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Abstract

We study the optimal loan securitization policy of a commercial bank which is
mainly engaged in lending activities. For this we propose a stylized dynamic model
which contains the main features affecting the securitization decision. In line with
reality we assume that there are non-negligible fixed and variable transaction costs
associated with each securitization. The fixed transaction costs lead to a formulation
of the optimization problem in an impulse control framework. We prove viscosity
solution existence and uniqueness for the quasi-variational inequality associated with
this impulse control problem. Iterated optimal stopping is used to find a numerical
solution of this PDE, and numerical examples are discussed.
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1 Introduction

Banks staggered, stock prices plunged, governments had to intervene — the credit crisis
starting in 2007 drew the public attention to a specific form of financial derivatives with
loans as underlying that had been used to an enormous extent by banks all over the world.
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Complex credit securitization products such as Asset-Backed Securities (ABS) became
known to a wider public as investments spreading American subprime home loans all
over the world. Notwithstanding this negative connotation, credit securitization has its
undeniable benefits: On the macro level, it can help to mitigate concentration risks within
the banking sector; on the micro or firm-specific level, securitization is an important risk
management tool as it enables an individual bank to reduce its leverage.

In the present paper, we are interested in securitization on the micro level and study the
optimal dynamic securitization strategy of a commercial bank which is mainly engaged
in lending activities. Transaction costs are an important factor in a securitization de-
cision. We therefore incorporate fixed transaction costs (e.g., rating fees), and variable
transaction costs (e.g., price discounts) into our model. In view of the fixed part of the
transaction costs, it is natural to formulate and study the optimization problem in an
impulse control setting.

The model. We consider a bank whose sole business is lending. For simplicity, the
bank does not have customer deposits, and therefore refinances itself by debt capital. We
assume that this refinancing is short-term, e.g., on the interbank market. The loans issued
by the bank are modelled as a discrete portfolio of perpetuities which generate returns
proportional to their nominal but may also default. These loans are valued on the bank’s
balance sheet at their nominal value, minus losses incurred (impairment). If the nominal
value of the loans falls below the debt level, then the bank itself defaults. This risk of
bank default however implies that the bank’s refinancing rate may be higher than the
risk-free interest rate.
In reality, loan default probabilities are uncertain and may change with the state of the
economy. This leads us to consider a random state of the economy, modelled as a two-
state continuous-time Markov chain. Correspondingly, also the market value of the loans
and the bank’s refinancing cost may change with the economic state.

We study the problem of maximizing the expected utility of the bank’s liquidation value
at some horizon T > 0. For this, the bank has two instruments at its disposal: on the one
hand, it can sell loans at market value minus fixed transaction costs; this is modelled as
securitization impulse. On the other hand, it can issue new loans; the decision whether
to issue new loans is modelled as a standard stochastic control problem. Hence we have
to deal with a so-called combined impulse and stochastic control problem. The analysis
of this problem is the main technical contribution of this paper.

Our model combines the most important factors affecting a bank’s securitization decisions
in a dynamic setting: loans may default and thus reduce profitability, or even jeopardize
the existence of the bank; a securitization of loans can reduce risks, but the full nominal
will probably not be recovered because of fixed and variable transaction costs depending
on the current state of the economy; securitization can also be an alternative to refinancing
via debt capital, especially if the latter is very expensive due to high refinancing costs. The
fixed transaction costs in our model lead to finitely many securitization impulses. This
mirrors the relative illiquidity of securitization markets and is in stark contrast to standard
continuous-time portfolio optimization models with their assumption of continuous and
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costless portfolio rebalancing.

In our analysis, we carve out major challenges a bank faces in managing its loan exposure.
Despite the complexity of the model, we are able to derive some theoretical results, and
compute optimal solutions numerically. These results can serve as guidance for an optimal
risk management strategy of a bank which is simultaneously active on the debt market,
the securitization market and the retail market.

