefficient matrices @, thus provides information on the lead-lag
relationship between the components of r,.

8.2.4 Building a VAR(p) Model

We continue to use the iterative procedure of order specification, estimation, and
model checking to build a vector AR model for a given time series. The concept of
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partial autocorrelation function of a univariate series can be generalized to specify
the order p of a vector series, Consider the following consecutive VAR models:

re=¢,+ ®r,_, +a,
r=¢g+ &5, + Pori s +a,

re =g+ ®r,_, +e+dir i +a, (8.16)

Parameters of these models can be estimated by the ordinary least squares (OLS)
method. This is called the multivariate linear regression estimation in multivariate
statistical analysis; see Johnson and Wichern (1998).

For the ith equation in Eq. (8.16), let @M.; be the OLS estimate of ®; and let
(i) . . .
:N be the estimate of ®o. where the superscript ({) is used to denote that the
estimates are for a VAR(i) model. Then the residual is

i) ) () (i)

4 =r.—¢y - d A e Tl
. . . 0 = .

For i = 0, the residual is defined as H ) = r; —r, where F is the sample mean of

r;. The residual covariance matrix is defined as

1

% =
T 21

T
2oal@vy, iso 8.17)

r==i]

To specify the order P, one can test the hypothesis H, : @, = 0 versus the alter-
native hypothesis H, : b, £ 0 sequentially for £ = 1,2, . . For example, using
the first equation in Eq. (8.16), we can test the hypothesis H, : &, = 0 versus the
alternative hypothesis H, : ®; # 0. The test statistic is

=—(T—k— 5[ ZuU
M) = ~(T ~k -3 Eav,

where WN. is defined in Eq. (8.17) and {A[ denotes the determinant of the matrix
A. Under some regularity conditions, the test statistic M(1) is asymptotically a
chi-squared distribution with &2 degrees of freedom; see Tiao and Box (1981).

In general, we use the ith and (i — Dth equations in Eq. (8.16) to test H,, : P, =
0 versus H, : ®; £ 0; that is, testing a VAR(/) model versus a VAR(i — 1) model.
The test statistic is

M) = —(T ~k—i— 3 _LM;ML_I_ . (8.18)
i—1

|
m

e B
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Asymptotically, M(i) is distributed as a chi-squared distribution with k2 degrees
of freedom.

Alternatively, one can use the Akaike information criterion (AIC) or its variants
to select the order p. Assume that a, is multivariate normal and consider the ith
equation in Eq. (8.16). One can estimate the model by the maximum likelihood
(ML) method. For AR models, the OLS estimates ¢ and ®; are equivalent to the
(conditional) ML estimates. However, there are differences between the estimates
of X. The ML estimate of X is

T
- 1 i i)qt
%, = w.?thM @y, (8.19)

The AIC of a VAR(i) model under the normality assumption is defined as

. . 20
AIC(H) = In(|X;) + e
For a given vector time series, one selects the AR order p such that AIC(p) =
ming<; <, AIC(i), where pq is a prespecified positive integer.
Other information criteria available for VAR(;) models are

k4 In(T)
—
2k2i In(In(T))

HQ() = In(j%, ) + N .

BIC(i) = In(|Z,)) +

‘The HQ criterion is proposed by Hannan and Quinn (1979).

Example 8.4, Assuming that the bivariate series of monthly log returns of IBM
stock and the S&P 500 index discussed in Example 8.1 follows a VAR model, we
apply the M (i) statistics and AIC to the data. Table 8.3 shows the results of these
statistics. Both statistics indicate that a VAR(3) model might be adequate for the
data. The M (i) statistics are marginally significant at lags I, 3, and 5 at the 5%
level. The minimum of AIC occurs at order 3. For this particular instance, the M(i)
statistics are nonsignificant at the 1% level, confirming the previous observation
that the dynamic linear dependence between the two return series is weak.

Table 8.3. Order-Specification Statistics® for the Monthly Log Returns of IBM Stock
and the S&P 500 Index from January 1926 to December 1999

Order 1 2 3 4 5 6
M) 9.81 8.93 12.57 6.08 9.56 2.80
AIC 6.757 6.756 6.750 6.753 6.751 6.756

“The 5% and 1% critical values of a chi-squared distribution with 4 degrees of freedom are 9.5 and 13.3,
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Estimation and Model Checking

For a specified VAR model, one can estimate the parameters using either the
ordinary least squares method or the maximum likelihood method. The two meth-
ods are asymptotically equivalent. Under some regularity conditions, the estimates
are asymptotically normal; see Reinsel (1993). A fitted model should then be
checked carefully for any possible inadequacy. The Q4 (m) statistic can be applied
to the residual series to check the assumption that there are no serial or cross-
correlations in the residuals. For a fitted VAR(p) model, the Q(m) statistic of
the residuals is asymptotically a chi-squared distribution with k*m — g degrees of
freedom, where g is the number of estimated parameters in the AR coefficient
matrices.

Example 8.4 (Continued). Table 8.4a shows the estimation results of a
VAR(3) model for the bivariate series of monthly log returns of IBM stock and the
S&P 500 index. The specified model is in the form

re=¢y+ ®r ) + i3 +a, (8.20)

where the first component of r; denotes IBM stock returns. For this particular
instance, we only use AR coefficient matrices at lags 1 and 3 because of the weak
serial dependence of the data. In general, when the M(;) statistics and the AIC
criterion specify a VAR(3) model, all three AR lags should be used. Table 8.4b
shows the estimation results after some statistically insignificant parameters are set
to zero. The Q(m) statistics of the residual series for the fitted model in Table 8.4b
give 07(4) = 18.17 and Q»(8) = 41.26. Since the fitted VAR(3) model has four
parameters in the AR coefficient matrices, these two Qy (m) statistics are distributed
asymptotically as a chi-squared distribution with degrees of freedom 12 and 28,
respectively. The p-values of the test statistics are 0.111 and 0.051, and hence the
fitted model is adequate at the 5% significance level. As shown by the univariate
analysis, the return series are likely to have conditional heteroscedasticity. We
discuss multivariate volatility in Chapter 10.

From the fited model in Table 8.4b, we make the following observations.
(a) The concurrent correlation coefficient between the two innovational series is
23.51/+/44.48 x 31.29 = 0.63, which, as expected, is close to the sample corre-
lation coefficient between ry, and ro;. (b) The two log return series have positive
and significant means, implying that the log prices of the two series had an upward
trend over the data span. (¢c) The model shows that

)

EZN
SP5,

1.24 + 0.117S8PS5,_| — 0.083SP5,_3 + ay,,
0.57 + 0.0738P5,_; — 0.109SP5,_3 + ay,.

il

Consequently, at the 5% significance level, there is a unidirectional dynamic rela-
tionship from the monthly S&P 500 index return to the IBM return. If the S&P
500 index represents the U.S. stock market, then IBM return is affected by the past
movements of the market. However, past movements of IBM stock returns do not
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Table 8.4. Estimation Results of a VAR(3) Model for the Monthly Log Returns,
in Percentages, of IBM Stock and the S&P 500 Index from January 1926
to December 1999

Parameter _ by _ &, b, X

(a) Full Model

1.20 0.011 0.108 0.039  —0.112 44.44 23.51
0.58 | —-0.013 0.084 | —0.007 -0.105 23.51 31.29

0.23 0.043 0.051 0.044 0.052
0.19 0.036 0.043 0.037 0.044

(b) Simplified Model

Estimate

Standard error

. 1.24 0 0.117 0 -0083 | 4448  235]

Est 1.
stimate 057 0 0.073 0 -0109 | 2351 3129
. 0.23 — 0.040 — 0.040

Standard error 0.19 — 0.033 e 0.033

significantly affect the U.S. market, even though the two returns have substantial
concurrent correlation. Finally, the fitted model can be written as

BM,] [ 1.24 0.117 0.083 or
sp5, | 71057 | T 0073 |SP-1 =] glioe |SPS-a ) 0

indicating that SP3, is the driving factor of the bivariate series.

Forecasting

Treating a properly built model as the true model, one can apply the same
techniques as those in the univariate analysis to produce forecasts and standard
deviations of the associated forecast errors. For a VAR(p) model, the I-step
ahead forecast at the time origin & is ry(1) = ¢, + S ®irpii-i, and the
associated forecast error is e,(l) = a;4). The covariance matrix of the
forecast error is . For 2-step ahead forecasts, we substitute ry by its forecast
to obtain

E
Th(2) =g+ Bir()+ Y Birpia,
i=2

and the associated forecast error is
er(2) =apip+ 0y[r, — rp(D] = aj0 + ®1ap,,.

The covariance matrix of the forecast error is X + ¢ Zd). If r, is weakly sta-
tionary, then the ¢-step ahead forecast r;(£) converges to its mean vector j as
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Table 8.5. Forecasts of a VAR(3) Model for the Monthly Log Returns, in Percentages,
of IBM Stock and the S&P 500 Index: Forecast Origin December 1999

Step 1 2 3 4 &) 6

IBM forecast 1.40 1.12 0.82 1.21 1.27 1.31
Standard error 6.67 6.70 6.70 6.72 6.72 6.72
S&P forecast 0.32 0.38 —0.02 0.53 0.56 0.61
Standard error 5.59 5.61 5.61 5.64 5.64 5.64

the forecast horizon ¢ increases and the covariance matrix of its forecast error
converges to the covariance matrix of r,.

Table 8.5 provides 1-step to 6-step ahead forecasts of the monthly log
returns, in percentages, of IBM stock and the S&P 500 index at the forecast
origin h = 888. These forecasts are obtained by the refined VAR(3) model in
Table 8.4.

In summary, building a VAR model involves three steps: (a) use the test statistic
M(i) or some information criterion to identify the order, (b) estimate the speci-
fied model by using the least squares method and, if necessary, reestimate the
model by removing statistically insignificant parameters, and (c) use the Oy(m)
statistic of the residuals to check the adequacy of a fitted model. Other charac-
teristics of the residual series, such as conditional heteroscedasticity and outliers,
can also be checked. If the fitted model is adequate, then it can be used to obtain
forecasts and make inference concerning the dynamic relationship between the
variables.

We used SCA to perform the analysis in this subsection. The commands used
include miden, mtsm, mest, and mfore, where the prefix m stands for multivariate.
Details of the commands and output are shown below.

SCA Demonstration
Output edited and % denotes explanation.

input ibm,sp5. file 'm-ibmspln.txt’
-- % Order selection
miden ibm,spS5. no ccm. arfits 1 to 6.

TIME PERIOD ANALYZED . . . . . . . . . . . . 1 TO 888
SERIES NAME MEAN STD. ERROR

1 IBM 1.2402 6.7249

2 SP5 0.5372 5.6415

========= STEPWISE AUTOREGRESSION SUMMARY ======

I RESIDUAL I EIGENVAL.I CHI-SQ I I SIGN.
LAG I VARIANCESI OF SIGMA I TEST I AIC I
R R L Fmmmm e e
1 I .447E+02 I .135E+02 I 9.81 1 6.757 I . +
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I .318E+02 I .629E+02 I I 1.
R R e Y R it R
2 I .443E+02 I .135E402 I 8.93 I 6.756 I + -

I .317E+02 I .625E402 I 1 1.
R P Fe e Fmmm e e e R +om-m
3 I .441E+02 I .134E+02 I  12.57 T 6.750 I . -

I .313E+02 I .619E+02 I I TS
e e e s Fommme oo R Fomo o
4 I .441E+02 I .133E+02 I 6.08 I 6.753 T . .
I .312E+02 I .619E+02 I 1 I
e R TR i Fmmm e L Fo-me-
5 I .437E+02 I .133E+02 I 9.56 I 6.751 I . +
I .309E+02 I .613E+02 I I -+
e Fommm e Fre e LR Ao
6 I .437E+02 I .133E+02 I 2.80 I 6.756 I .
I .308E+02 I .613E+02 I I I

CHI-SQUARED CRITICAL VALUES WITH 4 DEGREES OF FREEDOM
5 PERCENT: 9.5 1 PERCENT: 13.3
-- % Specify a VAR(3) model with lags 1 & 3 only.
mtsm £itl. series ibm, spS. @
model (i-pl*b-p3*b**3)series-c+noise.

SUMMARY FOR MULTIVARIATE ARMA MODEL - - FIT1
PARAMETER FACTOR ORDER CONSTRAINT
1 c CONSTANT Y cc
2 Pl REG AR 1 CP1
3 P3 REG AR 3 Cp3

-- % Perform multivariate estimation
mestim fitl. hold resi(rl,r2)
||||| CONSTANT VECTOR (STD ERROR)
1.201 ( 0.232 )
0.583 { 0.194 )
nnnnn PHI MATRICES -----
ESTIMATES OF PHI(1) MATRIX AND SIGNIFICANCE

011 .108 .o+
~.013 .084 -
STANDARD ERRORS
.043 .051
.036 .043
ESTIMATES OF PHI(3) MATRIX AND SIGNIFICANCE
.039 -.112 .-
-.007 -.105 .-
STANDARD ERRORS
.044 L0862
.037 .044

ERROR COVARIANCE MATRIX

VECTOR AUTOREGRESSIVE MODELS

1 2
1 44.438125
2 23.518578 31.287280
-- % Set parameter to 0
pl{l,1)=0
pl(2,1)=0

-- % Set constraint to fix the
cpl(l,1)=1

cpl{2,1)=1

p3(1,1)=0

p3(2,1)=0

cp3(1,1)=1

cp3(2,1) =1

mestim fitl. hold resi(rl,r2).

||||| CONSTANT VECTOR (STD ERRCR)

1.243 0.226 )
0.566 ( 0.190 )
||||| PHI MATRICES -----
ESTIMATES OF

. 000 .117 .o+

.000 .073 .o+
STANDARD ERRORS

S .040

e .033
ESTIMATES OF

.000 -.083 .-

.000 -.109 .-
STANDARD ERRORS

-- .040

-- .033

1 44.482888
2 23.506951 31.293592
-- % Compute residual CCM
miden rl,r2. maxl 12.

361

parameter

PHI (1) MATRIX AND SIGNIFICANCE

PHI(3) MATRIX AND SIGNIFICANCE

-~ % Produce 1 to 6-step ahead forecasts

mfore fitl. nofs 6.
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8.2.5 Impulse Response Function

Similar to the univariate case, a VAR(p) model can be written as a linear function
of the past innovations, that is

’

3“t+3+.~:n7_+GMS;N+:., (8.21)

where p = [@( _zLﬁo provided that the inverse exists, and the coefficient matrices
¥; can be obtained by equating the coefficients of B’ in the equation

::e_mr.:f?ue:+5m+§%+.:vu~.

where [ is the identity matrix. This is a moving-average representation of r; with
the coefficient matrix ¥, being the impact of the past innovation a,_; on r;. Equiv-
alently, ¥; is the effect of @, on the future observation ri+;. Therefore, W, is often
referred to as the impulse response Junction of r,. However, since the components
of a, are often correlated, the interpretation of elements in ¥; of Eq. (8.21) is
not straightforward. To aid interpretation, one can use the Cholesky decomposition
mentioned earlier to transform the innovations so that the resulting components
are uncorrelated. Specifically, there exists a lower triangular matrix [, such that
X =LGL', where G is 1 diagonal matrix and the diagonal elements of [, are
unity. See Eq. (8.9). Let b= L g, Then, Cov(b,) = G so that the elements b
are uncorrelated. Rewrite Eq. (821) as -

Fe=pk+ta +¥a, | +Wua, ,+...
=p+LE 'a, ¢ W EL a,_, + WLL ey oy
=M -+ em@n + e._*@nl— + —H\M@NIM + s AW‘NNV

where W} = I, and W! = W, L. The coefficient matrices W} are called the impulse
response function of r, with the orthogonal innovations b,. mvoommomzv\. the (i, j)th
element of ¥*, that s, Gm. (£), is the impact of b j.+ on the future observation Titre.
In practice, one can further normalize the orthogonal innovation b, such that the
variance of b;; is one. A weakness of the above orthogonalization is that the result
depends on the ordering of the components of r;. In particular, by = ay, 5o that
ay; is not transformed. Different orderings of the components of r, may lead to
different impulse response functions,

the monthly log return series of IBM stock and the S&P 500 index of Example 8.1.
For details of S-Plus commands, see Zivot and Wang (2003).

S-Plus Demonstration
Output edited.

> x“EmnHHxAmomdAmMHmn\SIHvEmUH:.nNn\V\wv ¥ Load data
> ibm=x][1,]
> sp5=x{2,]
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> %uostaAHUS\m@mv % Create a vector series
> yl=data.frame (y) % create a data frame

> o&a.oroMomn<wmA%H\amx.mﬁnmv % order selection
> ord.choiceS$info

BIC 10998.47 11016.61 11031.07 11052.05 11069.49 11093.78
> OH&.nnoHomn<>mA<H\Bmx.mﬂum~0HHanHoau\>HO\v
> ord.choice$info

ar (1) ar(2) ar(3) ar(4) ar (5) ar (6)
AIC 10969.78 10968.79 10964.11 10965.97 10964 .28 10969.424

The AIC selects a VAR(3) model as before, but BIC selects a VAR(1) model.
For simplicity, we shall use VAR(1) specification in the demonstration. Note that
different normalizations are used between the two packages so that the values of
information criteria appear to be different; see the AIC in Table 8.3. This is not
important because normalization does not affect order selection. Turn to estimation,

> varl . fit=VAR (y~ar(1l)) % Estimation
> summary (varl.fit)
Call:
VAR(formula = y ~ ar(1))
Coefficients:

ibm spS

(Intercept) 1.1627 0.4993
(std.err) 0.2290 0,1925
(t.stat) 5.0777 2.5935

ibm.lagl 0.0192 -0.0054
{std.err) 0.0433 0.0364
(t.stat) 0.4429 -0.1487

sp5.lagl 0.1062 0.0802
(std.err) 0.0517 0.0435
(t.stat) 2.0544 1.8454
Regression Diagnostics:

ibm sps

R-squared 0.0105 0.0058

Adj. R-squared 0.0082 0.0036

Resid. Scale 6.7043 5.6378

> plot(varl.fit)

Make a plot selection (or o to exit):
1: plot: All

2: plot: Response and Fitted Values
3: plot: Residuals

8: plot: PACF of Squared Residuals
Selection: 3
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The fitted model is

IBM,
SPs,

i

1.16 4 0.021BM,_ + 0.11SP5,_, +ay,,
0.50 — 0.01IBM, _ + 0.08SP5,_, + ay;.

I

Based on ¢-statistics of the estimates in the output, only the lagged variable SP5,_,
is informative in both equations. Figure 8.5 shows the time plots of the two residual
series, where the two horizontal lines indicate the two standard-error limits. As
expected, there exist clusters of outlying observations.

Next, we compute l-step to 6-step ahead forecasts and the impulse response
function of the fitted VAR(1) model when the IBM stock return is the first com-
ponent of r,. Compared with those of a VAR(3) model in Table 8.5, the forecasts
of the VAR(1) model converge faster to the sample mean of the series.

> <mww.wwmaumﬂmawoﬁA<map.mwn\s.@nmawnnumv % Compute prediction
> summary {varl.pred)

Predicted Values with Standard Errors:

ibm sps

l-step-ahead 1.8472 0.9255
(std.err) 6.7043 5.6376
2-step-ahead 1.2964 0.5636
(std.err) 6.7394 5.6539
3-step-ahead 1.2474 0.5375
(std.err) 6.7397 5.6540

6-step-ahead 1.2434 0.535g
(std.err) 6.7397 5.654¢0

Residuals versus Time
0 200

| L

T T T T
0 200 400 600 800

Figure 8.5. Residual plots of fitting a VAR(I) model to the monthly log returns, in percentages, of
IBM stock and the S&P 500 index. The sample period is from January 1926 to December 1999,
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> plot(varl.pred,y, n.old=12) % Plot forecasts

> <mHH.Humqu@mmmA<mHH.mwn\©mHH0Qnm~mna.mﬁﬂu\mmKSUﬁOnwo\V
> summary{varl.ixrf)

Impulse Response Function:

(with responses in rows, and innovations in columns)

, » lag.o
ibm sp5
ibm 6.6929 0.0000
(std.erxr) 0.1589 0.0000
Sp5 3.5645 4.3553
(std.err) 0.1690 0.1034
.+ lag.1
ibm sp5
ibm 0.5069 0.4624
(std.err) 0.2244 0.2249
sp5 0.2496 0.349%2
(std.err) 0.1885 0.1891

> plot{varl.irf)

Figure 8.6 shows the forecasts and their pointwise 95% confidence intervals
along with the last 12 data points of the series. Figure 8.7 shows the impulse
response functions of the fitted VAR(1) model where the IBM stock return is the
first component of r,. Since the dynamic dependence of the returns is weak, the
impulse response functions exhibit simple patterns and decay quickly.

8.3 VECTOR MOVING-AVERAGE MODELS
A vector moving-average model of order g, or VMA(g), is in the form
rir=0+a -0a_; - — Bua;_, or r, =8y+ O(B)a,, (8.23)

where g is a k-dimensional vector, ©; are k x k matrices, and O(B) = I —
©:8 ... - 0,87 is the MA matrix polynomial in the back-shift operator B.
Similar to the univariate case, VMA(q) processes are weakly stationary provided
that the covariance matrix X of a, exists. Taking expectation of Eq. (8.23), we
obtain that 4 = E(r,) = 8,. Thus, the constant vector 8 is the mean vector of r,
for a VMA model.

Let F, = r, — @4 be the mean-corrected VAR(q) process. Then using Eq. (8.23)
and the fact that {a,} has no serial correlations, we have

1. Cov(r,,a,) = X,

2. Ho“M+®_M®\_+...+@QM®®,

3L Ty=0if¢>gq,and

4 T,=3%1,0,20, , ifl<tx<gq, where @)= —I.
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Figure 8.6. Forecasting plots of a fitted VAR(1) model to the monthly log retumns, in percentages, of
[BM stock and the S&P 500 index. The sample period is from January 1926 to December 1999.

Since Ty = 0 for ¢ > g, the cross-correlation matrices (CCMs) of a VMA(g) pro-
cess r, satisfy

p, =0, ¢>gq. (8.24)

Therefore, similar to the univariate case, the sample CCMs can be used to identify
the order of a VMA process.

To better understand the VMA processes, let us consider the bivariate MA(])
model

re=0+a, —0a,_, =p+a,~Oa,,, (8.25)

where, for simplicity, the subscript of @, is removed. This model can be written
explicitly as

|| ay | | On O || ariy

oo I PR ay O On || @iy | (8:26)
It says that the current return series r; only depends on the current and past shocks.
Therefore, the model is a finite-memory model.

Consider the equation for ry, in Eq. (8.26). The parameter ©,, denotes the linear

dependence of ry, on ay,_, in the presence of a, ,._,. If ®; = 0, then ry, does not
depend on the lagged values of ay, and, hence, the lagged values of ry,. Similarly,

i £ e = BN

o
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impulse response
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Figure 8.7. Plots of impulse response functions of orthogonal innovations for a fitted VAR(1) model
to the monthly log returns, in percentages, of IBM stock and the S&P 500 index. The sample period is
from January 1926 to December 1999.

if @) =0, then ry, does not depend on the past values of ry;. The off-diagonal
elements of @ thus show the dynamic dependence between the component series.
For this simple VMA(1) model, we can classify the relationships between r,; and
ry; as follows:

1. They are uncoupled series if ©3 = @y = 0.

2. There is a unidirectional dynamic relationship from ry, to ry if & =0,
but ®3; # 0. The opposite unidirectional relationship holds if ©,; = 0, but
O # 0.

3. There is a feedback relationship between r, and ra, if © 5 # 0 and &4, # 0.

Finally, the concurrent correlation between r;, is the same as that between a;r. The
previous classification can be generalized to a VMA(g) model.

