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Abstract

We study systemic risk in a network model of the interbank market where the
asset returns of the banks in the network are correlated. In this way we can study the
interaction of two important channels for systemic risk (correlation of asset returns
and contagion due direct financial linkages). We carry out a simulation study that
determines the probability of a systemic crisis in the banking network as a function
of both the asset correlation, and the connectivity and structure of the financial
network. An important observation is the fact that the relation between asset
correlation and the probability of a systemic crisis is hump-shaped; in particular,
lowering the correlation between the asset returns of different banks does not always
imply a lower probability of a systemic crisis. Moreover, in contrast to other studies
we find that diversification at the level of individual banks may be beneficial for
financial stability even if it does lead to a higher asset return correlation.
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1 Introduction

The availability of modern risk-transfer tools enables banks to diversify away id-

iosyncratic risk concentrations in their portfolios. However, diversification at the level

of individual banks might lead to more similar asset positions across banks and thus to

a higher correlation of bank’s asset returns. This has sparked a debate on the impact

of increasing asset return correlations on financial stability. Prior to the financial crisis

risk transfer between banks and diversification at the individual bank level was gener-

ally regarded as something positive. This view is for instance embodied in the following

quote from a 2002-speech of Alan Greenspan (then chairman of the FED) to the council

of foreign relations, see Greenspan (2002).
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[In the past year] I, particularly, have been focusing on innovations in the

management of risk and some of the implications of those innovations for our

global economic and financial system. The development of our paradigms

for containing risk has emphasized dispersion of risk to those willing, and

presumably able, to bear it. If risk is properly dispersed, shocks to the overall

economic systems will be better absorbed and less likely to create cascading

failures that could threaten financial stability.

Note that Greenspan explicitly entertains the idea that the default of any given financial

institution may result in “cascading failures” of other banks via a network of direct credit

relationships. Reducing idiosyncratic risk concentrations may thus be beneficial as it

reduces the likelihood that individual banks default in the first place.

After the financial crisis, diversification at the level of individual-bank level and the

potential increase in the correlation of banks’ asset portfolios were seen much more criti-

cal. For instance, Wagner (2010) argues that while diversification may indeed reduce the

default probability of individual banks, the ensuing rise in asset correlations increases

the likelihood of a systemic banking crisis (an event where many banks fail simulta-

neously). However, in his analysis network effects and direct business links between

financial institutions are neglected. Other contributions criticize a high level of corre-

lation between banks’ asset portfolios on different grounds. In particular, Acharya and

Yorulmazer (2007) argue that banks have an incentive to engage in herding to induce

possible government bailouts.

Given these different views, in the present paper we study the impact of correlated

asset positions on financial stability in a network model for financial institutions. The

network represents direct business links between banks such as a borrower-lender re-

lationship. This permits us to include two important sources for a systemic banking

crisis in a single model: first we consider correlation between the asset positions of dif-

ferent banks (the so-called correlation channel for systemic risk); second we consider

a contagious spreading of defaults through the financial network (the so-called conta-

gion channel for systemic risk). We find that the correlation channel and the contagion

channel are tightly connected; in particular, the impact of an increase in asset return cor-

2



relation on financial stability is ambiguous and depends on the structure of the financial

network. Moreover, in our setup diversification at the individual-bank level is typi-

cally beneficial for financial stability, in line with the informal argument of Greenspan

mentioned earlier.

We use a simulation approach for our analysis. We randomly draw a financial net-

work from a set of networks with given probabilistic characteristics that reflect stylized

facts observed in real-world interbank networks. Subsequently we generate a set of asset

returns for the banks in the network. We assume that a bank defaults if confronted with

a large enough negative asset return. In that case all its creditor banks suffer a loss. If

this loss is sufficiently large, some of the creditor banks default as well, which then leads

to further losses and possibly to a whole cascade of contagious defaults. The use of ran-

domly generated networks serves to robustify our analysis with respect to the details of

the network topology. This is important since the exact structure of real-world financial

networks is hard to observe due to a shortage of relevant data on financial linkages.