PDE approach. The value function of a combined impulse and stochastic control
problem is known to be associated with a certain nonlinear, nonlocal partial differ-
ential equation (PDE), called the Hamilton-Jacobi-Bellman quasi-variational inequality
(HJBQVI) (for an introduction into the subject, one may consult Øksendal and Sulem
[32], or Bensoussan and Lions [2]). Because we are dealing with a three-dimensional im-
pulse control problem until terminal time, we cannot expect to find an analytical solution
of the HJBQVI. This is also why standard verification techniques for smooth solutions
fail in our case. So we have to consider weak solution concepts, such as viscosity solutions
(see Crandall et al. [7] or Fleming and Soner [11]), and to solve the problem by numerical
techniques.

In the present paper, we show that the value function of our combined impulse and
stochastic control problem is the unique viscosity solution of a suitable HJBQVI, using
results from Seydel [39]. Then, we can proceed to the numerical solution of this HJBQVI
(which is done by iterated optimal stopping in a finite-difference scheme), and compute
optimal impulse strategies for our problem.

Numerical results. The overall result from our analysis and numerical computations
is that securitization is a valuable tool for a bank’s credit risk management, especially
if the initial leverage of the bank is high. The higher the bank’s refinancing cost, the
stronger is this incentive to securitize; this is in line with the general observation in the
corporate finance literature that increasing costs to raising new external funds are an
important rationale for risk management, see for instance Froot and Stein [15].

Our numerical results also demonstrate that transaction costs (fixed and variable) have a
crucial impact in our model: First, different fixed transaction costs can lead to significant
changes in the optimal impulse strategy. Second, there is a tendency to perform impulses
when (proportional) transaction costs are lower. For our chosen set of parameters, this
means that impulses in expansion (where the market value of loans is higher and hence
transaction costs lower) are optimal in a relatively large region although loans are prof-
itable in such boom times; such impulses in expansion serve as a provision for bad times.
Under the plausible assumption of a strongly procyclical market value of loans, impulses
near the default boundary of the bank are simply not admissible in recession, because this
would lead to immediate default. The optimal (impulse) strategy in this case is simply to
wait for better times. This effect can be observed — although less pronounced — also for
a weakly procyclical market value of loans. If the bank decides to do a securitization in
recession, then it should only securitize a relatively small amount due to the proportional
transaction costs.
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Literature. The problem of choosing the optimal leverage for a firm is a classical
problem in corporate finance, see for instance Leland and Toft [25], Ziegler [40], or Hack-
barth et al. [17]; the problem is analyzed specifically for banks in Froot and Stein [15],
and an empirical analysis for a commercial bank is carried out in Cebenoyan and Strahan
[5]. Here, we concentrate not on this theoretical question, but investigate the problem for
a bank from a transaction-based perspective, i.e., “what should the bank optimally do, if
in a certain (non-optimal) situation?”. Another area of research related to our problem
is optimal control for insurers (see, e.g., Schmidli [37]), in particular optimal reinsurance
(e.g., Irgens and Paulsen [20] and references therein). Some further background on ABS,
securitization and credit risk management can be found in Benvegnu et al. [3], Bluhm
et al. [4], Franke and Krahnen [14] and McNeil et al. [27].

The novel features of our control problem (as opposed to standard continuous-time port-
folio optimization problems such as Merton [28], [29]) are the inclusion of jumps and the
use of impulse control methods. Portfolio optimization with jumps has been studied in
Framstad et al. [13], among others; impulse control techniques have previously been used
by, e.g., Eastham and Hastings [8] or Korn [22]. Some further references are given in
Øksendal and Sulem [32].

Overview. The first main section §2 introduces the model in detail, and discusses
several aspects of choosing functional forms for market value und transaction costs. In
the following §3, the linear boundedness of the value function is shown, and we establish
that the value function is the viscosity solution of the HJBQVI. After analyzing several
stochastic control simplifications of the model in §4, we describe in §5 the numerical
algorithm used for the solution of the HJBQVI, and present and discuss numerical results.
The paper is complemented by a conclusion and outlook at the end.

