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Abstract

We consider reduced-form models for portfolio credit risk with interacting default
intensities. In this class of models the impact of default of some firm on the default
intensities of surviving firms is exogenously specified and the dependence structure
of the default times is endogenously determined. We construct and study the model
using Markov process techniques. We analyze in detail a model where the interaction
between firms is of the mean-field type. Moreover, we discuss the pricing of portfolio
related credit products such as basket default swaps and CDOs in our model.

Keywords: Portfolio credit risk, default correlation, credit derivatives, mean-field
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1 Introduction

A major cause of concern in the pricing and management of the credit risk in a given
loan or bond portfolio is the occurrence of disproportionately many defaults of different
counterparties in the portfolio, a risk which is directly linked to the structure of the
dependence between default events. Dependence between defaults stems from at least
two non-exclusive sources. First the financial health of a firm varies with randomly
fluctuating macroeconomic factors such changes in economic growth. Since different
firms are affected by common macroeconomic factors, we have dependence between their
defaults. This type of dependence between defaults can and has been modelled in the
standard reduced-form credit risk models with conditionally independent defaults; see for
instance Duffie & Singleton (2003) or Lando (2004) for an overview.

Moreover, dependence between defaults is caused by direct economic links between
firms. These direct links lead to default contagion and counterparty risk. Loosely speak-
ing this means that the conditional default probability of non-defaulted firms given the
additional information that some firm has defaulted is higher than the unconditional
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default probability of these firms. As a consequence the credit spread of bonds issued
by non-defaulted firms increases given the news that some other firm has defaulted. In
mathematical terms in reduced-form models default contagion and counterparty risk lead
to (upward) jumps in the default intensity of non-defaulted firms at the default time of
other firms in the portfolio. The impact of the default of some firm on the conditional
default probability of other firms can arise via different non-exclusive channels. On the
one hand this impact can be caused by direct economic links between firms such as an
intense business relation or a strong borrower-lender relationship. For instance the de-
fault probability of a corporate bank is likely to increase if one of its major borrowers
defaults. This direct channel of default interaction is termed counterparty risk. On the
other hand, changes in the conditional default probability of non-defaulted firms can
be caused by information effects: investors might revise their estimate of the financial
health of non-defaulted firms in light of the news that a particular firm has defaulted.
This phenomenon is usually termed (information-based) default contagion.

There is substantial empirical evidence for interaction between default events. A
recent example is provided by the downfall of the energy giant Enron in autumn 2001.
The news that Enron had used illegal accounting practices led to rising credit spreads for
many other corporations, as bond investors lost confidence in the accounting statements
of these corporations – a striking example of default contagion. Moreover, the stock price
of major lenders to Enron fell in anticipation of large losses on these loans, reflecting
counterparty risk. More formal empirical evidence for default contagion and counterparty
risk is for instance provided by Lang & Stulz (1992) or by Collin-Dufresne, Goldstein &
Helwege (2003b).

The modelling of default contagion and counterparty risk has generated a lot of in-
terest in the recent literature. The existing reduced-form models with these features can
be divided into two groups, copula models such as Schönbucher & Schubert (2001) and
models with interacting intensities. In the copula models the copula and hence the de-
pendence structure of the default times is exogenously specified; the default intensities
and the amount of default contagion (the reaction of default intensities to defaults of
other firms in the portfolio) are then endogenously derived from the model primitives.
Copula models are quite popular in practice, since they are easy to calibrate to prices
of defaultable bonds or Credit Default Swap (CDS) spreads. However, in general copula
models the precise form of the default contagion depends on higher order derivatives of
the copula, which makes the copula parameterization of default contagion quite unin-
tuitive. This problem is less pronounced in the so-called factor copula models, which
use ideas from survival analysis to model information based default contagion; see for
instance Laurent & Gregory (2003) or Schönbucher (2004).

As the title suggests, in the present paper we are interested in models with interact-
ing intensities. In this class of models the impact of defaults on the default intensities
of surviving firms is exogenously specified; the joint distribution of the default times is
then endogenously derived. This leads to a very intuitive parameterization of counter-
party risk and dependence between defaults in general. On the downside, the calibration
of the model to defaultable term structure data can be more evolved. At least to our
knowledge models with interacting intensities were first proposed by Jarrow & Yu (2001)
and Davis & Lo (2001). Unfortunately, the construction of default processes in Jarrow &
Yu (2001) works only for a very special type of interaction between defaults, the so-called
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primary secondary framework, which excludes many interesting examples of cyclical de-
fault dependence. This and other mathematical aspects of the Jarrow-Yu model are
discussed in Kusuoka (1999), Bielecki & Rutkowski (2002), and Collin-Dufresne, Gold-
stein & Hugonnier (2003). Yu (2004) improves upon the original Jarrow-Yu paper and
provides a rigorous construction of the model using the general hazard construction from
survival analysis. Moreover, he prices certain simple credit derivatives using simulation.
Credit risk models with explicitly specified interaction between default intensities are con-
ceptually and mathematically close to models for interacting particle systems developed
in statistical physics. Föllmer (1994) contains an inspiring discussion of the relevance
of ideas from the interacting particle systems literature for financial modelling; the link
to credit risk is explored by Giesecke & Weber (2002, 2003) and Horst (2004). Finally,
Egloff, Leippold & Vanini (2004) study credit contagion in a firm-value model.

In the present paper we propose several extensions to the literature on models with
interacting intensities. To begin with, we model the default indicator process of the
firms in our portfolio as conditional finite-state Markov chain; the states of this chain are
given by the default state of all obligors in the portfolio at a given point in time and the
transition rates correspond to the default intensities. This yields a natural and at the same
time completely rigorous construction of models with interacting intensities. Moreover,
computational tools for Markov chains can be employed fruitfully in the analysis of the
model. These results, which are similar in spirit to in Davis & Lo (2001), are presented
in Section 2.

In Section 3 we take a closer look at the modelling of the interaction between the
default intensities. This is a major challenge, in particular if the portfolio is large: the
model should capture essential features of counterparty risk, and should at the same time
be parsimonious to ensure ease of calibration. To achieve these goals we split our port-
folio in several homogeneous groups and propose a model where the default intensity of
a given firm depends only on the distribution of defaulted firms in these groups - in the
simplest case of a one-group model just the proportion of companies which have defaulted
so far. This type of interaction, which is called mean-field interaction in the literature
on interacting particle systems, makes immediate sense in the context of portfolio credit
risk. For instance, if a financial institution has incurred unusually many losses in its loan
portfolio, it is less likely to extend credit lines, if another obligor experiences financial
distress. Obviously, this raises the default probability of the remaining obligors. More-
over, unusually many defaults might have a negative impact on the business climate in
general. From a mathematical viewpoint we are automatically led to models based on
mean-field interaction, if we assume that our portfolio consists of several homogeneous
groups within which default times are exchangeable. We will show that homogeneous-
group models with mean-field interaction are relatively easy to treat. Using results on
the convergence in distribution of Markov processes we study the asymptotic behavior
of the mean-field model as the portfolio size becomes large. In order to quantify the
impact of counterparty risk on default correlations and credit loss distribution we carry
out a simulation study. It will turn out that default correlations and quantiles of the
loss distributions increase substantially, if the amount of interaction in the portfolio is
increased.

In Section 4 we finally study the pricing of portfolio credit derivatives such as basket
default swaps and CDOs in our Markovian model. This is a prime area of application
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for dynamic portfolio credit risk models. In particular, we show how computational tools
for Markov chains can be fruitfully employed to find semi-analytical solutions for many
pricing problems. Again we provide some numerical examples to illustrate our findings.

2 A Markovian Model with Interacting Intensities

Our setup. We consider a portfolio of m firms, indexed by i ∈ {1, . . . ,m}. Its default
state is described by a default indicator process Y =

(
Yt(1), . . . , Yt(m)

)
t≥0

with values
in S := {0, 1}m; here Yt(i) = 1 if firm i has defaulted by time t and Yt(i) = 0 else. The
corresponding default times are denoted by τi = inf{t ≥ 0 : Yt(i) = 1}. Throughout our
analysis we restrict ourselves to models without simultaneous defaults. We may therefore
define the ordered default times T0 < T1 < . . . < Tm recursively by

T0 = 0 and Tn = min{τi : 1 ≤ i ≤ m, τi > Tn−1}, 1 ≤ n ≤ m. (1)

By ξn ∈ {1, . . . ,m} we denote the identity of the firm defaulting at time Tn, i.e. ξn = i

if τi = Tn. It will be convenient to have a succinct notation for flipping some coordinate
of states in S. We therefore define for y ∈ S the flipped state yi ∈ S by

yi(i) := 1− y(i) and yi(j) := y(j), j ∈ {1, . . . ,m} − {i} . (2)

In order to model the dependence of defaults caused by fluctuations in the macro-
economic environment we introduce Markovian state variable process Ψ = (Ψt)t≥0 with
values in Rd, representing the evolution of macroeconomic variables such as interest rates,
broad share price indices or measures of economic activity. In applications Ψ is typically
a (jump-)diffusion or a finite-state Markov chain. The overall state of our system is
described by the process Γ with Γt := (Ψt,Yt). The state space of Γ is denoted by
S = Rd × S; elements of S are denoted by γ = (ψ,y).

