
Homoskedasticity

How big is the difference between the OLS estimator and the

true parameter? To answer this question, we make an additional

assumption called homoskedasticity:

Var (u|X) = σ2. (23)

This means that the variance of the error term u is the same,

regardless of the predictor variable X.

If assumption (23) is violated, e.g. if Var (u|X) = σ2h(X), then

we say the error term is heteroskedastic.
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Homoskedasticity

• Assumption (23) certainly holds, if u and X are assumed to be

independent. However, (23) is a weaker assumption.

• Assumption (23) implies that σ2 is also the unconditional variance

of u, referred to as error variance:

Var (u) = E(u2)− (E(u))2 = σ2.

Its square root σ is the standard deviation of the error.

• It follows that Var (Y |X) = σ2.
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Variance of the OLS estimator
How large is the variation of the OLS estimator around the true

parameter?

• Difference β̂1 − β1 is 0 on average

• Measure the variation of the OLS estimator around the true

parameter through the expected squared difference, i.e. the

variance:

Var
(
β̂1

)
= E((β̂1 − β1)

2) (24)

• Similarly for β̂0: Var
(
β̂0

)
= E((β̂0 − β0)

2).
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Variance of the OLS estimator
Variance of the slope estimator β̂1 follows from (22):

Var
(
β̂1

)
=

1

N2(s2x)
2

N∑
i=1

(xi − x)2Var (ui)

=
σ2

N2(s2x)
2

N∑
i=1

(xi − x)2 =
σ2

Ns2x
. (25)

• The variance of the slope estimator is the larger, the smaller the

number of observations N (or the smaller, the larger N).

• Increasing N by a factor of 4 reduces the variance by a factor of

1/4.
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Variance of the OLS estimator

Dependence on the error variance σ2:

• The variance of the slope estimator is the larger, the larger the

error variance σ2.

Dependence on the design, i.e. the predictor variable X:

• The variance of the slope estimator is the larger, the smaller the

variation in X, measured by s2x.
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Variance of the OLS estimator

The variance is in general different for the two parameters of the

simple regression model. Var
(
β̂0

)
is given by (without proof):

Var
(
β̂0

)
=

σ2

Ns2x

N∑
i=1

x2
i . (26)

The standard deviations sd(β̂0) and sd(β̂1) of the OLS estimators

are defined as:

sd(β̂0) =

√
Var

(
β̂0

)
, sd(β̂1) =

√
Var

(
β̂1

)
.
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Mile stone II

The Multiple Regression Model

• Step 1: Model Definition

• Step 2: OLS Estimation

• Step 3: Econometric Inference

• Step 4: OLS Residuals

• Step 5: Testing Hypothesis
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Mile stone II

• Step 6: Model Evaluation and Model Comparison

• Step 7: Residual Diagnostics
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Cross-sectional data

• We are interested in a dependent (left-hand side, explained, re-

sponse) variable Y , which is supposed to depend on K explana-

tory (right-hand sided, independent, control, predictor) variables

X1, . . . , XK

• Examples: wage is a response and education, gender, and expe-

rience are predictor variables

• we are observing these variables for N subjects drawn randomly

from a population (e.g. for various supermarkets, for various

individuals):

(yi, x1,i, . . . , xK,i), i = 1, . . . , N
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II.1 Model formulation

The multiple regression model describes the relation between the

response variable Y and the predictor variables X1, . . . , XK as:

Y = β0 + β1X1 + . . .+ βKXK + u, (27)

β0, β1, . . . , βK are unknown parameters.

Key assumption:

E(u|X1, . . . , XK) = E(u) = 0. (28)
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Model formulation
Assumption (28) implies:

E(Y |X1, . . . , XK) = β0 + β1X1 + . . .+ βKXK. (29)

E(Y |X1, . . . , XK) is a linear function

• in the parameters β0, β1, . . . , βK (important for ,,easy” OLS

estimation),

• and in the predictor variables X1, . . . , XK (important for the

correct interpretation of the parameters).
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Understanding the parameters

The parameter βk is the expected absolute change of the response

variable Y , if the predictor variable Xk is increased by 1, and all

other predictor variables remain the same (ceteris paribus):

E(∆Y |∆Xk) = E(Y |Xk = x+∆Xk)− E(Y |Xk = x) =

β0 + β1X1 + . . .+ βk(x+∆Xk) + . . .+ βKXK

− (β0 + β1X1 + . . .+ βkx+ . . .+ βKXK) =

βk∆Xk.
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Understanding the parameters

The sign shows the direction of the expected change:

• If βk > 0, then the change of Xk and Y goes into the same

direction.

