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Notation

X , Π . . . matrices
x , β, ε . . . column vectors
x , β, ε . . . real values, single variables
i , j , t . . . indices
L . . . lag operator. We do not use the backward shift operator B.
WN, RW . . . white noise, random walk

asy . . . asymptotically
df . . . degrees of freedom
e.g. . . . exempli gratia, for example
i.e. . . . id est, that is
i.g. . . . in general
lhs, rhs . . . left, right hand side
rv . . . random variable
wrt . . . with respect to
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Conditional heteroscedasticity

GARCH models

4 / 67



Conditional heteroscedasticity

A stylized fact of stock returns and other financial return series are periods of
high volatility followed by periods of low volatility. The increase and decrease of
this volatility pattern can be captured by GARCH models.
The idea is that the approach of new information increases the uncertainty in the
market and so the variance. After some while the market participants find to a new
consensus and the variance decreases.

We assume - for the beginning - the (log)returns, rt , are WN

rt = µ+ εt with εt ∼ N(0, σ2
t )

σ2
t = E(ε2t |It−1)

σ2
t is the predictor for ε2t given the information at period (t − 1). σ2

t is the
conditional variance of ε2t given It−1. It−1 = {ε2t−1, ε

2
t−2, . . . , σ

2
t−1, σ

2
t−2, . . .}.
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Conditional heteroscedasticity

Volatility is commonly measured either by
I ε2t the ’local’ variance (r2

t contains the same information), or
I |εt |, the modulus of εt .
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Generalized autoregressive conditional heteroscedasticity, GARCH
The generalized autoregressive conditional heteroscedasticity, GARCH, model of
order (1,1), GARCH(1,1), uses as set of information It−1 = {ε2t−1, σ

2
t−1}

σ2
t = a0 + a1ε

2
t−1 + b1σ

2
t−1

The unconditional variance of εt is then
[We set E(σ2

t ) = E(ε2t ) = σ2. So σ2 = a0 + a1σ
2 + b1σ

2 and we solve wrt σ2.]

E(ε2t ) =
a0

1− (a1 + b1)

The unconditional variance is constant and exists if

a1 + b1 < 1

Further as σ2
t is a variance and so positive, a0,a1 and b1 have to be positive.

a0,a1,b1 > 0
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GARCH(r , s)

A GARCH model of order (r , s), GARCH(r , s), r ≥ 0, s > 0, is

σ2
t = a0 +

s∑
1

ajε
2
t−j +

r∑
1

bjσ
2
t−j with

s∑
1

aj +
r∑
1

bj < 1, aj ,bj > 0

An autoregressive conditional heteroscedasticity, ARCH, model of order s is a
GARCH(0, s). E.g. ARCH(1) is

σ2
t = a0 + a1ε

2
t−1 with a1 < 1, a0,a1 > 0

Comment 1:
A GARCH(1,0), σ2

t = a0 + b1σ
2
t−1, is not useful as it describes a deterministic

decay once a starting value for some past σ2
t−j is given.

Comment 2:
The order s refers to the number of aj coefficients, r to the bj coefficients.
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IGARCH(1,1)

An empirically relevant version is the integrated GARCH, IGARCH(1,1) model,

σ2
t = a0 + a1ε

2
t−1 + b1σ

2
t−1 with a1 + b1 = 1, a0,a1,b1 > 0

where the conditional variance exists, but not the unconditional one.
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GARCH(1,1): ARMA and ARCH representations
We can define an innovation in the variance as

νt = ε2t − E(ε2t |It−1) = ε2t − σ2
t

Replacing σ2
t by σ2

t = ε2t − νt in the GARCH(1,1) model we obtain

ε2t = a0 + (a1 + b1)ε2t−1 + νt − b1νt−1

This model is an ARMA(1,1) for ε2t . So the ACF of r2
t can be inspected for getting

an impression of the dynamics. The model is stationary, if (a1 + b1) < 1.

Recursive substitution of lags of σ2
t = a0 + a1ε

2
t−1 + b1σ

2
t−1 in σ2

t gives an infinite
ARCH representation with a geometric decay

σ2
t =

a0

1− b1
+ a1

∞∑
1

bj−1
1 ε2t−j
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Variants of the GARCH model

I t-GARCH:
As the unconditional distribution of rt can be seen as a mixture of normal
distributions with different variances, GARCH is able to model fat tails.
However empirically, the reduction in the kurtosis of rt by a normal GARCH
model is often not sufficient.
A simple solution is to consider an already fat tailed distribution for εt instead
of a normal one. Candidates are e.g. the t-distribution with df > 2, or the GED
(generalized error distr) with tail parameter κ > 0.