The present paper contributes also to the growing literature on network models and

contagious defaults. The vast majority of papers in this area uses a two-step procedure.

In the first step, they arrive at a network either by direct observation or by estima-

tion on the basis of disclosed financial statements. Alternative approaches for network

generation rely on micro-founded formation games (see Tardos and Wexler (2007)),

asymptotic derivations for large and homogeneous networks (see Battiston et al. (2012))

or on simulation methods (see Hurd et al. (2014) or Hurd and Gleeson (2011)). In the

second step, it is assumed that an exogenously chosen set of banks (called initially de-

faulting banks) fails, and the effect on the system is analyzed. Models of this type are

frequently used by regulators. Examples include Elsinger et al. (2006) (Austria), Up-

per and Worms (2004) (Germany), Gai and Kapadia (2010) (UK) Degryse and Nguyen

(2007) (Belgium), Blavarg and Nimander (2002) (Sweden), Mistrulli (2007) (Italy) or

Lublóy (2004) (Hungary). Our setup differs from these contributions since we generate

the set of initial defaulting banks by an economically relevant mechanism and since we

study the interaction of the asset correlation channel and of the direct contagion channel.
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Influential early papers in the academic literature on contagion and financial net-

works include Allen and Gale (2000) and Eisenberg and Noe (2001). Moreover, network

models are becoming increasingly more popular in other areas of economics; see for

example Braumolle et al. (2014) or a paper by Elliott et al. (2014) where the authors

model crossholdings via a network model applied to European sovereign debt data.

2 Model and methodology

2.1 The Model

The financial network. The network of interbank relationships is a central part of

our model. In mathematical terms this network can be described by a directed graph G

consisting of N nodes. Each node represents a financial institution, while edges between

them represent interbank credit exposures. More precisely, an edge from bank i to bank

j means that bank j has a credit exposure towards bank i. This convention ensures that

the direction of edges corresponds to the direction in which losses due to defaults spread

through the network. The most obvious example of a credit exposure is an interbank

loan made by bank j to bank i; alternatively one might think of a counterparty-risk

exposure incurred by bank j in an uncollateralized derivative transaction with bank i.

The graph1 G is described by an adjacency matrix EG with elements eij satisfying:

eij =











1 if i is a debtor of j ,

0 if i is not a debtor of j .
(1)

In the sequel we use the following notation to describe the balance sheet of the banks

in the network. The total asset value of bank k by is denoted Ak; the nominal value of

the loans made to other banks in the system is denoted by AIB
k (short for interbank);

the external assets (e.g. loans to non-banks) are denoted by AEX
k ; finally, LIB

k and LEX
k

represent the interbank liabilities and the external liabilities (e.g. customer deposits)

of bank k, so that total liabilities are equal to Lk = LIB
k + LEX

k . The equity of bank

1Throughout the paper we use the terms graph and network. When talking about graph, we are
concerned with the structure of financial linkages, whereas when referring to a network, we mean not
just connections themselves but also balance sheet quantities of individual banks.
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k is then given by Ek = Ak − Lk and Ek/Ak is the capital ratio of the bank. These

quantities are illustrated in Table 1.

Table 1: Balance sheet of bank k

assets liabilities

interbank assets AIB
k interbank liabilities LIB

k

external assets AEX
k external liabilities LEX

k

equity Ek

total assets Ak total liabilities Lk

Next we introduce several assumptions that will permit us to create the financial

network from a given adjacency matrix EG.

Assumption 1 All loans in the system are of the same size, normalized to one.

Under Assumption 1 bank k’s interbank assets AIB
k are given by the number of its

debtors and the interbank liabilities LIB
k are equal to the number of its creditors, that

is

AIB
k =

N
∑

i=1

eik and LIB
k =

N
∑

j=1

ekj, (2)

where eij are elements of EG as described in equation (1).