• If βk < 0, then the change of Xk and Y goes into different

directions.

• If βk = 0, then a change in Xk has no influence on Y .
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The multiple log-linear model

The multiple log-linear model reads:

Y = eβ0 ·Xβ1
1 · · ·XβK

K eu. (30)

The log transformation yields a model that is linear in the parameters

β0, β1, . . . , βK,

log Y = β0 + β1 logX1 + . . .+ βK logXK + u, (31)

but is nonlinear in the predictor variables X1, . . . , XK. Important

for the correct interpretation of the parameters.
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The multiple log-linear model

• The coefficient βk is the elasticity of the response variable Y with

respect to the variable Xk, i.e. the expected relative change of

Y , if the predictor variable Xk is increased by 1% and all other

predictor variables remain the same (ceteris paribus).

• If Xk is increased by p%, then (ceteris paribus) the expected

relative change of Y is equal to βkp%. On average, Y increases

by βkp%, if βk > 0, and decreases by |βk|p%, if βk < 0.

• If Xk is decreased by p%, then (ceteris paribus) the expected

relative change of Y is equal to −βkp%. On average, Y decreases

by βkp%, if βk > 0, and increases by |βk|p%, if βk < 0.
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EVIEWS Exercise II.1.2

Show in EViews, how to define a multiple regression model and

discuss the meaning of the estimated parameters:

• Case Study Chicken, work file chicken;

• Case Study Marketing, work file marketing;

• Case Study profit, work file profit;
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II.2 OLS-Estimation

Let (yi, x1,i, . . . , xK,i), i = 1, . . . , N denote a random sample of

size N from the population. Hence, for each i:

yi = β0 + β1x1,i + . . .+ βkxk,i + . . .+ βKxK,i + ui. (32)

The population parameters β0, β1, and βK are estimated from a

sample. The parameters estimates (coefficients) are typically deno-

ted by β̂0, β̂1, . . . , β̂K. We will use the following vector notation:

β = (β0, . . . , βK)
′
, β̂ = (β̂0, β̂1, . . . , β̂K)

′
. (33)
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II.2 OLS-Estimation

The commonly used method to estimate the parameters in a multiple

regression model is, again, OLS estimation:

• For each observation yi, the prediction ŷi(β) of yi depends on

β = (β0, . . . , βK).

• For each yi, define the regression residuals (prediction error)

ui(β) as:

ui(β) = yi − ŷi(β) = yi − (β0 + β1x1,i + . . .+ βKxK,i). (34)
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OLS-Estimation for the Multiple Regression Model

• For each parameter value β, an overall measure of fit is obtained

by aggregating these prediction errors.

• The sum of squared residuals (SSR):

SSR =

N∑
i=1

ui(β)
2 =

N∑
i=1

(yi − β0 − β1x1,i − . . .− βKxK,i)
2.(35)

• The OLS-estimator β̂ = (β̂0, β̂1, . . . , β̂K) is the parameter that

minimizes the sum of squared residuals.
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How to compute the OLS Estimator?

For a multiple regression model, the estimation problem is solved

by software packages like EViews.

Some mathematical details:

• Take the first partial derivative of (35) with respect to each

parameter βk, k = 0, . . . ,K.

• This yields a system K + 1 linear equations in β0, . . . , βK, which

has a unique solution under certain conditions on the matrix X,

having N rows and K + 1 columns, containing in each row i the

predictor values (1x1,i . . . xK,i).
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Matrix notation of the multiple regression model

Matrix notation for the observed data:

X =



1 x1,1
... xK,1

1 x1,2
... xK,2

... ... ... ...

1 x1,N−1
... xK,N−1

1 x1,N
... xK,N


, y =



y1

y2
...

yN−1

yN


.

X is N × (K + 1)-matrix, y is N × 1-vector.

The X
′
X is a quadratic matrix with (K + 1) rows and columns.