I ARCH-in-mean, ARCH-M:
If market participants are risk avers, they want a higher average return in
uncertain periods than in normal periods. So the mean return should be
higher when σ2

t is high.

rt = µ0 + µ1σ
2
t + εt with µ1 > 0, εt ∼ N(0, σ2

t )
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Variants of the GARCH model

I asymmetric GARCH, threshold GARCH, GJR model:
As the assumption that both good and bad new information has the same
absolute (symmetric) effect might not hold. A useful variant is

σ2
t = a0 + a1ε

2
t−1 + b1σ

2
t−1 + γDt−1ε

2
t−1

where the dummy variable D indicates a positive shock. So

Dt−1 = 1, if εt−1 > 0 Dt−1 = 0, if εt−1 ≤ 0

The contribution of ε2t−1 to σ2 is

(a1 + γ), if εt−1 > 0 a1, if εt−1 ≤ 0

If γ < 0, negative shocks have a larger impact on future volatility than positive
shocks. (GJR stands for Glosten, Jagannathan, Runkle.)
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Variants of the GARCH model

I Exponential GARCH, EGARCH:
By modeling the log of the conditional variance, log(σ2

t ), the EGARCH
guarantees positive variances, independent on the choice of the parameters.
It can be formulated also in an asymmetric way (γ 6= 0).

log(σ2
t ) = a0 + a1

|εt−1|
σ2

t−1
+ b1 log(σ2

t−1) + γ
εt−1

σ2
t−1

If γ < 0, positive shocks generate less volatility than negative shocks.
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Estimation of the GARCH(r , s) model
Say rt can be described more generally as

rt = x′tθ + εt

with vector xt
′ of some third variables, x′t = (x1t , . . . , xmt )

′, possibly including
lagged rt ’s, seasonal dummies, etc.
εt with conditional heteroscedasticity can be written as

εt = σtξt with ξt iid N(0,1)

σ2
t has the form σ2

t = a0 + a1ε
2
t−1 + . . .+ as ε

2
t−s + b1σ

2
t−1 + . . .+ brσ

2
t−r .

So the conditional density of rt |xt , It−1 is given by

fN(rt |xt , It−1) =
1√

2πσ2
t

exp(−1
2
ε2t
σ2

t
), t = max(r , s) + 1, . . . ,n

Comments: V(σtξt |xt , It−1) = σ2
t V(ξt |xt , It−1) = σ2

t ,
starting values σ2

1 , . . . , σ
2
r appropriately chosen,

εt = εt (θ), σ2
t = σ2

t (a0,a1, . . . ,as,b1, . . . ,br )
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Estimation of the GARCH model

The ML, maximum likelihood, estimator of the parameter vector θ,a0,a1, . . . ,as,
b1, . . . ,br is given by

max
θ,a0,a1,...,as,b1,...,br

n∏
max(r ,s)+1

fN(rt |xt , It−1)

as the ε’s are uncorrelated.

The estimates are asy normal distributed. Standard t-tests, etc. apply.

Note the requirement of uncorrelated ε’s. In case autocorrelation in the returns rt is
ignored, the model is misspecified. And, you will detect ARCH effects although
they might not exist. So in a first step, model the level of rt by ARMA, e.g., and
then fit GARCH models to the residuals.

Remark: If rt is autocorrelated, so also r2
t is autocorrelated i.g.
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Forecasting a GARCH(1,1) process

Using σ2 = a0/(1− (a1 + b1)) in σ2
t = a0 + a1ε

2
t−1 + b1σ

2
t−1 we rewrite the

model as
σ2

t − σ2 = a1[ε2t−1 − σ2] + b1[σ2
t−1 − σ2]

So the 1-step ahead forecast E(ε2t+1|It ) is

σ2
t+1|t = (σ2

t+1) = E(ε2t+1|It ) = σ2 + a1[ε2t − σ2] + b1[σ2
t − σ2]

with the 1-step ahead forecast error ε2t+1 − σ2
t+1|t = νt+1.