The default intensity of a non-defaulted firm i at time t is modelled as a function
λi(Ψt,Yt) of economic factors and of the default state of the portfolio. Hence the de-
fault intensity of a firm may change if there is a change in the default state of other
firms in the portfolio, so that counterparty risk can be modelled. In mathematical terms
we assume that for a given trajectory of Ψ the default indicator process Y follows a
time-inhomogeneous continuous-time Markov chain on S with transitions to neighbouring
states

(
Yt

)i which occur with transition rate 1{Yt(i)=0}λi(Ψt,Yt). An explicit probabilis-
tic model is introduced below.

The mathematical model. It will be convenient for the analysis of the limiting be-
haviour of the model as m → ∞ to construct the process Γ on a probability space
which has a product structure. Denote by D([0,∞), E) the Skorohod space of all RCLL
functions from [0,∞) into some Polish space E. Put Ω1 := D([0,∞),Rd) and Ω2 :=
D ([0,∞), S) and denote by F i the Borel σ-field on Ωi. Our underlying measurable space
is given by (Ω,F) := (Ω1×Ω2,F1×F2); elements in Ω will be written as ω = (ω1, ω2). The
coordinate process on Ω1 is denoted by Ψ (i.e. Ψt(ω1) = ω1(t) for t ≥ 0); it represents the
economic factor process. The coordinate process on Ω2, denoted by Y, models the default
indicator process. For t ∈ [0,∞) we define F1

t := σ(Ψs : s ≤ t) , F2
t := σ(Ys : s ≤ t) and

Ft := F1
t ∨F2

t ; moreover, we define the filtration {Gt} by Gt := F1
∞∨F2

t . We assume that
investors have access to {Ft} (information about the default history and the economic
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factor process up to time t), whereas the larger filtration {Gt} (information about the
default history up to time t and information about the entire path (Ψs(ω1))s≥0 of the
economic factor process) serves mainly theoretical purposes.

We consider a family of probability measures (Pγ)γ∈S on (Ω,F), where each measure
is of the form Pγ = µψ × Ky(ω1, dω2). Here µψ is a probability measure on Ω1 which
gives the law of Ψ; Ky is a transition kernel from (Ω1,F1) to (Ω2,F2), which models the
conditional distribution of the default indicator process Y for a given trajectory of Ψ.

Assumption 2.1.

(i) Under µψ the process Ψ is a non-exploding {Ft}-Markov process with generator
LΨ and initial value ψ.

(ii) Under Ky(ω1, dω2) the process Y is a time-inhomogeneous Markov chain with state
space S, initial value y and infinitesimal generator as follows: Define for continuous
functions λi : S → (0,∞) and given ψ ∈ Rd the operator G[ψ] on the set of all
functions from S to R by

G[ψ]f (x) =
m∑

i=1

(1− x(i))λi (ψ,x)
(
f(xi)− f(x)

)
, x ∈ S . (3)

Then the infinitesimal generator of Y under Ky(ω1, dω2) at time t is given by
G[Ψt(ω1)].

If there is no ambiguity we simply write P , µ, and K and drop the reference to the initial
values to ease the notation. Moreover, unless explicitly stated otherwise, we will always
assume that Y0 = 0 ∈ S.

Comments. 1) An intuitive picture of the dynamics of the default indicator process Y
implied by the generator G[ψ] in (3) is as follows. Suppose that Γt = (ψ,x). Then Y
can jump only to the neighbouring states xi, 1 ≤ i ≤ m. As these states differ from x
in exactly one component, there are no simultaneous defaults. If firm i has survived up
to time t (i.e. x(i) = 0), the probability of a jump in the small time interval (t, t+ h] to
the neighbouring state xi, where firm i is default, is approximately equal to hλi(ψ,x).
If firm i has defaulted in [0, t] (i.e. x(i) = 1), the probability of a jump to xi is equal to
zero, so that default is an absorbing state.
2) For an explicit construction of a conditional Markov chain or equivalently of a family
of kernels Ky(ω1, dω2) satisfying Assumption 2.1 (ii) we refer to the literature; see for in-
stance Chapter 11.3 of Bielecki & Rutkowski (2002) or Chapter 2 of Davis (1993). There
are alternative ways to construct a model with interacting intensities. A construction via
a change of measure using the Girsanov theorem for point processes is given in Kusuoka
(1999) or Bielecki & Rutkowski (2002). Yu (2004) uses the general hazard rate construc-
tion from survival analysis as developed by Norros (1986) and Shaked & Shanthikumar
(1987).

Markov property and default intensities. We now discuss some mathematical im-
plications of Assumption 2.1 related to the Markov property. To begin with, note that
for every bounded random variable F (Ψ,Y) : Ω → R

E(F (Ψ,Y) | Gt)(ω1, ω2) = EK(ω1,·)(F (Ψ(ω1),Y) | F2
t )(ω2) . (4)
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Relation (4) is easily shown for F = F1(Ψ)F2(Y); the extension to general F is done via
a monotone class argument.

Now we turn to the Markov property of Y. Define for t ∈ [0,∞) and an arbitrary
Polish space E the shift operator θt : D ([0,∞), E) → D ([0,∞), E), θtω (s) := ω(t + s).
Let F : Ω → R be bounded and measurable. Using relation (4) and the fact that Y is a
time-inhomogenous Markov chain under K(ω1, dω2) we get for t ≥ 0

E
(
F (Ψ,Y ◦ θt) | Gt

)
(ω1, ω2) = EK(ω1,·) (F (Ψ(ω1),Y ◦ θt) | F2

t

)
(ω2)

= EKYt(ω2)(θtω1,·) (F (Ψ(ω1),Y)) . (5)

In the sequel we refer to relation (5) as conditional Markov property of Y. Since Ψ is
an {Ft}-Markov process the conditional Markov property implies that the process Γ is
Markov wrt {Ft}, as we now show. Define the random variable

H : Ω1 × S → R , H(ω1,x) = EKx(ω1,·) (F (Ψ(ω1),Y)) .

Using the law of iterated expectations, the conditional Markov property of Y, the defi-
nition of H and the {Ft}-Markov property of Ψ we obtain

E (F (Ψ ◦ θt,Y ◦ θt) | Ft) (ω1, ω2) = E (E(F (Ψ ◦ θt,Y ◦ θt) | Gt) | Ft) (ω1, ω2)

= E (H(Ψ ◦ θt,Yt) | Ft) (ω1, ω2)

=
∫

Ω1

H(u,Yt(ω2))µΨt(ω1)(du) .

By definition of H this equals EΓt(ω)

(
F (Ψ,Y)

)
, which yields the Markov property of Γ.

It is intuitively clear that λi(Ψt,Yt) is the default intensity of company i. Using
the conditional Markov property we can give a formal proof of this fact. According
to (5), Y forms an time-inhomogeneous Markov chain wrt {Gt} under P . The process
Mt(i) := Yt(i)−

∫ t∧τi

0 λi(Ψs,Ys) ds is therefore a {Gt}-martingale by the Dynkin formula,
and hence an {Ft}-martingale, as Mt(i) is {Ft}-adapted.

Remark 2.2 (Computation of expectations). Suppose that we want to compute a
conditional expectation of the form E

(
h(ΨT ,YT ) | Ft

)
for some h : S → R. By the

Markov property of Γ the conditional expectation is given by H(t,Ψt,Yt) for a suitable
function H : [0, T ]× S → R. Now we have various approaches for computing H(t,ψ,y).
First we can try to solve directly the backward PDE for the Markov process Γ given by

∂

∂t
H(t,ψ,y) + LΨH(t,ψ,y) + G[ψ]H(t,ψ,y) = 0, H(T,ψ,y) = h(ψ,y).

In case that Ψ follows a diffusion this leads to a linear reaction-diffusion equation; ex-
istence results suitable for financial applications are for instance given in Becherer &
Schweizer (2004). Alternatively, we may use a two-step approach, which uses only the
Kolmogorov equations for the conditional transition probability. Here we get

H(t,ψ,y) =
∫

Ω1

EKy(ω1,·)(h(ΨT−t(ω1),YT−t)
)
µψ(dω1) .

Now the inner expectation can often be computed using techniques for Markov chains
such as the Kolmogorov forward and backward equations discussed below; the integral
over Ω1 can then be computed in a second step, typically via Monte Carlo simulation.
This approach can be advantageous, if the direct numerical solution of the backward
equation for Γ is infeasible, because the dimension of the problem is too high.
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Conditional transition functions and the Kolmogorov equations. Next we in-
troduce the conditional transition probabilities of the chain Y under K(ω1, dω2). Define
for 0 ≤ t ≤ s <∞ and x,y ∈ S

p(t, s,x,y | ω1) := EK(ω1,dω2)(Ys = y | Yt = x). (6)

It is well-known that for ω1 fixed the function p(t, s,x,y | ω1) satisfies the Kolmogorov
forward and backward equations. These equations will be very useful numerical tools in
our analysis of the model. The backward equation is a system of ODE’s for the function
(t,x) → p(t, s,x,y | ω1), 0 ≤ t ≤ s; s and y are considered as parameters. In its general
form the equation is

∂p(t, s,x,y | ω1)
∂t

+G[Ψt(ω1)]p(t, s,x,y) = 0 , p(s, s,x,y) = 1{y}(x) . (7)

In our model this leads to the following system of ODE’s

∂p(t, s,x,y | ω1)
∂t

+
m∑

k=1

(1− x(k))λk(Ψt(ω1),x)(p(t, s,xk,y | ω1)− p(t, s,x,y | ω1)) = 0.