The next assumption can be viewed as a stylized version of the risk capital require-

ments imposed under the current Basel regulations.

Assumption 2 The capital ratio Ek/Ak of every bank is equal to an exogenously given

constant γk < 1.

Finally, we make an assumption on AIB
k /Ak, the ratio of bank k’s interbank assets and

of its total assets; following Elliott et al. (2014) we refer to this ratio as the level of

integration of bank k into the network. Loosely speaking we assume that the level

of integration is equal to an exogenously given constant κ > 0 or, equivalently, that

Ak = 1
κ
AIB

k . However, under Assumption 2 this is not always consistent with the

requirement that the external liabilities are nonnegative. In fact, the requirement that

LEX
k ≥ 0 gives that

γkAk = Ek = Ak − LIB
k − LEX

k ≤ Ak − LIB
k ,
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and hence the inequality Ak ≥ LIB
k /(1 − γk). Motivated by these considerations we

make the following assumption on Ak.

Assumption 3 The total asset value of the banks in the network is given by

Ak = max
{ 1

κk
AIB

k ,
1

1− γk
LIB
k , 1

}

, k = 1, . . . , N. (3)

For typical parameterizations of the model 1
κk

is significantly larger than 1
1−γk

. In that

case if AIB
k ≈ LIB

k the first term from (3) is binding so that κkAk = AIB
k . If LIB

k is much

larger than AIB
k the second inequality is binding and ensures that the total balance sheet

size is not lower than the sum of interbank liabilities and equity. In the degenerate case

where a bank has no connections at all, we simply set the Ak equal to one.

The external assets (liabilities) are finally given by the difference between total assets

(liabilities) and interbank assets (liabilities plus capital buffer). This gives

AEX
k = Ak −AIB

k and LEX
k = Ak − Ek − LIB

k = (1− γk)Lk − LIB
k . (4)

To summarize, we have created a balance sheet structure from a given adjacency

matrix EG along the following steps:

1. Assign the value of interbank assets AIB
k and liabilities LIB

k of every bank in the

network according to equation (2).

2. Determine the asset value Ak, k = 1, . . . , N , of the banks according to (3).

3. Define AEX
k and LEX

k according to equation (4).

Initial defaults. In our setup the return on bank ks external assets, denoted rk, is

random so that a large negative return shock can force a bank to default. We refer to

this as an initial default and to the banks where this happens as initial defaulters, as a

default due to a negative asset return happens at the start of a potential default cascade

(see Section 2.2 below). Formally, an initial default occurs if the asset value after the

return realization is lower than the liabilities of bank k, that is if

AIB
k +AEX

k (1 + rk) < Lk .
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Since Lk = Ak − Ek = Ak(1 − γk), an initial default thus occurs if rk < −γAk

/

AEX
k .

For banks with level of integration equal to κ (the typical case) this can be rewritten as

rk < −γ/(1− κ).

Correlation of asset returns. We assume that the random variables r1, . . . , rN fol-

low the following simple one-factor model:

rk = µ+
√

βrM +
√

(1− β)ǫk, 1 ≤ k ≤ N. (5)

Here rM is a market return that is common for all banks in the system and ǫk is

an idiosyncratic return that differs across banks. We assume that rM and ǫ1, . . . , ǫN

are independent and normally distributed with mean zero and standard deviation σ =

0.2
√
dt with dt = 1/252. The parameter µ in equation (5) is set equal to µ = 0.05dt

Under the factor model (5) the correlation between the asset value change rk and rl

of two different banks is equal to β; in particular, for β = 0 the sensitivity of any bank

to the market return is zero such that its solvency is only driven by its own idiosyncratic

return. On the other hand, for β = 1 there are no individual shocks and every bank

faces the same return on its external assets. Note that (5) implies that the marginal

distribution of rk and hence the probability of an initial default is not affected if the

correlation parameter β is varied. This is in stark contrast to the analysis of Wagner

(2010), where a higher level of correlation of different banks is associated with a lower

volatility of banks’ asset returns and hence with a lower probability of initial defaults.