The h-step ahead forecast is, h ≥ 2,
[replacing both ε2t , σ

2
t by their (h − 1)-step ahead forecast σ2

t+h−1|t ]

σ2
t+h|t = σ2 + (a1 + b1)[σ2

t+h−1|t − σ
2] =

= σ2 + (a1 + b1)h−1[a1(ε2t − σ2) + b1(σ2
t − σ2)]
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Random walk and unit root test

Random walk, I(1), Dickey Fuller test
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Random walk, RW
A process yt = αyt−1 + εt with α = 1 is called random walk.

yt = yt−1 + εt with εt WN

Taking the variances on both sides gives V(yt ) = V(yt−1) + σ2. This has only a
solution V(y), if σ2 = 0. So no unconditional variance of yt exists.

Starting the process at t = 0 its explicit form is yt = y0 +
∑t

1 εj .
The conditional expectation and conditional variance are

E(yt |y0) = y0, V(yt |y0) = t σ2

The conditional variance of a RW increases with t . The process is nonstationary.

The associated characteristic polynomial 1− z = 0 [as (1− L)yt = εt ] has a
root on the unit circle, |z| = 1. Moreover it has a unit root.

z = 1
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Random walks

There are 3 standard types of a random walk. εt is WN.
I Random walk (without a drift):

yt = yt−1 + εt

I Random walk with a drift. c is the drift parameter.

yt = c + yt−1 + εt or yt = y0 + c t +
t∑
1

εj

I Random walk with drift and trend.

yt = c + b t + yt−1 + εt
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ARIMA(1,1,1)
Say we have a process yt = 1.2yt−1 − 0.2yt−2 + εt − 0.5εt−1 written in lag
polynomials (1− 1.2L + 0.2L2)yt = (1− 0.5L)εt . The characteristic AR
polynomial 1− 1.2z + 0.2z2 = 0 has the roots z1 = 1/0.2, z2 = 1. So we
can factorize as

(1− 0.2L)(1− L)yt = (1− 0.5L)εt

Replacing (1− L)yt by ∆yt = yt − yt−1 the process may be written as

(1− 0.2L)∆yt = (1− 0.5L)εt or ∆yt = 0.2∆yt−1 + εt − 0.5εt−1

So ∆yt , the differenced yt , is a stationary ARMA(1,1) process. The original
process yt (the level) is integrated of order 1, an ARIMA(1,1,1).

Taking simple differences removes the nonstationarity and brings us in the world
of stationary processes, where elaborate techniques are available.

Sometimes differencing twice is necessary.
Root for (1− αL): 1− αz = 0 with z1 = (1/α). So 1− (1/z1)z = 0.
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Test for a unit root, Dickey-Fuller test
We start with the model

yt = c + αyt−1 + εt , εt WN

and want to know whether
I α = 1, the process is a random walk, or
I α < 1, the process is stationary.

Estimation of α with OLS gives consistent estimates in both cases. For RW’s they
are even super-consistent, and converge faster than with

√
n.

For the Dickey-Fuller test we subtract on both sides yt−1 and get

∆yt = c + (α− 1)yt−1 + εt .

We estimate with OLS and calculate the standard t-statistic for (α− 1)

τ =
α̂− 1
se(α̂)

.
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Dickey-Fuller test, DF test
Under the null hypothesis

H0 : α = 1 or (α− 1) = 0

the
τ -statistic

is distributed according to the distribution tabulated in Dickey-Fuller(1976).
It has fatter tails than the t-distribution and is somewhat skewed to the left.

The distribution depends on the sample size, and on the type of the RW model -
without drift, with drift, with a linear trend:

A : yt = yt−1 + εt , B : yt = c + yt−1 + εt , C : yt = c + b t + yt−1 + εt

The alternative hypothesis is

HA : α < 1 or (α− 1) < 0
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Dickey-Fuller test, deterministic trend

Remark:
Model C, yt = c + b t + yt−1 + εt , is, used to distinguish between a RW and a
deterministic (linear) trend.

∆yt = c + b t + (α− 1)yt−1 + εt

H0: If the DF test leads to an acceptance of the H0 of a RW,
then yt is a RW, and not a deterministic trend. (It might be that the conditional
mean has a quadratic trend.)

HA : If the DF test rejects the H0 of a RW,
then yt does not obey to a RW. If b is significant, yt might be modeled more
adequately by a deterministic trend.
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The augmented Dickey-Fuller test

In case εt is not WN, but (stationary and) autocorrelated, the Dickey-Fuller test is
not reliable.