2 The model

2.1 Basic structure

The bank. We consider a commercial bank whose only business is lending. For sim-
plicity we assume that the bank does not have customer deposits so that its balance sheet
consists only of equity, debt capital, cash and loans. These four factors then determine
success or failure of the bank. Our model is based on the fundamental balance sheet
equation

assets = liabilities

cash + loans = equity + debt capital.

A bank of this type would normally refinance the issued loans to a large proportion by
debt capital (a typical bank actually owns less than 10% of the assets on its balance
sheet). As the structure of long-term debt capital typically remains largely unchanged
over a longer time horizon, we make here the assumption that the long-term debt capital
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is constant and - for simplicity - equal to 0. In this simplified setting, the bank refinances
itself through a negative cash position, which is interpreted as short-term refinancing,
say on the LIBOR interbank market.1 We stress that negative cash in our model does
not lead to immediate bankruptcy, but is just an indication that the bank does not own
all of the assets on its balance sheet. Relying on short-term funding has been quite a
common way for banks to refinance itself, at least until the fall of 2008. Indeed, lending
long-term and refinancing short-term is one the raisons d’être of banks. The drawback
of short-term refinancing however is that the refinancing rate can be quite sensitive to
changes in the bank’s situation or in the economic environment, or that the bank might
even not be able to raise funds at all. This became evident in September and October
2008 when the market for short-term refinancing essentially dried up in reaction to the
default of Lehman Brothers.

In the balance sheet equation described above, three factors remain, of which we choose
to model the nominal value of loans L and the cash position C, and to deduce equity
E = L + C. As banks cannot take a short position in loans we have L ≥ 0, whereas the
sign of C is not restricted. The bank exists as long as E ≥ 0, otherwise default occurs.
We define the leverage of a bank as follows:

leverage =
L

E
=

L

L + C
∈ [0,∞].

A leverage > 1 means that C < 0 (refinancing of some of the loans on the short-term
debt market) and reversely, a leverage ∈ [0, 1] means that C ≥ 0, so that the bank owns
all its assets. A high leverage indicates a high riskiness of the bank, should loans default.
In this case, we would expect a higher refinancing rate for the bank.

The dynamic model. We now present our three-dimensional model step by step,
first without securitization. Denote by X = (L,C,M)T the stochastic process composed
of loan value L, cash C, and state of the economy M . We work on a fixed probability
space (Ω,F , P) with filtration (Ft)t≥0, satisfying the usual assumptions.

The loan portfolio of the bank is discrete, i.e., at every instant, it consists of finitely
many loans. Furthermore, the portfolio is homogeneous, i.e., all loans have the same
interest rate, the same risk and the same nominal; without loss of generality we assume
for each loan a nominal of 1. Each loan has maturity ∞ (perpetuity), and defaults with
a certain intensity, independently from the other loans (conditionally on the state of the
economy); upon default it is immediately liquidated. The nominal value of the loan
exposure L develops in time according to an adapted càdlàg point process with varying
intensity:

dLt = −dNt + βtdPt, L0 ∈ N0. (1.L)

Here, Nt is a Poisson process with intensity λ(Mt−)Lt− which depends on the state of the
economy M (see below) and on the current loan nominal L. This process can be derived
from the individual defaults of the loans as follows: Loans default with intensity λ(Mt−),

1Strictly speaking, this means that cash could be on either side of the balance sheet, depending on
whether it is positive or negative.
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independent conditionally on M . For a total portfolio of Lt− loans, the intensity of one
loan defaulting is thus λ(Mt−)Lt−. The process P is an adapted standard Poisson process,
independent of N , with intensity λP ≥ 0, and β is a predictable stochastic control process
with values in {0, 1}. This control gives the possibility to increase the loan nominal,
should there be an opportunity: a value β = 1 means green traffic light if a customer
comes into the bank and asks for a loan. Note that in this way, we ensure that Lt ∈ Z for
all t ≥ 0, i.e., that the loan portfolio stay discrete.