We come back to this issue in Section 3.3 below.

Table 2 illustrates the impact of β on the distribution of initial defaults. We see

that lowering the value of β has two effects: the probability of observing at least one

initial default is increased, while the probability that a large fraction of the banks in

the system default decreases. These effects are well-known in the literature on portfolio

credit risk models; see for instance Frey and McNeil (2003).2

2We have also conducted all of our simulations on a set of multivariate t-distributed returns to
account for tail risk. The probability of a systemic crisis has a different magnitude in this case, but the
qualitative results stay the same as in the normally distributed returns scenario.
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β = 0 β = 0.3 β = 0.5 β = 0.9

P(k is in default) 0.024% 0.024% 0.024% 0.024%
P(at least one default) 2.40% 1.97% 1.39% 0.25%
P(at least 20% in default) 4.9 10−13% 0.0043% 0.0077% 0.0088%

Table 2: Individual default probability of bank k, probability of observing at least one
initial default and probability that more than 20% of the banks in the system default
initially for varying correlation parameter β (N = 100 banks).

2.2 The Contagion Channel

The idea behind the contagion channel for systemic risk is simple. If a bank defaults

in a financial network, it is unable to fulfill its obligations towards its creditors, which

results in a reduction of the interbank assets of the creditor bank. If this loss is big

enough it may cause the creditor bank to default, so that default can become contagious

and spread through the system. For simplicity we assume zero recovery on defaulted

interbank loans, such that one does not need to compute the value of recovery payments3.

For a financial network with given adjacency matrix EG, balance sheet quantities

AIB
k , AEX

k , LIB
k , LEX

k , Ak, γk and given return realization rk for every bank k, the mech-

anism that (potentially) generates a default cascade is described as follows:

1. Perturb the external assets AEX
k of each bank k by the return realisation rk, that

is let AEX
k (new) = AEX

k (old)(1 + rk).

2. If any of the banks defaults, propagate the shock to the asset side of its cred-

itors. The new amount of interbank assets satisfies: AIB
k (new) = AIB

k (old) −
∑

i eik1{i is in default}

3. If the total value of bank k’s assets falls below its liabilities, that is Ak(new) < Lk,

bank k defaults.

4. Repeat the procedure until there is no further default.

3Thanks to this assumption, there is no need for a settlement algorithm in the spirit of Eisenberg
and Noe (2001). Assuming non-zero recovery rate on distressed loans would however not change the
overall quantitative nature of our results.
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2.3 Simulation procedure and network generation

In order to assess the relative importance and the joint effect of both systemic risk

channels, we conduct a two-layer Monte Carlo analysis. In the inner layer, we generate

K = 500 return realizations that follow the factor model (5). This whole layer is

embedded in the outer layer where 1000 random networks are created. The reason

for using random graphs is the unobservable nature of real-world financial networks.

As we are unable to observe the underlying financial network exactly4, we need to

resort to a probabilistic framework in which only particular stylized facts about the

system are specified. These stylized facts are incorporated into the network generating

process such that, in the end, each network can be seen as one realization of a random

variable. In this way we robustify our analysis against misspecification of the underlying

financial network while retaining the possibility to take qualitative properties of real-

world financial networks into account.

In order to arrive at a proper network that describes mutual connections among

financial institutions, we first need to sample an underlying adjacency matrix EG. For

this we use two different probabilistic models, namely a homogeneous Erdos-Renyi ran-

dom graph and a inhomogeneous model that generates graphs with a core-periphery

structure.