Therefore we estimate the model augmented with lagged ∆yt ’s to capture this
autocorrelation, and obtain approximately uncorrelated residuals.

∆yt = c + (α− 1)yt−1 +

p∑
1

φj∆yt−j + εt

The maximal lag order p is chosen automatically by an information criterion of
your choice, e.g. AIC, SBC.

Remark: Tests for bubbles (α > 1) are found in Phillips, Shi and Yu(2015).
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Granger causality
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Granger causality

Granger causality is actually a concept for classification of predictability in
stationary dynamic (AR(p)-type) models.

Restricted model, model 0:

yt = α0 + α1yt−1 + . . .+ αpyt−p + ε0,t

We ask whether a stationary xt can help to forecast yt . We consider the model
augmented by lagged x ’s:

Unrestricted model, model 1:

yt = α0 + α1yt−1 + . . .+ αpyt−p + β1xt−1 + . . .+ βqxt−q + ε1,t

X Granger-causes Y , if at least one of the βj 6= 0.
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Testing via LR-test

The hypothesis of no Granger causation of X wrt Y

H0 : β1 = . . . = βq = 0

can be tested for fixed p,q via a LR-test:

n log(
s2

0

s2
1

) ∼ χ2(q)

The test statistic is asy distributed χ2 with q degrees of freedom.

s2
0 = σ̂2

0 and s2
1 = σ̂2

1 are the estimated variances of ε0 and ε1.

log(σ2
0/σ

2
1) may be interpreted as the strength of the causality.
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Testing via F-test, instantaneous causality

Or we test via a Wald F -statistic

(RSS0 − RSS1)/q
RSS1/(n − p − q)

∼ F (q,n − p − q)

RSS . . . residual sum of squares

Other types of Granger causality:
I If in the augmented model also the current xt plays a role, then this is called

instantaneous causality between X and Y .
I Both Y Granger-causes X and X Granger-causes Y might exist. This is

called feedback relationship.

28 / 67



Example, deficiencies

Example: Daily returns of various European stock indices were slightly
Granger-caused by the New York stock exchange before 9/11 2001. However
during the months after, adjustment speeded up, instantaneous causality rose and
lagged reaction vanished.

Granger causation is subject to the same deficiencies as the bivariate correlation
coefficient:

I Causation may vanish when including a third variable (spurious correlation), or
I Causation may turn out only after adding a third variable.

The space within causation is searched for is relevant.
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Assumptions of classical regression model
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The linear regression model

y = Xβ + ε

The dependent variable y is (n × 1), a column of length n.
The regressor matrix X is (n × K ), X = [xtk ]n×K .
The parameter vector β is (K × 1) and
the error term ε is (n × 1).

More explicitly
y = x1β1 + . . .+ xKβK + ε

xk is the k -th column in X , xk = [x·k ]n×1.

In terms of single time points or individuals

yt = x ′tβ + εt

where x ′t , x ′i , are the t-th/i-th row in X .
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Assumptions: review

A0. True model: We know the true model and the model in question is
specified correctly in the given form.

A1. Linear model: The model is linear. (I.e. linear in the parameters.)

A2. Full rank of X : No variable can be expressed as linear combination of
the others. All parameters are identified. No multicollinearity.

As the regressors are stochastic the condition is:
plim(X ′X/n) = Q is finite, constant and non singular.
If the x-variables have all mean zero, Q is the asymptotic covariance matrix.

In the special case of a deterministic X A2 reduces to the full rank,
nonsingularity, respectively, of (X ′X ).
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Assumptions: review

A3. Exogeneity of the explanatory variables:
The explanatory variables at any point of time, i , are independent with the
current, and all past and future errors.
E [εi |xj1, ..., xjK ] = 0 i , j = 1, . . . ,n.

A4. Homoscedasticity and uncorrelated errors:
The disturbances εt have finite and constant variance, σ2.
They are uncorrelated with each other.

A5. Exogenously generated data: The generating process of the x ’s is
outside the model. The analysis is done conditionally on the observed X .