(8)

The forward-equation is an ODE-System for the function (s,y) → p(t, s,x,y | ω1), s ≥ t.

Denote by G∗
[ψ] the adjoint operator to G[ψ], operating again on functions from S to R.

In its general form the forward equation reads

∂p(t, s,x,y | ω1)
∂s

= G∗
[Ψt(ω1)]p(t, s,x,y | ω1), p(t, t,x,y | ω1) = 1{x}(y). (9)

An explicit form is given in the following lemma.

Lemma 2.3. Under Assumption 2.1 (ii) the forward equation for the conditional transi-
tion rates is

∂p(t, s,x,y | ω1)
∂s

=
m∑

k=1

y(k)λk(Ψs(ω1),yk)p(t, s,x,yk | ω1) (10)

−
m∑

k=1

(1− y(k))λk(Ψs(ω1),y)p(t, s,x,y | ω1).

The proof is given in Appendix A.2.
For small m (8) and (10) are easily solved numerically. Note however, that the cardi-

nality of the state space equals |S| = 2m so that for m large the Kolmogorov equations
are no longer useful. In that case one could either reduce the dimension of the state
space, for instance by considering a model with a homogeneous group structure as in
Section 3 below, or one has to resort to simulation approaches. Fortunately, the model
introduced in Assumption 2.1 is quite easy to simulate from using the standard simulation
approach for continuous-time Markov chains; in particular, simulation is no more costly
(in terms of computing time) than simulating a standard reduced form model with condi-
tionally independent defaults. We give a detailed description of the simulation algorithm
in Appendix A.1.
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Some models for the default intensity. We begin with the default intensities consid-
ered in Jarrow & Yu (2001). These authors study a special form of interacting intensities,
which they call primary-secondary framework. In this framework firms are divided into
two classes, primary and secondary firms. The default intensity of primary firms depends
only on the factor process Ψ; default intensities of secondary firms depend on Ψ and on
the default state of the primary firms. This simplifying assumption allows Jarrow and
Yu to use Cox-process techniques for the analysis of their model. For concreteness we
now present a specific example from their paper. We let m = 2 and d = 1 and iden-
tify the economic factors with the short rate of interest rt, which follows an extended
Vasicek-model. The default intensities are then given by

λ1(rt,Yt) = λ1,0 + λ1,1rt and λ2(rt,Yt) = λ2,0 + λ2,1rt + λ2,21{Yt(1)=1};

hence company one is a primary firm and company two is a secondary firm.
The primary-secondary framework is typical for a model with local interaction, i.e. a

model, where for all i ∈ {1, . . . ,m} the default-intensity of firm i depends on the default
state of some small set N(i) of neighboring firms such as business partners or direct
competitors. Alternatively, one can introduce some global or macroeconomic interac-
tion in the sense that individual default intensities depend on the empirical distribution
ρ(Yt, ·) = 1

m

∑m
i=1 δYt(i)(·) ∈ M1(S) of the default indicators at time t. In our simple

model, where each firm can be in only two states, ρ(Yt, ·) is obviously characterized by
the proportion of defaulted firms in the portfolio at time t, and we will work with that
description in the sequel.

3 Models with Mean-Field Interaction

3.1 A Mean-Field Model with Homogeneous Groups

The model. Assume that we can divide our portfolio ofm firms into k groups (typically
k � m), within which risks are exchangeable. These groups might for instance correspond
to firms with identical credit rating or to firms from the same industries. Let κ(i) ∈
{1, . . . , k} give the group membership of firm i, mκ =

∑m
i=1 1{κ(i)=κ} the number of

firms in group κ, and denote for a given y ∈ S by ρκ(y, ·) = 1
mκ

∑m
i=1 1{κ(i)=κ}δy(i)(·)

the empirical distribution of firms in group κ. Define for κ ∈ {1, . . . , k} the functions
Mκ(y) := ρκ(y, {1}), put M(y) =

(
M1(y), . . . ,Mk(y)

)
, and define the process M by

Mt = M(Yt); obviously, M t,κ gives the proportion of firms in group κ which have
defaulted by time t. The state space of Mt is given by

SM :=
{
l =

(
l1
m1
, . . . , lk

mk

)
: lκ ∈ {0, . . . ,mκ}, 1 ≤ κ ≤ k

}
.

Assumption 3.1 (Mean-field model with homogeneous groups). The default in-
tensities of firms in our portfolio belonging to the same group are identical and of the
form λi (ψ,y) = hκ(i)

(
ψ,M(y)

)
for continuous functions hκ : Rd×SM → R+, 1 ≤ κ ≤ k.

Comments. 1) As discussed in the introduction, this type of interaction makes imme-
diate sense in the context of portfolio credit risk.
2) Assumption 3.1 implies that for all κ the default indicator processes {Yt(i) : 1 ≤ i ≤
m, κ(i) = κ} of firms belonging to the same group are exchangeable, a fact which we will
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exploit frequently below. Conversely, consider an arbitrary portfolio of m counterparties
with default indicators satisfying Assumtion 2.1, and suppose that the portfolio can be
split in k < m homogeneous groups. Homogeneity implies that a) the default intensi-
ties are invariant under permutations π of {1, . . . ,m}, which leave the group structure
invariant, i.e. λi(ψ,y) = λi(ψ, π(y)) for all i and all permutations π with κ(π(j)) = κ(j)
for all 1 ≤ j ≤ m, and b) that default intensities of different firms from the same
group are identical. Condition a) immediately yields that λi(ψ,y) = hi(ψ,y) for some
hi : Rd×SM → R+ and hence a model of mean-field type; together with condition b) this
implies that the default intensities satisfy Assumption 3.1. Hence the mean-field model
is the natural counterparty-risk model for portfolios consisting of homogeneous groups.

Example 3.2 (An affine model with counterparty risk). Often we will assume that
the default intensities depend only on the overall proportion of defaulted companies given
by
∑k

κ=1
mκ
m M t,κ. A useful example is provided by the following (nearly) affine model with

counterparty risk. Given for every group κ nonnegative constants λκ,j , j = 0, . . . , d + 1
and an expected default intensity λ̄κ we put

hκ(t,ψ, l) =
[
λκ,0 +

d∑
j=1

λκ,jψj + λκ,d+1

( k∑
j=1

mj

m l̄j −
k∑

j=1

mj

m

(
1− e−λjt

))]+
. (11)

These default intensities have the following intepretation. The number 1−e−λ̄jt measures
the expected proportion of defaulted firms in group j at time t. In case that λκ,d+1 > 0
the default intensity of non-defaulted companies is increased (decreased), if the overall
proportion of defaulted companies is higher (lower) than the overall expected proportion∑k

j=1
mj

m

(
1 − e−λjt

)
; in particular we have counterparty risk. If λκ,d+1 = 0 for all κ we

are in a standard Cox-process framework as studied for instance by Duffie & Singleton
(1999). Following the latter paper we assume that the factor process follows a square-root
diffusion model with independent components, i.e.

dΨt,j = κ̄j(θj −Ψt,j)dt+ σj

√
Ψt,j dWt,j (12)

for a standard Brownian motion Wt = (Wt,1, . . . ,Wt,d) and constants κ̄j , θj , σj > 0.

Example 3.3. This example is proposed by Yu (2004) as a model for similar firms in a
concentrated industry. Yu works with default-intensities of the form

λi
t = a0 + a11{T1≤t} = a0 + a11{Mt>0}, i ∈ {1, . . . ,m}, a0, a1 > 0 ,

i.e. at the first default time T1 of a firm in the portfolio the default intensities of the
surviving firms jump from a0 to a0 + a1. Yu suggests that for a portfolio of high-quality
credits a reasonable order of magnitude for the model parameters is a0 ≈ 1% and a1 ≈
0.1%. Simulation studies reported in his paper indicate, that the model might be able to
explain certain features of credit spreads in the market for European telecom bonds.

The next lemma shows that the process Mt is itself conditionally Markov and gives
the form of the generator.

Lemma 3.4. Assume that the default intensities satisfy Assumption 3.1. Then under
K(ω1, dω2) the process Mt follows a time-inhomogeneous Markov chain with state space

9



SM . The generator of this chain equals GM
[Ψt(ω1)], where the operator GM

[ψ] is given by

GM
[ψ]f (l) =

k∑
κ=1

mκ(1− lκ)hκ

(
ψ, l

) (
f
(
l+ 1

mκ
eκ

)
− f

(
l
))
. (13)

Here l = (l1, . . . , lk) ∈ SM and eκ ∈ Rk denotes the κ-th unit vector.