The cash process C evolves according to the following SDE (recall X = (L,C,M)T ):

dCt = (rB(Xt)Ct + rLLt) dt + (1 − δ(Mt−))dNt − βtdPt. (1.C)

Here, the measurable function rB ≥ 0 is the instantaneous refinancing rate of the bank
(or interest rate earned on cash if Ct > 0). We assume that rB depends on the riskiness
of the bank, in particular on its leverage; see § 2.2 below. In modelling refinancing by an
instantaneous cash flow stream instead of the usual three- or six-month horizon on the
LIBOR market, we ensure the Markov property of X and thus numerical tractability; in
§2.2 we will present examples how to choose the refinancing function. In general, rB ≥ ρ
for the risk-free interest rate ρ ≥ 0. Note that the existence of such a function rB implies
that we assume there is always refinancing available, regardless how risky the bank is.
The constant rL is the continuous rate all customers have to pay for their loans. The
remaining terms on the right hand side of (1.C) are already known from the discussion
of the loan process: δ(Mt−) ∈ [0, 1] represents the current loss given default (LGD), so
that the term 1 − δ is the recovery rate from the liquidation of a defaulted loan; βtdPt

represents the money that is invested for issuing new loans.

Finally, the economy process M is an adapted càdlàg Markov switching process or
continuous-time Markov chain with values in {0, 1} (expansion, contraction) and switching
intensities λ01, λ10 > 0, with λ01 being the intensity to go from 0 to 1. M is assumed to
be independent of all other processes encountered so far. Formally, M can be represented
as difference of two independent Poisson processes N01 and N10:

dMt = 1{Mt−=0}dN01
t − 1{Mt−=1}dN10

t . (1.M)

We consider in this paper only the simple case of two states of the economy; more states
(or even a more complex economy process, as long as its stays Markov) can be handled
in the same way.

The bank’s interventions. The bank wants to maximize its expected terminal utility
by controlling its loan exposure, which might be too high and thus too risky, or too low
to generate significant profits. This maximization can be done either by issuing new loans
(control of β), or it can be done via securitization. Securitization is a means to get loans
off the balance sheet, but a securitization comes always with certain fixed costs cf > 0,
such as rating agency fees, or legal costs for setting up a special purpose vehicle in a tax
haven. Moreover, there may be variable transaction costs, as the securitizing bank may
not be able to sell the loans for the value attributed to them on its balance sheet.
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Securitization is modelled as impulse control because of the transaction costs. A securiti-
zation impulse reduces the loan exposure by ζ, and the cash position is increased by the
market value η(x3, ζ) of the loans minus fixed costs cf . We assume that η(x3, 0) = 0, that
η ≥ 0, and that η is monotonically increasing in the second component. In mathematical
terms, the effect of a securitization impulse of ζ loans is to bring the process X from the
state x ∈ N0 × R × {0, 1} to the new state

Γ(x, ζ) = (x1 − ζ, x2 + η(x3, ζ) − cf , x3)
T , (2)

where T denotes the transpose. The distinction between the nominal value L in (1.L) used
in accounting and the market value η that investors are willing to pay will be particularly
important for our model. A possible choice for the market value function η will be
presented in §2.2.

Let us denote the impulse control strategy by γ = (τ1, τ2, . . . , ζ1, ζ2, . . .), where τi are
stopping times with 0 = τ0 ≤ τ1 ≤ τ2 ≤ . . ., and ζi are Fτi

-measurable impulses. We
admit only impulses ζi that are in the set {0, . . . , Lτi−}. By α = (β, γ) ∈ A = A(t, x), we
denote the so-called combined stochastic control, and A(t, x) denotes the set of admissible
combined stochastic controls. A(t, x) is chosen such that existence and uniqueness of the
SDEs (1.*) holds for all admissible controls. To ensure that the controlled process is
Markov, we additionally require that α ∈ A be Markov in the sense that τi are first exit
times of (t,Xt)t≥0, ζi ∈ σ(τi, Xτi

) and βt ∈ σ(t,Xt−). In the next section it will be shown
that A is non-empty.