Estimation

Unlike the VAR models, estimation of VMA models is much more involved; see
Hillmer and Tiao (1979), Liitkepohl (1991), and the references therein. For the
likelihood approach, there are two methods available. The first is the
conditional likelihood method that assumes that @, = 0 for + < 0. The second is
the exact likelihood method that treats a, with f < 0 as additional parameters of
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the model. To gain some insight into the problem of estimation, we consider the
VMA(1) model in Eq. (8.25). Suppose that the data are {r,jzt =1,..., T} and a,
is multivariate normal. For a VMA(1) model, the data depend on ay.

Conditional MLE
The conditional likelihood method assumes that @y = 0. Under such an assumption

and rewriting the model as a;, = r;, — 8o + Ga;_;, we can compute the shock a,
recursively as

ay=r;—8y, a=ry;—0p+0a;, ---.

Consequently, the likelihood function of the data becomes

T

fry.....rr|8y, 0, L) H:

t=}

1

1 71
S REIE exp(~3a;Z7'a;),

which can be evaluated to obtain the parameter estimates.

Exact MLE

For the exact likelihood method, a is an unknown vector that must be estimated
from the data to evaluate the likelihood function. For simplicity, let 7, = r, — 8y
be the mean-corrected series. Using 7, and Eq. (8.25), we have

a, =F, +0a,_,. (8.27)
By repeated substitutions, ay is related to all 7, as
a; =F; + Oay,
a; =iy + Oa; = Fy + OF| + Oay,

Pe (8.28)
ar =fFr +OFr_1 +---+ O 'F + ©7aq.

Thus, ag is a linear function of the data if 8y and ® are given. This result enables
us to estimate @y using the data and initial estimates of 8, and ©. More specifically,
given 8y, O, and the data, we can define

rl=F 4+ OF .+ + O, for t

i
IS
=

Equation (8.28) can then be rewritten as

wq = —0Oay +ay,
2

r; =-0%g +ay,

ry = -OTag +ar.
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This is in the form of a multiple linear regression with parameter vector ay, even
though the covariance matrix £ of @, may not be a diagonal matrix. If initial
estimate of X is also available, one can premultiply each equation of the prior
system by £~12 which is the square-root matrix of E. The resulting system is
indeed a multiple linear regression, and the ordinary least squares method can be
used to obtain an estimate of ay. Denote the estimate by @j.

Using the estimate @, we can compute the shocks a, recursively as

a;=r;—0,+08a, a;=r,~0,+0a,, ...

This recursion is a linear transformation from (ag, ry, ..., rr) to (ag. ay, ..., ar),
from which we can (a) obtain the joint distribution of ay and the data, and (2)
integrate out aq to derive the exact likelihood function of the data. The resulting
likelihood function can then be evaluated to obtain the exact ML estimates. For
details, see Hillmer and Tiao (1979).

In summary, the exact likelihood method works as follows. Given initial esti-
mates of 8y, ®, and X, one uses Eq. (8.28) to derive an estimate of ay. This
estimate is in turn used to compute a, recursively using Eq. (8.27) and start-
ing with @) = F| + ©dy. The resulting E;Nu_ are then used to evaluate the
exact likelihood function of the data to update the estimates of 6y, ©, and X.
The whole process is then repeated until the estimates converge. This iterative
method to evaluate the exact likelihood function applies to the general VMA(g)
models.

From the previous discussion, the exact likelihood method requires more inten-
sive computation than the conditional likelihood approach does. But it provides
more accurate parameter estimates, especially when some eigenvalues of @ are
close to 1 in modulus. Hillmer and Tiao (1979) provide some comparison between
the conditional and exact likelihood estimations of VMA models. In multivariate
time series analysis, the exact maximum likelihood method becomes important if
one suspects that the data might have been overdifferenced. Overditferencing may
occur in many situations (e.g., differencing individual components of a cointegrated
system; see discussion later on cointegration).

In summary, building a VMA model involves three steps: (a) use the sam-
ple cross-correlation matrices to specify the order g—tor a VMA(g) model,
py =0 for £ > q; (b) estimate the specified model by using either the condi-
tional or exact likelihood method—the exact method is preferred when the sam-
ple size is not large; and (c) the fitted model should be checked for adequacy
(e.g., applying the Q(m) statistics to the residual series). Finally, forecasts of a
VMA model can be obtained by using the same procedure as a univariate MA
model.

Example 8.5. Consider again the bivariate series of monthly log returns in
percentages of IBM stock and the S&P 500 index from January 1926 to December
1999. Since significant cross-correlations occur mainly at lags | and 3, we employ




370 MULTIVARIATE TIME SERIES ANALYSIS AND ITS APPLICATIONS

Table 8.6. Estimation Results for Monthly Log Returns of IBM Stock and
the S&P 500 Index Using the Vector Moving-Average Model in Eq. (8.29):
January 1926 to December 1999

Parameter “ 8o _ 0, 9, z
(a) Full Model with Conditional Likelihood Method

Estimate 124 |1 -0.013 —0.121 | -0.038 0.108 44.48 23.52
0.54 0.020 —0.101 0.014 0.105 23.52 31.20
0.24 0.043 0.051 0.044 0.052

Standard error 0.18 0.036 0.043 0.036 0.043

(b) Full Model with Exact Likelihood Method

124 | -0.013  -0.121 | -0.038 0.108 44.48 23.52
0.54 0.020 -0.101 0.013 0.105 23.52 31.20

0.24 0.043 0.051 0.044 0.052
0.18 0.036 0.043 0.036 0.043

Estimate

Standard error

(c) Simplified Model with Exact Likelihood Method

Bt 124 | 0000 —0.26 | 0000 0082 | 4454 2351
RIS 054 | 0000 0084 | 0000 0114 | 2351 31.21
Standai 0.23 — 0.040 — 0.040
tandard error | ¢ — 0.033 — 0.033

the VMA(3) model
r; = %o +a; — ®_§~|~ £ @un~lu Amwcv

for the data. Table 8.6 shows the estimation results of the model. The Or(m)
statistics for the residuals of the simplified model give 02(4) = 17.25 and 0, (8) =
39.30. Compared with chi-squared distributions with 12 and 28 degrees of freedom,
the p-values of these statistics are 0.1404 and 0.0762, respectively. Thus, the model
is adequate at the 5% significance level.

From Table 8.6, we make the following observations:

1. The difference between conditional and exact likelihood estimates is small
for this particular example. This is not surprising because the sample size is
not small and, more important, the dynamic structure of the data is weak.

2. The VMA(3) model provides essentially the same dynamic relationship for-

the series as that of the VAR(3) mode! in Example 8.4. The monthly log
return of IBM stock depends on the previous returns of the S&P 500 index.
The market return, in contrast, does not depend on lagged returns of IBM
stock. In other words, the dynamic structure of the data is driven by the
market return, not by IBM return. The concurrent correlation between the
two returns remains strong, however.
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Univariate ARMA models can also be generalized to handle vector time series. The
resulting models are called VARMA models. The generalization, however, encoun-
ters some new issues that do not occur in developing VAR and VMA models. One
of the issues is the identifiability problem. Unlike the univariate ARMA models,
VARMA models may not be uniquely defined. For example, the VMA(1) model

[t ai; 02 ayr-1

ray ay, 00 ar i
is identical to the VAR(1) model

Fie 0 -2 Fie—1 ay

Far 0 0 Fa.i-1 [£57]

The equivalence of the two models can easily be seen by examining their compo-
nent models. For the VMA(1) model, we have

roe=ay —2a,., ry=ay.
For the VAR(1) model, the equations are
T+ 2r1 = ay,  ry = ay.
From the model for ry, we have ry,_| = az ;. Therefore, the models for r|, are

identical. This type of identifiability problem is harmless because either model can
be used in a real application.

Another type of identifiability problem is more troublesome. Consider the
VARMA(1,1) model

i 0.8 -2 Fla—1 | | du -050 aj -y
ru 0 OfLromt ] Lax 0 01| gy
This model is identical to the VARMA(1,1) model
ry _ 0.8 —247 Fi—1 | an _ 0.5 79 ay -y
ro; 0 w raet | | an 0 wjlaw-1 |’

for any nonzero w and 7. In this particular instance, the equivalence occurs because
we have ry; = ay, in both models. The effects of the parameters  and 7 on the
system cancel out between AR and MA parts of the second model. Such an iden-
tifiability problem is serious because, without proper constraints, the likelihood
function of a vector ARMA(1,1) model for the data is not uniquely defined, result-
ing in a situation similar to the exact multicollinearity in a regression analysis.
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This type of identifiability problem can occur in a vector model even if none of
the components is a white noise series.

These two simple examples highlight the new issues involved in the general-
ization to VARMA models. Building a VARMA model for a given data set thus
requires some attention. In the time series literature, methods of structural speci-
Jfication have been proposed to overcome the identifiability problem; see Tiao and
Tsay (1989), Tsay (1991), and the references therein. We do not discuss the detail of
structural specification here because VAR and VMA models are sufficient in most
financial applications. When VARMA models are used, only lower order models
m.an entertained (e.g., a VARMA(1,1) or VARMA(2,1) model) especially when the
time series involved are not seasonal.

A VARMA(p, q) model can be written as

®(B)r; = ¢, + O(B)a,,

where ®(B) = —® B —--. - &,B” adOB)=1-60;B~-.-—O,B9 are
two k x k matrix polynomials. We assume that the two matrix polynomials have
no left common factors; otherwise, the model can be simplified. The necessary
and sufficient condition of weak stationarity for r, is the same as that for the
VAR(p) model with matrix polynomial @®(B). For v > 0, the (i, j)th elements
of the coefficient matrices ®, and ©, measure the linear dependence of r;, on
rii—y and a;,_,, respectively. If the (i, j)th element is zero for all AR and MA
coefficient matrices, then r;, does not depend on the lagged values of r ¢~ However,
the converse proposition does not hold in a VARMA model. In other words, nonzero
coefficients at the (i, j)th position of AR and MA matrices may exist even when
riy does not depend on any lagged value of r i
To illustrate, consider the following bivariate model:

D), (B) O12(B) || ry
Dy (B) ®22(B) ros

©41(B) ©12(B) ay
©21(B) On(B) || ay

Here the necessary and sufficient conditions for the existence of a unidirectional
dynamic relationship from r|; to ry, are

©22(B)O12(B) — ©12(B)O2(B) =0,
but

11(B)O21(B) — 921(B)©;1(B) # 0. (8.30)
These conditions can be obtained as follows. Letting
$2(B) = |®(B)] = ®11(B)Pp2(B) — ®12(B)D2(B)

be the determinant of the AR matrix polynomial and premultiplying the model by
the matrix

Dn(B) —d1(B)
—P(B) ®(B) |’
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we can rewrite the bivariate model as

Fie |

Q(B) T -
$2(B)O11(B) ~ 12(B)D21(B) P2(B)O1(B) — $12(B)O»(B) || ai
D11(B)O2(B) — 21 (B)O1(B) ®11(B)BO2n(B) — ®2((B)O2(B) %

]

Consider the equation for ri,. The first condition in Eq. (8.30) shows that ry, does
not depend on any past value of ay; or ry,. From the equation for ry, the second
condition in Eq. (8.30) implies that r;, indeed depends on some past values of
ay,. Based on Eq. (8.30), ®2(B) = &2(B) = 0 is a sufficient, but not necessary,
condition for the unidirectional relationship from ry, to ry,.

Estimation of a VARMA model can be carried out by either the conditional or
exact maximum likelihood method. The Qy(m) statistic continues to apply to the
residual series of a fitted model, but the degrees of freedom of its asymptotic chi-
squared distribution are k*m — g, where g is the number of estimated parameters
in both the AR and MA coefficient matrices.

Example 8.6. To demonstrate VARMA modeling, we consider two U.S.
monthly interest-rate series. The first series is the 1-year Treasury constant matu-
rity rate, and the second series is the 3-year Treasury constant maturity rate. The
data are obtained from the Federal Reserve Bank of St. Louis, and the sampling
period is from April 1953 to January 2001. There are 574 observations. To ensure
the positiveness of U.S. interest rates, we analyze the log series. Figure 8.8 shows
the time plots of the two log interest-rate series. The solid line denotes the 1-year
maturity rate. The two series moved closely in the sampling period.

The M (i) statistics and AIC criterion specify a VAR(4) model for the data. How-
ever, we employ a VARMA(2,1) model because the two models provide similar
fits. Table 8.7 shows the parameter estimates of the VARMA(2,1) model obtained
by the exact likelihood method. We removed the insignificant parameters and rees-
timated the simplified model. The residual series of the fitted model has some
minor serial and cross-correlations at lags 7 and 11. Figure 8.9 shows the resid-
ual plots and indicates the existence of some outlying data points. The model can
be further improved, but it seems to capture the dynamic structure of the data
reasonably well.

The final VARMA(2,1) model shows some interesting characteristics of the
data. First, the interest-rate series are highly contemporaneously correlated. The
concurrent correlation coefficient is 2.5/+/3.58 x 2.19 = 0.893. Second, there is a
unidirectional linear relationship from the 3-year rate to the 1-year rate because the
(2, th elements of all AR and MA matrices are zero, but some (1, 2)th element
is not zero. As a matter of fact, the model in Table 8.7 shows that

r3r = 0.025 +0.99r3 .y + a3 + 0.47as;-1,

ry; = 0.028 + 1.82r) ;.1 —0.84ry ,_2 — 0.97r3,-; +0.98r3,
+ay; — 0.90a;,1 + 1.66a3 ;.
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Table 8.7. Parameter Estimates of a VA 2,1 - 84.1 Marginal Models of Components _
(2,1) Model for Two Monthiy U, 8l P

Interest-Rate Series Based on the Exact Likelihood Method
—_—

Parameter

Given a vector model for r,, the implied univariate models for the components r;,
are the marginal models. For a k-dimensional ARMA(p, q) model, the marginal
models are ARMA[kp, (k — Dp +g]. This result can be obtained in two steps.
First, the marginal model of a VMA(g) model is univariate MA(g). Assume that
! riisa VMA(g) process. Because the Cross-correlation matrix of r; vanishes after
f lag ¢ (i.e., Pe=0for £ > g), the ACF of Tir is zero beyond lag . Therefore, Fip is
’ an MA process and its univariate model is in the form r;, = G0+ Mwn 9.ibii-,
where {b;;}) is a sequence of uncorrelated random variables with mean zero and
variance o2, The parameters 6; ; and oy, are functions of the parameters of the

Er.na 7ir is the log series of i-year interest rate and a;; is the corresponding shock : VMA anw_. for r,.

Estimate

-0.97
0.99

0.08

e N e

Standard error

d step to obtain the result is to diagonalize the AR matrix polynomial

The secon
‘ . . of a VARMA(p, ) model. For illustration, consider the bivariate AR(1) model
Third, the two nterest-rate series appear to be unit-root nhonstationary. Using the P

back-shift Operator B, the model can he rewritten approximately as ‘ I~® B —,,B i a,
- —PuB 1 - 0uB ||y ay
(U~ B)rs; = 0.03 4 (1 + 0.47B)as,, b

; : P s . .
(1= By1 - 0.82B)r), = 0.03 — 0.97B(] — Byry, + (1 — 0.98)a, + 1.66Bay,. remultiplying the mode] by the matrix polynomial

I

l~®uB @,B

Finally, the SCA commands used in the analysis are given in Appendix C. P28 1-@,B |
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we obtain

_ ~ w7 | _ | 1—PuB —®pB ay
[(1 =@ B)(1 — dnB) ~ PPy B7] ry | =1 ~0uB 1—®B || ay

The left-hand side of the prior equation shows that the univariate AR polynomials
for r;; are of order 2. In contrast, the right-hand side of the equation is in a VMA(1)
form. Using the result of VMA models in step I, we show that the univariate
model for r;; is ARMA(2,1). The technique generalizes easily to the k-dimensional
VAR(1) model, and the marginal models are ARMA(k, k — 1). More generally, for
a k-dimensional VAR(p) model, the marginal models are ARMA[kp, (k — 1)p].
The result for VARMA models follows directly from those of VMA and VAR
models.

The order [kp, (k — 1)p + g] is the maximum order (i.e., the upper bound) for
the marginal models. The actual marginal order of r;, can be much lower.

8.5 UNIT-ROOT NONSTATIONARITY AND COINTEGRATION

When modeling several unit-root nonstationary time series jointly, one may encoun-
ter the case of cointegration. Consider the bivariate ARMA(1,1) model

X1t 0.5 -~1.0 Xie—t ay; 02 —-04 ay r—y

Xt ~0.25 0.5 X2 t—1 an —0.1 0.2 as 11 !
(8.31)

where the covariance matrix X of the shock a, is positive definite. This is not
a weakly stationary model because the two eigenvalues of the AR coefficient
matrix are 0 and 1. Figure 8.10 shows the time plots of a simulated series of
the model with 200 data points and ¥ = I, whereas Figure 8.11 shows the sample
autocorrelations of the two component series x;,. It is easy to see that the two
series have high autocorrelations and exhibit features of unit-root nonstationarity.
The two marginal models of x, are indeed unit-root nonstationary. Rewrite the
model as

1-05B B Xy 1-02B 04B ay
025B 1-0.5B X 0.1B 1-02B ay |’

i

Premultiplying the above equation by

1-05B -8B :
-0.25B 1-0.5B |’ 1
we obtain the result
1-B 0 Xir 1-078 —0.68B ][ ay

0 1-B X ~0.15B 1 -0.7B ay;
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Figure 8.10. Time plots of a simulated series based on model (8.31) with identity covariance matrix
for the shocks.
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Figure 8.11. Sample autocorrelation functions of two simulated component series. There are 200 obser-
vations, and the model is given by Eq. (8.31) with identity covariance matrix for the shocks.
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Therefore, each component x;, of the model is unit-root nonstationary and follows
an ARIMA(0,1,1) model.

However, we can consider a linear transformation by defining

Yl _ 1.0 =20 x| _
vl 105 10 || x | =L
w: . 1.0 ~2.0 ay; =L
by | T[05 1.0 || ay | = La

The VARMA model of the transformed series y, can be obtained as follows:

Lx, = Ldx,_, + La, ~ LOaq,_,
=L®L 'Ly, | + La, - LOL 'La,_,
=L®L '(Lx,_)+5, — LOL 'y, .

Thus, the model for y, is

Yu LO Oy, by, 040115y,

Yar O Ofl v [Tiby | 1o o IZY 832

From the prior maodel, we see that (8) yi; and yy, are uncoupled series with con-
current correlation equal to that between the shocks by, and by, (b) yi, follows a
univariate ARIMA(0,1,1) model, and (c) Y2 is a white noise series (i.e., yor = by).
In particular, the model in Eq. (8.32) shows that there is only a single unit root in
the system. Consequently, the unit roots of Xi; and xy; are introduced by the unit
root of yy,. In the literature, y,; is referred to as the common trend of X1 and xy,.

The phenomenon that both Xi; and xy; are unit-root nonstationary, but there is
only a single unit root in the vector series, is referred to as cointegration in the

example of model (8.31), the transformation shows that the linear combination
Y2 = 0.5x); + x3; does not have a unit root. Consequently, x1: and xy; are coin-
tegrated if (a) both of them are unit-root nonstationary, and (b) they have a linear
combination that is unit-root stationary.

Generally speaking, for a k-dimensional unit-root nonstationary time series, coin-
tegration exists if there are less than & unit roots in the system. Let £ be the number
of unit roots in the #-dimensional series x,. Cointegration exists if 0<h <k, and
the quantity k — 4 is called the number of cointegrating factors. Alternatively, the
number of cointegrating factors is the number of different linear combinations
that are unit-root stationary. The linear combinations are called the cointegrating
vectors. For the prior simulated example, v, = (0.5, Dx; so that (0.5, 1) is a
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cointegrating vector for the system. For more discussions on cointegration and
cointegration tests, see Box and Tiao (1977), Engle and Granger (1987), Stock
and Watson (1988), and Johansen (1988). We discuss cointegrated VAR models in
Section 8.6.

The concept of cointegration is interesting and has attracted a ot of attention in
the literature. However, there are difficulties in testing for cointegration in a real
application. The main source of difficulties is that cointegration tests overlook the
scaling effects of the component series. Interested readers are referred to Cochrane
(1988) and Tiao, Tsay, and Wang (1993) for further discussion.

While I have some misgivings on the practical value of cointegration tests, the
idea of cointegration is highly relevant in financial study. For example, consider the
stock of Finnish Nokia Corporation. Its price on the Helsinki Stock Market must
move in unison with the price of its American Depositary Receipts on the New York
Stock Exchange; otherwise there exists some arbitrage opportunity for investors.
If the stock price has a unit root, then the two price series must be cointegrated.
In practice, such a cointegration can exist after adjusting for transaction costs and
exchange-rate risk. We discuss issues like this later in Section 8.7.

8.5.1 An Error-Correction Form

Because there are more unit-root nonstationary components than the number of
unit roots in a cointegrated system, differencing individual components to achieve
stationarity results in overdifferencing. Overdifferencing leads to the problem of
unit roots in the MA matrix polynomial, which in turn may encounter difficulties in
parameter estimation. If the MA matrix polynomial contains unit roots, the vector
time series is said to be noninvertible.

Engle and Granger (1987) discuss an error-correction representation for a coin-
tegrated system that overcomes the difficulty of estimating noninvertible VARMA
models. Consider the cointegrated system in Eq. (8.31). Let Ax; =x, — X,_ be
the differenced series. Subtracting x,_; from both sides of the equation, we obtain
a model for Ax, as

Dk: _ —-0.5 —-1.0 Xii—1 + a; _ 0.2 —~0.4 ay -
kaa - —0.25 —-0.5 X2 41 ayy —0.1 0.2 az 11
_ ~1 Xii—1 aige . 0.2 ~0.4 [,
= o5 JOS L0 TH ~0.1 02 || ay,

This is a stationary model because both Ax, and (0.5, 1.0]x; = y,, are unit-root
stationary. Because x,_, is used on the right-hand side of the previous equatjon,
the MA matrix polynomial is the same as before and, hence, the model does not
encounter the problem of noninvertibility. Such a formulation is referred to as an
etror-correction model for Ax,, and it can be extended to the general cointegrated
VARMA model. For a cointegrated VARMA(p, ¢) model with m cointegrating

g
|
w_
_
!
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factors (m < k), an error-correction representation is

p—1 q
Axy =af'x, ) + M O/ Ax, - +a; - M O;a,_;, (8.33)
i=1 Jj=1

where a and B are k x m full-rank matrices. The AR coefficient matrices ¢} are
functions of the original coefficient matrices ®;. Specifically, we have

p
t= M &, j=1...,p~1,
i=jA-1

af' =@, +®, 1+ -+ & I =—-d(). (8.34)

o
f

These results can be obtained by equating coefficient matrices of the AR matrix
polynomials. The time series §'x; is unit-root stationary, and the columns of 8 are
the cointegrating vectors of x;.

Existence of the stationary series 'x,_; in the error-correction representation
(8.33) is natural. It can be regarded as a “compensation” term for the overdif-
ferenced system Ax,. The stationarity of B'x,_; can be justified as follows. The
theory of unit-root time series shows that the sample correlation coefficient between
a unit-root nonstarionary series and a stationary series converges to zero as the sam-
ple size goes to infinity; see Tsay and Tiao (1990) and the references therein. In an
error-correction representation, x,_; is unit-root nonstationary, but Ax, is station-
ary. Therefore, the only way that Ax; can relate meaningfully to x,_; is through
a stationary series B'x,_;.

Remark. Our discussion of cointegration assumes that all unit roots are of
multiplicity 1, but the concept can be extended to cases in which the unit roots have
different multiplicities. Also, if the number of cointegrating factors m is given, then
the error-correction model in Eq. (8.33) can be estimated by likelihood methods.
We discuss the simple case of cointegrated VAR models in the next section. Finally,
there are many ways to construct an error-correction representation. In fact, one
can use any af’x,_, for 1 < v < p in Eq. (8.33) with some modifications to the
AR coefficient matrices ®7. O

8.6 COINTEGRATED VAR MODELS

To better understand cointegration, we focus on VAR models for their simplicity
in estimation. Consider a k-dimensional VAR(p) time series x; with possible time
trend so that the model is

X “E;;T@Tﬁal_ +...+ehk~lﬁ+a? Amumv

where the innovation a; is assumed to be Gaussian and g, = yo + u,t, where o
and p; are k-dimensional constant vectors. Write ®(B) = I — ® B — - . — &, B7.
Recall that if all zeros of the determinant {®(B)| are outside the unit circle, then
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X, is unit-root stationary. In the literature, a unit-root stationary series is said to
be an I(0) process; that is, it is not integrated. If |®(1)| = 0, then x, is unit-root
nonstationary. For simplicity, we assume that x, is at most an integrated process of
order 1, that is, an /(1) process. This means that (1 — B)x;, is unit-root stationary
it x;; itself is not.