Proof. Suppose that Mt =
(

l1
m1
, . . . , lk

mk

)
. Obviously, the component M t,κ can increase

only in steps of size (mκ)−1, so that the support of the jump-distribution equals {Mt +
mκ

−1eκ : 1 ≤ κ ≤ k, M t,κ < 1}. Now Mt jumps to Mt +mκ
−1eκ if and only if the next

defaulting firm belongs to group κ. Hence the transition rate from Mt to Mt +mκ
−1eκ

equals
m∑

i=1

1{κ(i)=κ} (1− Yt(i)) λi(Ψt,Yt) = hκ(Ψt,Mt)
m∑

i=1

1{κ(i)=κ} (1− Yt(i))

= hκ(Ψt,Mt)mκ

(
1−M t,κ

)
.

The claim follows, as this transition-rate depends on Yt only via Mt, which shows that
M is Markov with respect to {Gt}. The form of GM

[Ψt(ω1)] is obvious.

In our analysis of the mean-field model introduced in Assumption 3.1 we will fre-
quently use the Kolmogorov equations for the conditional Markov chain M. The form
of the backward equation follows immediately from the definition of the generator GM

[ψ];
the ODE-system for the forward equation can be computed analogously to Lemma 2.3;
see Lemma A.1 in the appendix for the precise form of the equation. Note that the size
of the state space of M equals

∣∣SM
∣∣ := (m1 + 1) · · · (mk + 1). For k fixed

∣∣SM
∣∣ grows at

most at rate (m/k)k in m, whereas |S| grows exponentially in m. Hence for k small the
conditional distribution of MT can be inferred using the Kolmogorov equations for M
even for m relatively large.

Implications of exchangeability. We can infer individual default probabilities as
well as within-group and between-group default correlations from the distribution of the
random vector MT using the fact that within a given group κ the random variables
{YT (i) : κ(i) = κ} are exchangeable under K(ω1, dω2) and therefore also under P . Hence
we get that P

(
YT (i) = 1 |MT,κ(i)

)
= MT,κ(i), and for two firms i, j belonging to the

same group κ

P

(
YT (i) = 1, YT (j) = 1 |MT,κ =

M

mκ

)
=

(
mκ−2
M−2

)(
mκ

M

) =
M(M − 1)
mκ(mκ − 1)

, (14)

provided that mκ and M ≥ 2; otherwise the left hand side of (14) is obviously equal to
zero. Finally, we have for obligors i, j belonging to different groups κ1 and κ2

P
(
YT (i) = 1, YT (j) = 1 |MT,κ1 , MT,κ2

)
= MT,κ1 MT,κ2 .

Hence we get for oligors i, j in group κ

P (YT (i) = 1) = E
(
P (YT (i) = 1 |MT,κ)

)
= E(MT,κ), (15)

P (YT (i) = 1, YT (j) = 1) = E

(
MT,κ

mκMT,κ − 1
mκ − 1

)
, (16)

10



and finally for obligors i, j from different groups κ1 and κ2

P (YT (i) = 1, YT (j) = 1) = E
(
MT,κ1 MT,κ2

)
. (17)

Of course, expressions similar to (16) can also be obtained for higher order default prob-
abilities. More generally, we can even express the probability P (YT = y) for some y ∈ S
in terms of the distribution of MT . As the distribution of YT is invariant under per-
mutations of {1, . . . ,m}, which respect the homogeneous group structure, we have with
l := M(y)

P (MT = l) =
∣∣{y ∈ S : M(y) = l}

∣∣ P (YT = y) =
k∏

κ=1

(
mκ

mκlκ

)
P (YT = y). (18)

Of course, since the relations above depend only on the exchangeability of the default
indicator processes of firms belonging to the same group, they hold also under the kernel
K(ω1, dω2).

3.2 Limits for Large Portfolios

We now consider the limit (in the sense of convergence in distribution) of the model with
k homogeneous groups as the size m of the portfolio tends to infinity, assuming that k
remains fixed. It will turn out that in the limit the evolution of M becomes deterministic
given the evolution of the economic factor process Ψ.

Our setup is as follows. Denote by Ω(m) = D
(
[0,∞),Rd

)
× D([0,∞), S(m)) the

probability space in model m and define the filtrations {Fm
t }, {F

i,m
t }, i = 1, 2, and {Gm

t }
in the obvious way. We assume that for each m the probability measure P (m) = µ×K(m)

satisfies Assumption 2.1; moreover, µ is assumed to be identical for all m. Denote by
m

(m)
κ the number of obligors in group κ of model m, define the process M(m) by M(m)

t =
M(Y(m)

t

)
, and assume that for all m the transition rates have the group structure as in

Assumption 3.1; in particular the default intensity of company i in model m equals

λ
(m)
i

(
ψ,y(m)

)
= h

(m)
κ(i)

(
ψ,M(y(m))

)
.

According to Lemma 3.4, for given ω1 the process M(m)
t is Markov under the measure

K(m)(ω1, dω2). Put Ω̃2 := D([0,∞), [0, 1]k), and denote by K̃(m)(ω1, dω̃2) the distribution
of M(m)

t on Ω̃2 under K(m)(ω1, dω2).
Next we describe the limiting distribution of M(m). Suppose that for all κ = 1, . . . , k

the function h
(m)
κ converges uniformly on compacts to some locally Lipschitz function

h
(∞)
κ : Rd×[0, 1]k → R+. Denote by M(∞)

t (ω1) =
(
M

(∞)
t,1 (ω1), . . . ,M

(∞)
t,k (ω1)

)′ the solution
of the following system of ODE’s with random coefficients

d

dt
M

(∞)
t,κ (ω1) =

(
1−M

(∞)
t,κ (ω1)

)
h(∞)

κ

(
Ψt(ω1),M

(∞)
t (ω1)

)
, (19)

with initial value M(∞)
0 = l̄ ∈ [0, 1]k. Note that for fixed ω1 ∈ Ω1 and T > 0 the rhs

of (19) is Lipschitz in the second argument, since [0, 1]k is compact and h
(∞)
κ is locally

Lipschitz; hence a solution of (19) exists. For every ω1 the trajectory
[
t 7→ M(∞)

t (ω1)
]

is an element of Ω̃2. Denote by δ
(
M(∞)(ω1), dω̃2

)
the Dirac measure on Ω̃2 in the point

11



[
t 7→ M(∞)

t (ω1)
]
, and define a transition kernel K̃(∞) from Ω1 to Ω̃2 by K̃(∞)(ω1, dω̃2) :=

δ
(
M(∞)(ω1), dω̃2

)
. Now we have

Proposition 3.5. Given a sequence of models as above, suppose that limm→∞m
(m)
κ =

∞ for all κ = 1, . . . , k and that limm→∞M(m)
0 = l̄. Then for all ω1 the measure

K̃(m)(ω1, dω̃2) converges weakly to K̃(∞)

l
(ω1, dω̃2).

Proof. Denote by GM
(m)

[ψ] the generator of M(m), and define for f ∈ C1
(
[0, 1]k

)
an operator

GM
(∞)

[ψ] f (̄l) =
k∑

κ=1

(
1− l̄κ

)
h(∞)

κ (ψ, l̄)
∂

∂l̄κ
f (̄l). (20)

Note that GM
(∞)

[ψ] is the generator of the process M(∞) defined in (19). It follows from the

Lipschitz continuity of h(∞)
κ and the form of GM

(m)

[ψ] (see (13)), that for all f ∈ C1
(
[0, 1]k

)
and every compact set K ⊂ Rd

lim
m→∞

sup
{∣∣∣∣GM

(m)

[ψ] f (̄l) − GM
(∞)

[ψ] f (̄l)
∣∣∣∣ : ψ ∈ K, l̄ ∈ [0, 1]k

}
= 0 .

This implies that µ almost all ω1 the transition semigroup of M(m) converges to the
semigroup of M(∞) by Ethier & Kurtz (1986), Theorem 1.6.1, so that the claim follows
from Ethier & Kurtz (1986), Theorem 4.2.5.

Note that the solution of (19) is deterministic given the trajectory (Ψt(ω1))t≥0. This
shows that for m→∞ the proportion of defaulted companies is fully determined by the
evolution of the economic factors. A similar result has been obtained among others by
Frey & McNeil (2003) in the much simpler context of static Bernoulli mixture models
for portfolio credit risk. Next we show that the pair of processes (Ψ,M(m)) converges in
distribution to (Ψ,M(∞)).

Corollary 3.6. Suppose that the hypothesises of Proposition 3.5 hold. Then the sequence
(Ψ,M(m)) converges in distribution to (Ψ,M(∞)), i.e. we have for every bounded and
continuous function F : D

(
[0,∞),Rd

)
×D

(
[0,∞), [0, 1]k

)
→ R

lim
m→∞

E(m)
(
F
(
Ψ,M(m))) =

∫
Ω1

F
(
Ψ(ω1),M

(∞)(ω1)
)
µ(dω1) .