(X
′
X)−1 is the inverse of X

′
X.
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Matrix notation of the multiple regression model

In matrix notation, the N equations given in (32) for i = 1, . . . , N ,

may be written as:

y = Xβ + u,

where

u =


u1

u2

...

uN

 , β =


β0

...

βK

.
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The OLS Estimator

The OLS estimator β̂ has an explicit form, depending on X and

the vector y, containing all observed values y1, . . . , yN .

The OLS estimator is given by:

β̂ = (X
′
X)−1X

′
y. (36)

The matrix X
′
X has to be invertible, in order to obtain a unique

estimator β.
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The OLS Estimator

Necessary conditions for X
′
X being invertible:

• We have to observe sample variation for each predictor Xk;

i.e. the sample variances of xk,1, . . . , xk,N is positive for all

k = 1, . . . ,K.

• Furthermore, no exact linear relation between any predictors Xk

and Xl should be present; i.e. the empirical correlation coefficient

of all pairwise data sets (xk,i, xl,i), i = 1, . . . , N is different from

1 and -1.

EViews produces an error, if X
′
X is not invertible.
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Perfect Multicollinearity

A sufficient assumptions about the predictors X1, . . . , XK in a

multiple regression model is the following:

• The predictors X1, . . . , XK are not linearly dependent, i.e. no

predictor Xj may be expressed as a linear function of the remai-

ning predictors X1, . . . , Xj−1, Xj+1, . . . , XK.

If this assumption is violated, then the OLS estimator does not

exist, as the matrix X
′
X is not invertible.

There are infinitely many parameters values β having the same

minimal sum of squared residuals, defined in (35). The parameters

in the regression model are not identified.
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Case Study Yields
Demonstration in EVIEWS, workfile yieldus

yi = β1 + β2x2,i + β3x3,i + β4x4,i + ui,

yi . . . yield with maturity 3 months

x2,i . . . yield with maturity 1 month

x3,i . . . yield with maturity 60 months

x4,i . . . spread between these yields

x4,i = x3,i − x2,i

x4,i is a linear combination of x2,i and x3,i
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Case Study Yields

Let β = (β1, β2, β3, β4) be a certain parameter

Any parameter β⋆ = (β1, β
⋆
2 , β

⋆
3 , β

⋆
4), where β⋆

4 may be arbitrarily

chosen and

β⋆
3 = β3 + β4 − β⋆

4

β⋆
2 = β2 − β4 + β⋆

4

will lead to the same sum of mean squared errors as β. The OLS

estimator is not unique.

Sylvia Frühwirth-Schnatter Econometrics I WS 2012/13 1-80



II.3 Understanding Econometric Inference

Econometric inference: learning from the data about the unknown

parameter β in the regression model.

• Use the OLS estimator β̂ to learn about the regression parameter.

• Is this estimator equal to the true value?

• How large is the difference between the OLS estimator and the

true parameter?

• Is there a better estimator than the OLS estimator?
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Unbiasedness

Under the assumptions (28), the OLS estimator (if it exists) is

unbiased, i.e. the estimated values are on average equal to the

true values:

E(β̂j) = βj, j = 0, . . . ,K.

In matrix notation:

E(β̂) = β, E(β̂ − β) = 0. (37)
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Unbiasedness of the OLS estimator

If the data are generated by the model y = Xβ+u, then the OLS

estimator may be expressed as:

β̂ = (X
′
X)−1X

′
y = (X

′
X)−1X

′
(Xβ + u) = β + (X

′
X)−1X

′
u.

Therefore the estimation error may be expressed as:

β̂ − β = (X
′
X)−1X

′
u. (38)

Result (37) follows immediately:

E(β̂ − β) = (X
′
X)−1X

′
E(u) = 0.
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Covariance Matrix of the OLS Estimator

Due to unbiasedness, the expected value E(β̂j) of the OLS estimator

is equal to βj for j = 0, . . . ,K.

Hence, the variance Var
(
β̂j

)
measures the variation of the OLS

estimator β̂j around the true value βj:

Var
(
β̂j

)
= E

(
(β̂j − E(β̂j))

2
)
= E

(
(β̂j − βj)

2
)
.