The controlled process Xα = (Lα, Cα,M) is determined by the SDEs (1.L), (1.C) and
(1.M) between the impulses, and at τi+1 changed by the impulses:

Xτi+1
= Γ(X̌τi+1−, ζi+1) i ∈ N0, (1.I)

where the term X̌α
τj−

denotes the value of the controlled process Xα in τj including a

possible jump of the process, but excluding the impulse, i.e., X̌α
τj−

= Xα
τj−

+ ∆Xα
τj

.

The optimization problem. We consider the optimization problem of the bank on
the domain

S = {x : x1 > −1, x1 + x2 > 0} ⊂ S := N0 × R × {0, 1},

i.e., as long as the bank does not default, and as the nominal value of the loans is non-
negative. The stopping time τS = inf{s ≥ t : Xα

s 6∈ S} denotes the first exit time from S.
Note that exit from S can only occur on {x1 + x2 = 0}, so shorting loans is not possible.
We allow the case L = 0 for C > 0 although the bank in this case suspends its business;
it may continue its business later on by setting β = 1, i.e., by issuing new loans.

The objective of the bank is to find a strategy α = (β, γ) ∈ A that maximizes the
expected utility of its liquidation value at some horizon date T . Consider a utility function
U : R

+
0 → R ∪ {−∞} and assume that U is strictly increasing and concave on [0,∞).

Define for α ∈ A, t ≤ T and x ∈ S the function

J (α)(t, x) = E
(t,x) [U (max{η(Mτ , L

α
τ ) + Cα

τ , 0})] , with τ := τS ∧ T. (3)
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Interest drift
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Figure 1: Visualization of the SDE terms for δ = 1 (at left) and impulse graph for
η(x3, ζ) = ζ (at right). Both are depicted in a (L,C) graph for fixed economy. The
shaded regions in the right graph indicate whether the leverage π is greater, equal or
smaller to the leverage π̂ at the point of departure

Then the value function v of the bank’s optimization problem is defined by

v(t, x) = sup
α∈A(t,x)

J (α)(t, x). (4)

For future use we define g(x) := U(max{η(x3, x1)+x2, 0}), such that J (α)(t, x) = E
(t,x)[g(Xα

τ )].

Remark 2.1. As economic interpretation, the objective function in the optimization prob-
lem (3), g(Xα

τ ), can be viewed as utility of a majority shareholder, when the bank is
liquidated at the horizon date T .

Remark 2.2. “Endogenous bankrupcty” as used in Leland and Toft [25], i.e., the possibility
of the shareholders to liquidate the firm at any time, is automatically included in our
setting: An impulse to L = 0, and then deciding to stay there by β = 0, terminates the
business of the bank; yet still the interest ρ accumulates until T .

2.2 Refinancing rate rB and market value η

In this subsection, we discuss building principles and examples for the refinancing rate rB

and the market value η. While it is relatively easy to find a good functional form for η,
the discussion on rB is considerably more involved. Let us emphasize that the functions
proposed here are just ad hoc choices: they are motivated from the model, but they are
not derived from it in a formal way and are therefore not model-endogeneous.

Market value. The market value is the amount for which loans can be sold on the
secondary market. The starting point for our definition of the market value is what we
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call the “fundamental” value of one loan. Formally, this quantity is given by p∞Mt
with

p∞m := E

[
∫ τ

0

e−ρsrLds + e−ρτ (1 − δ(Mτ ))

∣

∣

∣

∣

M0 = m

]

,

τ the default time of the loan. We recall that rL and ρ are the loan interest rate and
the risk-free interest rate, and that the functions λ, δ represent the relative loan default
intensity and loss given loan default, respectively. In the special case where λ and δ are
constant, p∞m is independent of m and given by rL+(1−δ)λ

ρ+λ
. In the general case, p∞m can be

obtained by a simple matrix inversion from the generator matrix of M (see §7.1).

We assume that investors in securitization markets are risk-averse, so that the market
value will typically be lower than the fundamental value.

