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Recent work on econometric detection mechanisms has shown the effectiveness of recursive procedures in identifying
and dating financial bubbles in real time. These procedures are useful as warning alerts in surveillance strategies
conducted by central banks and fiscal regulators with real-time data. Use of these methods over long historical periods
presents a more serious econometric challenge due to the complexity of the nonlinear structure and break mechanisms
that are inherent in multiple-bubble phenomena within the same sample period. To meet this challenge, this article
develops a new recursive flexible window method that is better suited for practical implementation with long historical
time series. The method is a generalized version of the sup augmented Dickey–Fuller (ADF) test of Phillips et al.
(“Explosive behavior in the 1990s NASDAQ: When did exuberance escalate asset values?” International Economic
Review 52 (2011), 201–26; PWY) and delivers a consistent real-time date-stamping strategy for the origination and
termination of multiple bubbles. Simulations show that the test significantly improves discriminatory power and leads
to distinct power gains when multiple bubbles occur. An empirical application of the methodology is conducted on
S&P 500 stock market data over a long historical period from January 1871 to December 2010. The new approach
successfully identifies the well-known historical episodes of exuberance and collapses over this period, whereas the
strategy of PWY and a related cumulative sum (CUSUM) dating procedure locate far fewer episodes in the same
sample range.

Economists have taught us that it is unwise and unnecessary to combat asset price bubbles and
excessive credit creation. Even if we were unwise enough to wish to prick an asset price bubble,
we are told it is impossible to see the bubble while it is in its inflationary phase. (George Cooper,
2008)

1. INTRODUCTION

As financial historians have argued recently (Ferguson, 2008; Ahamed, 2009), financial crises
are often preceded by an asset market bubble or rampant credit growth. The global financial
crisis of 2007–2009 is no exception. In its aftermath, central bank economists and policymakers
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have been affirming the Basel III accord to work to stabilize the financial system by way of
guidelines on capital requirements and related measures to control “excessive credit creation.”
In this process of control, an important practical issue of market surveillance involves the
assessment of what is “excessive.” But as Cooper (2008) puts it in the header cited above from
his recent bestseller, many economists have declared the task to be impossible and that it is
imprudent to seek to combat asset price bubbles. How then can central banks and regulators
work to offset a speculative bubble when they are unable to assess whether one exists?

One contribution that econometric techniques can offer in this complex exercise of market
surveillance and policy action is the detection of exuberance in financial markets by explicit
quantitative measures. These measures are not simply ex post detection techniques but antici-
pative dating algorithms that use data only up to the point of analysis for ongoing assessment,
giving an early warning diagnostic that can assist regulators in market monitoring. If history has
a habit of repeating itself and human learning mechanisms do fail, as financial historians such
as Ferguson (2008)2 assert, then quantitative warnings may serve as useful alert mechanisms to
both market participants and regulators in real time.

Several attempts to develop ex post econometric tests have been made in the literature going
back some decades (see Gurkaynak, 2008, for a recent review). Phillips, Wu, and Yu (2011, PWY
hereafter) recently proposed a recursive method that can detect exuberance in asset price series
during an inflationary phase. The approach is ex ante (or anticipative) as an early warning alert
system, so that it meets the needs of central bank surveillance teams and regulators, thereby
addressing one of the key concerns articulated by Cooper (2008). The method is especially
effective when there is a single-bubble episode in the sample data, as in the 1990s NASDAQ
episode analyzed in the PWY paper and in the 2000s U.S. house price bubble analyzed in
Phillips and Yu (2011).

Just as historical experience confirms the existence of many financial crises (Ahamed reports
60 different financial crises since the 17th century 3), when the sample period is long enough there
will often be evidence of multiple asset price bubbles in the data. The econometric identification
of multiple bubbles with periodically collapsing behavior over time is substantially more difficult
than identifying a single bubble. The difficulty arises from the complex nonlinear structure
involved in the multiple breaks that produce the bubble phenomena. Multiple breaks typically
diminish the discriminatory power of existing test mechanisms such as the recursive tests given
in PWY. These power reductions complicate attempts at econometric dating and enhance the
need for new approaches that do not suffer from this problem. If econometric methods are to be
useful in practical work conducted by surveillance teams, they need to be capable of dealing with
multiple-bubble phenomena. Of particular concern in financial surveillance is the reliability of
a warning alert system that points to inflationary upturns in the market. Such warning systems
ideally need to have a low false detection rate to avoid unnecessary policy measures and a high
positive detection rate that ensures early and effective policy implementation.

This article responds to this need by providing a new framework for testing and dating bubble
phenomena when there may be multiple bubbles in the data. The mechanisms developed here
extend those of PWY by allowing for flexible window widths in the recursive regressions on
which the test procedures are based. The approach adopted in PWY uses a sup ADF (SADF)
to test for the presence of a bubble based on sequence of forward recursive right-tailed ADF
unit root tests. PWY then proposed a dating strategy, which identifies points of origination
and termination of a bubble based on a backward regression technique. When there is a single
bubble in the data, it is known that this dating strategy is consistent, as was first shown in an
unpublished working paper by Phillips and Yu (2009) whose results are subsumed as a special
case within this work. Other break testing procedures such as Chow tests, model selection, and
CUSUM tests may also be applied as dating mechanisms. Extensive simulations conducted

2 “Nothing illustrates more clearly how hard human beings find it to learn from history than the repetitive history of
stock market bubbles” (Ferguson, 2008).

3 “Financial booms and busts were, and continue to be, a feature of the economic landscape. These bubbles and
crises seem to be deep-rooted in human nature and inherent to the capitalist system. By one count there have been 60
different crises since the 17th century” (Ahamed, 2009).
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recently by Homm and Breitung (2012) indicate that the PWY procedure works satisfactorily
against other recursive (as distinct from full sample) procedures for structural breaks and is
particularly effective as a real-time bubble detection algorithm. Importantly, the procedure can
detect market exuberance arising from a variety of sources, including mildly explosive behavior
that may be induced by changing fundamentals such as a time-varying discount factor.

As shown here, when the sample period includes multiple episodes of exuberance and col-
lapse, the PWY procedures may suffer from reduced power and can be inconsistent, thereby
failing to reveal the existence of bubbles. This weakness is a particular drawback in ana-
lyzing long time series or rapidly changing market data where more than one episode of
exuberance is suspected. To overcome this weakness and deal with multiple breaks of exu-
berance and collapse, this article proposes a generalized sup ADF (GSADF) method to test for
the presence of bubbles as well as a recursive backward regression technique to time-stamp
the bubble origination and termination dates. Like PWY, the new procedures rely on recursive
right-tailed ADF tests but use flexible window widths in their implementation. Instead of fixing
the starting point of the recursion on the first observation, the GSADF test extends the sample
coverage by changing both the start point and the endpoint of the recursion over a feasible
range of flexible windows. This test is therefore a right-sided double recursive test for a unit
root and is analogous to double recursive left-sided ex post tests of persistence such as that
considered in Leybourne et al. (2007).

The new dating strategy is an ex ante procedure and extends the dating strategy of PWY
by changing the start point in the real-time analysis. Since the new procedures cover more
subsamples of the data and have greater window flexibility, they are designed to outperform the
PWY procedures in detecting explosive behavior when multiple episodes occur in the data. This
expected enhancement in performance by the new procedures is demonstrated here in simu-
lations, which compare the two methods in terms of their size and power in bubble detection.
Moreover, the new procedure delivers a consistent dating mechanism when multiple bubbles
occur, in contrast to the original version of the PWY dating strategy, which can be inconsistent
when multiple bubbles occur. The technique is therefore well suited to analyzing long historical
time series. Throughout the article consistency refers to consistency in determining the relevant
sample fraction of the break point instead of the sample observation, as is usual in structural
break asymptotic theory.

In addition to the GSADF test and ex ante dating algorithm, a modified version of the original
PWY algorithm is developed in which the detection procedure is repeated sequentially with
re-initialization after the detection of each bubble. This sequential PWY algorithm works with
subsamples of the data with different initializations in the recursions and therefore in theory
is capable of detecting multiple bubbles. We also consider a detection mechanism based on a
recursive CUSUM test suggested recently in Homm and Breitung (2012).

An empirical application of these methodologies is conducted to S&P 500 stock market data
over the period January 1871 to December 2010. The new approach successfully identifies all
the well-known historical episodes of exuberance over this period, including the great crash, the
postwar boom in 1954, Black Monday in October 1987, and the dot-com bubble. The strategy
of PWY is much more conservative and locates only a single episode over the same historical
period, catching the 1990s stock bubble. The sequential PWY algorithm is similarly conservative
in detecting bubbles in this data set, as is the CUSUM procedure.

The organization of the article is as follows: Section 2 discusses reduced-form model specifi-
cation issues for bubble testing, describes the new rolling window recursive test, and gives its
limit theory. Section 3 proposes date-stamping strategies and outlines their properties in single,
multiple, and no-bubble scenarios. Section 4 reports the results of simulations investigating size,
power, and performance characteristics of the various tests and dating strategies. In Section 5,
the new procedures, the original PWY test, the sequential PWY test, and the CUSUM test
are all applied to the S&P 500 price–dividend ratio data over 1871–2010. Section 6 concludes.
Proofs of the main results under the null are given in the Appendix.

A companion paper in this journal (Phillips et al., 2015a) develops the limit theory and
consistency properties of the dating procedures of this article covering both single and
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multiple-bubble scenarios. An Online Supplement (Phillips et al., 2015b) provides some further
robustness checks on the empirical findings of this article together with additional background
results that are needed for the mathematical derivations of the limit theory in this article and the
companion paper. Gauss and Matlab computer codes are available online4 for all the proce-
dures developed herein. An add-in for the Eviews software package is also available (Caspi,
2013) that makes for convenient practical implementation of this article’s methods.

2. A ROLLING WINDOW TEST FOR BUBBLES

2.1. Models and Specification. A common starting point in the analysis of financial bubbles
is the asset pricing equation5:

Pt =
∞∑

i=0

(
1

1 + rf

)i

Et (Dt+i + Ut+i) + Bt,(1)

where Pt is the after-dividend price of the asset, Dt is the payoff received from the asset (i.e.,
dividend), rf is the risk-free interest rate, Ut represents the unobservable fundamentals, and
Bt is the bubble component. The quantity Pf

t = Pt − Bt is often called the market fundamental
and Bt satisfies the submartingale property

Et (Bt+1) = (1 + rf ) Bt.(2)

In the absence of bubbles (i.e., Bt = 0), the degree of nonstationarity of the asset price is
controlled by the character of the dividend series and unobservable fundamentals. For example,
if Dt is an I(1) process and Ut is either an I(0) or an I(1) process, then the asset price (and hence
the price–dividend ratio) is at most an I(1) process. On the other hand, given (2), asset prices
will be explosive in the presence of bubbles. Therefore, when unobservable fundamentals are
at most I(1) and Dt is stationary after differencing, empirical evidence of explosive behavior in
asset prices or the price–dividend ratio may be used to infer the existence of bubbles.6

The pricing equation (1) is not the only model to accommodate bubble phenomena, and there
is continuing professional debate over how (or even whether) to include bubble components in
asset pricing models (see, e.g., the discussion in Cochrane, 2005, pp. 402–4) and their relevance
in empirical work (notably, Pástor and Veronesi, 2006, but note also the strong critique of
that view in Cooper, 20087). There is greater agreement on the existence of market exuberance
(which may be rational or irrational depending on possible links to market fundamentals), crises,

4 https://sites.google.com/site/shupingshi/PrgGSADF.zip?attredirects=0
5 Although it is common to focus on rational bubbles (Blanchard, 1979; Diba and Grossman, 1988), our reduced-form

empirical approach accommodates other bubble-generating mechanisms such as intrinsic bubbles (Froot and Obstfeld,
1991), herd behavior (Avery and Zemsky, 1998; Abreu and Brunnermeier, 2003), and time-varying discount factor
fundamentals (Phillips and Yu, 2011). Shi (2011) provides a partial overview of the literature.

6 This argument also applies to the logarithmic asset price and the logarithmic dividend under certain conditions.
This is due to the fact that in the absence of bubbles, Equation (1) can be rewritten as

(1 − ρ) pf
t = κ+ ρed̄−p̄ dt + ρeū−p̄ ut + ed̄−p̄

∞∑
j=1

ρj
Et
[�dt+j

]+ eū−p̄
∞∑

j=1

ρj
Et
[�ut+j

]
,

where pf
t = log(Pf

t ), dt = log(Dt), ut = log(Ut), ρ = (1 + rf )−1, κ is a constant, and p̄ , d̄, and ū are the respective

sample means of pf
t ,dt , and ut . The degree of nonstationary of pf

t is determined by that of dt and ut . In the absence
of bubbles, the log-linear approximation yields a cointegrated relationship between pt and dt . Lee and Phillips (2011)
provide a detailed analysis of the accuracy of this log-linear approximation under various conditions.