Are the deviation of the estimator from the true value correlated

for different coefficients of the OLS estimators?
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Covariance Matrix of the OLS Estimator

MATLAB Code: regestall.m

Design 1: xi ∼ −.5 + Uniform [0, 1] (left hand side) versus Design

2: xi ∼ 1 + Uniform [0, 1] (N = 50, σ2 = 0.1) (right hand side)

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−2.5

−2

−1.5

−1

β 2 (
pr

ic
e)

β
1
 (constant)

N=50,σ2=0.1,Design 1

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−2.5

−2

−1.5

−1

β 2 (
pr

ic
e)

β
1
 (constant)

N=50,σ2=0.1,Design 1
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Covariance Matrix of the OLS Estimator

The covariance Cov(β̂j, β̂k) of different coefficients of the OLS

estimators measures, if deviations between the estimator and the

true value are correlated.

Cov(β̂j, β̂k) = E
(
(β̂j − βj)(β̂k − βk)

)
.

This information is summarized for all possible pairs of coefficients

in the covariance matrix of the OLS estimator. Note that

Cov(β̂) = E((β̂ − β)(β̂ − β)′).
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Covariance Matrix of the OLS Estimator

The covariance matrix of a random vector is a square matrix,

containing in the diagonal the variances of the various elements of

the random vector and the covariances in the off-diagonal elements.

Cov(β̂) =


Var

(
β̂0

)
Cov(β̂0, β̂1) · · · Cov(β̂0, β̂K)

Cov(β̂0, β̂1) Var
(
β̂1

)
· · · Cov(β̂1, β̂K)

... · · · . . . ...

Cov(β̂0, β̂K) · · · Cov(β̂K−1, β̂K) Var
(
β̂K

)

 .
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Homoskedasticity
To derive Cov(β̂), we make an additional assumption, namely

homoskedasticity:

Var (u|X1, . . . , XK) = σ2. (39)

This means that the variance of the error term u is the same,

regardless of the predictor variables X1, . . . , XK.

It follows that

Var (Y |X1, . . . , XK) = σ2.
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Error Covariance Matrix

• Because the observations are a random sample from the popula-

tion, any two observations yi and yl are uncorrelated. Hence also

the errors ui and ul are uncorrelated.

• Together with (39) we obtain the following covariance matrix of

the error vector u:

Cov(u) = σ2I,

with I being the identity matrix.
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Covariance Matrix of the OLS Estimator

Under assumption (28) and (39), the covariance matrix of the

OLS estimator β̂ is given by:

Cov(β̂) = σ2(X
′
X)−1. (40)
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Covariance Matrix of the OLS Estimator

Proof. Using (38), we obtain:

β̂ − β = Au, A = (X
′
X)−1X

′
.

The following holds:

E((β̂ − β)(β̂ − β)′) = E(Auu′A′) = AE(uu′)A′ = ACov(u)A′.

Therefore:

Cov(β̂) = σ2AA′ = σ2(X
′
X)−1X

′
X(X

′
X)−1 = σ2(X

′
X)−1
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Covariance Matrix of the OLS Estimator

The diagonal elements of the matrix σ2(X
′
X)−1 define the variance

Var
(
β̂j

)
of the OLS estimator for each component.

The standard deviation sd(β̂j) of each OLS estimator is defined as:

sd(β̂j) =

√
Var

(
β̂j

)
= σ

√
(X′X)−1

j+1,j+1. (41)

It measures the estimation error on the same unit as βj.

Evidently, the standard deviation is the larger, the larger the variance

of the error. What other factors influence the standard deviation?
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Multicollinearity

In practical regression analysis very often high (but not perfect)

multicollinearity is present.

How well may Xj be explained by the other regressors?

Consider Xj as left-hand variable in the following regression model,

whereas all the remaining predictors remain on the right hand side:

Xj = β̃0 + β̃1X1 + . . .+ β̃j−1Xj−1 + β̃j+1Xj+1 + . . .+ β̃KXK + ũ.

Use OLS estimation to estimate the parameters and let x̂j,i be the

values predicted from this (OLS) regression.
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Multicollinearity

• Define Rj as the correlation between the observed values xj,i and

the predicted values x̂j,i in this regression.

• If R2
j is close to 0, then Xj cannot be predicted from the other

regressors. Xj contains additional, “independent” information.

