
Dummy Variables

• A dummy variable (binary variable) D is a variable that takes on

the value 0 or 1.

• Examples: EU member (D = 1 if EU member, 0 otherwise),

brand (D = 1 if product has a particular brand, 0 otherwise),

gender (D = 1 if male, 0 otherwise)

• Note that the labelling is not unique, a dummy variable could be

labelled in two ways, i.e. for variable gender:

– D = 1 if male, D = 0 if female;

– D = 1 if female, D = 0 if male.
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Regression Models with Dummy Variables

Consider a regression model with one continuous variable X and

one dummy variable D:

Y = β0 + β1D + β2X + u.

If D = 0, then:

Y = β0 + β2X + u.

If D = 1, then:

Y = β0 + β1 + β2X + u.
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Regression Models with Dummy Variables

Example: Y = 20 + 3.2 ·D − 2.5 ·X
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Regression Models with Dummy Variables
Interpretation:

• The observed units are split into 2 groups according to D (e.g.

into men and women).

• The group with D = 0 is called the baseline (e.g. men).

• The regressin coefficient β1 of D quantifies the expected effect

of considering the other group (e.g. women) on the dependent

variable Y , while holding all other variables (e.g. X) fixed.

• The null hypothesis β1 = 0 corresponds to the assumption that

the average value of Y is the same for both groups.
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Regression Models with Dummy Variables

Consider model Y = 20 + 3.2 ·D − 2.5 ·X + u, where D = 1, if

female. Assume that X = 4:

• expected value for Y for a man: E(Y |X = 4) = 20−2.5 ·4 = 10;

• expected value for Y for a woman: E(Y |X = 4) = 20 + 3.2 −
2.5 · 4 = 13.2;

• expected difference, if we consider a woman: β1 = 3.2;

• expected difference between women and men is equal to β1 = 3.2,

even if we change X.
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Combining more than one dummy variable

Estimate a model where D1 is the gender (1: female, 0: male), D2

is the brand (1: specific brand, 0: no-name), and P is the price:

Y = β0 + β1D1 + β2D2 + β3P + u,

• β0 corresponds to the baseline (male, no-name product)

• β1: difference in the expected rating between male and female

consumers (same product).

• β2: difference in the expected rating between the specific brand

and a no-name product (same person, same price).
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Categorical Variables

We can use dummy variables to control for characteristics with

multiple categories (K categories, K − 1 dummies).

Suppose one of the predictors is the highest level of education. Such

variables are often coded in the following way:

edu

1 high school dropout

2 high school degree

3 college degree

What is the effect of education on a variable Y , e.g. hourly wages?
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Categorical Variables

Including edu directly into a linear regression model would mean

that the effect of a high school degree compared to a drop out is

the same as the effect of a college degree compared to a high school

degree.

To include the highest level of education as predictor in a regression

model, define 2 dummy variables D1 and D2:

edu D1 D2

1 high school dropout 0 0

2 high school degree 1 0

3 college degree 0 1
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Categorical Variables

• Baseline (all dummies 0): high school dropout

• D1 = 1, if highest degree from high school, 0 otherwise;

• D2 = 1, if college degree, 0 otherwise.

Include D1 and D2 as dummy predictors in a regression model:

Y = β0 + β1D1 + β2D2 + β3X + u.

The intercept β0 corresponds to the baseline (D1 = 0, D2 = 0).
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Categorical Variables

• β1 is the effect of a high school degree compared to a drop out.

• β2 is the effect of a college degree compared to a drop out.

Testing hypothesis:

• Is the effect of a high school degree compared to a drop out the

same as the effect of a college degree compared to a high school

degree?

• Test, if 2β1 = β2, or equivalently, test the linear hypothesis

2β1 − β2 = 0.
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Case Study Marketing

There are 5 different brands of mineral water (KR,RO,VO,JU,WA):

• Select one mineral water as baseline, e.g. KR.

• Introduce 4 dummy variables D1, . . . , D4, and assign each of

them to the remaining brands, e.g. D1 = 1, if brand is equal to

RO and D1 = 0, otherwise; D2 = 1, if brand is equal to VO and

D2 = 0, otherwise; etc.

The model reads:

Y = β0 + β1D1 + . . .+ β4D4 + β5P + u. (66)
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Case Study Marketing

• the expected rating for the brand corresponding to the baseline

is given by β0 + β5P ;

• the expected rating for the brand corresponding to Dj is given

by β0 + βj + β5P ;

• the coefficient βj measures the effect of the brand Dj in compa-

rison to the brand corresponding to the baseline;

• the difference in the expected average rating between two arbitrary

brands Dj and Dk is equal to βj − βk. Is the rating different for

the brands Dj and Dk? Test βj − βk = 0.
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Case Study Marketing

Including an additional dummy variable D5, where D5 = 1, if brand

equal to KR, i.e.