An error-correction model (ECM) for the VAR(p) process x, is

Ax; =g+ Ty + ®TAx, + -+ O Axy iy +ay, (8.36)

where 0“ are defined in Eq. (8.34) and T = R.m\ = —®(1). We refer to the term
Ix,_; of Eq. (8.36) as the error-correction term, which plays a key role in coin-
tegration study. Notice that ®; can be recovered from the ECM representation via

&, =1+ +®],
O, =0 @, i=2..5p

i—1

i:mnm Avw Ho,ﬂrmNonoEmﬁ:.x.wmmmaozEommm:n%no:ﬂrmﬁbmmm::omﬁ::.
Ax; of Eq. (8.36) is an 1(0) process.
If x, contains unit roots, then |®(1)| = 0 so that T1 = —®(1) is singular. There-

fore, three cases are of interest in considering the ECM in Eq. (8.36):

1. Rank(Il) = 0. This implies Il = 0 and x; is not cointegrated. The ECM of
Eq. (8.36) reduces to

Axy=p, +P7Ax + -+ OMI_DHT?I +a;,

so that Ax; follows a VAR(p — 1) model with deterministic trend u,.

2. Rank(Il) = k. This implies that |®(1)] # 0 and x, contains no unit roots;
that is, x, is /(0). The ECM model is not informative and one studies x,
directly.

3. 0 < Rank(IT) = m < k. In this case, one can write II as

m=af, (8.37)

where a and 8 are k x m matrices with Rank(e) = Rank(8) = m. The ECM
of Eq. (8.36) becomes

Axp=p, +oaf'x,  + ®TAX .+ + @, Ax_pp +a,. (8.38)
1 P

This means that x, is cointegrated with m linearly independent cointegrat-
ing vectors, w; = B’x;, and has k — m unit roots that give k — m common
stochastic trends of x;.

iIf x, is cointegrated with Rank(IT) = m, then a simple way to obtain a
presentation of the k¥ —m common trends is to obtain an orthogonal comple-
ment matrix o) of a; that is, ey is a k x (k —m) matrix such that &' o =0,
a (k —m) x m zero matrix, and use y, = &' x,. To see this, one can premultiply
the ECM by &', and use Il = af’ to see that there would be no error-correction
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term in the resulting equation. Consequently, the (k — m)-dimensional series ¥:
should have k — m unit roots. For illustration, consider the bivariate example of
Section 8.5.1. For this special series, & = (—1,-0.5) and e = (1, —2)'. There-
fore, y = (1, =2)x, = x;, ~ 2x3,, which is precisely the unit-root nonstationary
series yi, in Eq. (8.32).

Note that the factorization in Eq. (8.37) is not unique, because for any m x m
orthogonal matrix € satisfying Q' = I, we have

af = Q@B = (0Q)(BR) = o, B,

where both a, and B, are also of rank m. Additional constraints are needed to
uniquely identify a and 8. It is common to require that 8" = [I,,, 8], where I,,
is the m x m identity matrix and By isa (k —m) x m matrix. In practice, this may
require reordering of the elements of x, such that the first m components all have a
unit root. The elements of & and 8 must also satisfy other constraints for the process
w, = B'x, to be unit-root stationary. For example, consider the case of a bivariate
VAR(1) model with one cointegrating vector. Here k = 2, m = 1, and the ECM is

43}

Ax, =p, + o

(L, Ailesy +a.
Premultiplying the prior equation by B’, using w, _; = B'x,_;, and moving w,_ to
the right-hand side of the equation, we obtain

Wy = m\\f + (o +aBw,, + b,

where b, = B’a,. This implies that w, is a stationary AR(1) process. Consequently,
a; and By must satisfy the stationarity constraint |1 + a; + a1 < 1.

The prior discussion shows that the rank of I in the ECM of Eq. (8.36) is the
number of cointegrating vectors. Thus, to test for cointegration, one can examine
the rank of IT. This is the approach taken by Johansen (1988, 1995) and Reinsel
and Ahn (1992).

8.6.1 Specification of the Deterministic Function

Similar to the univariate case, the limiting distributions of cointegration tests depend
on the deterministic function p,. In this subsection, we discuss some specifications
of p, that have been proposed in the literature. To understand some of the statements
made below, keep in mind that @', x; provides a presentation for the common
stochastic trends of x, if it is cointegrated.

1. u; = 0: In this case, all the component series of x, are /(1) without drift
and the stationary series w, = B’x; has mean zero.

2. p, = py = acy, where cq is an m-dimensional nonzero constant vector. The
ECM becomes

Axi=a(B'x 1 +co) + Vi AX,_| + - + O, Axi_,y +ay,
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so that the components of X, are I(}) without drift, but w, have a nonzero
mean —cyp. This is referred to as the case of restricted constant.

3. w; = wg, which is nonzero. Here the component series of x, are /(1) with
drift 5 and w, may have a nonzero mean,

4. p, = pg + ac;r, where €1 is a nonzero vector. The ECM becomes
Ax; = pg +QAE\H~|_ +er) + OM.DHT_ +- 4 Gmlﬁb\d\ttf +a,,

so that the components of x, are /(1) with drift #o and w, has a linear time
trend related to ¢,z. This is the case of restricted trend.
5., = py + pyt, where #; are nonzero. Here both the constant and trend are

unrestricted. The components of x, are /(1) and have a quadratic time trend
and w, have a linear trend.

Obviously, the last case is not common in empirical work. The first case is not
common for economic time series but may represent the log price series of some
assets. The third case is also useful in modeling asset prices.

8.6.2 Maximum Likelihood Estimation

In this subsection, we briefly outline the maximum likelihood estimation of a coin-
tegrated VAR(p) model. Suppose that the data are {x:t = 1,..., T). Without loss
of generality, we write i = pd,, where d, =1, 17, and it is understood that gy,
depends on the specification of the previous subsection. For a given m, which is
the rank of T, the ECM model becomes

Ax: = pd, +af'x, | + ®TAx,_ + ... + b, Axi_pi +a,. (8.39)

wheret=p+1,....T. A key step in the estimation is to concentrate the likeli-
hood function with respect to the deterministic term and the stationary effects. This
is done by considering the following two multivariate linear regressions:

Axy = pod, + QAx,_ | + ... + R, 1Ay +uy, (8.40)
Xy =yd; + EjAx 4+ + mwi_D.«Tv.I + v, (8.41)

Let 2, and ¥, be the residuals of Egs. (8.40) and (8.41), respectively. Define the
sample covariance matrices

1 & 1 &

A AL
Soo = ﬂ!l.u M uu, Sy = ﬂ

| T

A AL A oAS
uv, 8;=-—- M v, 0,.
t=p+1 p

t=p+1 t=p+l

Next, compute the eigenvalues and eigenvectors of § _o,wmo_ So1 with respect to S;;.
This amounts to solving the eigenvalue problem

[AS11 — 81085 Soi| = 0.
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Denote the eigenvalue and eigenvector pairs by Q,:., e;), where »_ > »N > > w».
Here the eigenvectors are normalized so that ¢'Syje = I, where e = {ey, ..., ;]
is the matrix of cigenvectors.

The unnormalized maximum likelihood estimate (MLE) of the cointegrating
vector B is w = [ey, ..., ey], from which we can obtain a MLE for B that satisfies
the identifying constraint and normalization condition. Denote the resulting estimate
by wq with the subscript ¢ signifying constraints. The MLE of other parameters
can then be obtained by the multivariate linear regression

At
Axy =pd +aB xii+ OTAx -+ + B (Ax .

The maximized value of the likelihood function based on m cointegrating vectors is

m
LoHT oISl [ (1 = 0.

i=1

This value is used in the maximum likelihood ratio test for testing Rank(IT) = m.
Finally, estimates of the orthogonal complements of a and 8 can be obtained using

~

. -1
a; =Sy Sulemet, ... 6], B =Sulemtr. ..., el

8.6.3 A Cointegration Test

For a specified deterministic term g, we now discuss the maximum likelihood test
for testing the rank of the IT matrix in Eq. (8.36). Let H(m) be the null hypothesis
that the rank of I is m. For example, under H(0), Rank(II) = 0 so that I1 = 0
and there is no cointegration. The hypotheses of interest are

HOyc---c Hm)yC---C Hk).
For testing purpose, the ECM in Eq. (8.39) becomes
Ax; = pd, + Tx,_ + ®[Ax_ + -+ GMLDHTui +a,

where t = p+1,...,T. Our goal is to test the rank of II. Mathematically, the
rank of I1 is the number of nonzero eigenvalues of I, which can be obtained if a
consistent estimate of II is available. Based on the prior equation, which is in the
form of a multivariate linear regression, we see that H is related to the covariance
matrix between x,..| and Ax, after adjusting for the effects of d, and Ax,_; for
i =1,..., p~— 1. The necessary adjustments can be achieved by the techniques of
multivariate linear regression shown in the previous subsection. Indeed, the adjusted
series of x;_; and Ax; are 9, and #&,, respectively. The equation of interest for the
cointegration test then becomes

b» = :wa +a;.

Under the normality assumption, the likelihood ratio test for testing the rank of

II in the prior equation can be done by using the canonical correlation analysis
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between &, and 9,. See Johnson and Wichern (1998) for information on canonical
correlation analysis. The associated canonical correlations are the partial canonical
correlations between Ax,_; and X;..; because the effects of d, and Ax,_; have

been adjusted. The quantities {%;} are the squared canonical correlations between
@, and ;.
Consider the hypotheses

H, :Rank(Il) =m versus H, : Rank(IT) > m.
Johansen (1988) proposes the likelihood ratio (LR) statistic

k

LKq(m) = ~(T = p) Y In(1 - 1)) (8.42)
i=m+1

to perform the test. If Rank(IT) = m, then M_. should be small for i > m and hence
LKir(m) should be small. This test is referred to as the trace cointegration test.
Due the presence of unit roots, the asymptotic distribution of L K(m) is not chi-
squared, but a function of standard Brownian motions. Thus, critical values of
L K (m) must be obtained via simulation.

Johansen (1988) also considers a sequential procedure to determine the number
of cointegrating vectors. Specifically, the hypotheses of interest are

H, :Rank(Il) =m  versus H, : Rank(IT) = m + 1.
The LK ratio test statistic, called the maximum eigenvalue statistic, is
LEmax(m) = ~(T = p)In(l = 54).

Again, critical values of the test statistics are nonstandard and must be evaluated
via simulation.

8.6.4 Forecasting of Cointegrated VAR Models

The fitted ECM model can be used to produce forecasts. First, conditioned on the
estimated parameters, the ECM equation can be used to produce forecasts of the
differenced series Ax,. Such forecasts can in turn be used to obtain forecasts of x,.
A difference between ECM forecasts and the traditional VAR forecasts is that the
ECM approach imposes the cointegration relationships in producing the forecasts.

8.6.5 An Example

To demonstrate the analysis of cointegrated VAR models, we consider two weekly
U.S. short-term interest rates. The series are the 3-month Treasury bill (TB) rate
and 6-month Treasury bill rate from December 12, 1958 to August 6, 2004 for
2383 observations. The TB rates are from the secondary market and obtained from
the Federal Reserve Bank of St. Loius. Figure 8.12 shows the time plots of the
interest rates. As expected, the two series move closely together.
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Figure 8.12. Time plots of weekly U.S. interest rate from December 12, 1958 to August 6, 2004. (a)
The 3-month Treasury bill rate and (b) the 6-month Treasury bill rate. The rates are from the secondary
market.

Our analysis uses the S-Plus software with commands VAR for VAR analysis,
coint for cointegration test, and vVECM for vector error-correction estimation.
Denote the two series by tb3m and tbém and define the vector series X, =
(tb3my,, th6m,)’. The augmented Dickey-Fuller unit-root tests fail to reject the
hypothesis of a unit root in the individual series; see Chapter 2. Indeed, the test
statistics are —2.34 and —2.33 with p-value about 0.16 for the 3-month and 6-
month interest rate when an AR(3) model is used. Thus, we proceed to VAR
modeling.

For the bivariate series x;, the BIC criterion selects a VAR(3) model.

> x=cbind (tb3m, tbém)
> y=data.frame (x)

> ord.choicefar.order
[1] 3

To perform a cointegration test, we choose a restricted constant for /L, because
there is no reason a priori to believe the existence of a drift in the U.S. interest
rate. Both Johansen's tests confirm that the two series are cointegrated with one
cointegrating vector when a VAR(3) model is entertained.

> OOHSnmn.wonooHSWAx\nﬁmbau\wo\\ lags=2) & lags = p-1.
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> cointst.rc
Call:
coint (Y = x, lags = 2, trend = Tran)

Trend Specification:
Hi*(r}: Restricted constant

Trace tests sign. at the 5% level are flagged by * +- .
Trace tests sign. at the 1% level are flagged by 4+ .
Max Eig. testsg sign. at the 5% level are flagged by & #/ .
Max Eig. tests 8ign. at the 1% level are flagged by ‘#**/

Tests for Cointegration Rank:

Eigenvalue Trace Stat 95% CV  99% cv
H{C)++x* 0.0322 83.2712 19.96 24.60
H(1) 0.0023 5.4936 9.24 12.97

Max Stat 95% cv 99% Cv
H{0)++*% 77 .777¢ 15.67 20.20
H(1) 5.4936 9.24 12.97

Next, we perform the maximum likelihood estimation of the specified cointegrated
VAR(3) model using an ECM presentation. The tesults are given below:

> <moa.mwnu<moonoHnnmn.wov
> summary (vecm. fit)

Call:

VECM (test = cointst.rc)

Cointegrating Vectors:

coint,1

1.0000

tbhém -1.0124
(std.err) 0.0086

(t.stat) -118.2799

Intercept* 0.2254
(std.err) 0.0545
(t.stat) 4.1382

VECM Coefficients:
tb3m tbém
coint.1 -0.0949 -0.0211
Awna.mﬁﬁv 0.0199 0.0179
An‘mnmnv -4.7590 -1.177s

th3m.lagl 0.0466 -0.0419
(std.err) 0.0480 0.0432
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(t.stat) 0.9696 -0.9699

tbém.lagl 0.2650 0.3164
(std.err) 0.0538 0.0484
(t.stat) 4.9263 ¢.5385

nUwS.Hmmm -0.2067 -0.0346
(std.err) 0.0481 0.0433
(t.stat) -4.2984 -0.8005

ﬁUmB.Hm@N 0.2547 0.0994
(std.err) 0.0543 0.0488
(t.stat) 4.6%36 2.0356

Regression Diagnostics:
tb3m tbhém
R-squared 0.1081 0.0913
Adj. R-squared 0.1066 0.0898
Resid. Scale 0.2009 0.1807

> plot(vecm.fit)
Make a plot selection (or 0 to exit}):

1: plot: All

2: plot: Response and Fitted Values

3: plot: Residtals

13: plot: PACF of Squared Cointegrating Residuals
Selection:

As expected, the output shows that the stationary series is w, ~ tb3m, — tb6m, and
the mean of w; is about —0.225. The fitted ECM model is

_[-009 0.05 0.27
A= 00 |0+ 05 | Axe
~0.21 0.25
T 003 0.10 | A2 tar,

and the estimated standard errors of a;; are 0.20 and 0.18, respectively. Ade-
quacy of the fitted ECM model can be examined via various plots. For illustration,
Figure 8.13 shows the cointegrating residuals. Some large residuals are shown in
the plot, which occurred in the early 1980s when the interest rates were high and
volatile.

Finally, we use the fitted ECM model to produce 1-step to 10-step ahead fore-
casts for both Ax, and x,. The forecast origin is August 6, 2004.

> vecm. fst=predict (vecm.fit, n.predict=10)
> summary {vecm. fst)
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Figure 8.13. Time plot of cointegrating residuals for an ECM fit to the weekly U.S. interest rate ser
The data span is from December 12, 1958 to August 6, 2004,

Predicted Values with Standard Errors:

tb3m tbém

l-step-ahead -0.0378 -0.0642
(std.err) 0.2009 o0.1807
2-step-ahead -0.0870 -0.0864
(std.err) 0©.3222 0.2927

10-step-ahead -0.227s -0.1314
(std.err) 0.8460 0.8157
> ﬁwonA<m05.mmn\onQuQHmmAxv\b.oHanwv

> <m03.mwn4Hm<mHn<mmzAnonnwn‘Hn.Hm<mwmuev
> <moa.mmﬂ.pm<mpuwwmawonA<mos.mwn;wm<mw\ n.predict=10)
> summary (vecm.fst.level)

Predicted values with Standard Errors:
tbh3m tbém
l-step-ahead 1.4501 1.7057
(std.err) 0.2009 0.1807
w-mnmb-mdmma 1.4420 1.7017
(std.err) 0.3222 0.2927
wo;mnm@xmrmma 1.4722 1.7078
{std.err) 0.8460 0.8157
> @HonAcmos.mmﬂ‘Hm<mw_ xold=x, n.old=50)

|
|
!
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Figure 8.14. Forecasting plots of a fitted BECM model for the weekly U.S. interest rate series. The
forecasts are for the differenced series and the forecast origin is August 6, 2004,

The forecasts are shown in Figures 8.14 and 8. I5 for the differenced data and the
original serjes, respectively, along with some observed data points. The dashed
lines in the plots are pointwise 959 confidence intervals. Because of unit-root
nonstationarity, the intervals are wide and not informative,

8.7 THRESHOL)D COINTEGRATION AND ARBITRAGE

In conjunction with the idea of cointegration,

Our study considers the relationship between the price of the S&Pp 500 index
futures and the price of the shares underlying the index on the cash market. Let
¢ be the log price of the index futures at time ¢ with maturity ¢, and let s; be
the log price of the shares underlying the index on the cash market at time t. A
version of the cost-of-carry model in the finance literature states

Jro=si=(rie —q o) - 1)+ 2z, (8.43)
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Figure 8.15, Forecasting plots of a fitted ECM model for the weekly U.S. interest rate series. The
forecasts are for the interest rates and the forecast origin ig August 6, 2004,

see Brenner and Kroner (1995), Dwyer, Locke, and Yy (1996), and the references
therein,

The z} process of model (8.43) must be unit-root stationary; otherwise there
exist persistent arbitrage opportunities. Here an arbitrage trading consists of simul-
taneously buying ?:on-mo_:zmv the security index and selling (buying) the index
futures whenever the log prices diverge by more than the cost of carrying the index
over time until maturity of the futures contract. Under the weak stationarity of z/,
for arbitrage to be profitable, z¥ must exceed a certain value in modulus determined
by transaction costs and other economic and risk factors.

Itis commonly believed that the Jr.e and s, series of the S&P 500 index contain
4 unit root, but Eq. (8.43) indicates that they are cointegrated after adjusting for
the effect of interest rate and dividend yield. The cointegrating vector is (1, 1
after the adjustment, and the cointegrated series ig z;. Therefore, one should use
an error-correction form to model the return serjes re=(Afi, As;)Y, where A V=
fre— Si—1.¢ and Asp =5, — S1—1, where for ease in notation we drop the maturity
time ¢ from the subscript of Af,.

8.7.1 Multivariate Threshold Model

- >

2

e ST
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tradings. Consequently, the prior discussions lead naturally to the model

(H .
o+ Muwn_ D i+ By +P:O.NT_MS,

rn=1a+ Xl o0+ Bz +a? ity <z < , (8.44)

i=1

3 3) .
c+3yF OM VJL + B3z +aH Vg Y2 < Zi—1,

i=1

where z; = 100z, y, < 0 < v2 are two real numbers, and {a{"} are sequences
of two-dimensional white noises and are independent of each other. Here we use
Z; = 100z} because the actual value of z} is relatively small.

The model in Eq. (8.44) is referred to as a multivariate threshold mode! with
three regimes. The two real numbers y; and y, are the thresholds and z,_ 1 is
the threshold variable. The threshold variable z, _ 1 is supported by the data; see
Tsay (1998). In general, one can select z;_4 as a threshold variable by considering
de{l,...,dy), where dy is a prespecified positive integer.

Model (8.44) is a generalization of the threshold autoregressive model of
Chapter 4. It is also a generalization of the error-correlation model of Eq. (8.33), As
mentioned earlier, an arbitrage trading is profitable only when z} or, equivalently,
z¢ is large in modulus. Therefore, arbitrage tradings only occurred in regimes |
and 3 of model (8.44). As such, the dynamic relationship between Sfre and s, in
regime 2 is determined mainly by the normal market force, and hence the two
series behave more or less like a random walk. In other words, the two log prices
in the middle regime should be free from arbitrage effects and, hence, free from
the cointegration constraint. From an econometric viewpoint, this means that the
estimate of B, in the middle regime should be insignificant.

In summary, we expect that the cointegration effects between the log price of
the futures and the log price of security index on the cash market are significant
in regimes 1 and 3, but insignificant in regime 2. This phenomenon is referred to
as a threshold cointegration; see Balke and Fomby (1997).

8.7.2 The Data

The data used in this case study are the intraday transaction data of the S&P
500 index in May 1993 and its June futures contract traded at the Chicago Mer-
cantile Exchange; see Forbes, Kalb, and Kofman (1999), who used the data to

construct a minute-by-minute bivariate price series with 7060 observations, To.
avoid the undue influence of unusual returns, I replaced 10 extreme values (50n°

each side) by the simple average of their two nearest neighbors. This step does

not affect the qualitative conclusion of the analysis but may affect the conditional

heteroscedasticity in the data. For simplicity, we do not consider conditional het-
eroscedasticity in the study. Figure 8.16 shows the time plots of the log returns of
the index futures and cash prices and the associated threshold variable 7, = 100z} of
model (8.43).
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Em—:..o 8.16. Time plots of -minute log returns of the S&P 500 index futures and cash prices and the
w%oo_maa threshold variable in May 1993: (a) log returns of the index futures, (b) log returns of the
index cash prices, and (¢c) the z; series,

8.7.3 Estimation

A formal specification of the multivariate threshold model in Eq. (8.44) includes
..ﬁn_oo::m the threshold variable, determining the number of regimes, and choos-
ng the order p for each regime. Interested readers are referred to Tsay (1998)
and Forbes, Kalb, and Kofman (1999), The thresholds y; and ¥2 can be esti-
mated by using some information criteria (e.g., the Akaike information criterion
{AIC] or the sum of squares of residuals). Assuming p=8,dell, 23, 4}, 3 e
T.o._m, —0.02], and y, e [0.025, 0.145], and using a grid search method with 300
ESG on each of the two intervals, the AIC selects z,_; as the threshold variable
with .:.:amro_am 71 = —0.0226 and Y2 = 0.0377. Details of the parameter estimates
are given in Table 8.8.