7 “People outside the world of economics may be amazed to know that a significant body of researchers are still
engaged in the task of proving that the pricing of the NASDAQ stock market correctly reflected the market’s true value
throughout the period commonly known as the NASDAQ bubble. The intellectual contortions required to rationalize
all of these prices beggars belief” (Cooper, 2008, p. 9).
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and panics (Kindelberger and Aliber, 2005; Ferguson, 2008). For instance, financial exuberance
might originate in pricing errors relative to fundamentals that arise from behavioral factors, or
fundamental values may themselves be highly sensitive to changes in the discount rate, which
can lead to price runups that mimic the inflationary phase of a bubble. With regard to the latter,
Phillips and Yu (2011) show that in certain dynamic structures a time-varying discount rate can
induce temporary explosive behavior in asset prices. Similar considerations may apply in more
general stochastic discount factor asset pricing equations. Whatever its origins, explosive or
mildly explosive (Phillips and Magdalinos, 2007) behavior in asset prices is a primary indicator
of market exuberance during the inflationary phase of a bubble, and it is this time series
manifestation that may be subjected to econometric testing using recursive testing procedures
like the right-sided unit root tests in PWY. As discussed above, recursive right-sided unit root
tests seem to be particularly effective as real-time detection mechanisms for mildly explosive
behavior and market exuberance.

The PWY test is a reduced-form approach to bubble detection. In such tests (as distinct
from left-sided unit root tests), the focus is usually on the alternative hypothesis (instead of the
martingale or unit root hypothesis) because of interest in possible departures from fundamentals
and the presence of market excesses or mispricing. Right-sided unit root tests, as discussed in
PWY, are informative about mildly explosive or submartingale behavior in the data and are
therefore useful as a form of market diagnostic or warning alert.

As with all testing procedures, model specification under the null is important for estimation
purposes, not least because of the potential impact on asymptotic theory and the critical values
used in testing. Unit root testing is a well-known example where intercepts, deterministic trends,
or trend breaks all materially impact the limit theory. These issues also arise in right-tailed unit
root tests of the type used in bubble detection, as studied recently in Phillips et al. (2014). Their
analysis allowed for a martingale null with an asymptotically negligible drift to capture the
mild drift in price processes that are often empirically realistic over long historical periods. The
prototypical model of this type has the following weak (local to zero) intercept form:

yt = dT −η + θyt−1 + εt, εt∼iid (0, σ2) , θ = 1,(3)

where d is a constant, T is the sample size, and the parameter η is a localizing coefficient
that controls the magnitude of the intercept and drift as T → ∞. Solving (3) gives yt = d t

T η +∑t
j=1 εj + y0 revealing the deterministic drift dt/T η. When η > 0 the drift is small relative to

a linear trend, when η > 1
2 , the drift is small relative to the martingale component of yt, and

when η < 1
2 , the standardized output T −1/2yt behaves asymptotically like a Brownian motion

with drift. In this article, we focus on the case of η > 1
2 where the order of magnitude of yt is the

same as that of a pure random walk (i.e., the null of PWY).8

The model specification (3) is usually complemented with transient dynamics in order to
conduct tests for exuberance, just as in standard ADF unit root testing against stationarity.
The recursive approach that we now suggest involves a rolling window ADF style regression
implementation based on such a system. In particular, suppose the rolling window regression
sample starts from the rth

1 fraction of the total sample (T ) and ends at the rth
2 fraction of the

sample, where r2 = r1 + rw and rw > 0 is the (fractional) window size of the regression. The
empirical regression model can then be written as

�yt = α̂r1,r2 + β̂r1,r2 yt−1 +
k∑

i=1

ψ̂ i
r1,r2

�yt−i + ε̂t,(4)

8 The procedure may also be used to detect bubbles in a data series where η ≤ 1
2 , as shown in Phillips et al. (2014). In

this case, the asymptotic distribution of the test statistic and, hence, the test critical values are different. Estimation of
the localizing coefficient η is discussed in Phillips et al. (2014). When η > 0.5, the drift component is dominated by the
stochastic trend and estimates of η typically converge to 1/2, corresponding to the order of the stochastic trend. When
η ∈ [0, 1

2 ], the parameter is consistently estimable, although only at a slow logarithmic rate when η = 1
2 .
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where k is the (transient) lag order. The number of observations in the regression is Tw = 
Trw� ,
where 
.� is the floor function (giving the integer part of the argument). The ADF statistic (t-
ratio) based on this regression is denoted by ADF r2

r1
.

We proceed to use rolling regressions of this type for bubble detection. The formulation is
particularly useful in the case of multiple bubbles and includes the earlier SADF test procedure
developed and used in PWY, which we now briefly review.

2.2. The PWY Test for Bubbles. The PWY test relies on repeated estimation of the ADF
model on a forward expanding sample sequence, and the test is obtained as the sup value of the
corresponding ADF statistic sequence. In this case, the window size (fraction) rw expands from
r0 to 1, where r0 is the smallest sample window width fraction (which initializes computation of
the test statistic) and 1 is the largest window fraction (the total sample size) in the recursion. The
starting point r1 of the sample sequence is fixed at 0, so the endpoint of each sample (r2) equals
rw and changes from r0 to 1. The ADF statistic for a sample that runs from 0 to r2 is denoted
by ADF r2

0 . The PWY test is then a sup statistic based on the forward recursive regression and is
simply defined as

SADF (r0) = sup
r2∈[r0,1]

ADF r2
0 .

The SADF test and other right-sided unit root tests are not the only approach to detecting
explosive behavior. One alternative is the two-regime Markov-switching unit root test of Hall
et al. (1999). This procedure offers some appealing features like regime probability estimation.
But recent simulation work by Shi (2013) reveals that the Markov switching model is susceptible
to false detection or spurious explosiveness. In addition, when allowance is made for a regime-
dependent error variance as in Funke et al. (1994) and van Norden and Vigfusson (1998),
filtering algorithms find it difficult to distinguish periods, which may appear spuriously explosive
due to high variance and periods where there is genuine explosive behavior. Further, to the
best of our knowledge, the asymptotic properties of the Markov switching unit root test are
presently unknown and require investigation. A related approach within the Markov switching
framework is the use of Bayesian methods to analyze explosive behavior—see, for example, Shi
and Song (2014). Analytic and simulation-based comparisons of the methods proposed in this
article with Markov switching unit root tests are worthy of further research but are beyond the
scope of this article.

Other econometric approaches may be adapted to use the same recursive feature of the
SADF test, such as the modified Bhargava statistic (Bhargava, 1986), the modified Busetti–
Taylor statistic (Busetti and Taylor, 2004), and the modified Kim statistic (Kim, 2000). These
tests are considered in Homm and Breitung (2012) for bubble detection and all share the spirit
of the SADF test of PWY. That is, the statistic is calculated recursively and then the sup
functional of the recursive statistics is calculated for testing. Since all these tests are similar in
character to the SADF test and since Homm and Breitung (2012) found in their simulations
that the PWY test was the most powerful in detecting bubbles, we focus attention in this article
on extending the SADF test. However, our simulations and empirical implementation provide
some comparative results with the CUSUM procedure in view of its good overall performance
recorded in the Homm and Breitung simulations.

2.3. The Rolling Window GSADF Test for Bubbles. The GSADF test developed here pur-
sues the idea of repeated ADF test regressions (4) on subsamples of the data in a recursive
fashion. However, the subsamples used in the recursion are much more extensive than those of
the SADF test. Besides varying the endpoint of the regression r2 from r0 (the minimum window
width) to 1, the GSADF test allows the starting point r1 in (4) to change within a feasible range,
that is, from 0 to r2 − r0. We define the GSADF statistic to be the largest ADF statistic in this
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FIGURE 1

THE SAMPLE SEQUENCES AND WINDOW WIDTHS OF THE SADF TEST AND THE GSADF TEST

double recursion over all feasible ranges of r1 and r2, and we denote this statistic by GSADF (r0).
That is,

GSADF (r0) = sup
r2∈[r0 ,1]

r1∈[0,r2−r0]

{
ADF r2

r1

}
.

Figure 1 illustrates the comparative sample sequences used in the recursive SADF and GSADF
procedures.

THEOREM 1. When the regression model includes an intercept and the null hypothesis is a
random walk with an asymptotically negligible drift (i.e., dT −η with η > 1/2 and constant d) as
in (3), the limit distribution of the GSADF test statistic is

sup
r2∈[r0 ,1]

r1∈[0,r2−r0]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 rw
[
W (r2)2 − W (r1)2 − rw

]
− ∫ r2

r1
W (r) dr [W (r2) − W (r1)]

r1/2
w

{
rw
∫ r2

r1
W (r)2 dr −

[∫ r2

r1
W (r) dr

]2
}1/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,(5)

where rw = r2 − r1 and W is a standard Wiener process.

The proof of Theorem 1 is given in the Appendix. Following Zivot and Andrews (1992) the
proof uses a continuous mapping argument for the functional defining GSADF (r0) in terms
of partial sums of the innovations, instead of a conventional “fidi + tightness” argument. This
approach more easily accommodates the double recursion-based sup statistic. The argument
given in the Appendix is also useful in justifying the limit theory for double recursive left-sided
unit root tests against stationary alternatives where the tests involve inf instead of sup statistics,
such as that of Leybourne et al. (2007).

The limit distribution (5) of the GSADF statistic is identical to the case where the regression
model includes an intercept and the null hypothesis is a random walk or unit root process
without drift. The usual limit distribution of the ADF statistic is a special case of (5) with r1 = 0
and r2 = rw = 1 whereas the limit distribution of the single recursive SADF statistic is a further
special case of (5) with r1 = 0 and r2 = rw ∈ [r0, 1] (see Phllips et al., 2014). We conjecture that
the limit theory (5) also continues to hold when the null is a unit root process with asymptotically
negligible drift and with innovations that satisfy the error condition (EC) in the Appendix under
suitable moment conditions and provided the lag order k → ∞ with k = o(T 1/3) as T → ∞ in
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TABLE 1
THE ASYMPTOTIC AND FINITE SAMPLE CRITICAL VALUES OF THE SADF AND GSADF TESTS AGAINST AN EXPLOSIVE ALTERNATIVE

SADF GSADF

90% 95% 99% 90% 95% 99%

Asymptotic critical values
r0 = 0.190 1.10 1.37 1.88 1.67 1.89 2.37
r0 = 0.137 1.12 1.41 2.03 1.78 2.01 2.48
r0 = 0.100 1.20 1.49 2.07 1.97 2.19 2.69
r0 = 0.074 1.21 1.51 2.06 1.99 2.20 2.62
r0 = 0.055 1.23 1.51 2.06 2.08 2.30 2.74
Finite sample critical values
T = 100, r0 = 0.190 0.98 1.30 1.99 1.65 2.00 2.57
T = 200, r0 = 0.137 1.12 1.40 1.90 1.84 2.08 2.70
T = 400, r0 = 0.100 1.19 1.49 2.05 1.92 2.20 2.80
T = 800, r0 = 0.074 1.25 1.53 2.03 2.10 2.34 2.79
T = 1600, r0 = 0.055 1.28 1.57 2.22 2.19 2.41 2.87

NOTES: The asymptotic critical values are obtained by numerical simulations with 2000 replications. The Wiener process
is approximated by partial sums of N(0, 1) with 2000 steps. The finite sample critical values are obtained from Monte
Carlo simulation with 2000 replications.

the empirical regression (4) (cf. Berk, 1974; Said and Dickey, 1984; Zivot and Andrews, 1992;
Xiao and Phillips, 1999).

Similar to the limit theory of the SADF statistic, the asymptotic GSADF distribution depends
on the smallest window size r0. In practice, r0 needs to be chosen according to the total number
of observations T. If T is small, r0 needs to be large enough to ensure there are enough
observations for adequate initial estimation. If T is large, r0 can be set to be a smaller number
so that the test does not miss any opportunity to detect an early explosive episode. However, as is
commonplace in the asymptotic theory of break-test methodology, the limit theory in Theorem
1 requires r0 be bounded away from zero as T → ∞.Based on extensive simulation findings, we
recommend a rule for choosing r0 that is based on a lower bound of 1% of the full sample and
has the simple functional form r0 = 0.01 + 1.8/

√
T , which is convenient for implementation.

This setting delivers satisfactory size and power performance for both the SADF and GSADF
tests in the simulations reported in Section 4.

Table 1 tabulates the asymptotic critical values of the SADF and GSADF statistics (top panel)
and their corresponding finite sample critical values (bottom panel). The asymptotic critical
values are obtained from numerical simulations where the Wiener process is approximated by
partial sums of 2,000 independent N(0, 1) variates and the number of replications is 2,000. The
finite sample critical values are obtained from Monte Carlo simulations with 2,000 replications.
The parameters (d and η) in the null hypothesis are set to one.9

We observe the following phenomena: First, as the minimum window size r0 decreases, critical
values of both test statistics increase. For instance, when r0 decreases from 0.190 to 0.055, the
95% asymptotic critical value of the GSADF statistic rises from 1.89 to 2.30. Second, critical
values for the GSADF statistic are larger than those of the SADF statistic. For instance, when
r0 = 0.10, the 95% asymptotic critical value of the GSADF statistic is 2.19 whereas that of the
SADF statistic is 1.49. Figure 2 shows the asymptotic distribution of the ADF , SADF (0.1),
and GSADF (0.1) statistics. The distributions move sequentially to the right and have greater
concentration in the order ADF , SADF (0.1), and GSADF (0.1). Third, the finite sample and
asymptotic critical values are almost identical for the case of T = 400 and r0 = 0.10. The finite
sample critical values go below (above) their asymptotic counterparts when T < 400 (when
T > 400).