• The closer R2
j is to 1, the better Xj is predicted from the other

regressors and multicollinearity is present. Xj does not contain

much ,,independent” information.
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The variance of the OLS estimator

Using Rj, the variance Var
(
β̂j

)
of the OLS estimators of the

coefficient βj corresponding to Xj may be expressed in the following

way for j = 1, . . . ,K:

Var
(
β̂j

)
=

σ2

Ns2xj
(1−R2

j)
.

Hence, the variance Var
(
β̂j

)
of the estimate β̂j is large, if the

regressors Xj is highly redundant, given the other regressors (R2
j

close to 1, multicollinearity).
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The variance of the OLS estimator

All other factors same as for the simple regression model, i.e. the

variance Var
(
β̂j

)
of the estimate β̂j is large, if

• the variance σ2 of the error term u is large;

• the sampling variation in the regressor Xj, i.e. the variance s2xj
,

is small;

• the sample size N is small.
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II.4 OLS Residuals

Consider the estimated regression model under OLS estimation:

yi = β̂0 + β̂1x1,i + . . .+ β̂KxK,i + ûi = ŷi + ûi,

where ŷi = β̂0 + β̂1x1,i + . . .+ β̂KxK,i is called the fitted value.

ûi is called the OLS residual. OLS residuals are useful:

• to estimate the variance σ2 of the error term;

• to quantify the quality of the fitted regression model;

• for residual diagnostics
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EVIEWS Exercise II.4.1

Discuss in EVIEWS how to obtain the OLS residuals and the fitted

regression:

• Case Study profit, workfile profit;

• Case Study Chicken, workfile chicken;

• Case Study Marketing, workfile marketing;
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OLS residuals as proxies for the error

Compare the underlying regression model

Y = β0 + β1X1 + . . .+ βKXK + u, (42)

with the estimated model for i = 1, . . . , N :

yi = β̂0 + β̂1x1,i + . . .+ β̂KxK,i + ûi.

• The OLS residuals û1, . . . , ûN may be considered as a “sample”

of the unobservable error u.

• Use the OLS residuals û1, . . . , ûN to estimate σ2 = Var (u).
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Algebraic properties of the OLS estimator
The OLS residuals û1, . . . , ûN obey K+1 linear equations and have

the following algebraic properties:

• The sum (average) of the OLS residuals ûi is equal to zero:

1

N

N∑
i=1

ûi = 0. (43)

• The sample covariance between xk,i and ûi is zero:

1

N

N∑
i=1

xk,iûi = 0, ∀k = 1, . . . ,K. (44)
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Estimating σ2

A naive estimator of σ2 would be the sample variance of the OLS

residuals û1, . . . , ûN :

˜̂σ2 =
1

N

N∑
i=1

(
û2
i −

1

N

N∑
i=1

ûi

)2

=
1

N

N∑
i=1

û2
i =

SSR

N
,

where we used (43) and SSR =
∑N

i=1 û
2
i is the sum of squared OLS

residuals.

However, due to the linear dependence between the OLS residuals,

û1, . . . , ûN is not an independent sample. Hence, ˜̂σ2 is a biased

estimator of σ2.
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Estimating σ2

Due to the linear dependence between the OLS residuals, only

df = (N −K − 1) residuals can be chosen independently.

df is also called the degrees of freedom.

An unbiased estimator of the error variance σ2 in a homoscedastic

multiple regression model is given by:

σ̂2 =
SSR

df
, (45)

where df = (N −K − 1), N is the number of observations, and

K is the number of predictors X1, . . . , XK

.
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The standard errors of the OLS estimator

The standard deviation sd(β̂j) of the OLS estimator given in (46)

depends on σ =
√
σ2.

To evaluate the estimation error for a given data set in practical

regression analysis, σ2 is substituted by the estimator (45). This

yields the so-called standard error se(β̂j) of the OLS estimator:

se(β̂j) =
√
σ̂2

√
(X′X)−1

j+1,j+1. (46)
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EVIEWS Exercise II.4.1

EViews (and other packages) report for each predictor the OLS

estimator together with the standard errors:

• Case Study profit, work file profit;

• Case Study Chicken, work file chicken;

• Case Study Marketing, work file marketing;

Note: the standard errors computed by EViews (and other packages)

are valid only under the assumption made above, in particular,

homoscedasticity.
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Quantifying the model fit

How well does the multiple regression model (42) explain the

variation in Y ? Compare it with the following simple model without

any predictors:

Y = β0 + ũ. (47)

The OLS estimator of β0 minimizes the following sum of squared

residuals:

N∑
i=1

(yi − β0)
2

and is given by β̂0 = y.
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Coefficient of Determination

The minimal sum is equal to the total variation

SST =

N∑
i=1

(yi − y)2.