2.3.1 Homogeneous (Erdos-Renyi) random graphs

The Erdos-Renyi model is a simple reference model that is a popular benchmark

for more sophisticated networks. In the Erdos-Renyi model, a random graph is gen-

erated such that the probability that there is an edge between any two nodes in the

graph is a constant number pER; or put differently, every Erdos-Renyi random graph

is parameterized only by two numbers - the number of nodes in the graph N and the

probability pER that any two of them are connected. Moreover, connections are formed

independent of each other, that is the elements eij , 1 ≤ i, j ≤ N of EG are iid Bernoulli

random variables. For pER = 1 we get a complete directed graph in which every bank

is connected to every other bank and vice versa, while for pER = 0 there are no links

4There is just a handful of countries where regulators have a reasonably good idea about their own
interbank market. These would include for example Austria, Mexico, Germany or Brazil.
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between the banks in the system.

2.3.2 Inhomogeneous (core-periphery) random graphs

According to Soramäki et al. (2006), Bech and Atalay (2010), Iori et al. (2008) and

others, a typical financial network exhibits a significant degree of so-called disassor-

tativity, that is small banks tend to be connected to large ones and vice versa. An

interpretation of this finding is that large banks act as intermediaries for smaller ones.

This structure is in contrast to the structure of social networks that tend to be assor-

tative (people with few friends tend to be connected with other people having a small

number of friends). To account for the observed disassortativity, we extend the Erdos-

Renyi setting by making each bank belong either to a group called core with probability

pcore or to a group called periphery with a probability 1− pcore. The difference between

these two groups of institutions lies in the probability of forming connections with other

banks. A core bank has a large probability of establishing a connection both with other

core banks and with other peripherals while a connection between two peripherals is

less likely. In this paper we take the probability of a connection between two core banks

equal to pCC = 0.9; the probability of a connection between two peripheral banks is set

to pPP = 0.01; the probability of a connection between a core bank and a peripheral in

either direction is set to pCP = pPC = 0.5. Given the type of the banks in the system,

connections are formed independent of each other. In this way we end up with an as-

sortative network that we refer to as a core-periphery structure. The resulting network

exhibits a star shape with few banks tightly connected in the center and the rest on the

periphery. In financial terms core banks can be interpreted as (large) dealer banks that

act as an intermediary for the other banks in the network. The difference between an

Erdos-Renyi and a core-periphery network is illustrated in Figure 1.

Note that since a core bank has on average more connections than a peripheral bank

a higher value of pcore leads to a higher density of the ensuing network. In particular,

for pcore = 1, the whole network is formed by core banks so we actually get a very dense

Erdos-Renyi setting (identical to the case where pER = 0.9) whereas for pcore = 0, every

bank is peripheral. Since peripherals are connected with probability pPP = 0.01, we get
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(a) Erdos-Renyi random graph (b) Core-periphery random graph

Figure 1: One realisation of a random graph for N = 100 banks; left panel Erdos Renyi
network; right panel core-periphery network.

a sparse Erdos-Renyi setting (corresponding to pER = 0.01). Therefore, an intermediate

level of pcore corresponds to a network which lies between two homogeneous Erdos-Renyi

extremes. In the Monte Carlo simulations, the probability pcore of belonging to the core

is varied between 0 and 20%.

3 Results

We now present the results of a simulation study that illustrates the impact of

the asset return correlation and of the density/connectivity of the network on financial

stability. We measure the density of a given network by the expected number of coun-

terparties of a randomly chosen bank in the system.5 From now on, we will call this

quantity connectivity and denote it by C. In the Erdos-Renyi random graph, connec-

tivity is given by C = pER(N − 1); in the case of a core-periphery network, connectivity

is easily seen to be

C = (N − 1)(p2corepCC + pcore(1− pcore)(pCP + pPC) + (1− pcore)
2 pPP ).

The output variable in our analysis is the relative frequency of scenarios in the simulation

in which a systemic crisis occurred. Here a scenario is viewed as one realization of random

network together with one realization of random returns, and a systemic crisis is defined

5In graph theoretic literature, this is known as the average graph degree.
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as a scenario where more than 20% of all banks in the network are in default at the

end of the default cascade. In the sequel we will call this relative frequency simply

the probability of a systemic crisis. Note that the exact value of the threshold in the

definition of a systemic crisis (20% or different) is irrelevant. In fact, for all but very

small values of the connectivity parameter C we observed a dichotomous behavior: in

a given scenario there are either very few defaults or the network is wiped out (almost)

entirely This behaviour was observed for both network types and for all values of β.