9 From Phillips et al. (2014), we know that when d = 1 and η > 1/2, the finite sample distribution of the SADF
statistic is almost invariant to the value of η.
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FIGURE 2

ASYMPTOTIC DISTRIBUTIONS OF THE ADF AND SUPADF STATISTICS (r0 = 0.1)

3. DATE-STAMPING STRATEGIES

3.1. The Method. As discussed in the Introduction, regulators and central banks concerned
with practical policy implementation need to assess whether real-time data provide evidence of
financial exuberance—specifically, whether any particular observation such as τ = 
Tr� belongs
to a bubble phase in the overall trajectory. The strategy suggested in PWY is to conduct a right-
tailed recursive ADF test using data from the origination of the sample up to the present
observation τ (i.e., the information embodied in I
Tr� = {y1, y2, · · · , y
Tr�

}
). Since it is possible

that the data I
Tr� may include one or more collapsing bubble episodes, this ADF test, like
earlier unit root and cointegration-based tests for bubbles (such as those studied in Diba and
Grossman, 1988), may result in finding pseudo stationary behavior. As a result, the method is
exposed to the criticism of Evans (1991) and is typically less successful in identifying subsequent
bubbles after the first. The strategy recommended here is to perform a double recursive test
procedure that we call a backward sup ADF test on I
Tr� to enhance identification accuracy. We
use a flexible window in the double recursion similar to that described above.

In particular, the backward SADF test performs a sup ADF test on a backward expanding
sample sequence where the endpoint of each sample is fixed at r2 (the sample fraction corre-
sponding to the endpoint of the window) and the start point varies from 0 to r2 − r0 (the sample
fraction corresponding to the origination of the window). The corresponding ADF statistic
sequence is

{
ADF r2

r1

}
r1∈[0,r2−r0]. The backward SADF statistic is then defined as the sup value of

the ADF statistic sequence over this interval, viz.,

BSADFr2 (r0) = sup
r1∈[0,r2−r0]

{
ADF r2

r1

}
.

The PWY procedure (i.e., the recursive ADF test) for bubble identification is a special case of
the backward sup ADF test in which r1 = 0, and in this case the sup operation is superfluous. We
denote the corresponding ADF statistic by ADFr2 . Figure 3 illustrates the difference between
the simple ADF test and the backward SADF test recursion. PWY propose comparing ADFr2

with the (right-tail) critical values of the standard ADF statistic to identify explosiveness at
observation 
Tr2�. The backward SADF test provides more information and improves detective
capacity for bubbles within the sample because the subsample that gives rise to the maximum
ADF statistic may not have the same generating mechanism as other observations within the
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FIGURE 3

THE SAMPLE SEQUENCES OF THE ADF TEST AND THE BACKWARD SADF TEST

full sample from r1 = 0 to r2. This approach therefore has greater flexibility in the detection of
multiple bubbles.

Like the PWY procedure, the feasible range of r2 itself runs in a recursion from r0 to 1. The
origination date of a bubble 
Tre� is calculated as the first chronological observation whose
ADF statistic exceeds the critical value. We denote the calculated origination date by 
T r̂e�.
The estimated termination date of a bubble

⌊
T r̂f

⌋
is the first chronological observation after


T r̂e� + LT whose ADF statistic goes below the critical value. PWY impose a condition that
for a bubble to exist its duration must exceed a slowly varying (at infinity) quantity such as
LT = log(T ). This requirement helps to exclude short lived blips in the fitted autoregressive
coefficient and, as discussed below, can be adjusted to take into account the data frequency.
The dating estimates are then delivered by the crossing time formulas

r̂e = inf
r2∈[r0,1]

{
r2 : ADFr2 > cvβT

r2

}
and r̂f = inf

r2∈[r̂e+δ log(T )/T,1]

{
r2 : ADFr2 < cvβT

r2

}
,(6)

where cvβT
r2 is the 100(1 − βT )% critical value of the ADF statistic based on 
Tr2� observations.

The significance level βT depends on the sample size T and it is assumed that βT → 0 as
T → ∞. This control ensures that cvβT

r2 diverges to infinity and thereby eliminates the type I
error as T → ∞. In practice, one can select a critical value cvβT

r2 that diverges slowly to infinity
like a slowly varying function (as in Phillips and Yu, 2011). In empirical applications, it is also
often convenient to fix βT at some predetermined level such as 0.05 instead of using a drifting
significance level.

Under the new identification strategy, inference about potential explosiveness of the process
at observation 
Tr2� is based on the backward sup ADF statistic BSADFr2 (r0). Accordingly,
we define the origination date of a bubble as the first observation whose backward sup ADF
statistic exceeds the critical value of the backward sup ADF statistic. The termination date of a
bubble is calculated as the first observation after 
T r̂e� + δ log(T ) whose backward sup ADF
statistic falls below the critical value of the backward sup ADF statistic. For a bubble to
be defined, it is here assumed that its duration should exceed a minimal period represented
by δ log(T ), where δ is a frequency-dependent parameter.10 The (fractional) origination and
termination points of a bubble (i.e., re and rf ) are calculated according to the following first
crossing time equations:

r̂e = inf
r2∈[r0,1]

{
r2 : BSADFr2 (r0) > scvβT

r2

}
,(7)

10 For instance, one may wish to impose a minimal duration condition that, to be classified as a bubble, duration
should exceed a period such as one year (which is inevitably arbitrary). Then, when the sample size is 30 years (360
months), δ is 0.7 for yearly data and 5 for monthly data.
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FIGURE 4

AN ALTERNATIVE ILLUSTRATION OF THE SAMPLE SEQUENCES AND WINDOW WIDTHS OF THE SADF TEST AND THE GSADF TEST

r̂f = inf
r2∈[r̂e+δ log(T )/T,1]

{
r2 : BSADFr2 (r0) < scvβT

r2

}
,(8)

where scvβT
r2 is the 100(1 − βT )% critical value of the sup ADF statistic based on 
Tr2� obser-

vations. As in the PWY dating procedure and as discussed in Section 3, the significance level
βT may depend on the sample size T and pass to zero as the sample size approaches infinity.

The SADF test is based on repeated implementation of the ADF test for each r2 ∈ [r0, 1].
The GSADF test implements the backward sup ADF test repeatedly for each r2 ∈ [r0, 1]
and makes inferences based on the sup value of the backward sup ADF statistic sequence,{
BSADFr2 (r0)

}
r2∈[r0,1]. Hence, the SADF and GSADF statistics can, respectively, be written as

SADF (r0) = sup
r2∈[r0,1]

{
ADFr2

}
,

GSADF (r0) = sup
r2∈[r0,1]

{
BSADFr2 (r0)

}
.

Thus, the PWY date-stamping algorithm corresponds to the SADF test, and the new strategy
corresponds to the GSADF test. The essential features of the two tests are shown in stylized
form in the diagrams of Figure 4. Importantly, the new date-stamping strategy may be used as
an ex ante real-time dating procedure, whereas the GSADF test is an ex post statistic used for
analyzing a given data set for bubble behavior.

3.2. Asymptotic Properties of the Dating Algorithms. The limit theory of these date-stamping
strategies requires very detailed calculations, which are provided in our companion paper
(Phillips et al., 2015a; PSY2). Additional technical material needed for those derivations is
contained in the Online Supplement (Phillips et al., 2015b). The main results and import of the
theory for empirical practice are reviewed here to make this article self-contained and to assist
readers who wish to implement the test algorithms in practical work. We look in turn at cases
where there are no bubbles, a single bubble, and multiple bubbles in the data.

No bubbles: Under the null hypothesis of no-bubble episodes in the data, the asymptotic
distributions of the ADF and SADF statistics follow from Theorem 1. The backward ADF
test with observation 
Tr2� is a special case of the GSADF test with r1 = 0 and fixed r2, and
the backward sup ADF test is a special case of the GSADF test with fixed r2 and r1 = r2 − rw.
Therefore, from the limit theory given in (5), we have the following asymptotic distributions of
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these two statistics:

Fr2 (W) :=
1
2 r2

[
W (r2)2 − r2

]
− ∫ r2

0 W (r) drW (r2)

r1/2
2

{
r2
∫ r2

0 W (r)2 dr − [∫ r2

0 W (r) dr
]2}1/2 ,

Fr2 (W, r0) := sup
r1∈[0,r2−r0]

rw=r2−r1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 rw
[
W (r2)2 − W (r1)2 − rw

]
− ∫ r2

r1
W (r) dr [W (r2) − W (r1)]

r1/2
w

{
rw
∫ r2

r1
W (r)2 dr −

[∫ r2

r1
W (r) dr

]2
}1/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Define cvβT as the 100(1 − βT )% quantile of Fr2 (W) and scvβT as the 100(1 − βT )% quantile
of Fr2 (W, r0). We know that cvβT → ∞ and scvβT → ∞ as βT → 0. Given cvβT → ∞ and
scvβT → ∞ under the null hypothesis of no bubbles, the probabilities of (falsely) detecting
the origination of bubble expansion and the termination of bubble collapse using the backward
ADF statistic and the backward sup ADF statistic tend to zero, so that both Pr

{
r̂e ∈ [r0, 1]

}→ 0
and Pr

{
r̂f ∈ [r0, 1]

}→ 0.
One bubble: PSY2 study the consistency properties of the date estimates r̂e and r̂f under

various alternatives. The simplest is a single-bubble episode, like that considered in PWY. The
following generating process used in PWY is an effective reduced-form mechanism that switches
between a martingale mechanism, a single mildly explosive episode, collapse, and subsequent
renewal of martingale behavior:

Xt = Xt−11 {t < τe} + δT Xt−11
{
τe ≤ t ≤ τf

}

+
⎛
⎝ t∑

k=τf +1

εk + X∗
τf

⎞
⎠ 1
{
t > τf

}+ εt1
{
t ≤ τf

}
.(9)

In (9), δT = 1 + cT −α with c > 0 and α ∈ (0, 1), εt∼iid(0, σ2), X∗
τf

= Xτe + X∗ with X∗ = Op (1),
τe = 
Tre� dates the origination of bubble expansion, and τf = ⌊Trf

⌋
dates the termination

of bubble collapse. The pre-bubble period N0 = [1, τe) is assumed to be a pure random walk
process, but this is not essential to the asymptotic theory. The bubble expansion period B =
[τe, τf ] is a mildly explosive process, with expansion rate given by the autoregressive (AR)
coefficient δT . As discussed in PWY, mildly explosive processes are well suited to capturing
market exuberance. The process then collapses abruptly to X∗

τf
, which equals Xτe plus a small

perturbation, and continues its random wandering martingale path over the subsequent period
N1 = (τf , τ]. Of course, more general models with various transitional collapse mechanisms can
also be considered, as discussed in PWY and Phillips and Shi (2014). The prototypical system
(9) captures the main features of interest when there is a single-bubble episode and is useful in
analyzing test properties for a bubble alternative.

Under (9) and certain rate conditions both the ADF and BSADF detectors provide consistent
estimates of the origination and termination dates of the bubble.11 When the point estimates
r̂e and r̂f are obtained as in PWY using the ADF test and the first crossing times (6), then

(r̂e, r̂f )
p→ (re, rf ) as T → ∞ provided the following rate condition on the critical value cvβT

holds:

1
cvβT

+ cvβT

T 1−α/2 → 0, as T → ∞.(10)

11 Consistent estimation of re also requires that the minimum window size r0 ≤ re, else re is unidentified.
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Consistency of (r̂e, r̂f ) was first proved in a working paper (Phillips and Yu, 2009). When the
point estimates r̂e and r̂f are obtained from the BSADF detector using the crossing time criteria

(7) and (8), we again have consistency (r̂e, r̂f )
p→ (re, rf ) as T → ∞ under the corresponding

rate condition on the critical value scvβT , viz.,

1
scvβT

+ scvβT

T 1−α/2 → 0, as T → ∞.(11)

Hence both strategies consistently estimate the origination and termination points when there
is only a single-bubble episode in the sample period. The rate conditions (10) and (11) require
for consistency of (r̂e, r̂f ) that (cvβT , scvβT ) pass to infinity and that their orders of magnitude
be smaller than T 1−α/2. It is sufficient for consistency of (r̂e, r̂f ) that the critical values cvβT

and scvβT used in the recursions expand slowly as T → ∞, for example, at the slowly varying
rate log(T ). The probability of false rejection of normal behavior then goes to zero. The upper
rate condition that delimits the rate at which (cvβT , scvβT ) pass to infinity ensures the successful
detection of mildly explosive behavior under the alternative. In effect, the critical values used
in the crossing times (6) and (7) must not pass to infinity too fast relative to the strength of
exuberance in the data, which is governed by the value of the localizing parameter α < 1 in the
AR coefficient δT = 1 + cT −α.