Proof. Denote by Ỹ the coordinate process on Ω̃2. We have

E(m)
(
F
(
Ψ,M(m))) =

∫
Ω1

∫
Ω̃2

F
(
Ψ(ω1), Ỹ(ω̃2)

)
K̃(m)(ω1, dω̃2)µ(dω1).

Now the inner integral on the rhs converges for µ almost all ω1 to∫
Ω̃2

F
(
Ψ(ω1), Ỹ(ω̃2)

)
K̃(∞)(ω1, dω̃2) = F

(
Ψ(ω1),M

(∞)(ω1)
)

by Proposition 3.5. Hence the claim follows from the dominated convergence theorem.
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Example 3.7. Consider the affine model with counterparty risk introduced in Exam-
ple 3.2. In order to apply Proposition 3.5, we assume that for all κ the proportionm(m)

κ /m

of firms in group κ converges to some γκ ∈ [0, 1] as m→∞. This yields

h(∞)
κ (ψ, l) =

[
λκ,0 +

d∑
j=1

λκ,jψj + λκ,d+1

k∑
r=1

γr

(
l̄r − (1− e−λrt)

)]+
,

and M(∞) solves the ODE-system

d

dt
M

(∞)
t,κ =

(
1−M (∞)

t,κ

) [
λκ,0 +

d∑
j=1

λκ,jΨt,j + λκ,d+1

k∑
r=1

γr

(
M

(∞)
t,r − (1− e−λrt)

)]+
, (21)

1 ≤ κ ≤ k. Note that counterparty risk (a positive λκ,d+1) implies that deviations of∑k
r=1 γrM

(∞)
t,r from the expected level

∑k
r=1 γr(1 − e−λrt) will have a positive feedback

effect on default intensities. Hence the fluctuations in the number of defaults caused by
the random evolution of the economic factors are intensified by counterparty risk, so that
we should expect heavier tails of the distribution of M (∞)

t,κ . This is illustrated further in
simulations in the next section.

3.3 Default Correlation and Quantiles

Here we present a number of simulations, which illustrate the impact of counterparty risk
on default correlations and quantiles of M in the affine mean-field model with counter-
party risk specified in Example 3.2. In all simulations we consider a homogeneous portfolio
with only one group. The economic factor process is modelled as one-dimensional square-
root diffusion with parameters κ = 0.03, θ = 0.005, σ = 0.016 and initial value ψ0 = θ;
these values have been taken from the empirical study by Driessen (2002). The default
intensity equals

h(t, ψ, l) =
[
α(0.004 + 5.707ψ) + λ2(l − (1− e−λ̄t))

]+ with λ̄ = 0.03251.

The value for λ̄ has been chosen so that 1 − e−λ̄ corresponds to the one-year default
probability without interaction, i.e. for λ2 = 0. We take the horizon to be T = 1
year. In our simulations we increase the parameter λ2, which controls the strength of
the interaction, from 0 to 3 and adjust α in order to ensure that the one-year default
probabilities P (Y1(i) = 1) remain unchanged as we vary λ2. We consider portfolios
of size m = 100, m = 500 and, using the results from Section 3.2, the case m = ∞.
The distribution of M1 is evaluated in two steps: first we simulate 5000 trajectories of
the economic factor process ψ; second we evaluate for each trajectory the conditional
distribution of M1 by solving numerically the Kolmogorov forward equation using a
Runge-Kutta method. The simulation results are presented in Table 1 below. Inspection
of the table yields the following observations.

• Quantiles and (except for m = ∞) default correlations ρY = corr(Y1(i), Y1(j)),
i 6= j are increasing in λ2.

• The increase is more pronounced for smaller portfolios. For instance, for m = 100
the 99% quantile of M1 is increased by a factor of almost 4.75 as λ2 increases from
0 to 3; for m = ∞ the factor is only about 1.64.
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Both findings make perfect economic sense. In our counterparty risk model a higher
(lower) than usual number of defaults in the portfolio leads to an increase (decrease) of
the default intensity of the remaining firms in the portfolio and thus to a further increase
(decrease) in the ratio of realized versus expected defaults, so that the resulting distri-
bution of MT will have more mass in the tails. Now in our model there are two reasons
why the number of defaults should be higher than its theoretical value in the first place:
a) we might have a high realization of Ψ; b) for a given trajectory of Ψ we might have a
realization of the Markov chain with unusually many defaults. As the limit results from
Section 3.2 show, for m→∞ reason b) becomes less and less important, which explains,
why the effect of mean-field interaction is more pronounced for small portfolios. Note
finally that for m = ∞ default correlations seem to vary only very little as λ2 increases
whereas quantiles change a lot, so that default probabilities and default correlations alone
do not determine high quantiles of the distribution of MT . This is interesting, as it con-
trasts results of Frey & McNeil (2003) in the context of standard static credit risk models.

100 firms
λ2 P (Y1(i) = 1) ρY Quantile

90% 95% 97.5% 99%
0 0.031987 0.000416 0.06 0.06 0.07 0.08
1 0.031989 0.020918 0.07 0.09 0.11 0.13
3 0.031997 0.19118 0.12 0.21 0.29 0.38

500 firms
λ2 P (Y1(i) = 1) ρY Quantile

90% 95% 97.5% 99%
0 0.03199 0.00041579 0.044 0.046 0.05 0.054
1 0.03198 0.0050753 0.052 0.058 0.066 0.072
3 0.03199 0.058283 0.096 0.128 0.156 0.19

The case m = ∞
λ2 P (Y1(i) = 1) ρY Quantile

90% 95% 97.5% 99%
0 0.03199 0.00042 0.0367 0.0380 0.0393 0.0408
1 0.03199 0.00041 0.0390 0.0409 0.0429 0.0452
3 0.031982 0.00043 0.0503 0.0554 0.0611 0.0669

Table 1: Default correlation and quantiles in the mean-field model for varying m.

4 Pricing of Credit Derivatives

In this chapter we discuss the pricing of credit risky securities in our model with inter-
acting intensities. Our main interest is in portfolio-related credit derivatives such as k-th
to default swaps and synthetic CDOs, whose payoff distribution is particularly sensitive
with respect to dependence between defaults.
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4.1 Generalities

Our setup. We use the martingale modelling approach and specify asset price dynamics
and default intensities directly under a risk neutral pricing measure, which we denote
again by P . Since credit derivatives are usually priced relative to traded credit products
such as corporate bonds or single-name Credit Default Swaps, martingale modelling is
standard practice in the literature. We assume that under P the default indicators satisfy
Assumption 2.1 with only time-dependent default intensities λi(t,y). Models with factor-
independent default intensities are practically relevant as dependence between defaults
can be introduced via the interaction between default intensities. In fact, the literature
on pricing credit derivatives in the popular copula models focuses almost exclusively
on models with factor-independent default intensities. Moreover, our results are easily
extended to default intensities which depend on some stochastic background process using
the two-step approach sketched in Remark 2.2.

We assume that the default-free interest rate is deterministic and given by r(t) ≥ 0;
B(t) = exp(

∫ t
0 r(s)ds denotes the default-free savings account. Assuming deterministic

interest rates is natural when working with deterministic marginal hazard rates; more-
over, given the great sensitivity of most portfolio-related credit derivatives with respect
to fluctuations in risk neutral default correlations and the huge degree of uncertainty
surrounding every approach to calibrating these numbers, the additional complexity of
stochastic interest rates is simply not warranted.

The assumption of deterministic default intensities and interest rates allows us to
simplify the notation. The distribution of the time-inhomogeneous Markov chain Yt

starting at time t in state y will be denoted by P(t,y), and the underlying filtration is
simply given by Ft = σ(Ys : s ≤ t). Since in this section portfolio size and composition
are considered fixed we work directly with the absolute number of defaults within the
portfolio or within a particular group. In particular, if the model has the homogeneous
group structure of Assumption 3.1, the default intensity is denoted by hκ(t, l), where
lκ gives the absolute number of defaults in group κ. In that case the distribution of
the Markov chain Mt starting at time t in state l is denoted by P(t,l). The function
M(y) :=

∑m
i=1 y(i) gives the number of defaults for a given y ∈ S. The following sets of

states from S

A0(l, j) := {y : M(y) = l, y(j) = 0} and A1(l, j) := {y : M(y) = l, y(j) = 1} (22)

will appear frequently below. Finally we recall the notation yi for flipping a portfolio
state introduced in (2).

Conditional expectations. In the sequel we derive analytical expressions for certain
conditional expectations with respect to the σ-field generated by a particular default time
τi0 , which will come in handy in the pricing of basket credit derivatives and CDOs.