3.1 Erdos-Renyi networks.

The results for Erdos-Renyi random networks are illustrated in Figures 2a and 3a.

Figure 2a gives the probability of a systemic crisis for fixed β and varying C; Figure 3a

depicts sections for fixed C and varying β.
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(b) Core-periphery network

Figure 2: Probability of systemic crisis for both network structures on N = 100 nodes as
a function of network connectivity C for particular levels of correlation β. Bank equity
ratio γ = 0.035.

Connectivity. First we discuss the impact of variations in network connectivity C

(see Figure 2a). Here we observe a hump-shaped behavior: for small values of C, the

probability of a systemic crisis is small. Intuitively, this is due to the fact that in a very

sparse network the contagion channel is inactive since there is almost no opportunity for

shock propagation. As C increases the likelihood of a systemic crisis increases up to a

maximum at which the system is most vulnerable. Beyond that maximum the probabil-

ity of a systemic crisis decreases again, and banking networks with a high connectivity
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Figure 3: Share of scenarios with systemic crisis for both network structures on N = 100
nodes as a function of asset correlation β for particular levels of connectivity C. Bank
equity ratio γ = 0.035.

appear to be fairly resilient. This resilience is due to enhanced hedging opportunities of

the institutions in the system (if a bank has more counterparties, the loss caused by its

default is borne by more banks). Finally we see that for β close to one the probability of

a crisis is relatively insensitive with respect to network connectivity. This is due to the

fact that for β large the occurrence of a systemic crisis is determined to a large extent

by the realisation of the common return factor rM , independent of the structure of the

financial network.

Note finally that the hump-shaped form of the relation between C and the probability

of a systemic crisis in Erdos Renyi graphs is in line with findings from other recent papers

in the network literature, see for instance Hurd et al. (2014), Gai and Kapadia (2010),

or Elliott et al. (2014).

Correlation. Next we consider the impact of varying the asset return correlation β

(see Figure 3a.) For medium and high values of C we observe a hump-shaped behavior.

For β close to zero the probability of a systemic crisis is increasing in β. This is of course

due to the fact that by increasing β we increase the probability that a large part of the

system defaults initially, see Table 2. However, if β exceeds a certain threshold β̄, the

probability of a systemic crisis is decreasing in β. In order to understand this behavior

we make recourse to the argument of Greenspan (2002) mentioned in the introduction of

the paper: with direct links between banks there can be default cascades during which
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the initial default of a few financial institutions spreads through a large part of the

financial system. Such a cascade is more likely if many of the “initial survivors” are

also close to default because they were hit by a negative shock on their asset returns.

This is in turn more likely for β large since in that case a negative market-return shock

substantially weakens all banks in the system. In fact, for β sufficiently high a single

initial default may be enough to generate a systemic crisis via the contagion channel.

Moreover, we know from Table 2 that the probability of observing at least one initial

default is decreasing in β. Taken together, these arguments explain the hump-shaped

nature of the relation between β and the probability of a systemic crisis. For low values of

C the network is very fragile (recall our discussion of Figure 2a), so that the ”Greenspan

effect” (the fact that a higher β may decrease the probability of a systemic crisis) kicks

in already for relatively low values of β; in the extreme case C = 1 the probability of a

systemic crisis is even decreasing in β for all values of β.