Is it possible to reduce the sum of squared residuals SST of the

simple model (47) by including the predictor variables X1, . . . , XN

as in (42)?
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Coefficient of Determination

The minimal sum of squared residuals SSR of the multiple

regression model (42) is always smaller than the minimal sum of

squared residuals SST of the simple model (47):

SSR ≤ SST. (48)

The coefficient of determination R2 of the multiple regression

model (42) is defined as:

R2 =
SST− SSR

SST
= 1− SSR

SST
. (49)
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Coefficient of Determination
Proof of (48). The following variance decomposition holds:

SST =

N∑
i=1

(yi − ŷi + ŷi − y)2 =

N∑
i=1

û2
i + 2

N∑
i=1

ûi(ŷi − y) +

N∑
i=1

(ŷi − y)2.

Using the algebraic properties (43) and (44) of the OLS residuals, we obtain:

N∑
i=1

ûi(ŷi − y) = β̂0

N∑
i=1

ûi + β̂1

N∑
i=1

ûix1,i + . . .+ β̂K

N∑
i=1

ûixK,i − y

N∑
i=1

ûi = 0.

Therefore:

SST = SSR +

N∑
i=1

(ŷi − y)2 ≥ SSR.
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Coefficient of Determination

The coefficient of determination R2 is a measure of goodness-of-fit:

• If SSR ≈ SST, then there is little gained by including the

predictors. R2 is close to 0. The multiple regression model

explains the variation in Y hardly better than the simple model

(47).

• If SSR << SST, then much is gained by including all predictors.

R2 is close to 1. The multiple regression model explains the

variation in Y much better than the simple model (47).

Programm packages like EViews report SSR and R2.
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Coefficient of Determination
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MATLAB Code: reg-est-r2.m
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The Gauss Markov Theorem

The Gauss Markov Theorem. Under the assumptions (28) and

(39), the OLS estimator is BLUE, i.e. the

• Best

• Linear

• Unbiased

• Estimator

Here “best” means that any other linear unbiased estimator has

larger standard errors than the OLS estimator.
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II.5 Testing Hypothesis

Multiple regression model:

Y = β0 + β1X1 + . . .+ βjXj + . . .+ βKXK + u, (50)

Does the predictor variable Xj exercise an influence on the expected

mean E(Y ) of the response variable Y , if we control for all other

variables X1, . . . , Xj−1, Xj+1, . . . , XK? Formally,

βj = 0?
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Understanding the testing problem

• Simulate data from a multiple regression model with β0 = 0.2,

β1 = −1.8, and β2 = 0:

Y = 0.2− 1.8X1 + 0 ·X2 + u, u ∼ Normal
(
0, σ2

)
.

• Run OLS estimation for a model where β2 is unknown:

Y = β0 + β1X2 + β2X3 + u, u ∼ Normal
(
0, σ2

)
,

to obtain (β̂0, β̂1, β̂2). Is β̂2 different from 0?

MATLAB Code: regtest.m
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Understanding the testing problem
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The OLS estimator β̂2 of β2 = 0 differs from 0 for a single data set,

but is 0 on average.
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Understanding the testing problem
OLS estimation for the true model in comparison to estimating a

model with a redundant predictor variable: including the redundant

predictor X2 increases the estimation error for the other parameters

β0 and β1.
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Testing of hypotheses

• What may we learn from the data about hypothesis concerning

the unknown parameters in the regression model, especially about

the hypothesis that βj = 0?

• May we reject the hypothesis βj = 0 given data?

• Testing, if βj = 0 is not only of importance for the substantive

scientist, but also from an econometric point of view, to increase

efficiency of estimation of non-zero parameters.

It is possible to answer these questions, if we make additional

assumptions about the error term u in a multiple regression model.
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