Proposition 4.1. For i0 ∈ {1, . . . ,m} the density of τi0 equals

P (τi0 ∈ dt) =
∑

y:y(i0)=0
λi0(t,y)P (Yt = y) . (23)

Moreover, we have for y ∈ S

P
(
Yt = y

∣∣τi0 = t
)

= y(i0)P (τi0 ∈ dt)−1λi0(t,y
i0)P (Yt = yi0) . (24)
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Proof. We first show that for y ∈ S with y(i0) = 1 we have

lim
ε→0+

1
ε
P
(
Yt = y, τi0 ∈ (t− ε, t]

)
= λi0(t,y

i0)P
(
Yt = yi0

)
. (25)

To verify (25) we argue as follows. The probability to have more than one default in
(t− ε, t] is of order o(ε). Thus we have P

(
Yt = y, τi0 ∈ (t− ε, t]

)
= P

(
Yt−ε = yi0 , τi0 ∈

(t− ε, t]
)

+ o(ε). Now we get

P
(
Yt−ε= yi0 , τi0 ∈ (t− ε, t]

)
= E

(
E
(
1{Yt−ε=yi0}1{τi0

∈(t−ε,t]}
∣∣Ft−ε

))
= E

(
1{Yt−ε=yi0}1{τi0

>t−ε}P
(
τi0 ◦ θt−ε(ω) ≤ ε

∣∣∣Ft−ε

))
. (26)

By the Markov property of Y we have

P
(
τi0 ◦ θt−ε(ω) ≤ ε

∣∣Ft−ε

)
= P(t−ε,Yt−ε)(τi0 ≤ ε).

Moreover, P(t−ε,yi0 )(τi0 ≤ ε) = ελi0(t − ε,yi0) + o(ε). Hence and as τi0 > t − ε on

{Yt−ε = yi0}, (26) equals E
(
1{Yt−ε=yi0}ελi0(t− ε,yi0)

)
+ o(ε), and (25) follows.

The proof of the proposition is now straightforward. Relation (23) follows from (25)
and the fact that P

(
τi0 ∈ (t− ε, t]) =

∑
y:y(i0)=1 P

(
Yt = y, τi0 ∈ (t− ε, t]

)
; relation (24)

follows from (25), the definition of the elementary conditional expectation and a standard
limit argument.

Remark 4.2. In principle, it is possible to write down the density for (τ1, . . . , τm) in
closed form and to determine the marginal density τi0 by integrating out the other de-
fault times. However, as shown in Yu (2004), the resulting expressions become quite
cumbersome already for m = 3, so that even for medium-sized portfolios this approach
is infeasible.

For a homogeneous model the results of Proposition 4.1 simplify further.

Corollary 4.3. Consider a homogeneous mean-field model with only one group and de-
fault intensity h(t, l). We have for l, i0 ∈ {1, . . . ,m}

P (τi0 ∈ dt) = m−1
m−1∑
k=0

h(t, k)P (Mt = k)(m− k) and (27)

P
(
Mt = l

∣∣ τi0 = t
)

=
(m− l + 1)h(t, l − 1)P (Mt = l − 1)∑m−1

k=0 (m− k)h(t, k)P (Mt = k)
. (28)

Proof. We have P
(
Mt = l, τi0 ∈ (t − ε, t]

)
=
∑

y∈A1(l,i0) P
(
Yt = y, τi0 ∈ (t − ε, t]

)
.

Using (25) we get

lim
ε→0+

1
ε
P
(
Mt = l, τi0 ∈ (t− ε, t]

)
=

∑
y∈A1(l,i0)

h(t, l − 1)P
(
Yt = yi0

)
=

∑
y∈A0(l−1,i0)

h(t, l − 1)P
(
Yt = y

)
. (29)

Now note that
∣∣A0(l − 1, i0)

∣∣ =
(
m−1
l−1

)
and

∣∣{y ∈ S : M(y) = l − 1}
∣∣ =

(
m

l−1

)
. Since(

m−1
l−1

)
/
(

m
l−1

)
= m−(l−1)

m , expression (29) equals

m− (l − 1)
m

∑
{y:M(y)=l−1}

h(t, l − 1)P
(
Yt = y

)
=
m− l + 1

m
h(t, l − 1)P

(
Mt = l − 1

)
.
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Now (27) follows as P
(
τi0 ∈ dt

)
=
∑m

l=1 limε→0+
1
εP
(
τi0 ∈ (t−ε, t], Mt = l

)
; relation (28)

follows as in the proof of Proposition 4.1 from the definition of elementary conditional
expectation and a standard limit argument.

Some simple building blocks. As a simple first example we consider the pricing
of a terminal value claim with payoff H = g(YT ) for some function g : S → R. A
prime example is a defaultable zero-coupon bond issued by firm i with zero recovery or
more generally with recovery of treasury in the sense of Jarrow & Turnbull (1995) and
deterministic recovery rate δ, where g(y) = (1−δ)1{y(i)=0}+δ. Using the Markov-property
of Y we get for the price of a terminal value claim in t < T

Ht = exp
(
−
∫ T−t

0
r(s)ds

)
E(t,Yt) (g(YT )) , t ≤ T ,

which is easily computed using the Kolmogorov backward equation (8). In the context of
the mean-field model of Assumption 3.1 further simplifications are possible. For example,
if the payment is contingent on the survival of a particular firm i0 from group κ0, i.e. if
g(y) = 1{y(i0)=0}, we obtain by an analogous argument as in (15)

P(t,Yt)(YT (i0) = 0) = 1{Yt(i0)=0}

(
1− E(t,Mt)

(
MT,κ0 −Mt,κ0

mκ0 −Mt,κ0

))
,

and the expectation on the right hand side can be computed using the backward equation
for Mt, which leads to a substantial reduction in the size of the ODE-system to be solved.
Of course, there are alternative ways to compute prices of defaultable zero-coupon bonds
in models with interacting intensities. In particular, as shown by Collin-Dufresne et al.
(2003), for m small analytical expressions for prices of zero-coupon bonds can be derived
using a change of measure.

Next we turn to the pricing of recovery payments. A recovery payment with deter-
ministic payoff δ and maturity T on firm i0 is a claim which pays δ at the default time
τi0 if τi0 ≤ T ; otherwise there is no payment. The price of this claim at t = 0 equals

δE
(
B(τi0)

−1
)

= δ

∫ T

0
B(t)−1P (τi0 ∈ dt) dt , (30)

which can be evaluated numerically using (23) or (27). Using our pricing formulas for
terminal value claims and recovery payments it is straightforward to compute the price
of a standard single-name CDS, at least if we neglect the possibility that the protection
seller may default. This is important for calibrating the model to given CDS spreads.
The more general case with default of the protection seller can be dealt with using similar
arguments as in the pricing of k-th-to-default swaps in the next subsection.

4.2 Pricing of k-th-to-default swaps

Payoff description. We consider a portfolio of m names with nominal Ni and de-
terministic recovery rate δi, 1 ≤ i ≤ m. If the k-th default time Tk is smaller than the
maturity T of the swap, the protection buyer in a k-th-to-default swap on this port-
folio receives at time Tk the loss of the portfolio incurred at the k-th default given
by (1 − δξk)Nξk (the default payment leg of the swap). Note that the size of the de-
fault premium is random as it depends on the identity ξk of the k-th defaulting firm.
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As a compensation the protection buyer pays to the protection seller a fixed premium
Xkth at fixed dates t1, t2, . . . , tN = T until Tk; after Tk the regular premium payments
stop. Moreover, at Tk the protection seller gets an accrued premium payment of size∑N

n=1 1{tn−1<Tk≤tn}X
kth Tk−tn−1

tn−tn−1
(the premium payment leg).

The default payment leg. Under the above assumptions the value of the default
payment leg at t = 0 can be written as

V def :=
m∑

j=1

(LGD)j E
(
B−1(τj)1{τj≤T}1{Mτj=k}

)
,

where (LGD)j := (1− δj)Nj . Now we obtain by iterated conditional expectations

E
(
B−1(τj)1{τj≤T}1{Mτj=k}

)
= E

(
E
(
B−1(τj)1{τj≤T}1{Mτj=k}

∣∣∣τj))

=
∫ T

0
B−1(t)P

(
Mt = k

∣∣τj = t
)
P (τj ∈ dt) dt. (31)

Using Corollary 4.3 we get in the model with mean-field interaction and one homogeneous
group

V def :=
m∑

j=1

(LGD)j

∫ T

0
B−1(t)

h(t, k − 1)P (Mt = k − 1)(m− k + 1)
m

dt. (32)

To compute (32) we only need the distribution of Mt, which is easily obtained from
the Kolmogorov forward equation, and a one-dimensional numerical integration. In the
general model we have P

(
Mt = k | τj = t

)
=
∑

y∈A1(k,j) P (Yt = y | τj = t); hence we
get from (24) and (31)

V def =
m∑

j=1

(LGD)j

∑
y∈A1(k,j)

∫ T

0
B−1(t)λj(t,y(j))P (Yt = y(j)) dt, (33)

which can be computed analytically for m small.

The premium payment leg. The premium payment leg consists of the sum of the
value of the regular premium payments and the accrued premium payment; since {Tk ≤
t} = {Mt ≥ k} its value at t = 0 for an arbitrary spread X can be written as

V prem := X
N∑

n=1

[
B−1(tn)P

(
Mtn < k

)
+ E

(
B−1(Tk)

Tk − tn−1

tn − tn−1
1{tn−1<Tk≤tn}

)]
. (34)

Using iterated conditional expectations we get for the second term

E
(
B−1(Tk)

Tk − tn−1

tn − tn−1
1{tn−1<Tk≤tn}

)
=

1
tn − tn−1

∫ tn

tn−1

B−1(t)(t− tn−1)P (Tk ∈ dt)dt.