A6. Normal distribution: The disturbances are (approximately) normally
distributed (for convenience). y is multivariate normal conditional on X ,
y |X ∼ N(., .)
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Endogeneity
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Endogeneity: definition

Endogeneity exists if explanatory variables are correlated with the disturbance
term. We start with

y = Xβ + ε

and estimate by OLS, with b = β̂ = (X ′X )−1X ′y . Then b may be written as

b = β + (X ′X )−1X ′ε

If E(X ′ε) or plim(X ′ε/n) is not zero, then the estimates are biased or inconsistent.

There are several models where endogeneity arises:
I The errors-in-the-variables model
I Simultaneity
I Dynamic regression
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Endogeneity: the errors-in-the-(explanotary)variables model

The true model is: y = βx + ε

However, we observe only xo, i.e. x with a measurement (random) error η, which
we cannot control for: xo = x + η

The model we estimate is: y = βxo + εo

So εo = ε− βη, and Cov(xo, εo) 6= 0.

Cov(xo, εo) = Cov(x + η, ε)− β Cov(x + η, η) 6= 0

The first term can be assumed to be zero, Corr(ε, η) = 0, the second one is
different from zero.

The measurement error causes inconsistency of the estimates. The bias in β does
not vanish even with n→∞.

Remark: y = β[x + η]− βη + ε = βxo + (ε− βη) as we want to estimate the true beta.

36 / 67



Endogeneity: simultaneity

Simultaneity is a general phenomenon. It says that individual decisions in
(economic) systems are interdependent. Single independent decisions can hardly
be separated out.

Example: In macroeconomics the simple consumption function describes the
relationship between private consumption, C, and disposable income, Y .

C = α + βY + ε

However, income is generated by consumption expenditure, and investment and
government consumption, etc. Say, the latter is aggregated and denoted by Z .

Y = C + Z

Both equations give a simultaneous equation system.
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Endogeneity: simultaneity

LS of the consumption function yields

(a b)′ = (α β)′ + [(1Y )′(1Y )]−1(1Y )′ε

Since Y = C + Z ,
E(1Y )′ε = E[1 (C + Z )]′ε 6= 0

E(C′ε) 6= 0 as C = α + βY + ε, and so (a b)′ is biased.
This is a simple example for the simultaneous equation bias.

Example: It is difficult to distinguish empirically between pure univariate
expectations and expectations influenced by the overall economic state.
Further, consider expectations about the expectations of other subjects,. . ..
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Strict / weak exogeneity

Assumption A3 says that current, past and future disturbances are uncorrelated
with current explanatory variables (and vice versa).

E [εi |xj1, ..., xjK ] = 0 i , j = 1, . . . ,n

or
E [xjk εi ] = 0 i , j = 1, . . . ,n for all k

We say the x variables are strictly exogenous.

For weak exogeneity only

E [xik εi ] = 0 i = 1, . . . ,n for all k

is required.
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Predetermined variables, dynamic regression
Variable x is called predetermined if

E[xt εt+s] = 0 s > 0

Current xt is uncorrelated with all future ε’s, but possibly correlated with past.

Consider the simple dynamic regression with |γ| < 1

yt = γyt−1 + εt

Repeated substitution gives

yt =
t−1∑
i=0

γ iεt−i + γty0 = εt + γεt−1 + . . .+ γt−1ε1 + γty0

yt−1 does not dependent on εt , εt+1, . . . . So yt−1 is predetermined, and weakly
exogenous (as it does not depend on εt ).

The lack of contemporary correlation of yt−1 = xt and εt is essential. If E(xt εt ) = 0
the consequences of the dynamic dependencies vanish at least asymptotically and
we obtain consistent estimates, which might, however, be biased in small samples.
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Instrumental variables

41 / 67



Instrumental variables, IV

A solution for the edogeneity problem (biases/inconsistencies) are IV estimators.
Instrumental variables, briefly instruments, are essentially exogenous variables
- they do not correlate with the disturbances by assumption - used as proxies for
endogenous explanatories.

I The art is to find variables which are good proxies (and do not show
endogeneity), so that the fit of the regression will become acceptable.

I Sometimes the loss of information due to the use of IVs (bad proxies) is larger
than the bias induced by endogenity. Then it is preferable to stay with the
simple LS estimator.
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IV estimation: a 2-step procedure

Say the model is
y = X1β1 + X2β2 + ε

X1 contains the variables leading to the endogeneity problem.
I We choose at least as many instruments, the columns in Z , as there are

variables in X1,
I regress (LS) X1 on Z : X1 = Zγ + η.