‘ From Table 8.8, we make the following observations, First, the r-ratios of w,N
n the middle regime show that, as expected, the estimates are insignificant at the
5% level, confirming that there is no cointegration between the two log prices in

i
§
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Table 8.8. Least Squares Estimates and Their ¢-Ratios of the Multivariate Threshold
Model in Eq. (8.44) for the S&P 500 Index Data in May 19937

Regime | Regime 2 Regime 3
Af As, Afy As, Afy As,

o 0.00002 0.00005 0.00000 0.00000  —0.00001 —0.00005
t (1.47) (7.64) (—0.07) (0.53) (—0.74) (~6.37)
Afiy —-0.08468 0.07098  —0.03861 0.04037  ~0.04102 0.02305
t (—3.833) (6.15) (~1.53) (3.98) (—~1.72) (1.96)
Af s ~0.00450 0.15899 0.04478 0.08621 -0.02069 0.09898
t (—0.20) (13.36) (1.85) (8.88) (~0.87) (8.45)
Afi s 0.02274 0.11911 0.07251 0.09752 0.00365 0.08455
t (0.95) (9.53) (3.08) (10.32) (0.15) (7.02)
Af 4 0.02429 0.08141 0.01418 0.06827  —0.02759 0.07699
t (0.99) (6.35) (0.60) (7.24) (~1.13) (6.37)
Afis 0.00340 0.08936 0.01185 0.04831 --0.00638 0.05004
t (0.13) (7.10) (0.51) (5.13) (—0.26) (4.07)
Afi—s 0.00098 0.07291 0.01251 0.03580  —0.0394] 0.02615
t (0.04) (5.64) (0.54) (3.84) (—-1.62) (2.18)
Afi_7 —0.00372 0.05201 0.02989 0.04837  —0.02031 0.02293
t (—0.15) (4.01) (1.34) (5.42) (—0.85) (1.95)
Afi_g 0.00043 0.00954 0.01812 0.02196  —0.04422 0.00462
t (0.02) (0.76) (0.85) (2.57) (—1.90) (0.40)
As_g -0.08419 0.00264  —0.07618 -0.05633 0.06664 0.11143
t (—=2.01) 0.12) (—1.70) (—3.14) (1.49) (5.05)
As —0.05103 0.00256  —0.10920 —0.01521 0.04099 —-0.01179
t (—1.18) (0.11) (—2.59) (—0.90) (0.92) (—0.53)
Aspg 0.0727s —0.03631 —-0.00504 0.01174  —0.01948 —0.01829
t (1.65) (—1.58) (-0.12) 0.71) (—0.44) (—0.84)
Ast g 0.04706 0.01438 0.02751 0.01490 0.01646 0.00367
t (1.03) (0.60) 0.71) (0.96) (0.37) (0.17)
As,_s 0.08118 0.02111 0.03943 0.02330  —0.03430 —0.00462
t (1.77) (0.88) (0.97) (1.43) (—0.83) (—0.23)
Asi_g 0.04390 0.04569 0.01690 0.01919 0.06084 —0.00392
4 (0.96) (1.92) (0.44) (1.25) (1.45) (~0.19)
Asy_7 —0.03033 0.02051 —0.08647 0.00270 -0.00491 0.03597
t (—0.70; 0.91) (—2.09) (0.16) (—0.13) (1.90)
As,_g -0.02920 0.03018 0.01887  —0.00213 0.00030 0.02171
t (—0.68) (1.34) (0.49) (—0.14) 0.0D) (1.14)
o) 0.00024 0.00097  —0.00010 0.00012 0.00025 0.00086
4 (1.34) (10.47) (—-0.30) (0.86) (1.41) (9.75)

“The number of data points for the three regimes are 2234, 2410, and 2408, respectively.
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the absence of arbitrage opportunities. Second, Af, depends negatively on Af,_,
in all three regimes. This is in agreement with the bid-ask bounce discussed in

than the past log returns of the cash prices because there are more significant
r-ratios in Af,_; than in As;;. This is reasonable because futures series are in

general more liquid. For more information on index arbitrage, see Dwyer, Locke,
and Yu (1996).

APPENDIX A: REVIEW OF VECTORS AND MATRICES

In this appendix, we briefly review some algebra and properties of vectors and
matrices. No proofs are given as they can be found in standard textbooks on
matrices (e.g., Graybill, 1969).

An m x n real-valued matrix is an m by » array of real numbers. For example,

258
~134

i$ 2 2 x 3 matrix. This matrix has two rows and three columns. In general, an
m X 1 matrix is written as

A=

an an - oap,_ ain
@ an - oay, Ay

As=fag)=| - ) . (8.45)
ny Gy - - Am -t gy

The positive integers m and n are the row dimension and column dimension of A.
The real number a;j is referred to as the (i, j)th element of A, In particular, the
clements g;; are the diagonal elements of the matrix.

An m x 1 matrix forms an m-dimensional column vector, and a 1 x n matrix
is an n-dimensional row vector. In the literature, a Vvector is often meant to be a
column vector. If m = n, then the matrix is a square matrix. If a;j =0 for i # J
and m = n, then the matrix A is a diagonal matrix. If a;j =0 fori # Jand g;; = |
for all i, then A4 is the m x m identity matrix, which is commonly denoted by 1,
or simply I if the dimension is clear.

The n x m matrix

G a2 Amei e
A i ap --- An-12 Am)
Aln dgpy - - Am—tn Ay

is the transpose of the matrix A. For example,

2

-1
5 3 is the transpose of
8§ 4

258
~134

We use the notation A’ = la; ;] to denote the transpose of A. From the definition,
@; =a; and (A'Y = A. If A"= A then A is a symmetric matrix.
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Basic Operations

Suppose that A = [aijlywxn and C = [cif] pxq '€ tWo matrices with dimensions
given in the subscript. Let b be a real number. Some basic matrix operations are
defined next:

e Addition: A +C = [aij + cijlmsn if m = pandn =gq.

e Subtraction: A — C = la;; — Cijlmxn if m = p and n = q.

* Scalar muliiplication: b4 = [bai; ) yscn-

¢ Multiplication: AC = Do AiyCyjlmxg provided that n = p.

When the dimensions of matrices satisfy the condition for multiplication to

take place, the two matrices are said to be conformable. An example of matrix
multiplication is

2170 12 37 21=1-12241.22.3-1.4
PUL=2 =47 1011 1.241.2 1.3-1.4
16 2
S04 1

Important rules of matrix operations include (a) (ACY = C'A’ and (by AC #CA
in general.

Inverse, Trace, Eigenvalue, and Eigenvector

A square matrix A, is nonsingular or invertible if there exists a unique matrix
Crixm such that AC = CA = I, the m xm identity matrix. In this case, C is
called the inverse matrix of A and is denoted by C = A1,

The trace of A,, ., is the sum of its diagonal elements (i.e., tr(Ad) =3"" a;).
It is easy to see that @rA+C) = tr{A) +tr(C), (b) tr(A) = tr(A’), and (c)
tr{AC) = 1r(CA) provided that the two matrices are conformable.

A number A and an m x 1 vector b, possibly complex-valued, are a right eigen-
value and eigenvector pair of the matrix A if Ab = Ab. There are m possible
cigenvalues for the matrix A. For a real-valued matrix 4, complex eigenvalues
occur in conjugated pairs. The matrix A is nonsingular if and only if all of its
eigenvalues are nonzero. Denote the eigenvalues by {Aili =1,..., m}: we have
tr(A) = MWH Ai. In addition, the determinant of the matrix A can be defined as
[A] = [TiL, A. For a general definition of determinant of a matrix, see a standard
textbook on matrices (e.g., Graybill, 1969),

Finally, the rank of the matrix A,, ., is the namber of nonzero eigenvalues of
the symmetric matrix 4 A’ Also, for a nonsingular matrix A, (A7 = (4H~1,

Positive-Definite Matrix
A square matrix A (m x m) is a positive-definite matrix if (a) A is symmetric, and
(b) all eigenvalues of A4 are positive, Alternatively, A is a positive-definite matrix
if for any nonzero m-dimensional vector b, we have b’ Ab > 0.

Useful properties of a positive-definite matrix A include (2) all eigenvalues of
A are real and positive, and (b) the matrix can be decomposed as

A= PAP,
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where A is a diagonal matrix consisting of all eigenvalues of Aand Pisanm x m
matrix consisting of the m right eigenvectors of A. It is common to write the
eigenvalues as ), 22X 2> A, and the eigenvectors as €y, ...,e, such that
Ae; = X;e; and AS =1.1In addition, these eigenvectors are orthogonal to each
other—namely, ee; =0 if # j—if the eigenvalues are distinct, The matrix
P is an orthogonal matrix and the decomposition is referred to as the spectral

decomposition of the matrix A. Consider, for example, the simple 2 x 2 matrix

21

Mn_wa

which is positive definite. Simple calculations show that

2 171 1Y T 21 11T 1
P2RLtp= L) o2 =i =]

Therefore, 3 and | are eigenvalues of ¥ with normalized eigenvectors
(1/v2,1/v2) and (1/v/3, -1 /¥2), respectively. Tt is easy to verify that the
spectral decomposition holds— that is

’

1 Lo
VIV2IT217 V23| 130
L -1 L2 Lo —1 |7 [o1]
V2 V2 V2 V2

For a symmetric matrix A, there exists a lower triangular matrix L with diagonal
elements being 1 and a diagonal matrix G such that A=LGL": see Chapter 1

of Strang (1980). If A is positive definite, then the diagonal elements of G are
positive. In this case, we have

A= LJGVGL = (LVGY(LVGY,

where L+/G is again a lower triangular matrix and the square root is taken element
by element. Such a decomposition is called the Cholesky decomposition of A. This
decomposition shows that a positive-definite matrix A can be diagonalized as

L™'A)~1 = L7'AWL-Y = g.

Since L is a lower triangular matrix with unit diagonal elements, I-! is also a
lower triangular matrix with unit diagonal elements. Consider again the prior 2 x 2
matrix . It is easy to verify that

_[10 00 2.0 0.0
L=los1o| md G= 0.0 1.5
satisfy £ = LGL’, In addition,
1.0 0.0

L' = 05 10| amd LRI Yy =g,
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Vectorization and Kronecker Product
Writing an m x n matrix 4 in its columns as A = [ai,....a,]. we define the
stacking operation as vec(A) = (@), a),....a,), which is an mn x | vector. For

two matrices A, ., and C pxq- the Kronecker product between A and C is

an€C apC .. a,,C
anC anC . 4,,C
A®C= . ; .

Qs_ﬁ, QENQ A € mpxng

For example, assume that

21 413
e 13 ¢=]_, 52

Then vec(4) = (2, -1, 1, 3), vee(C) = (4, -2, —1,5,3,2), and

8 -2 6 4 13

-4 10 4 -2 592

Bl I B 39
2 -5 -2 -6 15 6

Assuming that the dimensions are appropriate, we have the following useful prop-
erties for the two operators:

ARC#C®Ain general.

A8CY=AQC,

>®AQ+GVH\»®Q+>®Q.

(A®C)F ®G)=(AF)® (CG).

If A and C are invertible, then (A ® €)' = 4~! g C~!.

For square matrices A and C.tr{A® C) = triAyr(C).

vec(A + C) = vec(A) + vec((C).

vec(ABC) = (C' ® A)vec(B).

1r(AC) = vec(C')' vec(A) = vec(A’) vec(C).

tr(ABC) = vec(A'Y(C' ® I)vec(B) = vec(A'Y'(I ® B)vec(C)
= vec(B'Y(A' ® Ivec(C) = vec(B')(I ® C)vec(A)
= vec(C') (B’ @ I')vec(A) = vec(C'Y' (I ® A)vec(B).

R s A o

o
52

In multivariate statistical analysis, we often deal with symmetric matrices. It
is therefore convenient to generalize the stacking operation to the half-stacking
operation, which consists of elements on or below the main diagonal. Specifically,
for a symmetric square matrix 4 = [ai 1k xx, define

/
vech(A) = (a) . a5, ..., a,),
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where a;_is the first column of A,and q;, = @i aipy g, ... sai) isa(k — i+ 1)-
dimensional vector. The dimension of vech(A) is k(k + 13/2. For example, suppose
that £ = 3. Then we have vech(A) = (ayy, ay, @31, 4z, d3z, aa3)’, which is a six-
dimensional vector.

APPENDIX B: MULTIVARIATE NORMAL DISTRIBUTIONS

A k-dimensional random vector x = (xy, ..., X¢) follows a multivariate normal
distribution with mean o= (g, .., 1) and positive-definite covariance matrix
Y = [oy] if its probability density function ( pdf) is

1

fxip. ) = Qg P30 — B )] (3.46)

for details.

To gain insight into multivariate normal distributions, consider the bivariate case
(i.e., k = 2). In this case, we have

g g - i -
¥ = it J12 D St . 022 ~0)2
12 022 onoxn -0 | T02 oy

Using the correlation coefficient p = o, /(o102), where o; = /0ii is the standard

deviation of x;, we have 912 = p/01102; and |X| = o11022(1 — p?), The pdf of x
then becomes

! I
S 2roy00 _ibwoxv N:..ENVHQA.«,: )

where

2 2
X — i X7 — Xy — X7 —
QQ.FMVHA _V+AN Ev INBA_ ?VAN Ev.
eg 07 g} =p)
Chapter 4 of Johnson and Wichern (1998) contains some plots of this pdf function.
Let ¢ = (¢, ... ,¢¢) be a nonzero k-dimensional vector, Partition the random
vector as x = (x', x5), where X;=(x,...,x,) and x = (Xpity oo, xy) with

I < p <k. Also partition g and X accordingly as

ol oa (e X, Ip
X3 o [T By Zyp ()

Some properties of x are as follows:

L ¢'x ~ N{c'u, ¢'¥¢). That is, any nonzero linear combination of x is unj-
variate normal. The inverse of this property also holds. Specifically, if ¢'x is
univariate normal for any nonzero vector ¢, then x is multivariate normal.
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2. The marginal distribution of X; is normal. In fact, x; ~ Ni (i, Zi) fori = 1 5 EXERCISES
and 2, where k; = p and ks = k — p.
3. X2 =0if and only if X and x; are independent. ; 8.1. Consider the monthly log stock returns, in percentages and including divi-
4. The random variable y=x-u)yE lx - p) follows a chi-squared distri- dends, of Merck & Company, Johnson & Johnson, General Electric, General
bution with m degrees of freedom. Motors, Ford Motor Company, and value-weighted index from Tanuary 1960
5. The conditional distribution of ¥ given x; = b is also normally distributed as to December 1999; see the file m-mrk2vw. txt, which has six columns in the
" . order listed before.
(x1|x; = b) ~ Nplwy + ZpEyn b —py), X)) ~ 1%y Iyl (a) Compute the sample mean, covarjance matrix, and correlation matrix of
The last property is useful in many scientific areas. For instance, it forms the basis the data.
for time series forecasting under the normality assumption and for recursive least (b) Test the hypothesis Hy:py = =p, =0, where p; is the lag-i cross-

squares estimation. correlation matrix of the data. Draw conclusions based on the 5% signifi-

cance level.

APPENDIX C: SOME SCA COMMANDS (¢) Is there any lead-lag relationship among the six return series?

The following SCA commands are used in the analysis of Example 8.6.

8.2. The Federal Reserve Bank of St. Louis publishes selected interest rates and

input x1,x2. file ‘mM-gsin3-5301.txt’ % Load data ’ U.S. financial data on jts ﬁﬁcm:n”znn@“\\ﬁmmmmﬁos.mnwocwmmma.oum\

-- . fred2/. Consider the monthly I-year and 10-year Treasury constant maturity

rl=In{xl) % Take log transformation rates from April 1953 to October 2000 for 571 observations; see the file
o M-g81nlo. txt. The rates are in percentages.

2=1n(x2 i . .
w-- (x2) g (@ Let ¢, = r, — 7i-1 be the change series of the monthly interest rate .
miden ri,r2. no cem. arfits | to 8. ’ wEE a v?wﬂ.ma autoregressive model for the two n.:mcmm series. Discuss
-- % Denote the model by va21. ! the implications of the model. Transform the model nto a structural form.
mtam v21l. series rl,r2. @ { {(b) Build a bivariate moving-average model for the two change series. Discugs

model AH,UH*W-wan4+mvmmﬁwmmno+AH-HH*GV:owmm.

the implications of the model and compare it with the bivariate AR model

built earlier,
mestim v21, % Initial estimation

p1(2,1)=0 % Set zero constraints 8.3. Again consider the monthly I-year and 10-year Treasury constant maturity
—- 4 rates from April 1953 to October 2000. Consider the log series of the data

cpl(2,1)=1 ! and build a VARMA model for the series. Discuss the implications of the
=c mode] obtained.

p2(2,1)=0 g
- ! 8.4. Again consider the monthly 1-year and 10-year Treasury constant maturity
ow.uwﬁbvup 2 rates from April 1953 to October 2000. Are the two interest rate series
p2{2,2)=0 - _. Swomro_a-ocwammaﬁ% Use the interest spread s, = ryg, — ri, as the thresh-
. ; old variable, where r,, is the i-year Treasury constant maturity rate. If they
cp2(2,2) =1 i .,.A are threshold-cointegrated, build a multivariate threshold mode! for the two
-- X series.
£1(2,1}=0 N
R 5 8.5. The bivariate AR(4) model x, — Pux; 4=y +a,isa special seasonal mode]
ceL(2, SMAH , . 4 st siduals o with periodicity 4, where {a;} is a sequence of independent and identicaily
ammwwamwwwwmawmmwwmwwmwnWEUOMQOMMm Mwwmmp ,res2) i distributed normal random vectors with mean zero and covariance matrix X,

_- | Such a seasonal model may be useful in studying quarterly earnings of a
miden resl,res?z. company. (a) Assume that X, is weakly stationary. Derive the mean vector
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and covariance matrix of x,. (b) Derive the necessary and sufficient condition
of weak stationarity for X;. (c) Show that Iy = &I,y for ¢ > 0, where r,
is the lag-¢ autocovariance matrix of x,.

8.6.

The bivariate MA(4) model ¥ =a, — O4a;_4 is another seasonal model with
periodicity 4, where {a;} is a sequence of independent and identically dis-
tributed normal random vectors with mean zero and covariance matrix X.
Derive the covariance matrices I'y of x, for€=0,.. 5.

.

8.7. Consider the monthly U.S. l-year and 3-year Treasury constant maturity rates
from April 1953 to March 2004. The data can be obtained from the Federal
Reserve Bank of St. Louis or from the file M-gsin3-5304.txt (l-year, 3-
year, dates). See also Example 8.6 that uses a shorter data span. Here we
use the interest rates directly without the log transformation and define x, =
(x1;. x2,), where Xy is the l-year maturity rate and Xy, is the 3-year maturity
rate.

(a) Identify a VAR model for the bivariate interest rate series. Write down

the fitted model.

{b) Compute the impulse response functions of the fitted VAR model. It suf-
fices to use the first 6 lags.

{¢) Use the fitted VAR model to produce I-step to 12-step ahead forecasts of
the interest rates, assuming that the forecast origin is March 2004.

(d) Are the two interest rate series cointegrated, when a restricted constant
term is used? Use 5% significance level to perform the test,

(e) If the series are cointegrated, build an ECM for the series. Write down
the fitted model.

() Use the fitted ECM to produce [-step to 12-step ahead forecasts of the
interest rates, assuming that the forecast origin is March 2004,

(8) Compare the forecasts produced by the VAR model] and the ECM.

REFERENCES

Balke, N. S. and Fomby, T. B. ¢ 1997). Threshold cointegration. /nternational Economic
Review 38: 627-645.

Box, G.E. P. and Tiao, G. C. (1977). A canonical analysis of multiple time series. Biometrika
64: 355-366.

Brenner, R. J. and Kroner, K. F. ( 1995). Arbitrage, cointegration, and testing the unbiased-
ness hypothesis in financial markets. Journal of Financial and Quantitative Analysis
30: 23-42.

Cochrane, J. H. (1988). How big is the random walk in the GNP? Journal of Political
Economy 96: 893-.920.

Dwyer, G. p. Jr., Locke, P., and Yu, W. (1996). Index arbitrage and nonlinear dynamics
between the S&P 500 futures and cash. Review of Financial Studies 9: 301 -332.

REFERENCES 403

Engle, R. F. and Granger, C. W. J. (1987), Co-integration and error correction representation
estimation and testing. Econometrica §5: 251-276.

Forbes, C. S., Kalb, G. R. J.. and Kofman, P. (1999). Bayesian arbitrage threshold analysis.
Journal of Business & Economic Statistics 17- 364-372.

Fuller, W. A. (1976). Introduction to Statistical Time Series. Wiley, Hoboken, NJ.

Graybill, F, A, ( 1969). Introduction 1o Matrices with Applications in Sratistics. Wadsworth,
Belmont, CA.

Hannan, E. J. and Quinn, B. G. (1979). The determination of the order of an autoregression.
Journal of the Royal Statistical Society Series B 41 190~ 195,

Hillmer, S. C. and Tiao, G, C. (1979). Likelihood function of stationary multiple autore-

Hosking, J. R. M., (1980). The muitivariate portmanteau statistic. Journa/ of the American
Statistical Association 75: 602-608.

Hosking, J. R. M. (1981). Emam:mm.ac_:v:mn tests of multivariate time series models.
Journal of the Royal Statistical Society Series B 43 219-230.

Johansen, S. (1988). Statistical analysis of co-integration vectors, Journal of Economic

Johansen, S. ( 1995). Likelihood Based Inference in Cointegrated Vector Error Correction
Models. Oxford C:?na:w Press, Oxford, UK.

Johnson, R. A. and Wichern, D. W. (1998). Applied Multivariate Statistical Analysis, 4th
edition. Prentice Hall, Upper Saddle River, NJ.

Li, W. K. and McLeod, A. I. (1981). Distribution of the residual autocorrelations in mul-
tivariate ARMA time series models. Journal of the Royal Statistical Sociery Series B
43: 231-239,

Liitkepohi, H. (1991). Introduction 10 Multiple Time Series Analysis. mv::wﬁ./\@lmw, New
York.

Reinsel, G. C. ( 1993). Elements of Multivariate Time Series Analysis. mn&:mﬂ./\nlmm, New
York.

Reinsel, G. C. and Ahn, S. K. (1992). Vector autoregressive models with unit roots and
reduced rank structure: estimation, likelihood ratio test, and forecasting. Journal of
Time Series Analysis 13: 353-375.

Stock, J. H. and Watson, M.W. (1988). Testing for common trends. Journal of the American
Statistical Association 83: 1097-1107.

Strang, G. (1980). Linear Algebra and Its Applications, 2nd edition. Harcourt Brace
Jovanovich, Chicago.

Tiao, G. C. and Box, G. E. P. (1981). Modeling multiple time series with applications,
Journal of the American Statistical Association 76: 802-816.

Tiao, G. C. and Tsay, R. §. (1989). Model specification in multivariate time serjes (with
discussions). Journal of the Royal Statistical Society Series B 51: 157213,

Tiao, G. C., Tsay, R. S., and Wang, T. (1993). Usefulness of linear transformations in
multivariate time serjes analysis. Empirical Economics 18: 567-593.

Tsay, R. S. ( 1991). Two canonical forms for vector ARMA processes. Statistica Sinica 1:
247-269.




404 MULTIVARIATE TIME SERIES ANALYSIS AND ITS APPLICATIONS

Tsay, R. S. (1993). Testing and modeling multivariate threshold models. Journal of the
American Statistical Association 93: [188-1202.

Tsay, R. S., and Tiao, G. C. (1990). Asymptotic properties of multivariate nonstationary
processes with applications to autoregressions. Annals of Statistics 18: 220--250.
Zivot, E. and Wang, J. (2003). Modeling Financial Time Series with S-Plus. mwl:mo_.-/\oamm.

New York.

CHAPTERY

Principal Component Analysis
and Factor Models

Most financial portfolios consist of multiple assets, and their returns depend con-
currently and dynamically on many economic and financial variables. Therefore, it
is important to use proper multivariate statistical analyses to study the behavior and
properties of portfolio returns. However, as demonstrated in the previous chapter,
analysis of multiple asset returns often requires high-dimensional statistical models
that are complicated and hard to apply. To simplify the task of modeling multiple
returns, we discuss in this chapter some dimension reduction methods to search
for the underlying structure of the assets, Principal component analysis (PCA) is
perhaps the most commonly used statistical method in dimension reduction, and
We start our discussion with the method. In practice, observed return series often
exhibit similar characteristics leading to the belief that they might be driven by
some common sources, often referred to as common factors. To study the common
pattern in asset returns and to simplify portfolio analysis, various factor models
have been proposed in the literature to analyze multiple asset returns, The second
goal of this chapter is to introduce some useful factor models and demonstrate their
applications in finance,

Three types of factor models are available for studying asset returns; see Connor
(1995) and Campbell, Lo, and MacKinlay (1997). The first type is the macroeco-
nomic factor models that use macroeconomic variables such as growth rate of GDP,
interest rates, inflation rate, and unemployment numbers to describe the common
behavior of agget returns. Here the factors are observable and the model can be
estimated via linear regression methods. The second type is the fundamental factor
models that use firm or asset specific attributes such as firm size, book and market
values, and industrial classification to construct common factors. The third type is
the statistical Jfactor models that treat the common factors as unobservabie or latent
<,m:.mza 1o be estimated from the returns series. In this chapter, we discuss all
three types of factor models and their applications in finance. Principal component
§3§w Series, Second Edition By Ruey S. Tsay
Copyright © 2005 John Wiley & Sons, Inc.
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CHAPTER 11

State-Space Models
and Kalman Filter

The state-space mcdel provides a flexible approach to time series analysis, espe-

cially for simplifying maximum likelihood estimation and handling missing values.