Multiple bubbles: Multiple-bubble episodes may be analyzed in a similar way using more
complex alternative models and more detailed calculations, which are reported in PSY2. The
key outcomes are revealed in the case of two-bubble episodes, which are generated in the
following system that extends the prototypical model (9):

Xt = Xt−11 {t ∈ N0} + δT Xt−11 {t ∈ B1 ∪ B2} +
⎛
⎝ t∑

k=τ1f +1

εk + X∗
τ1f

⎞
⎠ 1 {t ∈ N1}

+
⎛
⎝ t∑

l=τ2f +1

εl + X∗
τ2f

⎞
⎠ 1 {t ∈ N2} + εt1 {t ∈ N0 ∪ B1 ∪ B2}(12)

In (12) we use the notation N0 = [1, τ1e),B1 = [τ1e, τ1f ],N1 = (τ1f , τ2e),B2 = [τ2e, τ2f ], and N2 =
(τ2f , τ]. The observations τ1e = 
Tr1e� and τ1f = ⌊Tr1f

⌋
are the origination and termination

dates of the first bubble; τ2e = 
Tr2e� and τ2f = ⌊Tr2f
⌋

are the origination and termination
dates of the second bubble; and τ is the last observation of the sample. After the collapse of the
first bubble, Xt resumes a martingale path until time τ2e − 1, and a second episode of exuberance
begins at τ2e. The expansion process lasts until τ2f and collapses to a value of X∗

τ2f
. The process

then continues on a martingale path until the end of the sample period τ. The expansion
duration of the first bubble is assumed to be longer than that of the second bubble, namely,
τ1f − τ1e >τ2f − τ2e. Obvious extensions of (12) include models where the mildly explosive
coefficient δT takes different values in regimes B1 and B2, and models where the transition
mechanisms to martingale behavior over N1 and N2 take more graduated and possibly different
forms, thereby distinguishing the bubble mechanisms in the two cases (see Phillips and Shi,
2014).

The date-stamping strategy of PWY suggests calculating r1e, r1f , r2e, and r2f from the following
equations (based on the ADF statistic):

r̂1e = inf
r2∈[r0,1]

{
r2 : ADFr2 > cvβT

r2

}
and r̂1f = inf

r2∈[r̂1e+log(T )/T,1]

{
r2 : ADFr2 < cvβT

r2

}
,(13)
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r̂2e = inf
r2∈[r̂1f ,1]

{
r2 : ADFr2 > cvβT

r2

}
and r̂2f = inf

r2∈[r̂2e+log(T )/T,1]

{
r2 : ADFr2 < cvβT

r2

}
,(14)

where the duration of the bubble periods is restricted to be longer than log(T ). The new strategy
recommends using the backward sup ADF test and calculating the origination and termination
points according to the following equations:

r̂1e = inf
r2∈[r0,1]

{
r2 : BSADFr2 (r0) > scvβT

r2

}
,(15)

r̂1f = inf
r2∈[r̂1e+δ log(T )/T,1]

{
r2 : BSADFr2 (r0) < scvβT

r2

}
,(16)

r̂2e = inf
r2∈[r̂1f ,1]

{
r2 : BSADFr2 (r0) > scvβT

r2

}
,(17)

r̂2f = inf
r2∈[r̂2e+δ log(T )/T,1]

{
r2 : BSADFr2 (r0) < scvβT

r2

}
.(18)

An alternative implementation of the PWY procedure is to use that procedure sequentially,
namely, to detect one bubble at a time and sequentially re-apply the algorithm. The dating
criteria for the first bubble remain the same (i.e., Equation 13). Conditional on the first bubble
having been found and terminated at r̂1f , the following dating criteria are used to date-stamp a
second bubble:

r̂2e = inf
r2∈(r̂1f +εT ,1]

{
r2 : r̂1fADFr2 > cvβT

r2

}
and r̂2f = inf

r2∈[r̂2e+log(T )/T,1]

{
r2 : r̂1fADFr2 < cvβT

r2

}
,(19)

where r̂1f ADFr2 is the ADF statistic calculated over (r̂1f , r2]. This sequential application of
the PWY procedure requires a few observations in order to re-initialize the test process (i.e.,
r2 ∈ (r̂1f + εT , 1] for some εT > 0) after a bubble.

The asymptotic behavior of these various dating estimates is developed in PSY2 and is
summarized here as follows12:

(i) The PWY procedure: Under (12) and the rate condition (10) the ADF detector provides
consistent estimates (r̂1e, r̂1f )

p→ (r1e, r1f ) of the origination and termination of the first
bubble, but does not detect the second bubble when the duration of the first bubble
exceeds that of the second bubble (τ1f − τ1e > τ2f − τ2e). If the duration of the first bubble
is shorter than the second bubble τ1f − τ1e ≤ τ2f − τ2e, then under the rate condition (10)
PWY consistently estimates the first bubble and detects the second bubble but with a
delay that misdates the bubble—specifically (r̂2e, r̂2f )

p→ (r2e + r1f − r1e, r2f ).
(ii) The PSY procedure: Under (12) and the rate condition (11), the BSADF detector pro-

vides consistent estimates (r̂1e, r̂1f , r̂2e, r̂2f )
p→ (r1e, r1f , r2e, r2f ) of the origination and ter-

mination points of the first and second bubbles.
(iii) The sequential PWY (Seq. PWY) procedure: Under (12) and the rate condition (10),

sequential application (with re-initialization) of the ADF detector used in PWY provides
consistent estimates (r̂1e, r̂1f , r̂2e, r̂2f )

p→ (r1e, r1f , r2e, r2f ) of the origination and termina-
tion points of the first and second bubbles.

12 As mentioned earlier, the condition r0 ≤ r1e is needed for consistent estimation of r1e.
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When the sample period includes successive bubble episodes, the detection strategy of PWY
consistently estimates the origination and termination of the first bubble but does not con-
sistently date-stamp the second bubble when the first bubble has longer duration. The new
BSADF procedure and repeated implementation (with re-initialization) of the PWY strategy
both provide consistent estimates of the origination and termination dates of the two bubbles.
PSY2 also examine the consistency properties of the date-stamping strategies when the duration
of the first bubble is shorter than the second bubble. In this case, the PWY procedure fails to
fully consistently date-stamp the second bubble whereas the new strategy again succeeds in
consistently estimating both the origination and termination dates of the two bubbles.

The reason for detection failures in the original PWY procedure lies in the asymptotic
behavior of the recursive estimates of the autoregressive coefficient. Under data-generating
mechanisms such as (12), a recursive estimate δ̂1,t of δT = 1 + c

T α that is based on data up to
observation t ∈ B2 is dominated by data over the earlier domain N0 ∪ B1 ∪ N1, which can lead
to estimates δ̂1,t < 1. It follows that right-sided unit root tests generally will not detect explosive
behavior with such asymptotic behavior in the coefficient estimate. This difficulty is completely
avoided by flexible rolling window methods such as the new BSADF test or by repeated use of
the original PWY procedure with re-initialization that eliminates the effects of earlier bubble
episodes.13

4. SIMULATIONS

Simulations were conducted to assess the performance of the PWY and sequential PWY
procedures as well as the CUSUM approach and the new moving window detection procedure
developed in this article. We look at size, power, and detection capability for multiple-bubble
episodes.

4.1. Size Comparisons. We concentrate on the SADF and GSADF tests. The two data-
generating processes for size comparison are the unit root null hypothesis in (3) and a unit root
process with a GARCH volatility structure, as suggested by a referee. Size is calculated based
on the asymptotic critical values displayed in Table 1 using a nominal size of 5%. The number of
replications is 2,000. We consider cases with sample sizes T = {100, 200, 400, 800, 1,600}. The
minimum window size is chosen based on the rule r0 = 0.01 + 1.8/

√
T .

4.1.1. Data-generating process I: The unit root null (3). We first examine how frequently
the SADF and GSADF tests reject the null of a unit root in favor of an explosive alternative
(giving a false positive result) if we simulate data from a unit root process with no conditional
heteroskedasticity. In particular, simulations are based on the null model of (3) with d = η = 1.
Table 2 reports actual test size when the nominal size is 5%. Evidently, when k = 0 (no transient
dynamics are present in the system), there are no serious size distortions in the tests.

We further explore the effects of incorporating transient dynamic lag length selection in
the test procedures. We consider fixed lags (1, 3, and 6), BIC order selection, and sequential
significance testing. Maximum lag lengths for both BIC and the significance test are set at 3
and 6. Simulated sizes for these cases are reported in Table 2. Evidently, size increases with
lag length (k) for both tests. In particular, when T = 400 and r0 = 0.100, the size of the SADF
(GSADF) test rises from 4.2% to 9% (5.5% to 40.1%, respectively) when k increases from 0 to
6. Thus, size distortion is more severe for GSADF than SADF when lag order is overspecified.
The greater distortion for the GSADF test is explained by the use of the smaller sample sizes
that occur with this flexible window procedure. Use of BIC lag order selection satisfactorily
controls size for SADF but is less adequate for GSADF where the test is oversized, again no

13 To consistently estimate the second bubble using PSY and sequential PWY detectors, the minimum window
size needs to be small enough to distinguish the different episodes. In particular, r0 should be less than the distance
separating the two bubbles, that is, r0 < r2e − r1f . See PSY for more discussion.
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TABLE 2
SIZES OF THE SADF AND GSADF TESTS WITH ASYMPTOTIC CRITICAL VALUES

Fixed Lag BIC Significance Test

k = 0 k = 1 k = 3 k = 6 Max 3 Max 6 Max 3 Max 6

T = 100 and r0 = 0.190
SADF 0.041 0.065 0.092 0.184 0.055 0.066 0.077 0.145
GSADF 0.061 0.130 0.290 0.787 0.189 0.197 0.260 0.697
T = 200 and r0 = 0.137
SADF 0.049 0.051 0.082 0.134 0.051 0.064 0.073 0.095
GSADF 0.058 0.096 0.260 0.569 0.177 0.180 0.231 0.465
T = 400 and r0 = 0.100
SADF 0.042 0.049 0.066 0.090 0.046 0.048 0.060 0.085
GSADF 0.055 0.103 0.198 0.401 0.148 0.154 0.158 0.340
T = 800 and r0 = 0.074
SADF 0.054 0.046 0.064 0.084 0.050 0.049 0.054 0.076
GSADF 0.069 0.091 0.188 0.339 0.133 0.147 0.168 0.308
T = 1600 and r0 = 0.055
SADF 0.060 0.072 0.064 0.081 0.059 0.059 0.075 0.078
GSADF 0.070 0.101 0.163 0.262 0.129 0.133 0.150 0.252

NOTES: The data-generating process is (3) with d = η = 1 . The nominal size is 5%. Size calculations are based on 5,000
replications.

doubt because of the shorter samples involved in the use of the flexible window. The significance
test procedure leads to even greater size distortion, particularly when the maximum lag length
(kmax) is large. For instance, when T = 100, r0 = 0.190, and kmax = 6, the size of SADF and
GSADF is 0.145 and 0.697, respectively, indicating significant distortion in both tests.

Overall, size is reasonably well controlled when a small fixed lag length is used in the recursive
tests. This approach is therefore recommended for empirical use of the SADF and GSADF test
procedures as well as the dating algorithms that are implemented in the application later in the
article.

4.1.2. Data-generating process II: A unit root model with GARCH errors. We next examine
how frequently the tests reject the null of a unit root in favor of an explosive root (giving a false
positive result) when data are simulated with conditional heteroskedasticity. The following unit
root model with GARCH errors is used:

yt = dT −η + yt−1 + εt,(20)

εt = vt

√
ht,ht∼iid (0, 1) ,(21)

ht = ω+ αε2
t−1 + βht−1.(22)

We set d = η = 1, y0 = 376.8, ω = 30.69, α = 0, and β = 0.61. The parameters used in the
volatility equation are maximum likelihood estimates obtained from the S&P 500 price–dividend
ratio (described in the application below) over the sample period January 2004 to December
2007, a relatively tranquil period that reduces the influence of potential structural changes on
the fitted GARCH parameters. The sample size T varies from 100 to 1,600. We set the transient
lag length k to the correct value zero. The empirical sizes of the SADF and GSADF tests are
reported in Table 3. As is evident in the table, the presence of conditional heterogeneity of this
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TABLE 3
SIZES OF THE SADF AND GSADF TESTS WITH GARCH ERRORS USING ASYMPTOTIC CRITICAL VALUES

T = 100 T = 200 T = 400 T = 800 T = 1, 600
r0 = 0.190 r0 = 0.137 r0 = 0.100 r0 = 0.074 r0 = 0.055

SADF 0.047 0.051 0.049 0.045 0.062
GSADF 0.066 0.066 0.060 0.063 0.072

NOTES: The data-generating process is (20) and (22). Nominal size is 5%. Size calculations are based on 2,000 replications.

magnitude in the asset price dynamics does not have a substantial impact on the size of either
test.14

4.2. Power Comparisons. Discriminatory power in detecting bubbles is determined for two
different generating models—the Evans (1991) collapsing bubble model (see 23–26 below) and
an extended version of the PWY bubble model (given by (9) and (12)).