Example 2.1. The following form for η is used in our numerical examples in §5. In these
examples we apply to the risk-neutral value a procyclical factor to reflect risk aversion
and cap the resulting value at ζ, so that the bank can not obtain more than the nominal
value.

(a) ηa(m, ζ) := ζ · min (1, p∞m · (1 − (m + 1)δ(m)λ(m)) )

(b) ηb(m, ζ) := ζ · min (1, p∞m · (1 − δ(m)λ(m)) )

Recall that m = 0 in expansion, so the only effect of the factor (m + 1) is to double the
proportional deduction in contraction. The procyclical factor can be interpreted as a form
of overcollateralization of the ABS, i.e., the bank has to put more loans into the pool such
that the expected first-/second-year losses are covered without affecting the investors.

Refinancing rate. A constant refinancing rate rB of the bank would mean that the
bank could raise money at a rate independent of its leverage and of the riskiness of its
loan portfolio. As this is certainly an unrealistic assumption, we have to think about a
functional form of rB incorporating the main risk factors of the bank in our model. Every
reasonable choice for rB should certainly be monotonically increasing in loan default rates,
and also in the leverage of the bank. Furthermore, for C > 0 and hence leverage < 1, rB

should be equal to the risk-free rate ρ, as there is no risk of bank default.

To ensure these properties, we use as point of departure the following basic rule of thumb:
On average, the bank’s creditors want to earn the annualized risk-free interest ρ. Given
a lending horizon h, they will therefore demand a refinancing rate rB according to

1 + hρ = PD · (1 − LGD) + (1 − PD) · (1 + hrB). (5)

Here PD = PD(h) and LGD ∈ [0, 1] represent creditors’ perception of the default prob-
ability of the bank over the horizon h and of its loss given default.

All quantities in (5) except ρ can be dependent on the current state (ℓ, c,m) ∈ S — in
the following, we will mostly omit this argument for ease of notation. Equation (5) leads
to the following functional form for rB = rB(ℓ, c,m)

rB :=
hρ + PD · LGD

h(1 − PD)
. (6)
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Note that as required, for PD = 0, we have rB = ρ. For simplicity we assume that
LGD deterministic. Hence the only quantity left to model is the PD. Without loss of
generality, consider the case t = 0. First, for a given loan amount ℓ and cash position c,
the PD can be defined as the probability that loan losses exceed current equity capital
ℓ + c:

PD := P(−∆L > ℓ + c) = P

(−∆L

ℓ
>

ℓ + c

ℓ

)

(7)

Hence we need to model the distribution of the [0, 1]-valued relative loss −∆L/ℓ over
horizon h.

It would be natural to model the relative loss using a (discrete) Bernoulli mixture dis-
tribution for the following reason: Given the trajectory of M , the loan defaults at a
given horizon date t are identically independent Bernoulli distributed, so that Lt in our
model follows a Bernoulli mixture model with mixing over the different economy states
(cf. McNeil et al. [27], Bluhm et al. [4]). However, it is easier to specify a continuous
distribution which does not depend on the granularity of the portfolio; one can further
argue that a continuous, or even smooth function rB is reasonable because in reality the
bank’s creditor does not have full information about the bank’s parameters and current
state.

Example 2.2. For our numerical examples in §5, we take recourse to the Vasicek portfolio
loss distribution. The Vasicek loss distribution arises as limiting case of a probit-normal
Bernoulli mixture distribution for an infinitely granular portfolio, that is for ℓ → ∞; see
Bluhm et al. [4] or the more general Prop. 8.15 in McNeil et al. [27]. Its distribution func-
tion is Vp,̺(x) = N

[

1/
√

̺(N−1(x)
√

1 − ̺ − N−1(p))
]

, where N (N−1) is the cumulative
(inverse) normal distribution function. The parameter p ∈ (0, 1) has the interpretation of
an average default rate, ̺ ∈ (0, 1) is a correlation parameter that models how much the
default rate of a single loan varies with a common factor, such as the economic state M .
With this choice the default probability of the bank is given by