ARIMA model, the Kalman fiter algorithm, various smoothing methods, and some
applications. We begin with a simple model that shows the basic ideas of the state-
space approach to time series analysis before introducing the general state-space
model. For demonstrations, we use the model to analyze realized volatility series of
asset returns, the time-varying coefficient market models, and the quarterly earnings
per share of a company,

There are many books on statistical analysis using the state-space model. Durbin
and Koopman (2001) provide a recent treatment of the approach, Kim and Nelson
(1999) focus on economic applications and regime switching, and Anderson and
Moore (1979) give a nice summary of theory and applications of the approach for

filter and state-space model. For example, Chan (2002), Shumway and Stoffer
(2000), Hamilton (1994), and Harvey (1993) ali have chapters on the topic. West
and Harrison (1997) provide a Bayesian treatment with emphasis on forecasting,
and Kitagawa and Gersch (1996) use a smoothing prior approach.

The derivation of Kalman filter and smoothing algorithms necessarily involves
heavy notation. Therefore, Section 11.4 could be dry for readers who are interested
mainly in the concept and applications of state-space models and can be skipped
on the first read,

11.1 LOCAL TREND MODEL
Consider the univariate time series y, satisfying

Yo =y + ey, 3\(28,9&‘ (1L

Analysis of Financial Time Series, Second Edition By Ruey §. Tsay
Copyright © 2005 John Witey & Sons, Inc.
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Hoel = et~ N0, o), (11.2)

where {e;} and {7,) are two independent Gaussian white noise series and r —
I...., T. The initial value u, is either given or follows a known distribution, and
it is independent of {e:} and {n,} for r - 0. Here 4, is a pure random walk of
Chapter 2 with initial value 41 and y; is an observed version of u, with added
noise a,. In the literature, 4, is referred to as the trend of the series, which is not
directly observable, and Ye is the observed data with observational noise ¢;. The
dynamic dependence of ¥ is governed by that of u, because {e;} is not serially
correlated.

The model in Egs. (11.1) and (1 1.2) can readily be used to analyze realized
volatility of an asset price; see Example 11.1 below. Here 4, represents the under-
lying log volatility of the asset price and y, is the logarithm of realized volatility.
The true log volatility is not directly observed but evolves over time according to a
random-walk model. On the other hand, y; is constructed from high-frequency
transactions data and subjected to the influence of market microstructure, The
standard deviation of ¢, denotes the scale used to measure the impact of market
microstructure,

The model in Egs. (1 L) and (11.2) is a special linear Gaussiun State-space
model. The variable 1, is called the state of the system at time r and is not directly
observed. Equation (1 1.1) provides the link between the data Yr and the state pu,
and is called the observation equation with measurement error e:. Equation (11.2)
governs the time evolution of the state variable and is the stare equation (or stafe
Iransition equation) with innovation ;- The model is also called a local level model
in Durbin and Koopman (2001, Chapter 2), which is a simple case of the Structural
time series model of Harvey (1993).

Relationship to ARIMA Model

If there is no measurement error in Eq. (11.1), that is, 0, = 0, then Yt = p,, which
is an ARIMA(0,1,0) model. If O > 0, that is, there exist measurement errors, then
¥, 1S an ARIMA(0,1,1) model satisfying

=By, =(1 ~ 8B)a,, (11.3)

where {a,} is a Gaussian white noise with mean zero and variance sz. The values
of ¢ and o? are determined by o, and 0y This result can be derived ag follows.

From Eq. (11.2), we have

[
(1 — By = My OF gy = xll!qu?

Using this result, Eq. (11.1) can be written as

1
Y= T + e,
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Multiplying by (1 — B), we have
(1- B)y, = Ni—1+e —ey.

Let (1 — B)y, = w,. We have Wr =11 + ¢, — ¢;,_,. Under the assumptions, it is
easy to see that (a) w, is Gaussian, (b) Var(w,) = NQM +o2, (c) Cov(w,, wyi) =
Iqw_ and (d) Cov(w,, W) =0 for j > 1. Consequently, w, follows an MA(1)
model and can be written as wy = (1 - 6B)a,. By equating the variance and lag-1
autocovariance of w, = (] — OBYa, =1, +¢ — €,_1, we have

(1+6%057 =202 +ol,

2 2
fo; =o/.

the one that satisfies 16| < 1. The value of o can then be easily obtained. Thus
the state-space model in Egs. (11.1) and (11.2) is also an ARIMA(0,1,1) model,
which is the simple exponential smoothing model of Chapter 2.

On the other hand, for an ARIMA(0,1,1) mode! with positive 6, one can use
the prior two identities to solve for o} and Q:N, and obtain a local trend model.
If § is negative, then the model can still be put in a state-space form without
the observational error, that is, o, = 0. In fact, as will be seen later, an ARIMA
model can be transformed into state-space models in many ways. Thus, the linear
state-space model is closely related to the ARIMA model.

In practice, what one observes is the y, series. Thus, based on the data alone,
the decision of using ARIMA models or linear state-space models is not critical.
Both model representations have pros and cons. The objective of data analysis,
substantive issues, and experience all play a role in choosing a statistical model.

Example 11.1. To illustrate the ideas of the state-space model and Kalman
filter, we consider the intradaily realized volatility of Alcoa stock from January 2,
2003 to May 7, 2004 for 340 observations. The daily realized volatility used is
the sum of squares of intraday 10-minute log returns measured in percentage. No
overnight returns or the first 10-minute intraday returns are used. See Chapter 3 for
more information about realized volatility. The series used in the demonstration is
the logarithm of the daily realized volatility.

Figure 11.1 shows the time plot of the logarithms of the realized volatility
of Alcoa stock from January 2, 2003 to May 7, 2004. The transactions data are
obtained from the TAQ database of the NYSE. [f ARIMA models are entertained,
we obtain an ARIMA(0,1,1) model

(I ~B)y, = (1~ 0.855B)a,, 6, = 0.5184, (11.4)

where y, is the log realized volatility, and the standard error of 6 is 0.029. The resid-
uals show Q(12) = 12.4 with p-value 0.33, indicating that there is no significant
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Figare 11.1. Time plot of the logarithms of intradaily realized volatility of Alcoa stock from January 2,
2003 to May 7, 2004. The realized volatility is computed from the intraday 10-minute log returns
measured in percentage.

serial correlation in the residuals, Similarly, the squared residuals give Q(12) =8.2
with p-value 0.77, suggesting no ARCH effects in the series,

Since § is positive, we can transform the ARIMA(0,1,1) model into a local
trend model in Egs. (11.1) and (11.2). The maximum likelihood estimates of the
two parameters are 3 = 0.0735 and &, = (0.4803. The measurement errors have a
larger variance than the state innovations, confirming that intraday high-frequency
returns are subject to measurement errors, Details of estimation will be discussed
in Section 11.1.7. Here we treat the two estimates as given and use the model to
demeonstrate application of the Kalman filter.

11.1.1 Statistical Inference

Return to the state-space model in Egs. (11.1) and (11.2). The aim of the analysis
is to infer properties of the state #y from the data {y,|r = 1, . .. » T} and the model.
Three types of inference are commonly discussed in the literature. They are filtering,
prediction, and smoothing. Let F, = {y,, ..., ¥:} be the information available at
time ¢ (inclusive) and assume that the model is known, including all parameters.
The three types of inference can briefly be described as follows:

* Filtering. Filtering means to recover the state variable 11, given F,, that is,
to remove the measurement errors from the data.
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* Prediction. Prediction means to forecast ju,., or Yen for b > 0 given F,,
where ¢ is the forecast origin.

» Smoothing . Smoothing is to estimate i, given Fr, where T > ¢,

A simple analogy of the three types of inference is reading a handwritten note,
Filtering is figuring out the word you are reading based on knowledge accumulated
from the beginning of the note, predicting is to guess the next word, and smoothing
is deciphering a particular word once you have read through the note.

To describe the inference more precisely, we introduce some notation. Let
Moy = E(u |F;) and Ty = Var(ju,|F;) be, respectively, the conditional mean and
variance of i, given F;. Similarly, Vi1 denotes the conditional mean of Vi given
F;. Furthermore, let Ur = Y+ = Yrr—1 and V, = Var(v,|F,_|) be the I-step ahead
forecast error and its variance of y, given F,_|. Note that the forecast error vy IS
independent of Fi .y so that the conditional variance is the same as the unconditional
variance; that s, Var(v,|F,_;) = Var(v;). From Eq. (11.1),

Y=t = E(y|Fi_y) = E(u, + elF_y) = E(uF.)) = Mrjr—1-

Consequently,
Ur 2= 30 = V=1 = Y~ Lgpry (11.5)

and
V, = Var(y, — M-y Fioy) = Var(u, + e — M1 Fr-y)

= Varlu = e F-) + Var(el Froy) = Sy + 02 (116)

It is also easy to see that

E(v) = E[E(v|F,-1)) = E[E(y, — Y=t E-1 = Elygoy — y_y] = 0,
Covive, yj) = E(v,y;) = ElE(vy;|F_)] = Ely;E(ulF_)]=0, j <t

Thus, as expected, the I-step ahead forecast error is uncorrelated (hence, indepen-
dent) with yiforj <t Furthermore, for the linear model in Egs. (11.1) and (11.2),
Mo = E(u | Fr) = E(u,|F_y, v,) and Lo = Var(u | Fy) = Var(u, | F,_y, v,). In
other words, the information set F; can be written as Fo={F_i, v = {Fi—1, v}

The following properties of multivariate normal distribution are useful in study-
ing the Kalman filter under normality. They can be shown via the multivariate linear
regression method or factorization of the Joint density. See, also, Appendix B of
Chapter 8. For random vectors w and m, denote the mean vectors and covariance
matrix as E(w) = g, E(m) = u,, and Cov(m, w) = X, respectively.

Theorem 11.1. Suppose that x, y, and 7z are three random vectors such that
their joint distribution is multivariate normal. In addition, assume that the diagonal
block covariance matrix Yo is nonsingular for w = x, Y.z, and Xy = 0. Then,

L EGely) =, + Zu 55y — ).
2. <E.A.H:~v = M\Q - M\i Mﬂ,_ M.ﬁ.

W s s
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3 Bxly.2) = ECx|y) + 237z - pr,).
4. Var(x|y, z) = Var(x|y) — 2. Mmgc;

11.1.2  Kalman Filter

The goal of the Kalman Jilter is to update knowledge of the state variable recur-
sively when a new data point becomes available. That is, knowing the conditional
distribution of 1, given Fi—1 and the new data Y, we would like to obtain the
conditional distribution of M given F,, where, as before, F; = [y, ..., ¥;}. Since
Fo={F_y,v]), giving y, and Fi_| is equivalent to giving v, and F,_,. Conse-
quently, to derive the Kalman filter, it suffices to consider the joint conditional
distribution of (,, v;)" given F,_| before applying Theorem 11.1.

The conditional distribution of v given F,_y is normal with mean zero and
variance given in Eg. (11.6), and that of My given F,_y is also normal with mean
-1 and variance St Furthermore, the Jjoint distribution of (#te, v) given
Fi_y is also normal. Thus, what Temains to be solved is the conditional covariance
between 1, and v, given F;_,. From the definition,

Covips, vilFio1) = E(uov,|F_y) = Elps (e = -0l Fiy] (by Eq.(11.5))
Elplpe + e — pye D F_ )

= Elu(p, - Mo F ]+ E(ure|Fy)

El(ps — poy— 1)1 F_y] = VarGul Fio) = Tymy, (11,7

If

i

where we have used the fact that Elpty -1 (g =~ My F 1= 0. Putting the
results together, we have

\.3 22 , \L%L M%i_ M:T_
U 0 ' M%l_ Vi
Fiog

By Theorem 11.1, the conditional distribution of , given F; is normal with mean
and variance

>3 -y .
Hepp = Myjpeq + :w\ L= Hrpr—1 + K, vy, (11.8)
t
M%:l_
M% = M%L h i)«\]. = MU:T.: - NA.?V. (1 ~.©v
'

where K, = Zi—1/V, s commonly referred to as the Kahman gain, which is the
regression coefficient of 1, on vr. From Eq. (11.8), Kalman gain is the factor that
governs the contribution of the new shock v, to the state variable u,.

Next, one can make use of the knowledge of 44, given F, to predict iyt Via
Eq. (11.2). Specifically, we have

Hoip = E(uy + 0| F)) = E(u,|F) = Lyt (11.10)
oo = Var(u | Fy) = Var(u, | Fy) + Var(n,) = Ly + sz. (r.ih
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Once the new data Yr+1 is observed, one can repeat the above procedure to
update knowledge of s,,,. This is the famous Kalman filter algorithm proposed
by Kalman (1960).

In summary, putting Egs. (11.5)-(11.1D) together and conditioning on the initial
assumption that 4, is distributed as N (40, i), the Kalman filter for the local
trend model is as follows:

Ur = Yr = Uyt
V=i + 02,
Ki =X/ V, (11.12)

Hittpe = ey + Kpvy,
Lotip =Zy (1~ K,) +Q~w. t=1,...,T.

There are many ways to derive the Kalman filter, We use Theorem 11.1, which
describes some properties of multivariate normal distribution, for its simplicity. In
practice, the choice of initial values Ty and p 1jo Tequires some attention and we
shall discuss it later in Section 11.1.6. For the local trend model in Eqgs. (11.1) and
(11.2), the two parameters 9. and o, can be estimated via the maximum likelihood
method. Again, the Kalman filter is useful in evaluating the likelihood function of
the data in estimation. We shall discuss estimation in Section 11.1.7.

Example 11.1 {Continued). To illustrate application of the Kalman filter, we
use the fitted state-space model for daily realized volatility of Alcoa stock returns
and apply the Kalman filter algorithm to the data with 310 = 00 and Ko = 0.
The choice of these initial values will be discussed in Section 11.1.6. Figure 11.2a
shows the time plot of the filtered state variable 1, and Figure 11.2b is the time
plot of the 1-step ahead forecast error v;. Compared with Figure 11.1, the filtered
states are smoother. The forecast errors appear to be stable and center around zero,
These forecast errors are out-of-sample 1-step ahead prediction errors.

11.1.3  Properties of Forecast Error

The one-step ahead forecast errors {v;} are useful in many applications, hence
it pays to study carefully their properties. Given the initial values X, jo and 1y,
which are independent of r, the Kalman filter enables us to compute v, recursively
as a linear function of {vi, ..., w) Specifically, by repeated substitutions,

U =y — Uiy,

|

V2 =52 = fay = yo — g — Ky (y; — Hipo).
Us = Y3~ Hag = y3 =y~ Koy, — Hipp) — K (1 = Ky (y; — Hij0),

|

and so on. This transformation can be written in matrix form as

v=K(y — puoly), (11.13)

e

Friste b

= ‘-:. B

A

v '.'!--h

Bond

Bt - o
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Figure 11.2. Time plots of output of the Kalman filter applied to the daily realized log volatility of
Alcoa stock based on the local trend state-space model: (a) the filtered state e and (b) the one-step
ahead forecast error [

where v = (v, ..., vr)Y, y=(y, ..., yr), 1r is the T-dimensional vector of
ones, and K is a lower triangular matrix defined as

I 0 0 -..¢

kyi 10 ...
K=k kp 1 0

kri kra ks oo

where \Q;.t_ = l\ﬁ.l_ and \Ac = 'A— - \ﬂmlhv: = \ﬂ\lwv 000 : — Nﬂ\..:v\ﬂ\. fori =
2. Tand j=1,...  ;i—2 It should be noted that, from the definition, the
Kalman gain K, does not depend on Kyg or the data {v,, ..., v )i it depends on

Zyp and 07 and o2.
The transformation in Eq. (11.13) has several important implications. First, {v;}
are mutually independent under the normality assumption. To show this, consider

the joint probability density function of the data

T
PO Ve = pOy) : PYIE; ).
J==2
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Equation (1 1.13) indicates that the transformation from Y1 to v, has a unit Jacobian
$o that p(v) == p(y). Furthermore, since Mip 1S given, p(v) = p(v)). Conse-
quently, the joint probability density function of vis

T T T
P) = p(y) = p(y)) : POVIF 1) = p(uy) :Ei = :ESV.
J =

=2

This shows thar {v:} are mutually independent.

Second, the Kalman filter provides a Cholesky decomposition of the covariance -

matrix of y. To see this, let = Cov(y). Equation (11.13) shows that Cov(v) =
KQK’'. On the other hand, {v,} are mutually independent with Var(v,;) = V,. There-
fore, KQK’ = diag{Vy, ..., V;}, which is precisely a Cholesky decomposition of
. The elements ky of the matrix K thus have some nice interpretations; see
Chapter 10.

State Error Recursion
Turn to the estimation error of the state variable #¢. Define

X =l = g

as the forecast error of the state variable I, given data F_y. From Section 11.1.1,
Var(x,|Fi_)) = Y-y From the Kalman filter in Eq. (| 1.12),

Ve =¥ = My = [ty + e, — Hepp—t = x, + ¢,

and
X+l = fypf — Heviy = e + 0 — A.::T._ + Kv,)
=X b - Kouo=x, 4+ M= Ki(x, +e) = Lix, +n — Ke,,
where Ly =1~ j, =] _ e/ V, =V, = Ly-)/ Vi = a2/ v, Consequently,

for the state errors, we have
Vi =Xcte, Xy o= Lix, m—Ke, t=1, LT, (11.14)

where x| = u; — 1. Equation (11.14) is in the form of a :Baém&;:m state-space
model with x, being the state variable and v, the observation.

11.1.4 State Smoothing

Next we consider the estimation of the state variables {u,, . .., K7} given the data
Fr and the model. That is, given the state-space model in Egs. (11.1) and (11.2),
we wish to obtain the conditional distribution He|Fr for all . To this end, we first
recall some facts available about the model:

* All distributions involved are normal so that we can write the conditional
distribution of 1, given Fy as N{uyr, Z,7), where 1 =< T. We refer to 7
as the smoothed state at time ¢ and 7 as the smoothed state variance.

T

S e g

e

R
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* Based on the properties of {v,} shown in Section TLL3, {v, ..., U} are
mutually independent and are linear functions of noovr)
* Wy, ...y are fixed, then Fr_) and {v,, <<+, ur} are fixed, and vice versa.
e {v,..., vr} are independent of Fi_ with mean Zero and variance <E€\v =
V, for j >+

Applying Theorem HL13) to the conditional joint distribution of (. vy,
vr) given F;_;, we have

ceey

Moyt = E(u,|Fr) = EGulF_) v, ..., vr)
= EGuIF) + Coviy,, (v, . ... gix_noi@::;ci\_';s::.ci\

’ -1

Coviu,, v,) Vi 0 ... ¢ v,
Ooi\x? Vrgp) 0 Vier -+ 0 Vrgy
= My~ + : ” : : .
QO«AE? vr) 0 0o ... Vo vr
T
= -1 + ) Cov(p,, vV, (11.15)
J=t

From the definition and independence of {v:), Cov(y,, v;) = Cov(x,, v;) for j =
t,...,T, and

Covix, v) = Elx(x, + e)] = Var(x,) = Zhe-t,
Cov(x,, Vppy) = MTSC«?I +e )l = MTDANZQ + 1 — Kie)] = ZhiciLy.

Similarly, we have

Cov(x,, Vpp2) = MTQA.«TI teg)]=.. = M%i.hNhTI.
T-1
Covlxr,vr) = Elgar +e)) = .. = 5, [Tes.
J=t
Oc:mmncw::%, Eq. (11.15) becomes
v v, /%]
Mt = ey + M:T_ — + M:TT?:B + M%l_h\h?i 2 SOELE
v Vit Vis2
= M1+ Zhoiqy,
where
v, v, v - v
t r+1 +2 T .
-t=—+L-""4r [ R L} — (I1l.16)
R A m v
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is a weighted linear combination of the innovations {v,, ..., vr}. This weighted
sum satisfies

T—1
Uy Vri Vr42 vr
=L 2y ct L] —
- S e <I._ e <l.m+ : / <ﬂ
Jj=t+1
Uy
= — 4 L,q,.
v, + Liq,

Therefore, using the initial value qr = 0, we have the backward recursion
Uy

+Lig, t=T,T~1,.. . 1. a11mn
Vi

g1 =

Putting Egs. (11.15)(11.17) together, we have a backward recursive algorithm to
compute the smoothed state variables:

Gy =V, ly, +Lig pr = ey + De-igro, t=T,...,1, (11.18)

where g7 = 0, and Mir—1, Zy—y and L, are available from the Kalman filter in

Eq. (11.12).

Smoothed State Variance
The variance of the smoothed state variable u,7 can be derived in a similar manner
via Theorem 11.1(4). Specifically, letting ew = (v, ..., vr), we have

Lor = Var(u, | Fr) = Var(u,|F,_y, v,, . .. , Ur)

= Var(u; | Fi—1) = Covl,, (v )'JCov[(8T )]~ Cov[u,, ]

T
= T = 3 [Covius, v) PV}, (11.19)

J=t

where Cov(y,, v;) = Cov(x,, v;) are given earlier after Eq. (11.15). Thus,

T-1
Tor = Sy — MW_T:W - MMIRMW - m % W
=Ty - B M, (11.20)
where
1 2 1 272 1 = 2 1
§Lu.ﬂ+?ﬂ+h}tﬂw+:.+ mr =

is a weighted linear combination of the inverses of variances of the l-step ahead
forecast errors after time ¢ — 1. Let M7 = 0 because no 1-step ahead forecast error

—— S I T B
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is available after time index T The statistic M, _{ can be written as

1 1 I el 1
Mo =—+L2—— 42 — L) —
' Vi T i T Ty E ) vr
J=r4d
1 5
Hﬂ+hl§. t=T,T—1,....1.
t

Note that from the independence of {v/} and Eq. (1 1.16), we have

1 1 .
<s§|:uﬂ+hwwf_+:.+ [z v = Mot
! 1+ .

Je=t

Combining the results, variances of the smoothed state variables can be computed
efficiently via the backward recursion

M=V 4 LM, 5 = B —El My, 1=T,.. 1, (11.21)
where M7 = (.

Example 11.1 (Continued). Applying the Kalman filter and state-smoothing
algorithms in Egs. (11.18) and (11.21) to the daily realized volatility of Alcoa stock
using the fitted state-space model, we can easily compute the filtered state s and
the smoothed state i, r and their variances. Figure 11.3 shows the filtered state
variable and its 95% pointwise confidence interval, whereas Figure 11.4 provides
the time plot of smoothed state variable and its 95% pointwise confidence interval.
As expected, the smoothed state variables are smoother than the filtered state vari-
ables. The confidence intervals for the smoothed state variables are also narrower
than those of the filtered state variables. Note that the width of the 95% confidence
interval of 1)1 depends on the initial value & 1j0-

11.1.5 Missing Values

An advantage of the state-space model is in handling missing values. Suppose

that the observations { Sﬁwﬁ are missing, where 4 > 1 and | <€ < T. There

are several ways to handle missing values in State-space formulation. Here we

discuss a method that keeps the original time scale and model form. For 1 € {¢ +

l,....¢ +_3, we can use Eq. (11.2) to express 1, as a linear combination of 77
-

and {n;}'_,, . Specifically,

11
o = ey + 1y == gy + M nj
J=t+1
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Figure 11.3. Filieyog state variable /1., and s 95% pointwise confidence interval for the daily log
realized volatility of Aleopa stock returns based an the fitted locaj trend state-space model,
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Figure 11.4, Smoothed state variable Hur and its 95% pointwise confidence interval for the daily log
realized volatility of Ajcoa stock returns based on the fitted local trend state-space mode.