4.2.1. Collapsing bubble alternatives. We first simulate asset price series based on the Lucas
asset pricing model and the Evans (1991) collapsing bubble model. The simulated asset prices
consist of a market fundamental component Pf

t , which combines a random walk dividend
process and Equation (1) with Ut = 0 and Bt = 0 for all t to obtain15

Dt = μ+ Dt−1 + εDt, εDt ∼ N
(
0, σ2

D

)
,(23)

Pf
t = μρ

(1 − ρ)2 + ρ

1 − ρ
Dt,(24)

and the Evans bubble component

Bt+1 = ρ−1BtεB,t+1, if Bt < b,(25)

Bt+1 =
[
ζ+ (πρ)−1

θt+1 (Bt − ρζ)
]
εB,t+1, if Bt ≥ b.(26)

This series has the submartingale property Et(Bt+1) = (1 + rf )Bt. Parameter μ is the drift of the
dividend process, σ2

D is the variance of the dividend, ρ is a discount factor with ρ−1 = 1 + rf > 1,
and εB,t = exp(yt − τ2/2) with yt ∼ N(0, τ2). The quantity ζ is the re-initializing value after
the bubble collapse. The series θt follows a Bernoulli process, which takes the value 1 with
probability π and 0 with probability 1 − π . Equations (25) and (26) state that a bubble grows
explosively at rate ρ−1 when its size is less than b, whereas if the size is greater than b, the

14 A comprehensive analysis of the impact of different volatility structures on the size of the SADF test can be found
in Harvey et al. (2014). They recommend using a wild bootstrap procedure to reduce size distortion when volatility is
nonstationary. The wild bootstrap also seems to be effective in controlling the size of unit root tests against explosive
behavior when there are near IGARCH effects in conditional volatility.

15 An alternative data-generating process, which assumes that the logarithmic dividend is a random walk with drift,
is as follows:

log Dt = μ+ log Dt−1 + εt, εt ∼ N
(

0, σ2
d

)
,

Pf
t =

ρ exp
(
μ+ 1

2σ
2
d

)
1 − ρ exp

(
μ+ 1

2σ
2
d

)Dt.
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FIGURE 5

SIMULATED TIME SERIES OF Pt = Pf
t + κBt USING THE EVANS COLLAPSING BUBBLE MODEL (23) TO (26) WITH SAMPLE SIZE 400

bubble grows at a faster rate (πρ)−1 but with a 1 − π probability of collapsing. The asset price is
the sum of the market fundamental and the bubble component, namely, Pt = Pf

t + κBt, where
κ > 0 controls the relative magnitudes of these two components.

The parameter settings are as follows: μ = 0.0024, σ2
D = 0.0010, D0 = 1.0, ρ = 0.985, b = 1,

B0 = 0.50, π = 0.85, ζ = 0.50, τ = 0.05, and κ = 20. The parameter values for μ and σ2
D are

set to match the sample mean and sample variance of the first differenced monthly real S&P
500 stock price index and dividend series described in the application section later. We allow
the discount factor ρ to vary from 0.975 to 0.999 and the probability of bubble survival π to
vary from 0.99 to 0.25 in the power comparisons.16 Figure 5 depicts a realization of this data-
generating process. As is apparent in the figure, there are several collapsing episodes of different
magnitudes within this particular sample trajectory. Implementation of the SADF and GSADF
tests on this particular realization reveals some of the advantages and disadvantages of the two
approaches.

We first implement the SADF test on the whole sample range of this trajectory. We then
repeat the test on a subsample, which contains fewer collapsing episodes. The lag order k is set
to zero. The smallest window size considered in the SADF test for the whole sample contains
40 observations (setting T = 400, r0 = 0.1). The SADF statistic for the full trajectory is 0.86,17

which is smaller than the 10% asymptotic critical value 1.20. According to this test, therefore,
we would conclude that there are no bubbles in the sample.

Next suppose that the SADF test starts from the 201st observation, and the smallest regression
window contains 27 observations (setting T = 200, r0 = 0.137). The SADF statistic obtained
from this sample is 2.54,18 which is greater than the 5% asymptotic critical value 1.49. In this
case, we reject the null hypothesis of no bubble in the data at the 5% level. These conflicting
results point to some instability in the SADF test: Evidently the SADF test fails to find bubbles
when the full sample is utilized, whereas when the sample is truncated to exclude some of the
collapse episodes, the test succeeds in finding supportive evidence of bubbles.

16 The yearly parameter setting in Evans (1991) was also considered. Similar results were obtained and are omitted
for brevity.

17 The SADF statistic is obtained from the subsample regression running from the first observation to the peak of
the most significant explosive episode within the sample period (i.e., the 273rd observation).

18 This value comes from the subsample regression starting with the 201st observation up to the 273rd observation.
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TABLE 4
POWERS OF THE SADF AND GSADF TESTS

T = 100 T = 200 T = 400 T = 800 T = 1,600
r0 = 0.190 r0 = 0.137 r0 = 0.100 r0 = 0.074 r0 = 0.055

SADF 0.589 0.738 0.829 0.926 0.885
GSADF 0.697 0.870 0.941 0.993 1.000

NOTES: The data-generating process is (23) and (26). Power calculations are based on 2,000 replications.

TABLE 5
POWERS OF THE SADF AND GSADF TESTS

ρ 0.975 0.980 0.985 0.990
SADF 0.927 0.872 0.829 0.727
GSADF 0.984 0.970 0.941 0.850
π 0.95 0.85 0.75 0.25
SADF 0.891 0.829 0.784 0.462
GSADF 0.957 0.941 0.926 0.517

NOTES: The data-generating process is (23) and (26) with sample size 400 (r0 = 0.1). Power calculations are based on
2,000 replications.

These two experiments can be viewed as particular (fixed starting point) component runs
within the flexible window GSADF test. In the first experiment, the sample starting point of the
GSADF test r1 is set to 0,whereas in the second experiment the sample starting point r1 is fixed
at 0.5. The conflicting results obtained from these two experiments demonstrate the importance
of allowing for variable starting points in the implementation of the test, as is done in the
GSADF test. When the GSADF procedure is applied to the data, the test statistic value is 3.37,
which substantially exceeds the 1% asymptotic critical value 2.69. This value of the statistic is
obtained from the subsample regression, which covers the most significant expansionary period
(the one that spans the 234th to 273rd observations). This subsample differs from those used
to obtain the earlier SADF statistics and leads to a far larger value of the test statistic. This
is unsurprising because the statistic is based on the sample period that displays the strongest
evidence of explosive behavior in the sample, as shown in the shaded area of Figure 5. Thus,
the GSADF test finds strong evidence of bubbles in this simulated trajectory. Compared to
the SADF test, the GSADF identifies bubbles through endogenous subsample determination,
giving an obvious improvement over SADF that is useful in empirical applications.19

We now discuss results from the full simulation with 2,000 replications. The data-generating
process is the periodically collapsing explosive process given in (23)–(26). We calculate the
powers of both SADF and GSADF tests under this DGP with T = {100, 200, 400, 800, 1,600}
using asymptotic critical values (95th percentiles of the asymptotic distributions). The results
are reported in Table 4.

As evident in Table 4, there are uniform improvements in power from using the GSADF test.
When T = 400, the GSADF test raises the power of SADF from 82.9% to 94.1%, an 11.2%
gain. Similar gains in power of 10.8%, 13.2%, 6.7%, and 11.5% occur for T = 100, 200, 800,
1,600. Interestingly, whereas the power of GSADF rises uniformly with the sample size, the
powers of SADF do not rise uniformly with the sample size, showing increases for T = 100 to
T = 800 but decreasing from T = 800 to T = 1,600.

In Table 5, we compare powers of the SADF and GSADF tests with the discount factor ρ
varying from 0.975 to 0.990 and the probability of bubble survival π varying from 0.95 to 0.25 in
the DGP. The expected number of bubble collapses in the sample period is always greater than

19 Similar phenomena (not reported in detail here) were observed with an alternative data-generating process where
the logarithmic dividend is a random walk with drift. Parameters in this alternative data-generating process had
the following settings: B0 = 0.5,b = 1, π = 0.85, ζ = 0.5, ρ = 0.985, τ = 0.05, μ = 0.001, ln D0 = 1, σ2

ln D = 0.0001, and

Pt = Pf
t + 500Bt .
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one and increases as π gets smaller. First, as is apparent in Table 5, the GSADF test has greater
discriminatory power for detecting bubbles than the SADF test. The power improvement is
5.7%, 9.8%, 11.2%, and 12.3% for ρ = {0.975, 0.980, 0.985, 0.990} and 6.6%, 11.2%, 14.2%, and
5.5% for π = {0.95, 0.85, 0.75, 0.25}. Second, since the rate of bubble expansion in this model
is inversely related to the discount factor, powers of both SADF and GSADF are expected to
decrease as ρ increases. The power of SADF (GSADF) declines from 92.7% to 72.7% (98.4%
to 85%) as the discount factor rises from 0.975 to 0.990. Third, as it is easier to detect bubbles
with longer duration, powers of both the SADF and GSADF tests increase with the probability
of bubble survival. From Table 5, the powers of SADF and GSADF for π = 0.95 are almost
twice as high as those for π = 0.25.

4.2.2. Mildly explosive alternatives. We next consider mildly explosive bubble alternatives
of the form generated by (9) and (12). These models allow for both single and double bubble
scenarios and enable us to compare the finite sample performance of the PWY strategy, the
sequential PWY approach, the new dating method, and the CUSUM procedure.20 The CUSUM
detector is denoted by Cr

r0
and defined as

Cr
r0

= 1
σ̂r


Tr�∑
j=
Tr0�+1

�yj with σ̂2
r = (
Tr� − 1)−1


Tr�∑
j=1

(�yj − μ̂r)
2
,

where 
Tr0� is the training sample,21 
Tr� is the current monitoring observation, μ̂r is the mean
of
{
�y1, ...,�y
Tr�

}
, and r > r0. Under the null hypothesis of a pure random walk, the recursive

statistic Cr
r0

has the following asymptotic property (see Chu et al., 1996):

lim
T →∞

P
{

Cr
r0
> cr

√

Tr� for some r ∈ (r0, 1]

}
≤ 1

2
exp (−κα/2) ,

where cr = √κα + log(r/r0).22 For the sequential PWY method, we use an automated procedure
to re-initialize the process following bubble detection. Specifically, if the PWY strategy identifies
a collapse in the market at time t (i.e., ADFt−1 > cv0.95

t−1 and ADFt < cv0.95
t ),23 we re-initialize the

test from observation t.
We set the parameters y0 = 100 and σ = 6.79 so that they match the initial value and the

sample standard deviation of the differenced series of the normalized S&P 500 price–dividend
ratio described in our empirical application. The remaining parameters are set to c = 1, α = 0.6,
and T = 100. For the one-bubble experiment, we set the duration of the bubble to be 15% of
the total sample and let the bubble originate 40% into the sample (i.e., τf − τe = 
0.15T � and
τe = 
0.4T �). For the two-bubble experiment, the bubbles originate 20% and 60% into the
sample, and the durations are 
0.20T � and 
0.10T � , respectively. Figure 6 displays typical
realizations of these two data-generating processes.

We summarize the findings for the main experiments based on the following specifications:
For the single-bubble process (13) the bubble origination parameter τe was set to 
0.2T �, 
0.4T �,
and 
0.6T � and bubble duration varied from 
0.10T � to 
0.20T �. Other parameter configura-
tions were considered and produced broadly similar findings but are not reported here.24 The
simulations involved 5,000 replications. Bubbles were identified using respective finite sample

20 Simulations in Homm and Breitung (2012) show that the PWY strategy has higher power than other procedures
in detecting periodically collapsing bubbles of the Evans (1991) type, the closest rival being the CUSUM procedure.

21 It is assumed that there is no structural break in the training sample.
22 When the significance level α = 0.05, for instance, κ0.05 equals 4.6.
23 We impose the additional restriction of successive realizations ADFt+1 < cv0.95

t+1 and ADFt+2 < cv0.95
t+2 to confirm a

bubble collapse.
24 A more detailed analysis of the finite sample performance of the tests is given in our companion paper “Testing

for Multiple Bubbles: Limit Theory of Real Time Detectors.”
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FIGURE 6

TYPICAL SAMPLE PATHS GENERATED ACCORDING TO (9) FOR PANEL (A) AND (12) FOR PANEL (B)

TABLE 6
FREQUENCIES OF DETECTING ONE, TWO, AND MORE BUBBLES FOR THE SINGLE-BUBBLE DGP WITH DIFFERENT BUBBLE DURATIONS

AND LOCATIONS

PWY PSY Seq PWY CUSUM

One Two More One Two More One Two More One Two More

τe = 
0.2T�
τf − τe = 
0.10T � 0.73 0.01 0.00 0.65 0.19 0.00 0.58 0.21 0.00 0.41 0.04 0.00
τf − τe = 
0.15T � 0.90 0.01 0.00 0.72 0.20 0.00 0.64 0.26 0.00 0.54 0.07 0.00
τf − τe = 
0.20T � 0.94 0.01 0.00 0.75 0.19 0.00 0.67 0.26 0.00 0.61 0.08 0.00
τe = 
0.4T�
τf − τe = 
0.10T � 0.59 0.06 0.00 0.61 0.20 0.00 0.49 0.22 0.00 0.50 0.10 0.00
τf − τe = 
0.15T � 0.77 0.07 0.00 0.68 0.22 0.00 0.59 0.27 0.00 0.70 0.13 0.00
τf − τe = 
0.20T � 0.83 0.08 0.00 0.72 0.23 0.00 0.64 0.27 0.00 0.78 0.14 0.00
τe = 
0.6T�
τf − τe = 
0.10T � 0.53 0.10 0.00 0.58 0.21 0.00 0.49 0.21 0.00 0.57 0.12 0.00
τf − τe = 
0.15T � 0.69 0.12 0.00 0.64 0.24 0.00 0.59 0.24 0.00 0.70 0.14 0.00
τf − τe = 
0.20T � 0.76 0.13 0.00 0.66 0.25 0.01 0.66 0.24 0.00 0.75 0.15 0.00

NOTES: Parameters are set as: y0 = 100, c = 1, σ = 6.79, α = 0.6,T = 100. Calculations are based on 5,000 replications.
The minimum window has 12 observations. PWY is the method proposed by Phillips et al. (2011); PSY is the method
proposed in this article. Sequential PWY is the method discussed in Subsection 3.2; CUSUM is the method discussed
in Subsection 4.2.2.