(a) PD := 1 − Vp,̺

(

ℓ + c

ℓ

)

.

p = p(m) will normally be chosen close to the current default intensity in our model,
reflecting the short-term horizon of the refinancing. The parameter ̺ = ̺(m) can be
used to model risk aversion on the part of the bank’s creditors, arising for instance from
incomplete information regarding the current state of the bank. We will use in our nu-
merical examples also another form, which takes into account the proceeds from the loans
(assuming a refinancing rate of ρ to avoid a circular reference):

(b) PD := 1 − Vp,̺

(

(1 + rL)ℓ + (1 + ρ)c

(1 + rL)ℓ

)

For the first form, if ℓ + c = 0, then PD will be 1 and thus rB = ∞. The second form
leads for rL > ρ always to a PD < 1 and thus to finite rB.

Remark 2.3. The continuous probit-normal mixing distribution underlying the Vasicek
distribution in Example 2.2 would correspond to infinitely many economic states in our
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model. Notably, the effective default intensity implied by the Vasicek distribution is
unbounded; in contrast, the mixing distribution in our model with two economic states
only assumes values in two states determined by the two possible default intensities.

We stress that already via the mere existence of a refinancing function rB, we assume
that there is always refinancing available. If refinancing were not available (e.g., because
PD is dependent on rB, and there is no solution to (5)), then default would occur not
at the boundary ∂S, but already inside S. This would then give rise to an endogenous
default definition via backward induction, and thus further complicate matters.

3 Properties of the value function

This section collects a few technical properties of the model and the value function.

First of all, we note that existence and uniqueness of the SDE defined in (1.L), (1.C),
(1.M) for constant β follows from Theorem V.3.7 in Protter [34], provided that (process)
Lipschitz conditions on rBC are satisfied: A Poisson process with state-dependent inten-
sity (without explosion time) is a semimartingale, so L is a well-defined semimartingale,
too; the same holds for M . The process C is well-defined on S if

sup
c≥−Lt−+ε

|rB(Lt−, c,Mt−)| (8)

is an adapted càglàd process for each ε > 0, which is true as long as the sup in (8) exists
for constant L, M (because L and M are step processes). In particular, the condition is
satisfied for a constant rB and the rB examples given in §2.2, Example 2.2.
We can conclude that A(t, x) is non-empty.

The value function of a combined stochastic and impulse control problem is known
to be associated with a certain partial integro-differential equation (PIDE), called the
Hamilton-Jacobi-Bellman quasi-variational inequality (HJBQVI); see §3.2 for a more pre-
cise statement. Let ST := [0, T ) × S, and define its parabolic “boundary” ∂+ST :=
([0, T ) × Sc)∪ ({T} × S ), where the complement is taken in S = N0 ×R×{0, 1}. Then
the HJBQVI in our setting takes the form

min(− sup
β∈{0,1}

{ut + Lβu}, u −Mu) = 0 in ST

min(u − g, u −Mu) = 0 in ∂+ST ,
(9)

where Lβ is the infinitesimal generator of the state process X defined by the SDE (1.*):
with x̃ := (x1, x2),

Lβu(x) =

(

u(x̃ +

(

−1
1 − δ(x3)

)

, x3) − u(x)

)

λ(x3)x1 +

(

u(x̃ +

(

β
−β

)

, x3) − u(x)

)

λP

+ (u(x̃, 1 − x3) − u(x)) λx3,(1−x3) + (rB(x)x2 + rLx1)ux2
.

Finally, the impulse intervention operator M = M(t,x) is defined to be

Mu(t, x) = sup{u(t, Γ(x, ζ)) : ζ ∈ {0, . . . , x1}}. (10)
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Intuitively, the condition v −Mv ≥ 0 means that an impulse can not improve the value
function v. The inequality supβ∈{0,1}{vt +Lβv} ≤ 0 then suggests that under all possible
strategies, v(t,Xα

t ) is a supermartingale (so decreases in expectation). In any point (t, x) ∈
ST , either v = Mv has to hold (an impulse takes place), or supβ∈{0,1}{vt +Lβv} = 0 (the
stochastic process evolves according to SDEs (1.L), (1.C), (1.M)).