LOCAL TREND MODEL 503

where it is understood that the summation term is zero if its lower limit is greater
than its upper limit. Therefore, for ; ¢ fe+1,... ¢+ h},
EGulFio1) = E(u|F,) = Moy,
Var(u | Fo_y) = Var(u, | Fy) = Zettjp + (1 =€~ Do,

Consequently, we have

4

Hrjr—1 = Hie—lje-2, MN:I_ = MT.:T.N + Q:r‘ (11.22)
fort=¢+2, . <+ €+ h. These results show that we can continue to apply the
Kalman filter algorithm in Eq. (11.12) by taking v, = 0 and Ki=0fort=1¢1
Lo €+ h This is rather natural because when y, is missing, there is no new
innovation or new Kalman gain so that v, = 0 and K, =0.

11.1.6  Effect of Initialization

In this subsection, we consider the effects of initial condition M1~ N, i)
on the Kalman fiter and state smoothing. From the Kalman filter in Eq. (11,12,

M to+.M€S Mo + Z1o e~ pygn)
21 =y UL = YU ),
_ ~ Vi : Zio + o2 !
Zio 2 Zyjo 2, 2
Dypp=% (1~ +of = of + o2,
_ ! M:O+Qmm U M:o:TQM € 4
Therefore, letting o increase to infinity, we have Mo =y and Iy = Qm + QNW.

This is equivalent to treating v as fixed and assuming f¢) ~ Ny, va. In the lit-
erature, this approach to initializing the Kalman filter is called diffuse initialization
because a very large T, means one is uncertain about the injtia condition,
Next, turn to the effect of diffuse initialization on state smoothing. It is obvious
that based on the results of Kalman filtering, state smoothing is not affectad by
the diffuse initialization for t = T,...,2. Thus, we focus on given Fy. From
Eq. (11.18) and the definition of £, — | Ki=v o2

Hur = pp + Zieqo

q1

&
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Letting X9 — 0o, we have M = o + vp + 0lq) = y, +02q). Furthermore,
from Eq. (11.21) and using V; = X9 + o2, we have

2
M:oIMN I +A~‘ MU:o v M,
S +a? o + 02

Zio v A Zijo vw 3
3 1 - - {1 - XioM
:DA M:c.Ta.mN M:o.TQ«M et

o 2 A Zij0 vw 4
gl — o, M;.
AM:O +a2/) ¢ Zyo+0? e ™t

Thus, letting Zijo — 00, we obtain o= Qm ~ QM\S_.

Based on the prior discussion, we suggest using diffuse initialization when little
is known about the injtial value u;. However, it might be hard to justify the use
of a random variable with infinite variance in real applications. If necessary, one
can treat u; as an additional parameter of the state-space model and estimate it
Jointly with other parameters. This latter approach is closely related to the exact
maximum likelihood estimation of Chapters 2 and 8,

Znr

i

i

I

11.1.7 Estimation

in Section 11.1.3, the Kalman filter provides an efficient way to evaluate the likeli-
normality is

T
PO - y1lo0 00) = poilor, o) [T By, o, )

=2

T
=rWiloe, o) [TwlF_y, 0, 0,),

1=2

where y, ~ 29:9 V1) and v, = (y, — Heje~1) ~ N(O, V). Oo:mm@:mzzvn assum-
ing u 1o and Xy are known, and taking the logarithms, we have

ﬂ N
_=Eqw§:n :w Ewix WMU ?Ev + w.v (11.23)
t

=1

which involves v, and V. Therefore, the log likelihood function, including cases
with missing values, can be evaluated recursively via the Kalman filter. Many soft-
ware packages perform state-space model estimation via a Kalman filter algorithm
such as Matlab, RATS, and S-Plus. In this chapter, we use the SsfPack program

LOCAL TREND MODEL

Table 11.1. State-Space Form and
Notation in S-Plug

—_—

State-Space Parameter S-Plus Name
—_— T
'} mDelta

L mPhi

Q mCmega

X mSigma

/

Table 11.2. Some Commands of SsfPack Package
Command Function

SsfFit Maximum likelihood estimation
Checkssf Create * ‘Sgf object in S-Plus
KalmanfFil Perform Kalman filtering
KalmanSmo Perform state smoothing
SsfMomentEst with task ' STFIL’ ¢ Compute filtered state and variance
SsfMomentEst with task *° STSMO’ Compute smoothed state and variance

SsfCondDens with task * *STSMO’

Compute smoothed state without variance

11.1.8 S-Plus Commands Used

We provide here the SsfPack commands used to perform analysis of the daily
realized volatility of Alcoa stock returns. Only brief explanations are given. For
further details of the commands used, see Durbin and Koopman (2001, Section 6.6).
S-Plus uses specific notation to specify a state-space model; see Table 11.1. The
notation must be followed closely. In Table 11.2, we give some commands and
their functions,

In our analysis, we first perform maximum likelihood estimation of the state-
space model in Egs. (11.1) and (11.2) to obtain estimates of g, and 0. The initial
values used are X0 = ~1and Mo = 0, where “—{” signifies diffuse initialization,
that is, £y is very large. We then treat the fitted model as given to perform Kalman
tiltering and state smoothing.

SsfPack and S-Plug Commands for State-Space Model
> da = SmnwwxAmomzamwwmn.mmnuafouo».nxn\v\wv % load data
> Y = log(da{l,]) % log (RV)

> wna.mﬁmwnnoa\wv % Initial barameter values
> Pl = -1 % Initialization of Kalman filter
> al = 0

> Hwa.anmcnonwomamual % Specify a function for the
+ mwmam.mnmuvm»\a:u % local trend model.
+ sigma.e=parm[2]
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+ mmm.anppmnAEMEHumm.SmnMMxAOAH\HVV\

+ aoamwmnaumonAmwmsm.mmm>m~mH@3m.m>wvv\

+ amwmamumm.ammwwxﬁnAMH\mHVVv

+ Odmowmmmﬂmmm.av

+ )

% perform estimation

> Hma,awmnmmmmunAHnB,mann\<~=Hn5.a:\wo€mwquo~ov‘

+ upper=c 100, 100) )

> Hna.SHmm@mHmsmnmwm

[1] 0.07350827 0.48026284
> mnmam.mwmnwna.awmmmmwmamnmwhpu
> sigma.etgy
{11 0.07350827
> mwmam.muwna.apmmbwwmamnmwmﬁmu
> sigma.e
[1] 0.4802628
¥ Specify a state-space mode] in S-plus.
> mmm.pns.wumnuwwmnAaw:Mnmm.amanonAHNHvv\
+ BoammmnaummAoAmwmam.mnm>w\mumam.m> I
+ Smwmamnmm.EmnNMonAmH\mHVvv
% check validity of the Specified model.
> mmm‘wnann:moxmmmAmmm.wna.ppmnv
> 8sf.1tm
SmPhi ;

[.1]
(1,1 1
[2,] 1
$mimega :

[,1)] 2]

[1,] 0.0054035 0.0000000
[2,] 0.0000000 0.2306524
smSigma:

[.1]
(1,3 =l
[2,1 0
SmDelta -

[,1]
(1,1 0
[2,1 0
$mIPh] ;
[11 o
$mIOmega :
{11 o
SmIDelta
[11 o
$mX :
[1] o
ScT:
{11 o
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ScX:
{11 o

fob'a

[1] 1

ScSt

{11 1

attr(, "class"):

[1] nss£r

% Apply Kalman filter

> mmpawdwww‘wnanmmwsmsmwwA<~mmm.una\nmmxu=memHh=v
> Bwammﬂxmwam:mHH.Hnav

{11 "moutw "innov" "std.innovn "mGain" "logliken
[6] "loglike.concn "dVar" rmEgtw "mOf£PH mtggkv
(111 rery» "call®

> par(mfcol=c(z,1)) % Obtain plot

> UwonAH"w»o\mmwamdeH.HnamammnH\Hg\kaUu~Qm%\‘
+ ylab=’filtered state’, type='1/)

> n»npmﬁamwdu~Amv Filtered state variable’)

> UHOnAHnw»o\NwHSmBmHH.HnEmBOCmm\Hw~meUu\Qm<-
+<5?ﬁ<?vfnﬁ5lwi

> nwnwmﬁamwbu~ﬁuv Prediction error’)

% Obtain residuals and their varianceg

> waambmao.HmauwmwamdeoAmeamdmuw,Hnaxmmm.wﬁav
> mmSmmAWmHBmdeo.Hnav

[1] "state.residualg" "response.residuals" "state.variance®
[4] "response.variancen "aux.residualg" "scoreg"
[71 "calan

% Next, filtered states

> WHHQOmn,HnaummmzoamSWanA<\mmm.wna‘mwmxn=MHme=v

> names (FiledEst.ltm)

(1] "state.moment" "state.variance" "response . moment "
{4] "response.variance" "task"

% Smoothed stateg

> msommmmn,HmsummmzoambnmmnA%\mmm,pma\nmmw“=mﬂm20:v

> names (SmoedEst . ltm)

[11 "state.momentr "state.variance" "response .moment "
[4] "response.variancen "task"

% Obtain plots of filtered and smoothed states with 95% C.I.
> CﬁanHQOmn.HnSmmnmnm.aoambn +

+ w*mawnAwwwmammn.Hnammnmnm.<mwwmbomv
HSanHQOmn.pnammnmnm.aoamSn -
m;m@ﬁmAwHHmummn.Hwammnmnm.<wﬁwmbomv

ﬁmHAEmnOHquH~HVV
wMOnAHnwpo.MHHmQMmm‘Hnammnmnm.aoamSn\n%ﬁmu\HN\meUu~Qm<"
%wmvu\<mwcm~‘%HMEHOA-O‘H_M.mVv

stmmﬂpnu»o\cv~wn%nmv

szmmﬁw“u»o~wzan<nmv

title (main='Filed state variable’)
c@umEOmQan.Hnammnmwm.aoamsn +

VVVV+V\/+V
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+  2¥sqrt (SmoedEst . ltm$state. variance) N(myj0. Z1j0), where Ky and Xy are given, and is independent of ¢; and », for
> lw=SmoedEgt . ltm$state.moment - ) t > 0.
+  2*sqgrt( mSOmammn.Hnammnmnm;\mﬁmsomv Equation (11.25) is the measurement or observation equation that relates the
> plot 2,uuxo\msomamHmn.pnsmmnmnm.aosmun\ﬁﬁmu,H\ +xlab=‘day’, vector of observations y, to the state vector St, the explanatory variable ¢,, and
+ ylab='value’,ylim=ci-g.1 ,2.5)) the measurement error ¢;. Equation (1 1.24) is the state or Iransition equation that
g stmm (1:340,up, 1ry=2) , describes a first-order Markov chain to govern the state transition with innovation
> pw:mmﬁnw»oLan%nmv . ] 1,. The matrices T,, R, Q,, Z, and H, are known and referred to as system
> npnwmﬁamwdu\maoonbma state variable’) T . i .
% Model checking ; matrices. These matrices are wmms sparse, and .53\ can vo functions of some
> resi=KalmanFil.ltm$mout [,1]*sqgrt (KalmanFi] ltm$mout [, 3]) ; parameters 8, which can be estimated by the maximum __wm:rowa Eﬂroﬁ_.
> archTest (resi) The state-space model in Egs. (11.24) and (11.25) can be rewritten in a compact
> autocorTest (resi) 3 form as

For the daily realized volatility of Alcoa stock returns, the fitted local trend ; aw.t =8+ s +u, (11.26)
model is adequate based on residual analysis, Specifically, given the parameter !
estimates, we use the Kalman filter to obtain the 1-step ahead forecast error where
vr and its variance Vi. We then compute the standardized forecast error U =
v /+/V; and check the serial correlations and ARCH effects of {¥;}. We found that d, & — T, _ | Ry,
Q(25) = 23.37(0.56) for the standardized forecast errors and the LM test statis- S ¢ |’ Tz |0 W= e |’
tic for ARCH effect is 18.48(0.82) for 25 lags, where the number in parentheses
denotes p-valye. and {u,} is a sequence of Gaussian white noises with mean zero and covariance

matrix
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. & ?; = Cov(u,) = 0 H,
We now consider the general state-space model. Many dynamic time series models . L . .
in economics and finance can be represented in state-space form. Examples include ; The case of diffuse initialization 15 achieved by using
the ARIMA models, dynamic linear models with unobserved components, time-

. . . . . M:o”M*.TPMo?

varying regression models, and stochastic volatility models. A general Gaussian

linear state-space mode] assumes the form ' . ... . 5 .
P 3 where X, and X, are m x m Symmetric positive-definite matrices and 3 1s a large

. P K i
Srvt=d, + T,s, + R, N (11.24) real number, which can approach infinity. In S-Plus and SsfPack, the notation
Yi=¢+Zis +e, 125 2 5 _ [ Zuo
) ) ] ) : \h\:o (m+1)xm
where s, = (5, ..., Smr)’ is an m-dimensional state vector, y, = (yy,, ... v V) is a &
k-dimensional observation vector, d; and ¢, are m- and k-dimensional deterministic .u, is used; see the notation in Table 11.1.

vectors, T, and 7, are m x m and k x m coefficient matrices, R, isanm x n matrix i
often consisting of a subset of columns of the m x m identity matrix, and {n,} and
{e;} are n- and k-dimensional Gaussian white noise series such that

In many applications, the System matrices are time-invariant, However, these
matrices can be time-varying, making the state-space model flexible.

1~ N©O.Q), e ~N®O H,, 11.3 MODEL TRANSFORMATION

where Q, and H 1 are positive-definite matrices, We assume that {e/} and { n,} are
independent, but this condition can be relaxed if necessary. The initial state s, is

To appreciate the flexibility of the state-space model, we rewrite some well-known
€conometric and financial models in State-space form.
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11.3.1 CAPM with Time-Varying Coefficients

First, consider the capital asset pricing model (CAPM) with time-varying intercept
and slope. The model is

=t By, +e, e ~ N(O, Qwv.
Gl =0, ~ N, o), (11.27)
Brsi

il

Bite e ~N@O 2,

where r, is the excess return of an asset, rym. 1s the excess return of the market,
and the innovations {er.nr, €} are mutually independent. This CAPM allows for

time-varying « and B that evolve as a random walk over time. We can easily
rewrite the model as

Gy | 11O a, L m
Brs1 01 ][4 € |’

f

Il

ri

:.\R,L B +e;.

Thus, the time-varying CAPM is a special case of the State-space model with s, =
(e, B;Y. T, =R, = I,,the 2 x 2 identity matrix, d: =0, ¢ =0, Z, = (1, ry),
H =07, and Q, = diag{o?, o2}, Furthermore, in the form of Eq. (11.26), we
have 8, = 0, u, = (o€ e,),

Q
&)

I 0
b =10 1 , R =
I ra,

o
o, o
"qlu < o

It diffuse initialization is used, then

-1 0
Y= 0 -1
0 o0

SsfPack/S-Plus Specification of Time- Varying Models

For the CAPM in Eq. (11.27), &, contains ra.:, which is time-varying. Some
special input is required to specify such a model in SsfPack. Basically, it requires
two additional variables: (a) a data matrix X that stores Z, and (b) an index matrix
for ®, that identifies Z; from the data matrix. The notation for index matrices of
the state-space model in Eq. (11.26) is given in Table 11.3. Note that the matrix
J ¢ must have the same dimension as ®,. The elements of J4 are all set to “—17
except the elements for which the corresponding elements of @, are time-varying,
The non-negative index value of J¢ indicates the column of the data matrix X,
which contains the time-varying values,
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Table 11.3. Notation and Name Used in SsfPack/S-Plus for
Time-Varying State-Space Model

In

dex Matrix Name Used in SsfPack/S-Plus
v
Js wIDelta
Jo mJIPhi
Ja mJOmega

. . . .
Time-Varying Data Matrix Name Used in S5fPuck/S-Plus
TV e
X mX

excess return of the S&P 500 composite index is used as the market return. The

specification of a time-varying CAPM requires values of the variances QQN. o2, and

o2, Suppose that (0, 0c, 0,) = (0.02. 0.04,0.1). The state-space specification for
the CAPM under SsfPack/S-Plus is given below:

> X.mtx=cbind(1,sp) % Here 'Sp’ is the market excess returns.
> Phi.t = wauQAawwmﬁmv\HmUAo\va
> Sigma=-Phi.t
> sigma.eta=,02
> sigma.ep=.04
> sigma.e=.1
> OammmnaumonAmwmam.mnm>m\mwmam.m@>m\mwmam.m>mvv
> JPhi = matrix(-1,3,2) % Create a 3-by-2 matrix of -1,
> JPhi[3,1]=1
> JPhi[3,2]=2
> mmm.n<‘owwauwwmnAawdwuwsw‘m\
+ mOmega=Omega,
+ mJPhi=JPhi,
+ amwmamnmwmam\
+ mX=X.mtx)
> ssf.tv.capm
$mPhi

0,11 1,2]
[1,] 1 0
[2,] 0 1
(3,1 0 0
$mOmega :

[,11] [.21 1,3}

1,1 4e-04 0.0000 0.09
{2,] 0e+00 0.0016 0.00
[3,1 0e+00 0.0000 0.01
$mJPhi ;

1) (21
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{1,1] -1 -1
[2,] -1 -1

(3,1 1 2

SmSigma:

i1t .21

{1,] -1 o}

[2,] 0 -1

{3,1] 0 0

smx
numeric matrix: 168 rows, 2 columns.

sp

[1,1 1 -0.075187

{168,] 1 c¢.o5002

11.3.2 ARMA Models
Consider a zero-mean ARMA(p, ¢) process ¥ of Chapter 2,

By =6(B)a;, a, ~ N(©,5?), (11.28)

where ¢(B) = | — P 9B and 0By =1 - wu_ 6;B/, and p and ¢ are non-
negative integers. There are many ways to transform such an ARMA model into
a state-space form. We discuss three methods available in the literature. Let m —
max(p, g + 1) and rewrite the ARMA model in Eq. (11.28) as

m—1

m
Y= MU%CcL +a — M%\,Sl\., (11.29)
j=1

i=1
where ¢; = 0 forj > pand6; =0for j > q. In particular, 8,, = 0 because m ~ q.

Akaike’s Approach

Akaike (1975) defines the state vector 5, as the minimum collection of variables
that contains all the information needed to produce forecasts at the forecast origin
t. It turns out that, for the ARMA process in Eq. (11.28) with m = max(p, g + 1),
St = Yy, Yettft ooy vfl:l_:v\. where Vet ji = MC\TT.\._MC is the conditional
expectation of Yi+j given Fy = {y, ..., ¥}. Since Yrjr = yy, the first element of s,
is y;. Thus, the observation equation is

v = 2Zs;, (11.30)
where Z = (1,0, ..., 0)1xm. We derive the transition equation in several steps.
First, from the definition,

SLitl = Ver = Yegip + it = Yegay) = so, +darq, (11.31)
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where s;; is the ith element of §:. Next, consider the MA representation of ARMA
models given in Chapter 2. That is,

oo
Y=a+vyia_y+ya 5+ .. = MU Yia,_;,
i=0

where ¥y = | and other -weights can be obtained by equating coefficients of B
inl+3% B = 6(B)/¢(B). In particular, we have

Vi =g -6,

Vo =1y + ¢y — 65,

ﬂ\\SI_ = Q_ﬁilm + $Nw\\3)u SRR ﬁEINN\\_ + Ot — %:.l_
-1

= MQZ\\SI_i. ~Um—1. (11.32)

i=]

Using the MA representation, we have, for Jj >0,

[en]
Yit+jir = MCfJ._m,L =F M§P+TL3
i=0

=Yia+vYia_; + Yjtoa,; + -

and

Yeejirt = EijlFest) = ¥, ja,4 + Viar+ a4

=Y a4 + hEHITR

Thus, for j > 0, we have

Yetiltrl = Yo jyr + Vjqar. (11.33)

This result is referred to as the forecast updating formula of ARMA models. It
provides a simple way to update the forecast from origin ¢ to origin ¢ + | when
Vet becomes available. The new information of y,, is contained in the innovation
41, and the time-t forecast is revised based on this new information with weight
¥j-1 to compute the time-(z + 1) forecast.

Finally, from Eq. (11.29) and using E{a;y;|F,11) = 0 for J > 1, we have

m
Vetmirg1 = Mﬁ@lsl.:t = Oty

i=1
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Taking Eq. (11.33), the prior equation becomes

m—1

Vesmit4l = MU Gi Yeam—ite + Ymim 1) + Y ey ~ hn—1Q1 4.1

i=1

n m—1

= MU&C,::T% + Mﬁ.,\?T_L — Ot Jarsg

i=1 i=]

m
= MA?X.TSI:N + ~\\SI_Q~+T : —w&v

i==|

where the last equality uses Eq. (11.32). Combining Eqs. (11.31), (11.33) for j=
2,....m~—1,and (11.34) together, we have

Vi) 0 1 0 -0 Vi I
Yes2ir41 0 o 1 0 Vittpr Yy
L= : S S I e
Yitm—tr+1 0 0 0 -1 Yidm=21t Y2
Yitmie+1 P Pt Pmoz - P Vitm~ 1z Y1
(11.35)
Thus, the transition equation of Akaike’s approach is
Seet =Ts, + Ry, e~ N0, 02), (11.36)

where 7, = 4,11, and T and R are the coefficient matrices in Eq. (11.35).

Harvey’s Approach

Harvey (1993, Section 4.4) provides a state-space form with an m-dimensional
state vector ., the first element of which is Y1, that is, sy, = y,. The other elements
of s, are obtained recursively. From the ARMA(m, m — 1) model, we have

m m—1
Yyt =1y + Mersti. = M 0iai1—j + aryy
i=2 Jj=1
= sy, + 82t + 1,
—~1 .
where sy = 37 iy — Muwn* BiGre1-j, N = a;41, and as defined earlier

s1; = y;. Focusing on s, ,,;, we have

m m—1
S2,041 = MUQQTBL = M@.Sti
J=t

=2

m—1

m
= ¢y + M Piyisa-i ~ MU 0j@ri2-; ~ B1ary
i=3

j=2
= dosu + 53 + (=67,
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— m X ~1
where 53, = Mw.nu DiVira; — w.nw 8@ ;. Next, considering s3,.,, we have
m m—1
S3rql = M&Q}LL = M Oiary3-;
i=3 f==2
m m—1
= P3ye + M PiVitsoi — MU Ojdra-j + (=),
i=4 j=3
= G351+ 540+ (—0y)y,,
— m y =1 t
where ,Ewal i DiViaa; — pRy 6ja:43-;. Repeating the procedure, we have
_ A ~1
Sy = MU.WE av;fl:l_l, - WNNSL %\.QI.:_:_!\. = Q:..Sr_ - QSI_QT _um:m:v\,
Sor4p = %S.%N - %SI_QIL
= ms1 + AIQSICQT
Putting the prior equations together, we have state-space form
Stet =TS+ Rie, ny ~ N(O, o), (11.37)
Yo =2Zs,, (11.38)
where the System matrices are time-invariant defined as Z = (1,0 Oy,
b L) s
¢ 10...0
$ 01 0 !
T = N s R = I%»
Pm-1 00 -.. | )
m 00 ... 0 -

and d,, ¢,, and H, are all zero. The model in Egs. (11.37) and (11.38) has no
measurement errors. It has an advantage that the AR and MA coefficients are
directly used in the System matrices.