We get X̂1 = Z γ̂, and
I replace X1 in the original model by X̂1:

y = X̂1β1 + X2β2 + ε

I The resulting LS estimate b = bIV is the instrumental variable estimator.
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IV estimator: more formally
We relax assumption A3 to AI3 (weak exogeneity) with

AI 3. E(εi |xi,1, . . . , xi,K ) = 0, i = 1, . . . ,n

Only the contemporaneous correlation has to vanish.

We show that the estimate bIV is asymptotically normal.
For notational convenience the model is the following

y = Xβ + ε, X (n × K ), Z (n × K )

There are - say K - instruments in Z , so that X ′Z has rank K . LS of X on Z gives
with

X = Zγ + η

γ is (K × K ) and η (n × K ).

γ̂ = (Z ′Z )−1Z ′X and X̂ = Z γ̂ = Z (Z ′Z )−1Z ′X
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IV estimator: more formally

Now we have to estimate by LS

y = X̂β + ε

b = bIV = (X̂ ′X̂ )−1X̂ ′y = . . .

= [X ′Z (Z ′Z )−1Z ′X ]−1[Z (Z ′Z )−1Z ′X ]′y = . . .

= (Z ′X )−1Z ′y
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IV estimator: unbiasedness, consistency

We replace y by y = Xβ + ε. So

bIV = β + (Z ′X )−1Z ′ε

For consistency we need that
plim(Z ′Z/n) = QZZ a positive definite matrix
plim(Z ′X/n) = QZX = Q′XZ a nonzero matrix
plim(X ′X/n) = QX a positive definite matrix and
plim(Z ′ε/n) = 0 as Z are valid instruments.

Then plim bIV = β + plim(Z ′X/n)−1(Z ′ε/n) = β + Q−1
ZX plim(Z ′ε/n) and so

plim bIV = β.
The IV estimator is consistent.
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IV estimator: asy normality

Application of a CLT (central limit theorem) gives the asymptotic distribution of bIV .
The expectation is obtained by using (weak) AI3 E(εt |z ′t ) = 0, the variance by
considering (Z ′ε/

√
n). Under very general conditions – moments up to order

(2 + ε) exist, ε weakly dependent – holds

Z ′ε/
√

n d→ N[0, σ2QZZ ]

Remark: If the disturbances are heteroscedastic having covariance matrix
Ω 6= σ2I , the asymptotic variance of (Z ′ε/

√
n) would be plim(Z ′ΩZ/n) instead.

The IV estimator is asymptotically distributed as

bIV ∼ N[β, (σ2/n)Q−1
ZX QZZ Q−1

XZ ]

Remark: asyVar(Z ′ε/
√

n) = plim(Z ′ε/
√

n)(Z ′ε/
√

n)′ = plim(Z ′εε′Z )/n = σ2QZZ
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Hausman test: testing for endogeneity

If there is a suspicion of endogeneity about the X ’s, we want to check for it. The
Hausman test offers a possibility.
We compare the estimates

y = XbLS + ε̂t ,LS

and
y = X̂bIV + ε̂t ,IV
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Hausman test: testing for endogeneity

The idea is that under the null hypothesis of no endogeneity both OLS and IV are
consistent, though IV is less efficient (because we use proxies as instruments).

Asy .Var [bIV ]− Asy .Var [bLS] . . . nonnegative definite

Further, under the null should hold

E(d) = E(bIV − bLS) = 0

However under the alternative of endogenity LS is biased/inconsistent, and the
estimates differ: E(d) 6= 0.
A Wald statistic based thereon is

H = d ′{Est .Asy .Var [d ]}−1d

with Est .Asy .Var [d ] the estimated asymptotic variance of d .
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Hausman test: testing for endogeneity

Est .Asy .Var [d ] depends on the variance of bIV , bLS and their covariances.
However, the covariance between an efficient estimator, bE , and its difference
from an inefficient one, bI , is zero. (without proof)

Cov(bE ,bI − bE ) = Cov(bE ,bI)− Cov(bE ,bE ) = 0

So Cov(bE ,bI) = Var(bE ). Applied to bIV and bLS:

Asy .Var(bIV − bLS) = Asy .Var(bIV )− Asy .Var(bLS)

This reduces H under the null of no endogeneity to

H =
1
σ̂2 d ′[(X̂ ′X̂ )−1 − (X ′X )−1]−1d ∼ χ2(K ∗)

where K ∗ = K − K0, and K0 is the number of explanatories which are not under
consideration wrt endogeneity. K ∗ . . . no. of possibly endogenous variables.
[For y = Xβ + ε the variance of bLS is V(b) = σ2(X ′X )−1]
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Hausman test

The Hausman test is more generally applicable.