95% quantiles, obtained from Monte Carlo simulations with 5,000 replications. The minimum
window size had 12 observations. Tables 6 and 7 provide a selection of the results, reporting the
detection frequencies for one, two, and three or more bubbles.25 We calculated other summary
statistics such as the mean and standard deviation of the number of bubbles identified within
the sample range and the proportions of sample paths identified with bubbles, but these are not
reported here. The main findings for the four procedures (PWY, PSY, sequential PWY, and
CUSUM) are as follows:

1. The frequency of detecting the correct number of bubbles increases with the duration of
bubble expansion (Tables 6 and 7) and with the value of the autoregressive coefficient
δT , although this is not reported here. Hence, bubble detection is more successful when
bubble duration is longer and the bubble expansion rate is faster.

2. For the single-bubble case, bubble location has some impact on relative performance
among the PWY procedure, the PSY strategy, the sequential PWY approach, and the

25 We imposed a bubble duration definition that required at least three expansionary observations to confirm the
existence of a bubble in these calculations.
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TABLE 7
FREQUENCIES OF DETECTING ONE, TWO, AND MORE BUBBLES FOR THE TWO-BUBBLE DGP WITH VARYING BUBBLE DURATION

PWY PSY Seq PWY CUSUM

One Two More One Two More One Two More One Two More

τ1f − τ1e = 
0.10T�
τ2f − τ2e = 
0.10T � 0.67 0.13 0.00 0.25 0.62 0.01 0.22 0.55 0.01 0.48 0.12 0.00
τ2f − τ2e = 
0.15T � 0.48 0.39 0.00 0.19 0.69 0.01 0.17 0.63 0.01 0.54 0.27 0.00
τ2f − τ2e = 
0.20T � 0.35 0.57 0.00 0.18 0.72 0.00 0.17 0.67 0.00 0.55 0.34 0.00
τ1f − τ1e = 
0.15T�
τ2f − τ2e = 
0.10T � 0.89 0.03 0.00 0.21 0.69 0.00 0.18 0.65 0.01 0.55 0.08 0.00
τ2f − τ2e = 
0.15T � 0.76 0.18 0.00 0.12 0.78 0.00 0.10 0.72 0.01 0.54 0.18 0.00
τ2f − τ2e = 
0.20T � 0.48 0.48 0.00 0.09 0.81 0.00 0.08 0.77 0.00 0.49 0.35 0.00
τ1f − τ1e = 
0.20T�
τ2f − τ2e = 
0.10T � 0.94 0.02 0.00 0.21 0.71 0.00 0.16 0.71 0.00 0.61 0.09 0.00
τ2f − τ2e = 
0.15T � 0.92 0.05 0.00 0.10 0.81 0.00 0.08 0.78 0.00 0.61 0.10 0.00
τ2f − τ2e = 
0.20T � 0.79 0.18 0.00 0.07 0.85 0.00 0.05 0.83 0.00 0.57 0.19 0.00

NOTES: Parameters are set as: y0 = 100, c = 1, σ = 6.79, α = 0.6, τ1e = 
0.20T � , τ2e = 
0.60T � ,T = 100. Calculations
are based on 5,000 replications. The minimum window has 12 observations. PWY is the method proposed by Phillips,
Wu, and Yu (2011); PSY is the method proposed in this article. Sequential PWY is the method discussed in Subsection
3.2; CUSUM is the method discussed in Subsection 4.2.2.

CUSUM procedure (Table 6). When the bubble starts early in the sample and lasts only
for a brief interval (τe = 
0.20T � and τf − τe = 
0.10T �), the frequency of detecting the
correct bubble number (one) using the PWY procedure is higher than those of the other
three procedures. The reason why the PWY procedure can slightly outperform the PSY
procedure in this context is explained as follows: As shown in Theorem 1 of PSY2, when
there is only one bubble in the sample, the unit root statistic used by PWY and the BSDF
statistic used by PSY have the same order of magnitude under the alternative (namely,
T 1−α/2), although the latter quantity (for BSDF) by construction cannot be smaller than
the former one. It follows that because the critical value of PWY is smaller than that of
PSY (as shown in Table 1), it is easier for PWY to reject the null hypothesis, leading PWY
to perform better than PSY when there is only a single bubble in the sample, particularly
when it is early in the sample and there is little advantage in a flexible recursion. The
advantage of the PSY strategy becomes clear when the bubble occurs later in the sample.
For instance, when τe = 
0.40T � and τf − τe = 
0.10T �, the frequency of detecting one
bubble using the PSY strategy is 2%, 12%, and 11% higher than that of PWY, sequential
PWY, and CUSUM, respectively.26

3. The impact of bubble location is not as dramatic as the duration of bubble expansion.
As is evident in Table 6, when the bubble expansion duration rises from 
0.10T � to
either 
0.15T � or 
0.20T �, the performance of the PWY strategy exceeds the other three
strategies regardless of the bubble location.

4. Overall, in the one-bubble scenario, the sequential PWY procedure tends to overestimate
the bubble number, the PSY procedure slightly overestimates the bubble number, and the
PWY and CUSUM estimators tend to be more accurate. For instance, when τe = 
0.40T �
and τf − τe = 
0.10T �, the probability of detecting two bubbles is 22%, 20%, 6%, and
10% (the mean value of the bubble number estimates is 1.35, 1.24, 1.18, and 1.17),
respectively, for the sequential PWY algorithm, the PSY strategy, the PWY procedure,
and the CUSUM algorithm. The PWY procedure is more accurate than CUSUM.

26 Neither of these results is unexpected and is explained as follows: When the bubble originates early in the sample,
the benefit of the PSY procedure searching over a range of starting values is insignificant because the search range is
narrow and the critical values of the PSY procedure are larger than those of the PWY strategy. On the other hand,
when the bubble starts late in the sample, the search range becomes wider, giving an advantage to the flexible recursion
of PSY, and leading to a larger test statistic and hence a significant power gain.
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5. In the two-bubble scenario, bubble duration has an especially large impact on the PWY
strategy, as is clear in Table 7. When the duration of the first bubble is longer than the
second bubble, the PWY procedure detects only one bubble for a majority of the sample
paths, indicating substantial underestimation. For instance, when τ1f − τ1e = 
0.2T � >
τ2f − τ2e = 
0.1T �, the frequency of detecting one bubble is 94%. In addition, the mean
values of the PWY bubble number estimates are far from the true value and are close to
unity. This is consistent with the asymptotic theory (established in our companion paper),
which shows that when the duration of the first bubble is longer than the second bubble,
the PWY strategy consistently identifies the first bubble but not the second bubble.
The performance of the PWY strategy improves significantly when the duration of the
second bubble is longer than the first bubble. For instance, when τ1f − τ1e = 
0.1T � <
τ2f − τ2e = 
0.2T �, the frequency of detecting two bubbles using the PWY strategy is 57%,
which is much higher than when the first bubble has longer duration. This simulation
finding again corroborates the asymptotic theory, showing that the PWY strategy can
perform satisfactorily in detecting both bubbles under these conditions.

6. Similar to the weakness of the PWY strategy, when the duration of first bubble is longer
than that of the second bubble, the performance of the CUSUM procedure is also biased
downwards to selecting a single bubble. Also, just like the PWY procedure, there is
obvious improvement in performance of the CUSUM procedure when the second bubble
lasts longer (Table 7).

7. As expected, the sequential PWY procedure performs nearly as well as the PSY strategy
in the two-bubble case but tends to have lower power and less accuracy than PSY.

8. Overall, substantially better performance in the two-bubble case is delivered by the
PSY and sequential PWY estimators, with higher power and much greater accuracy in
determining the presence of more than one bubble (Table 7, columns 2 and 3).

5. EMPIRICAL APPLICATION

We consider a long historical time series in which many crisis events are known to have
occurred. The data comprise the real S&P 500 stock price index and the real S&P 500 stock price
index dividend, both obtained from Robert Shiller’s website. The data are sampled monthly
over the period from January 1871 to December 2010, constituting 1,680 observations, and
are plotted in Figure 6 by the solid (blue) line, which shows the price–dividend ratio over this
period to reflect asset prices in relation to fundamentals, according to the pricing equation
(1). One might allow also for a time-varying discount factor in Equation (1). If there were
no unobservable component in fundamentals, it follows from the pricing equation that in the
absence of bubbles the price–dividend ratio is a function of the discount factor and the dividend
growth rate and can be either I(1) or I(0) (e.g., Cochrane, 1992; Ang and Bekaert, 2007). In
such cases, tests for a unit root in the price–dividend ratio do not preclude the presence of a
(stationary or nonstationary) time-varying discount factor influencing the ratio. In addition, the
unit root null hypothesis, as opposed to a stationary null, typically leads to relatively conservative
outcomes.27

We first apply the summary SADF and GSADF tests to the price–dividend ratio. Table 8
presents the two test statistics. Also reported are the finite sample critical values of the two
tests obtained obtained from 2,000 replications of 1,680 observations. In performing the ADF
regressions and calculating the critical values, the smallest window contains 90 observations of
the sample, based on the rule r0 = 0.01 + 1.8/

√
1680. From Table 8, the SADF and GSADF

statistics for the full data series are 3.30 and 4.21, obtained from subsamples 1871M01–2000M07
and 1976M04–1999M06, respectively. Both exceed their respective 1% right-tail critical values
(i.e., 3.30 > 2.14 and 4.21 > 2.74), giving strong evidence that the S&P 500 price–dividend ratio

27 It is well known that, ceteris paribus, critical values associated with a unit root null are higher than those from a
stationary null.
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TABLE 8
THE SADF TEST AND THE GSADF TEST OF THE S&P500 PRICE–DIVIDEND RATIO

Finite Sample Critical Values

Test Stat. 90% 95% 99%

SADF 3.30 1.30 1.59 2.14
GSADF 4.21 2.17 2.34 2.74

NOTES: Critical values of both tests are obtained from Monte Carlo simulation with 2, 000 replications (sample size
1,680). The smallest window has 90 observations.

FIGURE 7

DATE-STAMPING BUBBLE PERIODS IN THE S&P 500 PRICE–DIVIDEND RATIO: THE GSADF TEST

had explosive subperiods.28 We conclude from both summary tests that there is evidence of
bubbles in the S&P 500 stock market data. These calculations used a transient dynamic lag
order k = 0.

Next, we conduct a (pseudo) real-time bubble monitoring exercise for the S&P 500 stock
market using PSY, PWY, sequential PWY, and CUSUM dating strategies. With a training
period of 90 observations, we monitor the time series behavior of the price–dividend ratio for
the market from June 1878 until the end of the sample period.

For the PSY real-time dating strategy, we compared the backward SADF statistic with the
95% SADF critical value (obtained from Monte Carlo simulations with 2,000 replications) for
each observation of interest. From Figure 7, the identified periods of exuberance in the market
include the so-called post long-depression period (1879M10–1880M04), the great crash episode
(1928M11–1929M10), the postwar boom in 1954 (1955M01–1956M04), Black Monday in October
1987 (1986M06–1987M09), and the dot-com bubble (1995M11–2001M08). With regard to the
dot-com bubble, the PSY strategy detects mildly explosive market behavior 5 years before the
market crashes. The PSY strategy identifies two episodes related to market downturns instead
of bubble expansion, namely the 1917 stock market crash (1917M08–1918M04) and the subprime
mortgage crisis (2009M02–M04).

In the supplement (Phillips et al., 2015b), we show the same analysis conducted with a smaller
window size of 36 observations.29 The main episodes identified as bubbles in the data are robust

28 Although the GSADF test is implemented here to detect explosiveness against I(1) behavior, it is expected to have
stronger discriminative power against I(0) behavior.

29 As a robustness check, we also applied the PSY procedure to the logarithm of the real S&P 500 price index
(instead of the price–dividend ratio) and considered minimum window sizes of 48 and 60 observations (equivalent to
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FIGURE 8

DATE-STAMPING BUBBLE PERIODS IN THE S&P 500 PRICE–DIVIDEND RATIO: THE SADF TEST

to this smaller value of r0. Interestingly, the method identified several short crisis periods,
including the banking panic of 1907 and the 1974 stock market crash, with the use of the smaller
window size. The identification of crashes as bubbles may be caused by very rapid changes in the
data. Harvey et al. (2014) note, for instance, the potential in the test for crash identification in
the presence of nonstationary volatility, which may be addressed by using finite sample critical
values based on the wild bootstrap.