Using partial integration we can write this as

1
tn − tn−1

(
B−1(tn)(tn−tn−1)P (Mtn ≥ k)−

∫ tn

tn−1

B−1(t)(1−r(t)(t−tn−1))P (Mt ≥ k)dt

)
.
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Hence we get from (34)

V prem = X

N∑
n=1

(
B−1(tn)− 1

tn − tn−1

∫ tn

tn−1

B−1(t)(1− r(t)(t− tn−1))P (Mt ≥ k)dt
))

,

(35)
which is easy to compute given the distribution of Mt. By equating the value premium
payment leg and the default payment leg we finally obtain the fair spread Xkth of the
k-th-to-default swap.

A simple numerical example. In the following example we want to illustrate the
effect of increasing interaction for the fair spread of k-th-to-default swaps. We have
considered a portfolio of 5 names each with a recovery rate of δ = 40%. We calibrated
the model to single-name CDS spreads. For simplicity we have assumed that for all 5
names the CDS-spreads are independent of the maturity and equal to 0.8%, 0.9%, 1.0%,
1.1% and 1.2%, leading 5-year risk-neutral default probabilities of 6.25%, 7.00%, 7.74%,
8.45% and 9.21%. The riskless interest rate was taken constant and equal to r = 5%. We
considered a general Markovian model with default intensities

λi(t,y) = max
{
λi,0 ·

(
1 +

λi,1

5

5∑
j=1

(
y(j)− (1− e−λi,0t)

))
,
λi,0

2

}
, i = 1, . . . , 5.

We computed the fair spread of a k-th-to-default swap (k = 1, . . . , 5) with nominal
Ni = 1 for all firms. We considered three cases with increasing interaction parameter
λi,1 = 3, 6, 10 (identical for all firms). The parameters λi,0 were calibrated to the given
5-year default probabilities. The parameters and the default correlations are given in
Table 4 in the Appendix. The fair swap spreads were computed from (33) and (35) using
the Kolmogorov forward equation (10) for the general model.

We have compared the results of the Markov model with a one factor Gaussian copula
model (see for instance Laurent & Gregory (2003)), which is the industry standard for
pricing such claims. The copula model was calibrated to the same risk-neutral 5-year
default probabilities and default correlations as the Markov model. Fair swap spreads
were computed using Monte Carlo simulation.

The fair spreads Xkth for k-th-to-default swaps we obtained in both models are doc-
umented in Table 2. As expected, in both models the spread of the first to default swap
decreases with increasing interaction parameter λi,1 and hence increasing default correla-
tion, whereas the spreads of the higher order swaps increase with increasing interaction.
Moreover, the Markov model and the copula model generate nearly identical results ex-
cept for the extreme case k = 5, where the copula model leads to higher spreads. This
seems to indicate that for given marginal default probabilities and given pairwise default
correlation the distribution of the default times is to a large extent determined, indepen-
dently of the particular model used. While this observation is in line with findings for
static credit portfolio models (see for instance Frey & McNeil (2003)), further research is
needed before such a statement can reliably be made.
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without Case 1 (λi,1 = 3) Case 2 (λi,1 = 6) Case 3 (λi,1 = 10)
k interaction Markov Copula Markov Copula Markov Copula
1 4.96% 4.55% 4.54% 4.13% 4.12% 3.65% 3.64%
2 0.61% 0.84% 0.83% 1.04% 1.01% 1.18% 1.14%
3 0.05% 0.13% 0.14% 0.25% 0.26% 0.40% 0.40%
4 0.002% 0.014% 0.016% 0.044% 0.054% 0.11% 0.12%
5 0.00003% 0.00077% 0.00105% 0.00431% 0.00714% 0.01610% 0.02566%

Table 2: Fair spreads of k-th-to-default swaps

4.3 Pricing of synthetic CDOs

Payoff description. A synthetic CDO is based on a portfolio of m single-name CDSs
with nominal Ni and (possibly random) recovery rate δi, 1 ≤ i ≤ m. The default losses
of the portfolio are allocated to K tranches. Each of this tranches is determined by a
fixed lower boundary lk and upper boundary uk, k = 1, . . . ,K, where 0 = uK < lK =
uK−1 < · · · = u1 < l1 =

∑m
i=1Ni. The maximum loss of tranche k is lk − uk. If firm i

defaults before the maturity T of the contract, the holder of the lowest tranche K pays
at time τi the loss of this default given by LGDi := Ni(1 − δi) until he has reached his
maximum loss; after that the holder of tranche K − 1 pays the loss and so on. Denote
by Lt =

∑m
i=1(LGD)i1{τi≤t} the total loss of the portfolio at time t. For tranche k with

boundaries lk and uk we define the function vk by

vk(x) = (x− lk)1{x∈[lk,uk]} + (lk − uk)1{x>uk} ,

so that the accumulated loss of tranche k up to time t equals vk(Lt). As a compensation
for making the default payments the holder of a tranche gets a premium at fixed dates
t1 < t2 < . . . < tN = T , whose size is based on the nominal of the tranche in the last
period. If a default occurs the holder of a tranche moreover receives an accrued margin
payment on the change in the value of his nominal between last regular payment time
and default time. We denote by sk the spread of tranche k. Then the regular payment on
tranche k at time tn equals sk(tn − tn−1)((uk − lk)− v(Ltn)); in case name j defaults at
time τj ∈ (tn−1, tn] the accrued margin payment equals sk(τj − tn−1)(v(Lτj )− v(Lτj−)),
where Lt− is the left-hand limit of Lt in t, so that v(Lτj )− v(Lτj−) gives the the loss of
the tranche due to the default of name j.

General pricing results. Using partial integration we obtain for the value of the
default payments of tranche k

V def := E

(∫ T

0
B−1(t) dvk(Lt)

)
= B−1(T )E

(
vk(LT )

)
+
∫ T

0
r(t)B−1(t)E

(
vk(Lt)

)
dt ;

see Laurent & Gregory (2003) for details. This is easily computed once we know the dis-
tribution of the total loss. The premium payment leg consists of the regular payment and
of the accrued margin payments. With deterministic interest rates the value of the regular
payments at t = 0 can be written as sk·

∑N
n=1B

−1(tn)
[(
uk − lk − E (vk(Ltn))

)
(tn − tn−1)

]
.

For the value of the accrued margin payments in t = 0 we obtain

sk ·
N∑

n=1

m∑
j=1

E
(
B−1(τj)

(
vk(Lτj )− vk(L(τj)−)

)
(τj − tn−1)1{tn−1<τj≤tn}

)
.
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If we condition on τj and use iterated conditional expectation we can write a single term
of this sum as∫ tn

tn−1

B−1(s)(s− tn−1)E
(
vk(Ls)− vk(Ls−)

∣∣τj = s
)
P (τj ∈ ds) ds.

Thus in order to compute the premium payment leg we need the distribution of the loss
of the tranche, the conditional distribution of the loss of the tranche given the default
times and the density of the default times. For deterministic recovery rates all these
quantities can in principle be determined using Proposition 4.1 and the Kolmogorov
equations; without further homogeneity assumptions this may however become infeasible
for m moderately large, so that one has to resort to simulations. Next we consider the
extreme case of a completely homogeneous portfolio.

Results in the homogeneous mean-field model. Consider the mean-field model
with one homogeneous group and identical nominals N1 = · · · = Nm = N and identical
deterministic recovery rates δ1 = · · · = δm = δ. Then we get for the distribution of the
total loss P (Lt = x) = P (Mt = x/(N(1− δ))) and for the expected loss of tranche k
E(vk(Lt)) =

∑m
i=0 vk(iN(1− δ))P (Mt = i). For the conditional expectations we get

E
(
vk(Lt)

∣∣∣τj = t
)

=
m∑

i=1

vk

(
iN(1− δ)

)
P (Mt = i|τj = t) (36)

E
(
vk(Lt−)

∣∣∣τj = t
)

=
m−1∑
i=1

vk

(
iN(1− δ)

)
P (Mt = i+ 1|τj = t) . (37)

Defining Et,k(j) := mP (τj ∈ dt)E
(
vk(Lt) − vk(Lt−)

∣∣τj = t
)

we get using (36), (37) and
Corollary 4.3

Et,k(j) = mP (τj ∈ dt)
[m−1∑

i=1

vk

(
iN(1− δ)

)(
P (Mt = i | τj = t)− P (Mt = i+ 1 | τj = t)

)
+ vk

(
mN(1− δ)

)
P (Mt = m | τj = t)

]
=

m−1∑
i=1

vk

(
iN(1− δ)

)
h(t, i− 1)P (Mt = i− 1)(m− i+ 1)− h(t, i)P (Mt = i)(m− i)

+ vk

(
mN(1− δ)

)
h(t,m− 1)P (Mt = m− 1).