I If we compare an efficient and an inefficient estimator, which are both
consistent, under the null.

I And, under the alternative the efficient one becomes inconsistent, and the
inefficient remains consistent.

51 / 67



Hausman-Wu test: testing for endogeneity

A simple related test for endogeneity is the Hausman-Wu test. Under the null we
consider the model

y = Xβ + ε

Under the alternative we consider the augmented model

y = Xβ + X̂ ∗γ + ε∗

where X̂ ∗ are the K ∗ explanatories under suspicion causing endogeneity
approximated by their estimates using the instruments.

The idea is, that under the null hypothesis of no endogeneity, X̂ ∗ represents an
irrelevant additional variable, so γ = 0.
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Hausman-Wu test: testing for endogeneity

Under the alternative the null model yields biased estimates, and the endogenous
X in the augmented model has some more explanatory power not covered by the
instruments.

The test statistics is a common F -test with K ∗ and (n − K − K ∗) degrees of
freedom, where the restricted model (γ = 0) is tested against the unrestricted
(γ 6= 0) one.

Important to note: The test depends essentially on the choice of appropriate
instruments.
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Exercises, references and appendix
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Exercises

Choose 2 out of (2, 3, 4, 5) and 2 of (1G, 6G).

1G Use EViews and Ex1_1_gspc_garch.wf1. Find an appropriate EGARCH
model for the return series of the S&P 500. For the period 2010-01-01 to
2013-12-31.
First test for a unit root in the stock prices, then specify and estimate the
ARMA and GARCH models for the returns separately. Compare standard
GARCH, GARCH-M, asymmetric GARCH, t-GARCH and EGARCH.
[For estimating ARMA-GARCH models in R see Ex1_gspc_garch_R.txt

and Ex1_interest_rates_R.txt. ]

2 Derive
(a) the ARMA(1,1) and
(b) the ARCH(∞) representation
of a GARCH(1,1) model.
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Exercises

3 Has the model yt = 1.7yt−1 − 0.8yt−2 + εt a unit root?

4 Derive the IV estimator and its asymptotic distribution for homoscedastic and
uncorrelated errors.

5 Write down the F -statistic for the Hausman-Wu test.

6G Investigate the type and strength of causality in the US and European stock
index returns around 9/11. Test for various types of causality: X causes Y ,
instantaneous causality, and feedback effects (X causes Y , and Y causes X ).
Use Ex1_6_Granger_R.txt.
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Appendix

Useful formula for OLS
White noise, Wold representation, ACF, AR(1), MA(1), lag polynomial, roots
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Some useful formula for OLS
Model

y = Xβ + ε

The normal equations give the 1st order conditions for minβ(ε′ε)

(X ′X )b = X ′y

LS solution for β
b = (X ′X )−1X ′y

In order to see the (potential) unbiasedness of b

b = β + (X ′X )−1X ′ε

The variance-covariance matrix of the estimate with Var(ε) = σ2I

Var(b) = E[(b − β)(b − β)′] = σ2(X ′X )−1

The residual vector e

e = y − Xb = y − X (X ′X )−1X ′y = [I − X (X ′X )−1X ′]y = My
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White noise, WN
A stochastic process {xt}, t = . . . ,−1,0,1, . . ., is a sequence of rv’s, where the
rv’s have common properties, eg. for strictly stationarity with finite dimensional
common distributions.

A stochastic process {xt} is a white noise, WN,

xt = εt

if for xt (and so also for εt )
I the (unconditional) mean E(xt ) = E(εt ) = 0, for all t
I the (unconditional) variance V(xt ) = V(εt ) = σ2 fixed (independent of t) and
I the autocorrelations Corr(xt , xt−j) = Corr(εt , εt−j) = 0 for j 6= 0.

More general, xt may have a mean, which is different form zero

xt = µ+ εt
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Weak stationarity, ACF

A process {xt} is weakly stationary, if
I E(xt ) = µ fixed, independent of t ,
I V(xt ) = γ0 = σ2

x fixed, independent of t
I Cov(xt , xt−j) = γj independent of t , and depends only on the time distance

between the both periods t and (t − j), j ≥ 0.