Figure 8 plots the recursive ADF statistic against the corresponding 95% critical value se-
quence. We see that the PWY strategy (based on the SADF test) identifies only two episodes—
the post long-depression period and the dot-com bubble. The estimated origination and termi-
nation dates for these two episodes are precisely the same as those from the PSY strategy.

Empirical results from the sequential PWY procedure are shown in Figure 9, which plots
the ADF statistic sequence against the 95% ADF critical value sequence (as for the PWY
dating strategy). As in the simulation exercise (see Subsection 4.2.2), we use automated re-
initialization in the implementation of sequential PWY. A minimum window size 
r0T � is
needed to initiate the recursive regression test, so the sequential PWY procedure is unable
to perform detection (and hence will fail to identify any bubbles that may occur) over the
intervening period (t, t + 
r0T �) following a re-initialization at time t. Furthermore, if the PWY
strategy fails to detect a bubble, no re-initialization occurs and the recursive test continues
through the sample until a bubble is detected and a subsequent re-initialization is triggered,
leading to a break in the calculated sequence. Hence, the sequential PWY strategy, just like
PWY, has some inherent disadvantages in detecting multiple bubbles. In practice, one could
potentially predivide the sample period into subsamples for testing, but, as shown in the example
of Subsection 4.2.1, the subsample approach may well be sensitive to the preselection of the
sample periods. The sequential ADF plot has two breaks in the figure, each corresponding to
the re-initialization of the test procedure following a collapse. Findings from the sequential
PWY test are identical to those from the PWY procedure, indicating two bubble episodes (the
post long-depression period and the dot-com bubble).

For comparison, we applied the CUSUM monitoring procedure to the detrended S&P 500
price–dividend ratio (i.e., to the residuals from the regression of yt on a constant and a linear

four and five years). These adjustments produced only minor discrepancies, and the empirical results are qualitatively
unchanged.
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FIGURE 9

DATE-STAMPING BUBBLE PERIODS IN THE S&P 500 PRICE–DIVIDEND RATIO: THE SEQUENTIAL PWY STRATEGY

FIGURE 10

DATE-STAMPING BUBBLE PERIODS IN THE S&P 500 PRICE–DIVIDEND RATIO: THE CUSUM MONITORING PROCEDURE

time trend). To be consistent with the SADF and GSADF dating strategies, we chose a training
sample of 90 months. Figure 10 plots the CUSUM detector sequence against the 95% critical
value sequence. The critical value sequence is obtained from Monte Carlo simulation (through
application of the CUSUM detector to data simulated from a pure random walk) with 2,000
replications.

As evident in Figure 10, the CUSUM test identifies three bubble episodes: the post long-
depression period (1879M10–1880M04), the great crash episode (1929M07–M09), and the dot-
com bubble (1995M11–2001M08). Although the estimated origination and termination dates of
the first and third episodes are exactly the same as those from the other three procedures, the
great crash episode identified by the CUSUM procedure has a much shorter duration than that
identified by the PSY strategy. In addition, the CUSUM procedure gives no warning to any other
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events that are identified by the PSY dating strategy, including the 1987 Black Monday episode.
So CUSUM monitoring may be regarded as a relatively conservative surveillance device.30

6. CONCLUSION

This article introduces a new recursive testing procedure and dating algorithm that is useful
in detecting multiple-bubble events. The GSADF test is a rolling window right-sided ADF unit
root test with a double-sup window selection criteria. The reason for the double sup is that the
ADF statistic is computed in a double recursion over feasible ranges of the window start points
and over a feasible range of window sizes. As distinct from the SADF test of PWY, the window
size is selected using the double-sup criteria, and the ADF test is implemented repeatedly on a
sequence of samples, which moves the window frame gradually toward the end of the sample.
Experimenting on simulated asset prices reveals one of the shortcomings of the SADF test—
its limited ability to find and locate bubbles when there are multiple episodes of exuberance
and collapse within the sample range. The GSADF test surmounts this limitation and our
simulation findings demonstrate that the GSADF test significantly improves discriminatory
power in detecting multiple bubbles. This advantage is shown to be particularly important in
the empirical study of long historical data series.

The date-stamping strategy of PWY and the new date-stamping strategy are shown to have
quite different behaviors under the alternative of multiple bubbles. In particular, when the
sample period includes two bubbles, the strategy of PWY often fails to identify or consistently
date-stamp the second bubble, whereas the new strategy consistently estimates and dates both
bubbles. The PWY dating algorithm may be applied sequentially by re-initializing the detection
process after a bubble is found. This sequential application of the PWY dating algorithm
has improved asymptotic properties over PWY in the detection of multiple bubbles but both
simulations and empirical applications show its performance to be more limited in this capacity.

We apply both SADF and GSADF tests, the sequential PWY dating algorithm, and the
CUSUM monitoring procedure, along with their date-stamping algorithms, to the S&P 500
price–dividend ratio from January 1871 to December 2010. All four tests find confirmatory
evidence of bubble existence. The price–dividend ratio over this historical period contains
many individual peaks and troughs, a trajectory that is similar to the multiple-bubble scenario
for which the PWY date-stamping strategy turns out to be inconsistent. The empirical test results
confirm the greater discriminatory power of the GSADF strategy found in the simulations and
evidenced in the asymptotic theory. The new date-stamping strategy identifies all the well-known
historical episodes of financial bubbles over this long period, whereas all other procedures seem
more conservative and locate fewer episodes of exuberance.

APPENDIX: LIMIT THEORY FOR THE GSADF TEST

Before proving Theorem 1, we give conditions on the innovations and state two preliminary
lemmas whose proofs follow directly by standard methods (Phillips, 1987; Phillips and Perron,
1988; Phillips and Solo, 1992).

Assumption (EC). Let ut = ψ(L)εt = �∞
j=0ψjεt−j , where �∞

j=0 j
∣∣ψj
∣∣ < ∞ and {εt} is an i.i.d.

sequence with mean zero, variance σ2, and E |εt|4+δ < ∞ for some δ > 0.

LEMMA A.1. Suppose ut satisfies error condition EC. Define MT (r) = 1/T
∑[Tr]

s=1 us with r ∈
[r0, 1] and ξt =∑t

s=1 us. Let r2, rw ∈ [r0, 1] and r1 = r2 − rw. The following hold:

30 The conservative nature of the test arises from the fact the residual variance estimate σ̂r (based on the data{
y1, ..., y
Tr�

}
) can be quite large when the sample includes periodically collapsing bubble episodes, which may have

less impact on the numerator due to collapses, thereby reducing the size of the CUSUM detector.
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(1)
∑t

s=1 us = ψ(1)
∑t

s=1 εs + ηt − η0, where ηt =∑∞
j=0 αjεt−j , η0 =∑∞

j=0 αjε−j , and αj =
−∑∞

i=1 ψj+i, which is absolutely summable.

(2) 1
T

∑
Tr2�
t=
Tr1� ε

2
t

p→ σ2rw.

(3) T −1/2∑[Tr]
t=1 εt

L→ σW(r).

(4) T −1∑
Tr2�
t=
Tr1�

∑t−1
s=1 εsεt

L→ 1
2σ

2[W(r2)2 − W(r1)2 − rw].

(5) T −3/2∑
Tr2�
t=
Tr1� εtt

L→ σ[r2W(r2) − r1W(r1) − ∫ r2

r1
W(s)ds].

(6) T −1∑
Tr2�
t=
Tr1�(ηt−1 − η0)εt

p→ 0.

(7) T −1/2(η[Tr] − η0)
p→ 0.

(8)
√

T MT (r)
L→ ψ(1)σW(r).

(9) T −3/2∑
Tr2�
t=
Tr1� ξt−1

L→ ψ(1)σ
∫ r2

r1
W(s)ds.

(10) T −5/2∑
Tr2�
t=
Tr1� ξt−1t

L→ ψ(1)σ
∫ r2

r1
W(s)sds.

(11) T −2∑
Tr2�
t=
Tr1� ξ

2
t−1

L→ σ2ψ(1)2
∫ r2

r1
W(s)2ds.

(12) T −3/2∑
Tr2�
t=
Tr1� ξtut−j

p→ 0,∀j ≥ 0.

LEMMA A.2. Define yt = d̃T t +∑t
s=1 us, d̃T = dψ(1)T −η with η > 1/2 and let ut satisfy con-

dition EC. Then

(a) T −1∑
Tr2�
t=
Tr1� yt−1εt

L→ 1
2σ

2ψ (1)
[
W (r2)2 − W (r1)2 − rw

]
.

(b) T −3/2∑
Tr2�
t=
Tr1� yt−1

L→ ψ (1) σ
∫ r2

r1
W (s) ds.

(c) T −2∑
Tr2�
t=
Tr1� y2

t−1
L→ σ2ψ (1)2 ∫ r2

r1
W (s)2 ds.

(d) T −3/2∑
Tr2�
t=
Tr1� yt−1ut−j

p→ 0, j = 0, 1, · · · .

PROOF OF THEOREM 1. The fitted regression model (4) is

�yt =
k∑

j=1

φ̂j
r1,r2

�yt−j + α̂r1,r2 + β̂r1,r2 yt−1 + ε̂t = X ′
tθ̂r1,r2 + ε̂t.(A.1)
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Under the null hypothesis �yt = dT + ut where dT = dT −η and ut = εt ∼ iid(0, σ2), the error
in the least squares estimator θ̂r1,r2 from the true value θr1,r2 := (φ′

r1,r2
, αr1,r2 , βr1,r2 )′ = (0′

k,dT , 0)′

is given by

θ̂r1,r2 − θr1,r2 =
⎡
⎣ 
Tr2�∑

t=
Tr1�
XtX ′

t

⎤
⎦

−1⎡
⎣ 
Tr2�∑

t=
Tr1�
Xtεt

⎤
⎦ ,(A.2)

where Xt = [dT + ut−1, dT + ut−2, . . . dT + ut−p+1, 1, yt−1]′. Upon appropriate standardization
and using (d) of Lemma A.2,31 it is clear that the limit of the signal matrix

∑
Tr2�
t=
Tr1� XtX ′

t is
block diagonal between the leading k × k block and the lower diagonal 2 × 2 block. Hence, the
asymptotic behavior of the ADF statistic involving β̂r1,r2 depends only on the lower diagonal
2 × 2 block of

∑
Tr2�
t=
Tr1� XtX ′

t and the final 2 × 1 block of
∑
Tr2�

t=
Tr1� Xtεt. These components are

[
�′1 �′yt−1

�′yt−1 �
′y2

t−1

]
and

[
�′εt

�′yt−1εt

]
,

where�′ denotes summation over t = 
Tr1� , 
Tr1� + 1, · · · , 
Tr2� .Based on (3) in Lemma A.1
and (a) in Lemma A.2, the appropriate scaling matrix is ϒT = diag(

√
T ,T ). Premultiplying

(A.2) by ϒT leads to

ϒT

[
α̂r1,r2 − αr1,r2

β̂r1,r2 − βr1,r2

]
∼

⎧⎪⎨
⎪⎩ϒ−1

T

⎡
⎣ 
Tr2�∑

t=
Tr1�
XtX ′

t

⎤
⎦

(2)×(2)

ϒ−1
T

⎫⎪⎬
⎪⎭

−1⎧⎪⎨
⎪⎩ϒ−1

T

⎡
⎣ 
Tr2�∑

t=
Tr1�
Xtεt

⎤
⎦

(2)×1

⎫⎪⎬
⎪⎭ ,(A.3)

where the notation (2) × (2) and (2) × 1 means the lower 2 × 2 block and lower 2 × 1 block,
respectively. The matrix ϒ−1

T [
∑
Tr2�

t=
Tr1� XtX ′
t](2)×(2)ϒ

−1
T has partitioned form

[√
T 0

0 T

]−1 [
�′1 �′yt−1

�′yt−1 �
′y2

t−1

] [√
T 0

0 T

]−1

=
[

T −1�′1 T −3/2�′yt−1

T −3/2�′yt−1 T −2�′y2
t−1

]

L→
[

rw σ
∫

r2
r1

W (s) ds
σ
∫

r2
r1

W (s) ds σ
∫

r2
r1

W (s)2 ds

]
,

and the vector ϒ−1
T [
∑
Tr2�

t=
Tr1� Xtεt](−2)×1 has components

[
T −1/2�′εt

T −1�′yt−1εt

]
L→
[

σ [W (r2) − W (r1)]
1
2σ

2
[
W (r2)2 − W (r1)2 − rw

]]
.

Under the null hypothesis that αr1,r2 = dT −η and βr1,r2 = 0, we have

[√
T (α̂r1,r2 − αr1,r2 )

T β̂r1,r2

]
L→
[

rw Ar1,r2

Ar1,r2 Br1,r2

]−1 [Cr1,r2

Dr1,r2

]
,

where

Ar1,r2 = σ

∫
r2

r1

W (s) ds, Br1,r2 = σ2
∫

r2

r1

W (s)2 ds,

Cr1,r2 = σ [W (r2) − W (r1)] , Dr1,r2 = 1
2
σ2
[
W (r2)2 − W (r1)2 − rw

]
.