Aoki’s Approach

Aoki (1987, Chapter 4) discusses several ways to convert an ARMA model into 2
ﬁma-mnm.oo form. First, consider the MA model, that is, Yr = 6(B)a,. In this case
we can simply define 5, = (a;q, U—gq+2s ..., ;1) and obtain the State-space form

Ay 01o0-..0 Ay 0
QNIQ.‘.N 0 01 0 SIQJI 0
: =1 + a,
a,_ 000 I a, 0
dy 000...¢ ar_ 1
3ﬂﬁlm‘imex_...:lm:?.ra? (11.39)

Note that, in this particular case, g, appears in both state and measurement equations,
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Next, consider the AR model, that is, ¢(B)z, = ;. Aoki (1987) introduces two

methods. The first method is a straightforward one by defining s, = (C T
to obtain
= pa2 0 1 0 -0 i pti 0
Z—p+3 0 0 1 0 Z—p+2 0
Col=] : S B I P
2142 0 0 0 1 241 0
41 ﬂw &nl_ Pp-2 -+ @ 2t 1
7 =1(0,0,---,0, ls,. (11.40)

The second method defines the state vector in the same way as the first method
except that a, is removed from the last element; that s, St=2z —a;if p=1 and

S¢ = (Zmptts o Ty 2~ ap) if p > L. Simple algebra shows that
Z—p42 0 1 0 -0 Zt—pti 0
U—pa3 0 0 1 0 Zt—p+2 0
: =1 : CoH e
Z 0 o 0 1 Ty 1
FA RS Bl 4 P &m ﬂmL &vyw -y Zr — a4 Py
2=10(0,0,...,0, Ds, +aq,. (114D

Again, a, appears in both transition and measurement equations.
Turn to the ARMA(p, g) model @(B)y, = 0(B)a,. For simplicity, we assume
q < p and introduce an auxiliary variable 7, = {1/¢(B)ia,. Then, we have

@(B)z, =dar, y, =0(B)z,.

Since z, is an AR(p) model, we can use the transition equation in Eq. (11.40)
or Eq. (11.41). If Eq. (11.40) is used, we can use v; = 6#(B)z, to construct the
measurement equation as

Yr = A[%nl_, l%hlu, <=0y, Dy, (11.42)

where it is understood that P>q and 6; =0 for j > q. On the other hand,

if Eq. (11.41) is used as the transition equation, we construct the measurement
equation as

.S”A'mml_,l ﬁluf.l.l%_.:h\ ATQN. :_n«wv

In summary, there are many state-space representations for an ARMA model.
Each representation has its pros and cons. For estimation and forecasting purposes,
one can choose any one of those representations. On the other hand, for a time-
invariant coefficient state-space model in Eqgs. (11.24) and (i 1.25), one can use the
Cayley—~Hamilton theorem to show that the observation y, follows an ARMAGn, m)
model, where m is the dimension of the state vector.

&,ﬂ_‘ i
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SsfPack Command

the AR(1) model

Ye=006y_1+a, a ~ N(0,04%.
The state-space form of the model is

> gsf.arl = Omnmmmwwamﬁmﬂno.m.mwmamno.»v
> ssf.arl
SmPhi:

[,1]
(1,1 0.6
[2,1 1.0
$mOmega :

0,11 1,23
[1,] 0.18 0
[2,1 0.00 ¢]
$mSigma:

{,1]
{1, 0.25
[2,1 0.00

Since the AR(1) model is stationary, the program uses o = Var(y,) = 0.4)?/
(1 =0.6%) = 0.25 and M1)0 = 0. These values appear in the matrix mSigma.
As a second example, consider the ARMA(2,1) model

Vo= 12y =035y +a, - 025y, a ~ N, 1.1%),
The state-space form of the model is

> arma2l.m = mewAmHnoAH.m‘lo.umv\gmnoAlo.mmv\mwmamup.uv
> ssf.armall= OmnmmmwwamAEOQmpnmﬁammp.Ev
> 8s8f.arma2l

$mPhi :

0,11 [,2)
(1,1 1.20 1
(2,1 -0.35 0
[3,1 1.00 ]
$mOmega :

[,1] [.21 [,3]
(1,7 1.2100 -0.302500 0
[2,1 -0.3025 0.075625 o
[3,] 0.0000 0.000000 0
SmSigma:

[,1] 2]
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[1,7 4.060709 -1.4874057
[2,] -1.487406 0.5730818
[3,7 0.000000 0.0000000

As expected, the output shows that

121
T=| o350l 2z=0.0.

and mPhi and nOmega follow the format of Eq. (11.26), and the covariance matrix
of (v, y.—1) is used in mSigma. Note that in SsfPuack, the MA polynomial of
an ARMA model assumes the form 0B)=14+6,B+ ...+ 8, B9, not the form
O(B)y=1-6B—...~ 8, BY commonly used in the literature,

11.3.3 Linear Regression Model

Multiple linear regression models can also be represented in state-space form.
Consider the model]

.5 ”Hﬂm lTN? e ~~ ZAO, vawv,

where x; is a p-dimensional explanatory variable and 8 is a p-dimensional param-
eter vector. Let s, = B for all ¢. Then the model can be written as

S I 0
! = A 5+ ’
Y .ﬂ\ €;

(11.44)

Thus, the system matrices are I, =1, 2 = x,d, =0, ¢, =0, H, =0, and
0, = Qm, Since the state vector is fixed, a diffuse initialization should be used.
One can extend the regression model so that B, is random, say,

Biii =8, + R, e~ N0, 1),

and R, = (oy, .. ., op) witho; > 0. if 0; = 0, then B; is time-invariant.
SsfPack Command

In SsfPack, the command GetSsfReg creates a state-space form for the multiple
linear regression model. The command has an input argument that contains the data
matrix of explanatory variables, To illustrate, consider the simple market model

"e=Pot Burme+e. t=1,... 168,

where r; is the return of an asset and ry , is the market return, for example, the
S&P 500 composite index return. The State-space form can be obtained as
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> mmm.Nm@uomnmmmmmonUMZQAH.mmvv % 'sp’ is market return.
> sgf.reg

SmPhi:
[,11 [,21
[1,] 1 0
[2,1 0 1
[3,1 o] 0
SmOmega :
11 1,21 (,3]
[1,] 0 0 0
[2,] 0 0 0
[3,] 0 0 1
$mSigma:
[,11 [,21
[1,] =3l 0
{2,] 0 -1
(3,1 0 0
SmJPhi :
[,11 [,2]
(1.1 —ak -1
[2,} =il -1
{3,1] 1 2
SmX:
numeric matrix: 168 rows, 2 columns.

sp
{1, 1 -0.075187

[168,1 1 0.05002

11.3.4  Linear Regression Models with ARMA Errors
Consider the regression model with ARMA(p, g) errors,

ye=xB+z, ¢(B)z =6(Ba, (11.45)

where a;, ~ N(0, Q:Nv and x; is a k-dimensional vector of explanatory variables.
A special case of this model is the nonzero mean ARMA(p. ¢) model in which
X, = for all r and B becomes a scalar parameter. Let s, be a state vector for the
7, series, for example, that defined in Eq. (11.37). We can define a state vector s!
for y; as

%

- w . (11.46)
¢

where 8, = B for all t. Then, a state-space form for y, is

s; =T*F 4+ Ry, {11.47)
ve = Z]s}, (11.48)




520 STATE-SPACE MODELS AND KALMAN FILTER

where Z¥ = (1,0, ..., 0, HC_xS_iv. m = max(p, g + 1), and

T 0 R - R

=11l 0|

where T and R are defined in Eq. (11.37). In a compact form, we have the state-
space model

* *
St T

R*y,
_ *
M N Nw S F

o |-
SsfPack Command

SsfPack uses the command GetSsfRegArma to construct a state-space form for
linear regression models with ARMA errors. The arguments of the command can

be found using the command args (GetSsfRegArma) . They consist of a data

matrix for the explanatory variables and ARMA model] specification. To illustrate,
consider the model

i

Ye=Po+ Bix, + z,, t=1,...,168,

12221 = 03525 + 0, - 0.25a,_,, g4 ~ N0, a2

<t

It

We use the notation % to denote the T x 2 matrix of regressors (1, X). A state-space
form for the prior model can be obtained as

> mmm.Hmm.mﬁammpnmmnmmmmmmbwamAxxmwquH.w‘-o.wmv\
+ ma=c(-0.25)
> ssf.reg.arma21

$mPhi :

0,1 [,21 (,3] {,4]
(1,1 1.20 1 0 ¢}
(2,1 -0.35 Q 0 0
[3,] 0.00 0 1 0
{4,171 0.00 0 0 1
(5,1 1.00 0 0 0
$mOmega :

f, 11 .21 1,31 [,4] [.5]
[1,1 1.00 -0.2500 o] 0 ]
(2,1 -0.25 3.0625 0 o] 0
[3,1 o0.00 0.0000 0 0 0
[4,17 o0.00 3.0000 0 0 0
[5,] 0.00 0.0000 Y] 0 0
$mSigma:

[,1] (.21 1,31 1,4]

{1,171 3.35595 -1.229260 o o
[2,1 -1.2292¢ 0.473604 0 0
{3,1 o0.o0000¢ 0.000000 -1 0

[4,7 o0.00000 0.000000 0 -1
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[5,1] 0.00000 0.000000 0 0
SmJIPhi ;
0,11 [,21 [,3] (,4]
{1,1 -1 el -1 -1
[2,1 =k S8 -1 ol
[3,1 -1 -1 SHie Ehit
[4,1 -1 Sl e -1
[5,1] -1 -1 1 2
SmX :
numeric matrix: 168 rows, 2 columns.
Xt

[1,] 1 0.4993

{168,] 1 0.7561

11.3.5 Secalar Unobserved Component Model

The basic univariate unobserved component model, or the structural time series
model (STSM), assumes the form

Vo=l +y+wy + e (11.49)
where u,, y;, and @, represent the unobserved trend, seasonal, and cycle compo-
nents, respectively, and e, is the unobserved irregular component. In the literature,

a nonstationary (possibly double-unit-root) model is commonly used for the trend
component:

Hopl =W+ B+, oy ~ N(O, Qquv,

(11.50)
B = Bioy + Sty &~ N(O, QMV,
where 4, ~ N(0, §) and B, ~ N(0, &) with & a large real number, for example,
£ =108 See, for instance, Kitagawa and Gersch (1996). If o =0, then u, fol-
lows a random walk with drift g,. If 0 =0y, =0, then yu, represents a linear
deterministic trend.
The seasonal component y; assumes the form

(I+B+--+ B Yy, =, w ~ N©, o2y, (11.51)

where s is the number of seasons In a year, that is, the period of the seasonal-
ity. If o, = 0, then the seasonal pattern is deterministic. The cycle component is
postulated as

Wit =3
Pl L =sine) cosr) || e

cos{x.) sin(i.) wy mh , (11.52)
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Table 11.4. Arguments of the Comnmand
GetSsfStam in SsfPack/S-Plus

Argument STSM Parameter
irregular g,
level oy
slope [
seasonalDummy Ty §
seasonalTrig Topy §
seasonalHS Oy §
Cycleo Ty Aey 8
Cycle9 Oey Aoy 8
where
& 0 2 2
~ N Lo (1L =891, ),
o 0 = M2 ),

o ~ N(0,02), @} ~ N(O, o2), and Cov(ay, @wy) =0, § €(0,1] is called a
damping factor, and the frequency of the cycle is A, = 27 /q with g being the
period. If § = 1, then the cycle becomes a deterministic sine—cosine wave.

SsfPack/S-Plus Command

The command Getssfstsm constructs a state-space form for the structural time
series model. It allows for 10 cycle components; see the output of the command
args (GetSsfstsm). Table 11.4 provides a summary of the arguments and their
corresponding symbols of the model, To illustrate, consider the local trend model
in Egs. (11.1) and (11.2) with 0, =04 and 6, = 0.2. This is a special case of the
scalar unobserved component model. One can obtain a state-space form as

> mmm.mnmaummmmmmmnmaAwﬁﬁmmcwmﬂuo.p\Hm<mwno.mv
> s53f.stsm

$mPhi :
[,1]
{1,] 1
[2,1 1
$mOmega :

[,1) [,21
{1,171 0.04 0.90
[2,1 0.00 0.186

smSigma:
[,1]

(1,1 -1

(2,1 0
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11.4 KALMAN FILTER AND SMOOTHING

In this section, we study the Kalman filter and various smoothing methods for
the general state-space model in Eqs. (11.24) and (11.25). The derivation follows
closely the steps taken in Section 11.1. For readers interested in applications, this
section can be skipped at the first read. A good reference for this section is Durbin
and Koopman (2001, Chapter 4).

11.4.1 Kalman Filter

Recall that the aim of the Kalman filter is to obtain recursively the conditional
distribution of s, given the data Fy={y\.....y,} and the model. Since the
conditional distribution involved is normal, it suffices to study the conditional mean
and covariance matrix. Let s;i and Xy be the conditional mean and covariance
matrix of §; given F;, that is, $j1F; ~ N(s;;, X ;). From Eq. (11.24),

Sevlp = Eldy + Tys; + %Lﬁ_mv =d, + ﬂ?q:? (11.53)

Zesip = Var(Tys, + R |F,) = T, 2, T, + R, Q,R.. (11.54)

Similarly to that of Section 11.1, let Yri—1 be the conditional mean of y, given
F;_1. From Eq. (11.25),

Yip—1 =€+ Z5ppy.

Vi =V = Yy =Y —er +Zisypy) = Z,(s, — Sr-1) + ey, (11.55)

be the I-step ahead forecast error of Y given F_j. It is easy to see that
@) E(v,[F_y) =0; (b) v, is independent of F,_;, that is, OoiSQL =0 for
I <j<t;and(c) {v,) isa sequence of independent normal random vectors, Also,
let V, = Var(v,|F,_|) = Var(v;) be the covariance matrix of the l-step ahead fore-
cast error. From Eg. (11.55), we have

V, = Var[Z,(s, - Sip-t) + €] = N\M:T_NM + H,. (11.56)
Since F; = {F,_\, y,} = (F,_,, v;}, we can apply Theorem 11.1 to obtain

Sip = E(s,|F) = E(s/|F_y, v,)
E(s;1F;-1) + Cov(s,, v;)[Var(v,)] v,
St + C, Vo, (11.57)

]

il

where C, = Cov(s,, v, |Fi_1) given by

C, = Cov(s,, v,|F,_y) = Covls,, Z,(s, — Si—1) + e F oy}
= Cov(s;, Z,(s, — Stp-DFroi} = M:T_Nh.
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Here we assume that V, is invertible, because H, is. Using Egs. (11.53) and
(11.57), we obtain

Siptp =di + Tesyeys + T,C Vv, = dy + Tosyyy + Koy, (11.58)
where
K,=T,CV;'=T.%,,,Z,v ", (11.59)
which is the Ka/lman gain at time 7. Applying Theorem 11.1(2), we have

M\_.‘ = Var(s;|Fi_)

i

Var(s;|Fi~1) — Cov(s,, v,)[Var(v,)] "' Cov(s,, v,)’
=Zy-1 - CV/'C,
= M3~I— had MulaluN“d\Nl_NnM:\l_. Aﬂ—@Ov

Plugging Eq. (11.60) into Eq. (11.54) and using Eq. (11.59), we obtain
Ty =T Ey L +R,Q,R, (11.61)
where
L =T, -K,Z,.

Putting the prior equations together, we obtain the celebrated Kalman filter for the
state-space model in Egs. (11.24) and (11.25). Given the starting values s, and
X0, the Kalman filter algorithm is

V=Y, — ¢ — L5y,

«\N == NNM:T_N“ + m?

K =TZ,ZV, (11.62)

N: = N,N = NDN?

Seyip=d  + T8, + K, v;,

MI.E”N,\M%I_Ns“n_wwxnw\x“. t=1,...,T.

If the filtered quantities s:: and X, are also of interest, then we modify the filter
to include the contemporaneous filtering equations in Egs. (11.57) and (11.60). The
resulting algorithm is

V=Y~ €~ 28y,

ﬁ,ﬁ = M._T_N“,
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Vi=Z%,.12,+H, =Z,C, +H,.
St = Se—1 + C, Vv,
=%y -Cv/'C,
Seetp =d; + Ty,
Loy =T, 24T, + R, Q,R..

Steady State

If the state-space model is time-invariant, that is, all System matrices are time-
invariant, then the matrices I converge to a constant matrix X,, which is a
solution of the matrix equation

L,=TET -TX,ZV-'Z23.7" + RQR,

where V = ZX,.Z’ + H. The solution that is reached after convergence to X, is
referred to as the steady-state solution of the Kalman filter. Once the steady state is

reached, V,, K,, and X, 41y are all constant. This can lead to considerable saving
in computing time.

11.4.2 State Estimation Error and Forecast Error

Define the state prediction error as
Xt =8 — Sy
From the definition, the covariance matrix of x, is Var(x,|F,_|) = Var(s, | F,_}) =

Zy-1. Following Section 11.1, we investigate properties of x;. First, from
Eq. (11.55),

Ve =Zo(S —Sepm1) + e = Zyx, + €.
Second, from Egs. (11.62) and (11.24), and the prior equation, we have

Xrpl = 8141 — Segqy

=T,(s: ~s1-1) + Ry, — K, v,
Tyx, + Rip, — K (Z,x, +e,)
=Lx 4+ Ry, — K,e,,

where, as before, L =T -K,Z, Consequently, we obtain a state-space form for
v, as

v, =Z:x, + ¢, X = Lix; + Ry, — K,e,, (11.63)

ci:._k._ =81 =S80 won.n“_,...,ﬂ,
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Finally, similar to the local trend model in Section 11.1, we can show that Em
1-step ahead forecast errors {v,} are independent of each other and (v, ... vr}is

independent of F,_,.

11.4.3 State Smoothing

State smoothing focuses on the conditional distribution of s; given Fr. Notice that

(a) Fi—y and {v;, ..., vy} are independent and (b} v, are serially wsanwo_ﬁo:r We
can apply Theorem 1.1 to the joint distribution of s, and {u,, .. ., vr) given F,_,
and obtain

Sur = E(s/|Fr) = E(s;|Fi_i, vr, ..., 07)

T
= E(s;|F1) + )_ Cov(s,, v)[Var(v)] ™",
j=t
T
= 8- +Mno<a:5v<w_s, (11.64)
Jj=t!

where the covariance matrices are conditional on Fi—y. The covariance matrices
Cov(s;,v;) for j =¢,..., T can by derived as follows. By Eq. (11.63),

Cov(s,, v;) = m?&v

Els(Z;x;+e€;) 1= E(s,x)Z,, j=1 ... T. (165

It

Furthermore,

mQNHU = Els; (s, — w%l_: = Var(s,) = MN_T__
mAm?«“iv = E[s;(L,x, + Ry, — Kie)l= M:T._NL\,

E(sixi5) =Xy LL, |, (11.66)

E(s;xy) =Xy L, Ly _,.

fi

Plugging the prior two equations into Eq. (11.64), we have

/ —1
Stir =S8t + Eprr 1 Z7 Vi vy,

-1 ’ ) —1
St-ur =S7-yr-2+ Err 2y Vilivro + Epr Ly (Z7V7ivr,

’

-1 ’ -1
ST =St + L ZV, ey + oL, Z),, Vot

’

’ -~
SPeocE s M:NI_haN\?I \ﬂth\ﬂ«\ﬂ vT,
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fort=7-2,T— 3,..., 1, where it is understood that L. .. 7, =1, when
1 =T. These smoothed state vectors can be expressed as

Sar = Sue-1 + Xy yq, ), (11.67)

where ¢;_; = Z: Vit qr = Nw»_«\mw_c?_ + L ZpVi'vy, and
9. =2V ly, +ENM+~<H_$+_ +o+LL ...hw;_N.\s«\m_e?

fort=T-27T-3, -+, 1. The quantity 4,-; is a weighted sum of the 1-step
ahead forecast errors v j occurring after time 1 — 1, From the definition in the prior
equation, ¢, can be computed recursively backward as

F;_HN:&LS.TRQ: t=T, .. .1, (11.68)

with g7 = 0. Putting the equations together, we have a backward recursion for the
smoothed state vectors as

q,_; = N:\M_S +Lyg,, ST =S+ Xy1q,,, t= T.....1, (11.69)

starting with g = 0, where Sti~1, Lyye—yy Ly, and V', are available from the Kalman
filter. This algorithm is referred to as the fived interval smoother in the literature:
see de Jong (1989) and the references therein.

Covariance Matrix of Smoothed State Vector
Next, we derive the covariance matrices of the smoothed state vectors. Applying

Theorem 11.1(4) to the conditional joint distribution of spand (v, ... vy} given
Fi_1, we have

a
Tyr =Xy — MGO,\Q? V) [Var(v ;)17 [Cov(s,, v)] .

J=t
Using the covariance matrices in Eqs. (11.65) and (11.66), we further obtain

Iyr = Xy — M:T_NM —\\I_NNM:T_ — M:T_N\“NM.‘._ «\Nf_MNI._N:M:T_

— =X L) ..h\ﬂl_N\ﬂ«\m_Nﬂhﬂl_ LT,
=Xy T Mo By,

where
M_ =Zv 'z + Lz, vi\z.L,
+o+ L ..h\?_N\ﬂ—\w_Nﬂh?_ L.
Again, L Ly, = I, whent = T. From jts definition, the M,_, matrix satisfies

gTb_HNM«\“l_N\‘TN\M\:“hT NHHN..,....T A__‘NOV
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with the starting value M7 = 0. Collecting the results, we obtain a backward
recursion to compute LT as

M\ =Z)V'Z +LM,L,, T, =%,_ — LM gy, (1171

for t=T,....1 with My =0. Note that, like that of the local trend model in
Section 11.1, M, = Var(q,).
Combining the two backward recursions of smoothed state vectors, we have

g =Z,V v, + Lyg,.

SOT = Sp-1 + Zopm1q, (LEte2)
M =ZV'Z, + LML,

Eyr =Xt~ LMo ey, t=T,...,1,

with g7 = ¢ and M7 = 0.

Suppose that the state-space model in Egs. (11.24) and (11.25) is known. Appli-
cation of the Kalman filter and state smoothing can proceed in two steps. First, the
Kalman filter in Eq. (11.62) is used fort = 1,..., T and the quantities v;,V,, K;,
Sir—1, and X, _) are stored. Second, the state smoothing algorithm in Eq. (11.72)
is applied forr =T, T — 1, ..., 1 to obtain Syr and X7,

11.4.4 Disturbance Smoothing

Let eyr = E(e;|Fr) and Nyr = E(n,|Fr) be the smoothed disturbances of the
observation and transition equation, respectively. These smoothed disturbances are
useful in many applications, for example, in model checking. In this subsection, we
study recursive algorithms to compute smoothed disturbances and their covariance
matrices. Again, applying Theorem 11.1 to the conditional joint distribution of e
and {v,, ..., v} given F,_,, we obtain

T
eir = E(elFroy, v, ... vp) = ) E(e,v)) Vi, (11.73)
J=t
where E(e;|F;_1) = 0 is used. Using Eq. (11.63),
mgewv = MQT«EN\\. + MQKU.
Since E(e,;x)) = 0, we have

H,, if j=t,

2GS E(ex')Z), for j=141,....T.

(174
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Using Eq. (11.63) repeatedly and the independence between {e;} and {n,}, we obtain

Elex; ) = ~H,K/,

Eex),)) = —H,K|L),,,
e (11.75)
D&Skwv = IN&NNMPT._ e .N\ﬂl?

where it is understood that I, . . . Ly =1, ifr=T_

e 4+ -1 mift = I. Based on Egs. (11.74)
o =i 1yt -

enr = N&\:\N v -~ NANNTZ «\I‘__ L NAMNL“.I ...N\ﬁl_N\ﬂ«\M_eﬂv

=H, (Vv - Kiq)
=Hwo, =T .. 1, (11.76)

where g, is defined in Eq. (11 67)and o, = V-ly, — K
. . = - . W
smoothing measurement error. ~ T (A T REIer (0 00 as the

The smoothed disturbance N7 can be derived analogously and we have

T
Tir =) E(v)vi'e;. (1177

J=t

The state-space form in Eq. (11.67) gives

\ RZ._, ifj=14]
E(muv) = Q, IS J Rt ¥
(n,v;) EMx)Z,, if j=1+2 . ..T.