Weak stationarity refers only to the first two moments of the process. A common
distribution is not required.

{γj}, j ≥ 0, is called the autocovariance function, ACF, of {xt}.

The sample autocovariances are called correlogram.
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Wold representation theorem

Every weakly stationary process may be represented as a (one-sided) weighted
sum of a WN process {εt}

xt = µ+
∞∑
0

δjεt−j = µ+ εt + δ1εt−1 + δ2εt−2 + . . .

with
∑∞

0 δ2
j <∞, (square summable) and normalized with δ0 = 1.

As for all t E(εt ) = 0, V(εt ) = σ2 and Corr(εt , εt−j) = 0 for j 6= 0
I E(xt ) = µ+

∑∞
0 δjE(εt−j) = µ

I V(xt ) =
∑∞

0 δ2
j V(εt−j) = σ2 ∑∞

0 δ2
j <∞ finite, fixed and independent of t .

Remark: V(X + Y ) = V(X ) + V(Y ), if Corr(X ,Y ) = 0.
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AR(1)
An autoregressive process of order 1, AR(1), is given by

(xt − µ)− α(xt−1 − µ) = εt

with εt WN and |α| < 1.
Written as regression model

xt = (1− α)µ+ αxt−1 + εt = c + αxt−1 + εt

Its Wold representation is

xt = µ+
∞∑
0

αjεt−j

Its ACF decays geometrically.

V(xt ) = γ0 = σ2
x = σ2

∞∑
0

α2
j = σ2 1

1− α2

Corr(xt , xt−j) = γj/γ0 = αj

63 / 67



Forecasting with AR(1)

For forecasting we take the conditional expectation of xt based on available
information at (t − 1), It−1 = {xt−1, xt−2, . . . , εt−1, εt−2, . . .}.

The predictor of an AR(1) process xt for period t is

E(xt |It−1) = (1− α)µ+ αxt−1

The useful information reduces to It−1 = {xt−1}.

Contrary, the unconditional expectation is E(xt ) = µ.

The innovation (stochastics) εt which is driving the AR(1)

xt = (1− α)µ+ αxt−1 + εt is εt = xt − E(xt |It−1)
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AR(1), roots of the characteristic polynomial

The AR(1) can be written by means of the lag polynomial (1− αL) as

(1− αL)(xt − µ) = εt

The roots of the characteristic polynomial are given by

1− αz = 0

with the solution z = 1/α. The stationarity condition |α| < 1 translates for the root
to |z| = |1/α| > 1. The root lies outside the unit circle.

This stationarity condition generalizes to AR(p) processes of higher order p.

(1− α1L− . . .− αpLp)(xt − µ) = εt

1− α1z − . . .− αpzp = 0, |z| > 1

The roots have to lie outside the unit circle.

65 / 67



MA(1)

A moving average process of order 1, MA(1), is given by

(xt − µ) = εt + βεt−1

with εt WN, and |β| < 1 for invertibility.
(Invertibility guarantees an unique AR representation. MAs are stationary
independent of the choice of β.)

Its Wold representation is a finite sum of the ε’s and is the model itself.

Its ACF vanishes after lag 1.
I V(xt ) = γ0 = σ2

x = (1 + β2)σ2

I Corr(xt , xt−1) = γ1/γ0 = β/(1 + β2) < 1/2
I Corr(xt , xt−j) = γj/γ0 = 0 for j > 1.
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Tests for white noise
The sample autocorrelations are denoted by ρ̂j , ρ̂j = γ̂j/γ̂0. Under WN the sample
autocorrelations (for any j > 0) are asy distributed as

ρ̂j
a∼ N(−1

n
,

1
n

)

So a 95% coverage interval for ρ̂j under WN is [−1
n − 1.96

√
1/n, −1

n + 1.96
√

1/n].

A standard test for autocorrelation of zero up to a maximal order m, 1 ≤ j ≤ m, is
the Box-Pierce test. Using a correction for the df ’s it is called Ljung-Box test.

Q = n(n + 2)
m∑
1

ρ̂2
j

n − j
∼ χ2

m

Under the
H0 : ρ1 = . . . = ρm = 0

Q follows a chi-square distribution with m degrees of freedom.
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