Since Et,k(j) is independent of j, the overall value of the premium payments in t = 0 is
given by

sk ·
N∑

n=1

B−1(tn)
(
uk − lk − E

(
vk(Ltn)

))
(tn − tn−1) +

∫ tn

tn−1

B−1(t)(t− tn−1)Et,k(1) dt .

The case of stochastic recovery rates can be dealt with using Fourier inversion techniques;
see for instance Laurent & Gregory (2003) for a discussion in the context of copula models.
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A numerical example. Consider the simple example of pricing a synthetic CDO in
the homogeneous mean-field model. The portfolio consists of 100 names with identical
nominal Ni = 1 and deterministic recovery rate δi = 50%. The maturity of the CDO
is taken to be T = 5 years and the premium payments are due at tn = 1, . . . , 5 years.
The CDO has 3 tranches, equity 3%, mezzanine 7% and senior 90%, i.e. we have the
boundaries 0 = u3 < l3 = 3 = u2 < l2 = 10 = u1 < l1 = 100. We assume a risk free short
rate of r= 3%. We model the default intensity as

h(t, l) = max
{
λ0 ·

(
1 + λ1

(
l

m
− (1− e−λ̄t)

))
, λ0/2

}
,

where we set λ̄ so, that we have P (Y1(i) = 1) = 1−e−λ̄ in the case without interaction. We
assume that the one-year risk neutral default probability for each firm equals P (Y1(i) =
1) = 3.246%. We increase the interaction parameter λ1 and calibrate the other parameter
λ0 such that the 5-year default probability is unchanged.

In Table 3 we show the behaviour of the annual default probability (for a constant
5-year default probability), the one- and 5-year default correlation and the fair spreads
of the three tranches. As expected the spread of the first tranche decreases whereas the
spreads of the other tranches increase as we increase λ1 and thus the dependence between
defaults. This behaviour of CDO-spreads is well-known from other studies such as Duffie
& Garleanu (2001).

annual annual 5year fair spread of tranche
default default default [0,3] [3,10] [10,100]

λ1 λ0 probability correlation correlation
% % % % % %

0 0.03300 3.246 0.0000 0.0000 93.16 16.23 0.02
10 0.03304 3.244 0.4005 3.8474 78.11 14.03 0.17
20 0.03072 2.934 0.9130 11.948 60.62 10.13 0.39
30 0.02811 2.577 1.3724 22.233 49.60 7.41 0.57

Table 3: Fair spreads of different tranches of a synthetic CDO for different interaction
levels and a constant 5-year default probability P (Y5(i) = 1) = 15.21%.
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A Appendix

A.1 Simulation

We now describe an approach for simulating a trajectory of the process Γ with dynam-
ics as in Assumption 2.1 and initial values Γ0 = (ψ,y) up to some finite horizon T .
The approach follows the standard construction of conditional continuous time Markov
chains. First we simulate a trajectory of Ψ. Depending on the specific model for Ψ
various approaches can be used; see for instance Glasserman (2003). Next we have to
simulate the first default time T1. It is well-known that T1 has hazard-rate process
λ

(1)
t =

∑m
i=1

(
1 − y(i)

)
λi(Ψt,y). Hence we simply simulate a unit exponential random

variable θ1 independent of Ψ and put T1 = inf
{
t ≥ 0 :

∫ t
0 λ

(1)
s ds ≥ θ1

}
. Next we deter-

mine the identity ξ1 of the first defaulting firm. It is shown for instance in Bielecki &
Rutkowski (2002) that

P(ψ,y)(ξ
1 = i | T1 = t) =

(
1− y(i)

)
λi(Ψt,y)∑m

j=1

(
1− y(j)

)
λj(Ψt,y)

=: p(1)
i ;

Hence ξ1 can be simulated as realisation of a random variable ξ with P (ξ = i) = p
(1)
i for

1 ≤ i ≤ m.
In case that T1 ≥ T we have accomplished our task and stop. Else we define the

vector y(1) := yξ1
(recall the notational convention (2)), and for t ≥ T1 the process

λ
(2)
t =

∑m
j=1(1 − y(1)(j))λj(Ψt,y(1)). In analogy to the previous step we put T2 =

inf
{
t ≥ T1 :

∫ t
T1
λ

(2)
s ds ≥ θ2

}
, where θ2 is again a unit exponential rv independent of all

other variables. ξ2 is determined as before, using the identity

P (ξ(2) = i | T2 = t, ξ1) =
(
λ

(2)
t

)−1 (
1− y(1)(i)

)
λi(Ψt,y(1)).

The algorithm proceeds this way until we have reached some j with Tj ≥ T or until all
companies are default.
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A.2 Forward equations

Proof of Lemma 2.3. We identify G[ψ] with an |S| × |S| matrix (Λij(t | ω1)); G∗
[ψ] corre-

sponds then to the transpose matrix. For this we choose a bijection I : {1, . . . , |S|} → S,
i 7→ yi. By definition of the generator of Y we have for i 6= j

Λij(t | ω1) =

{
(1− yi(k))λk(Ψt(ω1),yi), if yj = yk

i for some k ∈ {1, . . . ,m},
0 else .

(38)

For i = j we put Λii(t | ω1) = −
∑

j 6=i Λij(t | ω1), yielding Λii(t | ω1) = −
∑m

k=1(1 −
yi(k))λk(Ψt(ω1),yi) . Now fix y = I(j0) ∈ S. Since G∗

[Ψt(ω1)] corresponds to multiplica-
tion with the transpose matrix (Λ∗

ij(t | ω1)), the forward equation becomes

∂p(t, s,x,y | ω1)
∂s

=
|S|∑
i=1

Λij0(s | ω1)p(t, s,x,yi | ω1) .

Using the definition of Λij(s | ω1) and the relation (1− yk(k)) = y(k) we obtain the final
version (10) of the forward equation.

Next we consider forward equations for Mt. We have

Lemma A.1. Assume that the default intensities satisfy Assumption 3.1. Then the
adjoint operator G∗M

[Ψt(ω1)] to the generator GM
[Ψt(ω1)] of Mt is given by

G∗M
[ψ] f (l) =

k∑
κ=1

1{lκ>0}
(
1 +mκ(1− lκ)

)
hκ

(
ψ, l− 1

mκ
eκ

)
f
(
l− 1

mκ
eκ

)
(39)

−
k∑

κ=1

mκ(1− lκ)hκ

(
ψ, l

)
f
(
l
)
.

Sketch of proof. As in the proof of Lemma 2.3 we define a
∣∣SM

∣∣×∣∣SM
∣∣ matrix (Λij(t|ω1))

and identify the generator GM
[ψ] with the matrix through a bijection I : {1, 2, . . . ,

∣∣SM
∣∣} →

SM , I(i) = l
(i). According to Lemma 3.4 we have for i 6= j

Λij(t | ω1) = mκ(1− l
(i)
κ )hκ(Ψt, l

(i)), (40)

if there is a κ ∈ {1, · · · , k} with l(j)κ = l
(i)
κ + 1

mκ
and l(j)γ = l

(i)
γ for γ 6= κ, and Λij(t | ω1) = 0

else; for i = j we obtain

Λii(t | ω1) = −

∣∣SM
∣∣∑

j=1,j 6=i

Λij(t | ω1) = −
k∑

κ=1

mκ(1− l
(i)
κ )hκ(Ψt, l

(i)) .

The result follows as the adjoint operator G∗M
[Ψ] corresponds to multiplication with the

transpose matrix (Λ∗
ij(t|ω1)).
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A.3 Complementary numerical results

Case 1: Lower Interaction, λi,1 = 3, i = 1, . . . , 5

λ1,0 = 0.013235
λ2,0 = 0.014919
λ3,0 = 0.016605
λ4,0 = 0.018300
λ5,0 = 0.019999

100% 4.32% 4.52% 4.72% 4.89%
100% 4.77% 4.97% 5.16%

100% 5.21% 5.41%
100% 5.64%

100%

Case 2: Medium Interaction, λi,1 = 6, i = 1, . . . , 5

λ1,0 = 0.013773
λ2,0 = 0.015584
λ3,0 = 0.017410
λ4,0 = 0.019256
λ5,0 = 0.021119

100% 9.81% 10.25% 10.66% 11.04%
100% 10.78% 11.21% 11.61%

100% 11.72% 12.14%
100% 12.62%

100%

Case 3: Higher Interaction, λi,1 = 10, i = 1, . . . , 5

λ1,0 = 0.013876
λ2,0 = 0.015783
λ3,0 = 0.017727
λ4,0 = 0.019711
λ5,0 = 0.021733

100% 16.76% 17.44% 18.07% 18.65%
100% 18.28% 19.45% 19.55%

100% 19.74% 20.38%
100% 21.13%

100%

Table 4: Parameter λi,0 of the Markov model and the resulting 5-year default correlation
in 3 cases with increasing interaction. The parameters λi,0 are calibrated to the following
5-year default probabilities P (Y5(1) = 1) = 6.25%, P (Y5(2) = 1) = 7.00%, P (Y5(3) =
1) = 7.74%, P (Y5(4) = 1) = 8.45% and P (Y5(5) = 1) = 9.21%.
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