I

where

m,s_‘kh.fmv = Q“N“hht.
MQ?«.?&V = ©-~“DM+_PM+N,

m,ﬁ?.ﬁ\ﬂv

f

QRLI,, Ly ),
fort=1,... 7. Consequently, Eq. (1 1.77) implies
Mir = QRUZ Vv + L, 2, Vihvie
SIRRRE o SUWETRY AARNY 78 o B
=QRq, t=7 1. (11.78)

Wwhere ¢, is defined earlier in Eq. (11.68).
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Koopman (1993) uses the smoothed disturbance 1,7 to derive a new recursion
for computing s,;7. From the transition equation in Eq. (11.24),

Seenr =d; + Tisyr + Ropyyp.
Using Eq. (1:.78), we have
Sevnr =d; +T:syr + R, QL&?. t=1,...,T, (11.79)

where the initial value is Snr = s + X1ygq, with g, obtained from the recursion
in Eq. (11.68),

Covariance Matrices of Smoothed Disturbances
The covariance matrix of the smoothed disturbance can also be obtained using
Theorem 1].1. Specifically,

Var(e,|Fr) = Var(e;|Fi_y, vy, .. ., vr)
T
—1 . ’
= Var(e,|Fr_1) — ) Cov(e,, v;)V'[Covie,, v))].

Je=t
Note that Cov(e;, v;) = mASe\\.v, which is given in Eq. (11.74). Thus, we have

Var(e,|Fr) = H, — H,(V' + K,Z,,, V]

TT_NTT_NWn

+ NMN\MiNrN«\HNNINhT:NN
+e KLy, Ly Z9VE' ZrLroy - Loy KO H,
=H, — N&%a&!_ + th.éﬁNLm\

= NN“ IENZNN&?

where N, = ﬂl + KiM,K,, where M, is given in Eq. (11.70). Similarly,

T
Var(n,|Fr) = Var(n,) = 3 Cov(n,. 2,)V; ' [Cov(y,, 1)1,

j=t

where Cov(n,, v;) = MQL&.Y which is given before when we derived the formula
for p,)7. Consequently,

Var(q, 1 Fr) = @y — QRUZ; V2 + L), 2 VL2 0L,
et Ly Ly (ZYVE'ZeLry - Ly )R, Q,

QN - QNNMELﬁ QT

MISSING VALUES 531

In summary, the disturbance smoothing algorithm is as follows:

eqir =H,(V;'v, —K'q,),
Nyr = Qxﬁwﬁt

9,0 =Z)V;'v, + Ly, (11.80)
Var(e:|Fr) = H, — H (V' + K'M,K)H,,
Var(n,|Fr) = Q, - Q,R,M,R,Q,.

M\ =Z)V'Z+ LML, t=T,. 1.

where g = 0 and M1 = 0.

11.5 MISSING VALUES

For the general state-space model in Egs. (11.24) and (11.25), we consider two
cases of missing values. First, suppose that similar to the local trend model in
Section 11.1 the observations y, at + = ¢ + 1, ... , € + h are missing. In this case,
there is no new information available at these time points and we set

v, =0, K,=0, for t=E€4+1,...,¢0+h,
The Kalman filter in Eq. (11.62) can then proceed as usual. That is,
Stetyp =d; + Tisgy, Ty = T, 2T, +R, Q,R;,

for t =€+ 1,..., ¢+ h. Similarly, the smoothed state vectors can be computed
as usual via Eq. (11.72) with

9,.1=Tq,, M, _,=TMT,,

fort=0+1,....8+h.

In the second case, some components of ¥, are missing. Let y! = Jy, be the
vector of observed data at time ¢, where J is an indicator matrix identifying the
observed data. More specifically, rows of J are a subset of the rows of the k x &
identity matrix. In this case, the observation equation (11.25) of the model can be
transformed as

y=c +Zs +e,

where ¢f = Je,. Z'=JZ, and e; = Je, with covariance matrix Var(e) = H} =
JH,J'. The Kalman filter and state-smoothing recursion continue to apply except
that the modified observation equation is used at time ¢. Consequently, the ease in
handling missing values is a nice feature of the state-space model.
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11.6 FORECASTING

Suppose that the forecast origin is ¢ and we are interested in predicting Yigj
for j =1,... h, where h > 0. Also, we adopt the minimum mean squared error
forecasts. Similar to the ARMA models, the J-step ahead forecast y,(j) turns out to
be the expected value of ¥:+; given F; and the model. That is, y.(j)y= E(y,y,|Fr).
In what follows, we show that these forecasts and the covariance matrices of the
assoctated forecast errors can be obtained via the Kalman filter in Eq. (11.62) by

treating {y,. |, ..., y,,,} as missing values, that is, case one of Section 11.5.
Consider the 1-step ahead forecast. From Eq. (11.25),

y ()= MA.S.I:HL = Cryp + NTI%I:T

where s,y is available via the Kalman filter at the forecast origin ¢. The associated
forecast error is

e(l) = Vo1 = YD) = Z; (841 — St41i) + €.
Therefore, the covariance matrix of the 1-step ahead forecast error is
Varle, (1)] = NTIMI.:“N“._L +H .

This is precisely the covariance matrix V41 of the Kalman filter in Eq. (11.62).
Thus, we have showed the case for i = 1.

Now, for h > 1, we consider L-step to h-step ahead forecasts sequentially. From
Eq. (11.25), the j-step ahead forecast is

SCVHS.I{TN?Z;\._? (11.81)
and the associated forecast error is
€)= Zoyj(Srqj — Siujy) + €ryj.

Recall that s, , jirand X,y ji are, respectively, the conditional mean and covariance
matrix of s, ; given F,. The prior equation says that

Varle, ()] = Z11 8045, Z,, ; + H,y ). (11.82)
Furthermore, from Eq. (11.24),
Sevjrtp =dry; + Ty Sy,
which in turn implies that

Setjrt = Setjiay = Loy (S10) — 844500 + Riyjm, ;.
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Consequently,

Eigjrty = ﬁiM;\_*ﬂmi + Ry, Q:(.w“i.. (11.83)

Note that Varfe,(j)] = V4 and Eqgs. (11.81)—(11.83) are the recursion of
the Kalman filter in Eq. (11.62) for ¢ +Jj with j =1,..., & when vy; =0 and
K, ; = 0. Thus, the forecast ¥:(J) and the covariance matrix of jts forecast error
e;(j) can be obtained via the Kalman filter with missing values.

Finally, the prediction error series {v:} can be used to evaluate the likelihood
function for estimation and the standardized prediction errors pr( N_: can be used
for model checking, where D, =diag{V,(1, 1), ..., V. (k, k)} with V(i i) being
the (i, i)th element of V,.

11.7 APPLICATION

In this section, we consider some applications of the state-space model in finance
and business. Our objectives are to highlight the applicability of the mode! and to
demonstrate the practical implementation of the analysis in S-Plus with SsfPactk.

Example 11.2. Consider the CAPM for the monthly simple excess returns of
General Motors (GM) stock from Tanuary 1990 to December 2003; see Chapter 9.
We use the simple excess returns of the S&P 500 composite index as the market
returns. Our illustration starts with a simple market model

n=a+Brycte, e~ N0, 2 (11.84)
for r =1,...,168. This is a fixed-coefficient model and can easily be estimated
by the ordinary least squares (OLS) method. Denote the GM stock return and the

market return by gm and sp, respectively. The result is given below.

> £1t=0LS (gm~sp)
> summary (fit)

Call:
OLS (formula = gm - sp)
Coefficients:
Value Std. Error t value Pr(>|t])
(Intercept) 0.0020 0.0063 0.3151 0.7531

Sp 1.0457 0.1453 7.1964 0.0000

Regression Diagnostics:
R-Squared 0.238

Adjusted R-Squared 0.233

Durbin-Watson Stat 2.029

Residual Diagnostics:
Stat P-Value
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Jarque-Bera 2.537 0.281
Ljung-Box 24.207 0.337

Residual standard error: 0.0813
Thus, the fitted model is
re=0.02 + 1.0457rp, + ey, G, = 0.0813.

Based on the residual diagnostics, the model appears to be adequate for the GM
stock returns with adjusted R? = 23.39%,

As shown in Section 11.3, model (11.84) is a special case of the state-space
model. We then estimate the model using SsfPack. The result is as follows:

reg.m=function{parm, m¥=NULL) {

parm=exp (parm) % log(sigma.e) used to ensure positiveness.
ssf.reg=GetSsfReg (mxX)
mmm.wm@mBOSm@mﬁm\uun@mﬂsﬁpu

CheckSsf (ssf.reg)

}

c.start=c 0.1)
Hm@‘mwmnmmmwwnAo.mnmﬁn~ma~:Hmm.8=\3xux.anxv
RELATIVE FUNCTION CONVERGENCE

> m@ﬂmAmxﬁﬁwmm.mwmmvmwmamnmwmvv

{11 0.08129¢34

VOV o+ o+ o+ + o+ oy

v

Next, perform smoothing
mmm.ﬂmmmaoammwﬁw~uunwaAHmm.mMnmUmHmamanmv
Hmm.mummmzoamnnmmwAma\mmm.wmm\nmmWn=mHmzo=v
reg.s$state.moment {10, ] % use 10th row to avoid impact
state.l state.2 % of the starting value.

[10,1 0.001985928 1.045712
% Next, obtain standard errors of estimateg
> m@ﬁnAﬂmm.mmmnmnm‘<mwwmdnmﬁuo\uv

state.l state.2
0.006301927 0.145309¢

V V. v o

As expected, the result is in total agreement with that of the OLS method.

Finally, we entertain the time-varying CAPM of Section 11.3.1. The estimation
result, including time plot of the smoothed response variable, is given below. The
command SsfCondDens is used to compute the smoothed estimates of the state
vector and observation without variance estimation,

> Lv.capm = WCbnnHosAﬁmHa\sxnzdhhvﬁ % Setup the model

+ parm=exp (parm) $parameterize in log for positiveness.
+ Phi.t = rbind(diag(2),rep(0,2})

+ Omega=diag{parm)
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erwnamnﬂwa-H‘u\mv
JPhi[3,1}=1

JPhi{3,2]=2

Sigma=-Phi.t

mmm.n<nwwmmASmanmrw‘n~

mOmega=COmega,

mJPhi=JPhi,

mSigma=Sigma,

mX=mX)

CheckSsf (ssf.tv)

}

tv.start=c(0,0,0) $starting valuesg
nc.awmummmmwnAn<.mmen.©5\=n<.0mﬁa=\axux.anxv Yestimation
mwmam.awmumﬂwnAmxwﬁm<.awmmvmwm3mmmﬂmvv
sigma.mle

1.168806e-05 0.0007428207 0.08129%9916
Smoothing

VOV OV OV o+ 4+ o+ o+ 4+ b o+ 4 4

o

> mBommn.ncnmmmoouQDmnmAma\n<.omﬁsﬁn/\.awmmﬁmﬁmamnmwmN
+ Bxux.anxv\nmmWn:mHmZO=v

> names (smoEst . tv)

[1] "stater "response" "tagk"

> par(mfcol=c(2,2)) %plotting

> vHOnAma.n%bmn~H\\<HmUn\mNommm return’)

> title{main=' (a) Monthly simple excess returns’)
> UHOnAmBommn.n<mﬁmmﬁonmm\n<ﬁmn\w\\%Hmwu\wns\v

> title(main=' (b) Expected returns’)

> ﬁHOnAmaommn.n<mmnmnmﬁ\Hw\n<@mn\w\\<wmvu\<mwcm~v
> title(main=’ (¢) Alpha(t) )

> UHOnAmEOmmn.n<mmﬁmnmh_mu\nwﬁmnsw\\<wmvuﬁ<mwcm~v
> title(main='(d) Beta(t)’)

Note that estimates of o, and o, are 1.17 x 10~5 and 0.74 x 1073, respectively.
These estimates are close to zero, indicating that o, and 8, of the time-varying
market model are essentially constant for the GM stock returns. This is in agreement
with the fact that the fixed-coefficient market model fits the data well. Figure 11.5
shows some plots for the time-varying CAPM fit. Part (a) is the monthly simple
excess returns of GM stock from January 1990 to December 2003, Part (b) is
the expected returns of GM stock, that is, ryr, where T = 168 is the sample
size. Parts (c) and (d) are the time plots of the estimates of o, and B;. Given the
tightness in the vertical scale, these two time plots confirm the assertion that a
fixed-coefficient market model is adequate for the monthly GM stock return.

Example 11.3. In this example we reanalyze the series of quarterly earnings
per share of Johnson and Johnson from 1960 to 1980 using the unobserved com-
ponent model; see Chapter 2 for details of the data. The model considered is

V=petyite. e~N(@O 2, (11.85)

e e
——— B —
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Figure 11.5. Time plots of some statistics for a time-varying CAPM applied to the monthly simple
excess returns of General Motors stock. The S&P 500 composite index return is used as the market
retumn: (a) monthly simple excess return, (b) expected returns ruyr, (€} a, estimate, and (d) §; estimate.

where y, is the fogarithm of the observed earnings per share, i, is the local trend
component satisfying

Mt = s + 1, e~ N(O, quv,
and y, is the seasonal component that satisfies
1+ B+B + By, =w, w ~N@©, 02,

that is, ¥, = — Muwu_ ¥i-j + @:. This model has three parameters 0., oy, and o,
and is a simple unobserved component model. It can be put in a state-space form as

Wit 10 0 07T w 10

Veer | 10 =1 —1 ~1 Vi + 01 Ui

e 1o 1 0 o0 YVi—1 00 w |’
Yi-t 0 0 1 o Yi-2 00

where the covariance matrix of (N, w,) is &mmmﬁw, Qew, and y, =[1, 1,0, 0]s, + e;;
see Section 11.3. This is a special case of the structural time series in SsfPack and
can easily be specified using the command GetSsf Stsm. Performing the maximum
likelihood estimation, we obtain (6., 6y, 64) = (0.00143, 0.2696, 0.1712).

e e
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> uﬁuumomdﬁmwwmu,m-udu.nxﬁ\v
> y=log(jnj)
% Estimation
> uau.SumcmonMOdAvmwavA
+ parm=exp (parm)
+ unu.mmmnomnmmmmnmaAwwwm@zwmwuﬁmwaﬁwgNHm<mwuwmﬂsmwu\
+ mmmmosmwcsaswnoﬂwmwshwu\»vv
+ CheckSsf (jnj.sea)
+ }
>
> C.start=c{0,0,0) & Starting values
> usu.mmnnmmmwwnAo.mann~<~:usu,a=v
> names (jnj.est)
{1] "parameters® "objectiven "message" "grad.norm"
[5] "iterations® "f.evals" "g.evals" "hessian"
[9] "scalen "aux" "call®
> umummnnm@HnAmeAudu.mmnmwmumamnmﬂmvv
> jnjest

[1] 0.001429867 0.269622976 0.171221806 % Estimates

% Next, specify the model with estimates

> ubu.mmmummnmmmmnmaAWﬁHmmCHmHnusummnHH_\Hm<mwuuzgmmnﬁmu\
+ mmmmOdeUCEE%quusummnﬁwuNavv

> CheckSsf (jnj.ssf)

$mPhi:

0,11 f.21 [,31 [,4]
[1,] 1 0 0 0
[z,] 0 -1 -1 -1
[3,1 0 1 0 0
4,1 0 0 1 0
[5,1 1 1 0 0
$mOmega :

[,1] [,21 (,31 [,4] [.5]

{1,7 0.07270 0.00000 0 0 0
[2,1 0.00000 0.02932 0 0 0
[3,1 0.00000 0.00000 0 0 0
{4,7 0.00000 0.00000 0 0 ]
[5,1 0.00000 0.00000 0 0 2.044e-06
$mSigma:

1l 0,21 1,31 [,4)
[1,] -1 o 0 0
[2,] 0 -1 0 0
(3,1 0 0 -1 0
(4,1 0 0 0 -1
[5,1 0 0 0 0
SmDelta:

[, 1]
(1,1 0
[2,1 0
(3,1 0
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[4,] o

[5,] 0

SmJIPhi

[1] 0o

$mIOmega :

{11 ©

$mdDelta:

[11 o

sm¥ .

{1} o

ScT:

(11 o

ScX:

[1] o

Say:

[17 2

Scst .

[1] 4

attr(, "class") .

[1] r"ggfe ¥below: smoothed components

> udu.maoummmzosmdnmmnA%\uzu.mmm‘nWManmHmZO:v
> cvunusu.mEmenmnm.EOanmﬁ\Hu +

+ m*m@HnAudu‘mEOanmnm.<mHMmdomﬁ\Huv

> stuuzu.mSOmmnmnm.soEmdnh\Hw -

+ m*maﬁwAunu.mEOmmnmnm.<mHHmsomh‘Hgv

> max{upl)
[1] 3.067664

> min{lwl)
(1] -1.063937

> cmuudu.mSOmmnmmm.aoamzwﬁ\mu +
w*m@HnAu:u.mSOmmnmnm.<mHHmSOmm\wuv
w:uuzu.mEOmmnmnm.BOEmSnﬁ\wu =
m*mQHnAusu.maommnmmm.<m«wwzomm~muv

max (up)

[1}] 0.5509587

> min(lw)

{1] -0.61579¢8

> UmNASMOOMuqu\va ¥plotting

> wHOnAnak\uuu.mBOmmnmnm.SOSmﬁnh~Hg\mwﬁmu\w\‘xwmvu\%mmw~‘

+ %wmvu\<mpcm\\wwwanoh,u.w\w.pvv

> szmmﬁnax~:wu~wn%umv

> memmﬂnax\wsp‘ww<nwv

> anHmAamH5u~Amv Trend component /)

> mHonAan\udu.mSOmmnmnm.soaman\mu\nwwmu~w\\xwmvu\<mmw~\

+

>

>

>

%

%$obtain range for plotting

Vo o+ v 4

%Hmwn\<mwcm-<Hwannﬂ-,mm\o.mvv
stmmAnax\cn\Hnwnmv
HwammAnax~H€~Hn%umv

nwwpmaawmnn\ﬁvv Seasonal Component ‘)
Filtering ang smoothing

[l

APPLICATION

udu.mwwnmmpamwwwwﬁ%\udu,mmm,nmmw”smﬂer:v
usu.mBOumeEmumaoﬁudu‘mwwﬂusu.mmmv
vwonAnax\uBu.mwwmsocnm\p_\nwﬁmn\~\~xwmwn‘%mmw-
ylab='resi’)

anHmASm»Du‘Amv 1-Step forecast error’)
@wOnAﬁax\ubu.mSOmwmmwOSmm.Hmmuacmemm"mmu\n<ﬁmu\w\_
xwmvn\%mmw\\<pmcn\ﬁmmw~v

anHmASmMSH\AUV Smocthing residual’)

V+\/V+\/VV

Figure 11.6 shows the smoothed estimates of the trend and seasonal components,
that is, u,r and yar with T = 84, of the data. Of particular interest is that the

part (b) is the smoothed response residuals of the fitted model. Thus, state-space
modeling provides an alternative approach for analyzing seasonal time series. It
should be noted that the estimated components in Figure 11.6 are not unique. They
depend on the model specified and constraints used. In fact, there are infinitely
many ways to decompose an observed time series into unobserved components.
For instance, one can use a different specification for the seasonal component,

(a)
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tgure 11.6. Smoothed components of fitting model (11.85) to the logarithm of Quarterly earnings per
share of Johnson and Johnson Company from 1960 1o 1980: (a) trend component and (b) seasonal
component. Dotted lines indicate pointwise 95% confidence regions,
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(a) One step forecast error

0.2
M 0.1
g 00
-0.1
1960 1965 ’ 1970 1975 1980
year
(b) Smoothing residual
0.5
g
O -05
g
~15
1960 1965 1970 1975 1980
year

Figure 11.7. Residual series of fitting model (11.85) to the logarithm of Quarterly eamings per share of
Johnson and Johnson Company from 1960 to 1980: (a) I-step ahead forecast error vy and (b) smoothed
residuals of response variable.

for example, seasonalTrig in SsfPack, to obtain another decomposition for the
earnings series of Johnson and Johnson. Thus, care must be exercised in interpreting
the estimated components. However, for forecasting purposes, the choice of decom-
position does not matter provided that the chosen one is a valid decomposition,

EXERCISES

11.1. Consider the ARMA(1,1) model Y—08y_| =q +0.4a,_; with a, ~
N(0,0.49). Convert the model into a State-space form using (a) Akaike’s
method, (b) Harvey’s approach, and (c) Aoki’s approach.

11.2. The file aa-rv-20m. txt contains the realized daily volatility series of Alcoa
stock returns from January 2, 2003 to May 7, 2004; see the example in
Section 11.1. The volatility series is constructed using 20-minute intradaily
log returns.

(a) Fit an ARIMA(0,1,1) model to the log volatility series and write down
the model.

(b) Estimate the local trend model ip Eqgs. (11.1) and (11.2) for the log
volatility series. What are the estimates of o, and oy,? Obtain time plots
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for the filtered and smoothed state variables with pointwise 95% confi-
dence interval.

(a) Fit a fixed-coefficient market model to the Pfizer stock return. Write
down the fitted model.

(b) Fit a time-varying CAPM to the Pfizer stock return. What are the esti-
mated standard errors of the innovations to the a, and B, series? Obtain
time plots of the smoothed estimates of «, and B;.

114,

by

Consider the AR(3) model

X=ix,_) + $2x, o + $3x:-3 + a, ar ~ N(0, QM.V,

and suppose that the observed data are
Yo =X +e, e ~ N0, Qmwv,

where {e,} and {a;} are independent and the initial values of x j with j <0
are independent of e, and a, forr > Q.

(a) Convert the model into a state-space form.

(b) If E(e,) = ¢, which is not zero, what is the corresponding state-space
form for the system?

11.5. The file m-ppiaco.txt contains year, month, day, and U.S. Producer Price
Index (PPI) from January 1947 to August 2004. The index is for all com-
modities and not seasonally adjusted. Let L =1n(zZ,) ~ In(Z,_,), where Z,
is the observed monthly PPL It turns out that an AR(3) model is adequate for
y: if the minor seasonal dependence is ignored. Let Y: be the sample-mean
corrected series of z,.

(a) Fit an AR(3) model to ¥+ and write down the fitted model.

(b) Suppose that ¢ has independent measurement errors so that y, = X+ e,
where x, is an AR(3) process and Var(e,) = qw. Use a state-space form to
estimate parameters, including the innovational variances to the state and
o2. Write down the fitted model and obtain a time plot of the smoothed
estimate of x,. Also, show the time plot of filtered response residuals of
the fitted state-space model.
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CHAPTER 12

Markov Chain Monte Carlo
Methods with Applications

Advances in computing facilities and computational methods have dramaticaily
increased our ability to solve complicated problems. The advances also extend the
applicability of many existing econometric and statistical methods. Examples of
such achievements in statistics include the Markov chain Monte Carlo (MCMC)

MCMC methodology make it impossible to cover all the new methods available in
the fiterature. Interested readers are referred to some recent books on Bayesian and
empirical Bayesian statistics (e.g., Carlin and Louis, 2000; Gelman, Carlin, Stern,
and Rubin, 2003).

For applications, we focus on issues related to financial econometrics, The
demonstrations shown in this chapter represent only a small fraction of all possible
applications of the techniques in finance. As a matter of fact, it is fair to say that
Bayesian inference and the MCMC methods discussed here are applicable to most,
if not all, of the studies in financial econometrics.

We begin the chapter by reviewing the concept of a Markov process. Consider
a stochastic process {X,}, where each X, assumes a value in the space ©. The
process {X,} is a Markov process if it has the property that, given the value of X:,
the values of Xy, h > t, do not depend on the values X;, s < t. In other words,
{X,} is a Markov process if its conditional distribution function satisfies

PXnlXsos 1) = P(X4(X,), h >t
If {X,} is a discrete-time stochastic process, then the prior property becomes

EAN\LV\?XT,T...V“\VAX:_NL, h >z,
—_—
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