3.2 Core-periphery networks.

We repeat the same analysis for core-periphery networks. The results are depicted

in Figures 2b and 3b. As in the Erdos Renyi case the probability of a systemic crisis is a

nonlinear function of β and C. The relation between β and the probability of a systemic

crisis is of the same hump-shaped form as in the Erdos-Renyi network, with a similar

interpretation (compare Figures 3a and 3b.) However, we observe a different behavior

with respect to variations in the connectivity C: for core-periphery networks the prob-

ability of a systemic crisis is decreasing in C (Figure 2b) whereas in the Erdos Renyi

networks this relation was hump-shaped. Moreover, in the core periphery networks the

probability of a systemic crisis is generally lower than in the Erdos-Renyi case. These

findings are in line with the general claim that heterogeneous network structures are

relatively resilient, see for instance Gai et al. (2011) and Simon (1962). Moreover, they

lend support to regulatory attempts to generate networks with a high degree of connec-

tivity, for instance by limiting the amount of direct lending between any two financial

institutions.

We also considered a variant of the model where the equity capital ratio γcore of core
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institutions (institutions that have many links and that can therefore be regarded as

systemically important) is higher than the equity ratio of peripherals. We found that this

modification significantly reduces the probability of a systemic crisis, which obviously

supports proposals to regulate systemically important institutions more tightly.

3.3 An alternative asset model and diversification.

In order to contribute to the debate on the merits of diversification in the banking

sector mentioned in the introduction we now consider an alternative model for asset

returns where banks can diversify their external asset position. More precisely, we

assume that there are N correlated investment opportunities for banks; investment

opportunity (project) i has a return of the form

pi = µ+
√
ρrsys +

√

1− ρδi , 1 ≤ i ≤ N (6)

where rsys and δi, 1 ≤ i ≤ N are independent, N(0, σ2)-distributed random variables

and where 0 < ρ < 1. Equation (6) implies that the return on different projects has a

common factor which might be a natural assumption for the banking sector. The actual

return of bank k is then modelled as a convex combination of pk and of the “market

portfolio” 1
N

∑N
i=1 pi, that is

rk = βpk +
1− β

N

N
∑

i=1

pi for some β ∈ [0, 1]. (7)

For β = 0 (no diversification) we have rk = pk whereas for β = 1 (perfect diversification)

every bank holds the market portfolio given by µ +
√
βrsys +

√
1−β
N

∑N
i=1 δi. It is easily

seen that under (7) the variance of rk (and hence the initial default probability) is

decreasing in β, essentially since the variance of the idiosyncratic part is reduced. In

particular, we get that for β = 0 the variance of rk is equal to σ2 whereas for β = 1

the variance of rk is equal to σ2
(

ρ+ 1−ρ
N

)

. Hence β can be viewed as a measure of the

diversification of banks’ external asset portfolios.

In Figures 4a and 4b we plot the probability of a systemic crisis in the modified

setup (6), (7) for varying levels of diversification β and for both network types. We
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unambiguously find that an increase in the level of diversification lowers the probability

of a systemic crisis. This supports the informal argument of Greenspan (2002) on the

merits of diversification in banking networks.
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(a) Erdos-Renyi network
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(b) Core-periphery network

Figure 4: Probability of systemic crisis for both network structures on N = 100 nodes
as a function of network connectivity C for particular levels of correlation β according
to the alternative model specification from Section (3.3). Bank equity ratio γ = 0.035.

4 Conclusion

We have presented a simulation study that is concerned with the joint effect of cor-

related asset positions and of the network structure of a banking system on financial

stability. Both a simple case of a homogeneous Erdos-Renyi network and a more real-

istic scenario of inhomogeneous core-periphery network structure were examined in the

process.

We conclude that in order to judge the implications of correlation on the magni-

tude of systemic risk, one needs to take the underlying network structure into account.

Most dangerous are homogeneous networks of intermediate density since they are dense

enough to propagate shocks but not dense enough to hedge off potential risk. Moreover,

we found that lower values of asset correlation do not always reduce the probability

of a systemic crisis Furthermore, we present results for the more realistic case of core-

periphery networks. There, the probability of a crisis is generally lower than in the

homogeneous Erdos-Renyi network, which indicates high resiliency of such networks.

Finally, we found that in banking networks diversification of banks’ external assets can
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be beneficial for financial stability.
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