31 Notice that ψ(1) in Lemma A.2 equals unity under the null hypothesis of (3).
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Therefore, β̂r1,r2 converges at rate T to the following limit variate:

T β̂r1,r2

L→ Ar1,r2 Cr1,r2 − rwDr1,r2

A2
r1,r2

− rwBr1,r2

.

The t-statistic tr1,r2 = β̂r1 ,r2
sβ̂r1 ,r2

of β̂r1,r2 uses the standard error sβ̂r1 ,r2
defined by

s2
β̂r1 ,r2

= σ̂2
r1 ,r2

([
�′1 �′yt−1

�′yt−1 �
′y2

t−1

]−1
)

22

=
σ̂2

r1 ,r2

�′y2
t−1 − (�′yt−1)2

/�′1
,(A.4)

where σ̂2
r1 ,r2

= (1/ 
Trw�)�′ε̂2
t . Under the null model where αr1,r2 = dT −η, βr1,r2 = 0, and{

φ
j
r1,r2 = 0, for j = 1, ...,k

}
, we have σ̂2

r1 ,r2

p→ σ2 as T → ∞, so that

T 2s2
β̂r1 ,r2

L→ σ2

Br1,r2 − A2
r1,r2

/rw
= 1∫

r2
r1

W (s)2 ds −
(∫

r2
r1

W (s) ds
)2
/rw

.

Then the t-statistic tr1,r2 = β̂r1 ,r2
sβ̂r1 ,r2

satisfies

tr1,r2 = T β̂r1,r2(
T 2s2

β̂r1 ,r2

)1/2
L→
(

Ar1,r2 Cr1,r2 − rwDr1,r2

A2
r1,r2

− rwBr1,r2

)(
Br1,r2 − A2

r1,r2
/rw

σ2

)1/2

= rwDr1,r2 − Ar1,r2 Cr1,r2(
rwBr1,r2 − A2

r1,r2

)1/2
σr1/2
w

=
1
2 rw
{

W (r2)2 − W (r1)2 − rw
}

−
(∫

r2
r1

W (s) ds
) {

W (r2) − W (r1)
}

r1/2
w

{
rw
∫ r2

r1
W (s)2 ds −

[∫ r2

r1
W (s) ds

]2
}1/2 .(A.5)

The asymptotic distribution of the GSADF statistic is obtained by means of the continuous
mapping theorem giving

sup
r2∈[r0 ,1]

r1∈[0,r2−r0]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 rw
[
W (r2)2 − W (r1)2 − rw

]
− ∫ r2

r1
W (s) ds [W (r2) − W (r1)]

r1/2
w

{
rw
∫ r2

r1
W (s)2 ds −

[∫ r2

r1
W (s) ds

]2
}1/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,(A.6)

and, thus, the stated result. However, derivation of (A.6) is not an immediate application of the
continuous mapping theorem, which would require tightness of the random function sequence{
tr1,r2

}
as well as the finite-dimensional limit theory given above in the one-dimensional case

(A.5). Instead, as in the proof of theorem 1 of Zivot and Andrews (1992), a rigorous proof of
(A.6) is more easily accomplished by the application of the continuous mapping theorem to a
functional of the sample partial sum process X0

T (r) = √
T MT (r) = T −1/2∑
Tr�

s=1 us = T −1/2y0

Tr�

and the error variance estimate σ̂2
r1 ,r2
.

We proceed to construct this functional and derive the limit result (A.6). First, note that
under the null we have yt =∑t

s=1 us + Op (d t
T η ) =: y0

t + Op (T 1−η) so that XT (r) := T −1/2y
Tr�
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= T −1/2y0

Tr� + Op (T 1/2−η) = X0

T (r) + op (1) uniformly in r. Since ψ(1) = 1 under the null and
X0

T (r) ⇒ σW(r) by Lemma A.1, we have

T −2
{
�′y2

t−1 − (�′yt−1)2
/�′1

}
=
∫ r2

r1

X0
T (r)2 dr −

(∫ r2

r1

X0
T (r) dr

)2

/rw + op (1)(A.7)

⇒ σ2

{∫ r2

r1

W (r)2 dr −
(∫ r2

r1

W (r) dr
)2

/rw

}
.(A.8)

Define the two functionals h1r(X0
T ) := ∫ r

0 X0
T (s)ds and h2r(X0

T ) := ∫ r
0 X0

T (s)2ds of X0
T (r) ∈

D[0, 1], the Skorohod space equipped with the uniform topology. Both h1r and h2r are con-
tinuous functionals by standard arguments. It is convenient to write

∫ r2

r1

X0
T (r) dr = h1r2

(
X0

T

)− h1r1

(
X0

T

)
,

∫ r2

r1

X0
T (r)2 dr = h2r2

(
X0

T

)− h2r1

(
X0

T

)
,

and then (A.7) and (A.8) can be written in functional form as

T −2
{
�′y2

t−1 − (�′yt−1)2
/�′1

}
= {

h2r2

(
X0

T

)− h2r1

(
X0

T

)}− {h1r2

(
X0

T

)− h1r1

(
X0

T

)}2
/rw + op (1)(A.9)

⇒ σ2 {h2r2 (W) − h2r1 (W)
}− {h1r2 (W) − h1r1 (W)

}2
/rw.

Since h1r and h2r are continuous, so is the functional

g1,r1,r2

(
X0

t

)
:= {h2r2

(
X0

T

)− h2r1

(
X0

T

)}− {h1r2

(
X0

T

)− h1r1

(
X0

T

)}2
/rw.

Now observe that

g1,r1,r2 (W) =
∫ r2

r1

W (r)2 dr −
(∫ r2

r1

W (r) dr
)2

/rw

=
∫ r2

r1

W (r)2 dr − rw

(
r−1
w

∫ r2

r1

W (r) dr
)2

= :
∫ r2

r1

Wr1,r2
(r)2 dr,

with Wr1,r2
(r) = W(r) − r−1

w

∫ r2

r1
W(r)dr. Just as in Phillips and Hansen (1990, Lemma A2), we

have that
∫ r2

r1
Wr1,r2

(r)2dr > 0 a.s. since rw = r2 − r1 ≥ r0 > 0. It follows that the functional

g1
r1,r2

(W) := 1/g1,r1,r2 (W)(A.10)

is well defined for all (r1, r2) such that rw = r2 − r1 ≥ r0 > 0 and so the functional

g1
r1,r2

(
X0

t

)
:= 1

g1,r1,r2

(
X0

t

)
is continuous with limit g1

r1,r2
(X0

t ) ⇒ g1
r1,r2

(σW) = σ2g1
r1,r2

(W).
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Next, from (A.3), the numerator component (T β̂r1,r2 ) of the t ratio is given by

[
−T −3/2�′yt−1 T −1�′1

] [ T −1/2�′εt

T −1�′yt−1εt

]
(
T −2�′y2

t−1

)
(T −1�′1) − (T −3/2�′yt−1)2

=

[
− ∫ r2

r1
X0

T (r) dr rw
] [ X0

T (r2) − X0
T (r1)∫ r2

r1
X0

T (r) dX0
T (r)

]
(∫ r2

r1
X0

T (r)2 dr
)

rw −
(∫ r2

r1
X0

T (r) dr
)2 + op (1)

=

[
− ∫ r2

r1
X0

T (r) dr rw
] [ X0

T (r2) − X0
T (r1)

1
2

[
X0

T (r2)2 − X0
T (r1)2 − T −1�′ε2

t

] ]
(∫ r2

r1
X0

T (r)2 dr
)

rw −
(∫ r2

r1
X0

T (r) dr
)2 + op (1)

=

[
− [h1r2

(
X0

T

)− h1r1

(
X0

T

)]
rw
] [ X0

T (r2) − X0
T (r1)

1
2

[
X0

T (r2)2 − X0
T (r1)2 − T −1�′ε2

t

] ]

rwg1,r1,r2

(
X0

t

) + op (1)

=
rw
2

[
X0

T (r2)2 − X0
T (r1)2 − 
Trw�

T σ̂2
r1 ,r2

]
− [h1r2

(
X0

T

)− h1r1

(
X0

T

)] [
X0

T (r2) − X0
T (r1)

]
rwg1,r1,r2

(
X0

t

) + op (1)(A.11)

⇒
rw
2

[
W (r2)2 − W (r1)2 − rw

]
− [h1r2 (W) − h1r1 (W)] [W (r2) − W (r1)]

rwg1,r1,r2 (W)
.

Define

g2,r1,r2

(
X0

T , σ̂
2
r1 ,r2

)
= rw

2

[
X0

T (r2)2 − X0
T (r1)2 − rwσ̂2

r1 ,r2

]
− [h1r2

(
X0

T

)− h1r1

(
X0

T

)] [
X0

T (r2) − X0
T (r1)

]
(A.12)

⇒ g2,r1,r2

(
σW, σ2)

= σ2 rw
2

[
W (r2)2 − W (r1)2 − rw

]
− σ2 [h1r2 (W) − h1r1 (W)] [W (r2) − W (r1)](A.13)

so that (A.11) is

g2,r1,r2

(
X0

T , σ̂
2
r1 ,r2

)
rwg1,r1,r2

(
X0

t

) + op (1) ⇒ g2,r1,r2

(
σW, σ2

)
rwg1,r1,r2 (σW)

.

Using (A.4) and (A.9), we have

T 2s2
β̂r1 ,r2

=
σ̂2

r1 ,r2

T −2�′y2
t−1 − (T −1�′yt−1)2

/�′1

=
σ̂2

r1 ,r2

g1,r1,r2

(
X0

t

) + op (1) .(A.14)
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It follows from (A.11) and (A.14) that the t ratio can be written as

tr1,r2 = T β̂r1,r2(
T 2s2

β̂r1 ,r2

)1/2 =
g2,r1,r2

(
X0

T , σ̂
2
r1 ,r2

)
rwg1,r1,r2

(
X0

t

)
(

g1,r1,r2

(
X0

t

)
σ̂2

r1 ,r2

)1/2

+ op (1)

=
g2,r1,r2

(
X0

T , σ̂
2
r1 ,r2

)
rw
(
g1,r1,r2

(
X0

T

))1/2
σ̂r1 ,r2

+ op (1) =: gr1,r2

(
X0

T , σ̂
2
r1 ,r2

)
+ op (1) ,

which defines the required functional gr1,r2 (·, ·) representing the t ratio in terms of (X0
T , σ̂

2
r1 ,r2

).

Since σ̂2
r1 ,r2

→p σ
2, we have

tr1,r2 = gr1,r2

(
X0

T , σ̂
2
r1 ,r2

)
⇒ gr1,r2

(
σW, σ2) = g2,r1,r2 (σW, σ)

rw (g1,r1,r2 (σW))1/2
σ

= g2,r1,r2 (W, 1)

rwg1,r1,r2 (W)1/2

=
1
2 rw
{

W (r2)2 − W (r1)2 − rw
}

−
(∫

r2
r1

W (s) ds
) {

W (r2) − W (r1)
}

r1/2
w

{
rw
∫ r2

r1
W (s)2 ds −

[∫ r2

r1
W (s) ds

]2
}1/2

= gr1,r2 (W, 1) .

In view of the continuity of g2,r1,r2 (X0
T , σ̂

2
r1 ,r2

) and 1/g1,r1,r2 (X0
T , ), the functional

gr1,r2 (X0
T , σ̂

2
r1 ,r2

) = g1,r1,r2 (X0
T , σ̂

2
r1 ,r2

)/rw(g2,r1,r2 (X0
T ))1/2σ̂r1 ,r2

is continuous for all (r1, r2) such that
rw = r2 − r1 ≥ r0 > 0.

The continuous functional gr1,r2 (·, ·) maps D[0, 1] × R
+ onto a function defined on �0 ={

(r1, r2) : 1 ≥ r2 ≥ r1 + r0 and 1 − r0 ≥ r1 ≥ 0
}
. Define the double sup functional g∗(gr1,r2 ) =

sup(r1,r2)∈�0
gr1,r2 , which maps functions defined on �0 onto R. Let gr1,r2 and ğr1,r2 be two func-

tions defined on �0 such that sup(r1,r2)∈�0

∣∣gr1,r2 − ğr1,r2

∣∣ < ε for some given ε > 0. The function
g∗(gr1,r2 ) is continuous with respect to the uniform norm on its domain because

∣∣g∗ (gr1,r2 ) − g∗ (ğr1,r2 )
∣∣ =

∣∣∣∣∣ sup
(r1,r2)∈�0

[gr1,r2 − ğr1,r2 ]

∣∣∣∣∣ ≤ sup
(r1,r2)∈�0

∣∣gr1,r2 − ğr1,r2

∣∣ < ε.

We therefore deduce by continuous mapping the weak convergence

sup
(r1,r2)∈�0

tr1,r2 = sup
(r1,r2)∈�0

g∗
(

gr1,r2

((
X0

T , σ̂
2
r1 ,r2

)))
⇒ sup

(r1,r2)∈�0

g∗ (gr1,r2 ((W, 1)))

= sup
r2∈[r0 ,1]

r1∈[0,r2−r0]

gr1,r2 (W,1),

(W, 1) ,

giving (A.6) as required.
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