Y = β0 + β1D1 + . . .+ β5D5 + β6P + u,

leads to a model which is not identified, because:

D1 +D2 + . . .+D5 = 1.

Hence, the set of regressors D1, . . . , D5 is perfectly correlated with

the regressor ’1’ corresponding to the intercept. (EViews produces

an error message indicating difficulties with estimating the model.)
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Case Study Marketing
It is possible to include all 5 regressors, if no constant is included in

the model, with a slightly different interpretation of the coefficients:

Y = β1D1 + . . .+ β5D5 + β6P + u.

• βj is a brand specific intercept of the regression model for the

brand corresponding to Dj.

• For a given price level P , the expected rating for the brand

corresponding to Dj is given by: βj + β6P.

• The difference in the expected average rating between two arbi-

trary brands Dj and Dk is still equal to βj − βk.
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II.8 Model Comparison Using R2 and AIC/BIC

• Model evaluation using the coefficient of determination R2

• Problems with R2: R2 increases with increasing number of

variables, because SSR decreases ⇒ may lead to overfitting

• Model comparison using AIC and SC (BIC): Penalize the ever

decreasing SSR by including the number of parameters
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Coefficient of Determination R2

Coefficient of determination R2 (SST is the squared sum of residuals

of the simple model without predictor):

R2 =
SST− SSR

SST
= 1− SSR

SST
(67)

• Close to 1, if SSR << SST; close to 0, if SSR ≈ SST.

SSR is always smaller than SST. If SSR is much smaller than

SST, then the regression model M1 is much better than the simple

model M0.
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EVIEWS Exercise II.8.1

Discuss in EVIEWS, where to find SSR and R2; discuss by including

an increasing number of predictors, how SSR and R2 change when

increasing the number of predictors

• Case Study profit, workfile profit;

• Case Study Chicken, workfile chicken;

• Case Study Marketing, workfile marketing;

Sylvia Frühwirth-Schnatter Econometrics I WS 2012/13 1-192



Case Study Chicken

Predictor included SSR R2

pchick 0.273487 0.647001

income 0.041986 0.945807

income, pchick 0.015437 0.980074

income, pchick,

ppork 0.014326 0.981509

income, pchick,

ppork, pbeef 0.013703 0.982313
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Problems with R2

• Choosing the model with the smallest SSR (largest R2) leads to

overfitting: R2 increases with increasing number of variables as

SSR decreases.

• R2 is 1 for K = N − 1, because SSR = 0, if we include as many

predictors as observations, even if the predictors are useless.

• The increase of adding a useless predictor, however, is small ⇒
penalize the ever decreasing SSR by including the number of

parameters used for estimation which is an increasing function of

the number of parameters.
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Model choice criteria

Definition of model choice criteria

log(SSR) +m ·Number of parameters (68)

• m = 2 ... AIC (Akaike Information Criterion)

• m = log(Number of observations) ... SC (Schwarz Criterion),

also called BIC

Choose the model that minimize a particular criterion
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EVIEWS Exercise II.7.2

Discuss in EVIEWS, where to find AIC and Schwarz criterion; discuss

how to choose predictors based on these model choice criteria

• Case Study profit, workfile profit;

• Case Study Chicken, workfile chicken; estimate log-linear model

• Case Study Marketing, workfile marketing;
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Case Study Chicken (log-linear model)

Predictor included SSR R2 AIC SC

pchick 0.273487 0.647001 -1.420206 -1.321468

income 0.041986 0.945807 -3.294124 -3.195386

income, pchick 0.015437 0.980074 -4.207711 -4.059603

income, pchick,

ppork 0.014326 0.981509 -4.195488 -3.998011

income, pchick,

ppork, pbeef 0.013703 0.982313 -4.152987 -3.906140
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Comparing linear and log-linear models

The residual sum of squares SSR depends on the scale of yi,

therefore AIC and SC are scale dependent

AIC and SC could not be used directly to compare a linear and a

log-linear model.

AIC and SC of the log-linear model could be matched back to the

original scale by adding 2 times the mean of the logarithmic values

of yi.
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Comparing linear and log-linear models

Correction formula:

AIC = AIC⋆ + 2
1

N

N∑
i=1

log(yi) (69)

SC = SC⋆ + 2
1

N

N∑
i=1

log(yi) (70)

AIC⋆ and SC⋆ are the model choice criteria for the log-linear model
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EVIEWS Exercise II.7.3 - Case Study Chicken

Predictor included SSR R2 AIC SC

income, pchick (log-linear) 0.015437 0.980074 -4.207711 -4.059603

income, pchick (linear) 106.65 0.9108 4.633 4.781

Transform AIC and SC of the log-linear model:

AIC= -4.207711 + 2 · 3.663887 = 3.1201

SC= -4.059603 + 2 · 3.663887 = 3.2682

log-linear model preferred
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