The PDE (9), corresponding to the full problem as exposed in §2, has no known analytical
solution. First and foremost, this is because impulse control until a terminal time is very
difficult, if not impossible to solve explicitly. In our case, the high dimensionality makes
it very unlikely for such strategies to succeed, even in the time-independent or elliptic
case.

3.1 Bounds for the value function

We want to prove that the value function is bounded (linearly) from below and above.
While the first statement is immediate if U is bounded from below, the second statement
necessitates some work. In the following, we will use that if we admit general adapted
controls, then this will not change our value function, i.e., it suffices to consider Markov
controls. For proofs of this fact in stochastic control, we refer to Øksendal [30], Haussmann
[18] or El Karoui et al. [9].

Proposition 3.1. The function c 7→ v(t, ℓ, c,m) is increasing for all t ∈ [0, T ], (ℓ, c,m) ∈
S; it is strictly increasing if rB > 0.

Proof: For a given admissible combined control strategy α, we fix this strategy de-
pendent on the events of Xα,t,x started in Xt = x ∈ S. Consider Xα,t,y for a y with
all components equal to x, but y2 > x2 (more cash). As a concatenation of (strictly)
increasing functions (SDE, impulses, and U), g(Xα,t,y

τ ) ≥ (>) g(Xα,t,x
τ ). Note that α is in

general not a Markov strategy of X started in y, but only adapted to (Fs)s≤t (this is why
the optimality of Markov controls is needed as prerequisite). 2

To be able to prove that the value function is bounded, we need an upper bound on the
(optimal) leverage π. In the original setting of (1.*), this problem is elegantly resolved by
the “business arrival process” P with its finite intensity. On the one hand, this means that
the leverage can only be increased if P jumps. On the other hand, we will see that this
implies the linear boundedness of the value function: The initial leverage is automatically
reduced by loan proceeds (which accumulate in the cash account) – the finite intensity
of P makes sure that there is a natural upper bound to shifting back these proceeds. In
business terms, this may be interpreted as the potential demand of the customer base
being finite.

We denote in the following by Sc the complement of the domain S ⊂ S , and S+ := {x ∈
S, x2 > 0}, S− := {x ∈ S, x2 < 0}.
Proposition 3.2. The value function v is linearly bounded from above if ρ̃ := supx∈S+ rB(x) <
∞, ρ̃ ≤ supx∈S− rB(x) (roughly: refinancing cost greater than risk-free interest rate), and
η(·, ζ) ≤ bζ for some b > 0.
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Proof: We bound the impulse control value function by the value function of a stochastic
control problem on S; the upper bound for v on Sc then immediately follows.

Without loss of generality, we assume rL > ρ̃. The original impulse control value function
is (by Prop. 3.1) bounded by the value function of the problem without fixed or propor-
tional transaction costs (i.e., cf = 0 and η(m, ζ) ≥ ζ), and rB ≡ ρ̃ (which is typically
the risk-free interest rate ρ). Without transaction costs, it is clear that we will obtain
another upper bound if we place ourselves in expansion without loan defaults. A further
upper estimate can be obtained if we allow impulses up to the amount of loans, but with-
out deducting the securitized amount from L. The resulting optimally controlled process
follows the SDE (starting wlog in t = 0):

dLt = dPt, L0 = ℓ

dCt = (rLLt + ρ̃Ct)dt + bdPt, C0 = c + bℓ,
(11)

where of course the optimal strategy was to have maximal leverage (by construction of
(11), all possible impulse benefits are already included at no cost). Now we can assume
that the P jumps happen immediately in 0, and the value function can be bounded as
follows (with the definition Ũ(x) := U(max{x, 0})):
v(0, ℓ, c) = E[Ũ(η(0, LT ) + CT )]

≤
∞

∑

q=0

E

[

Ũ

(

η(0, ℓ + q) + (c + bℓ + bq) exp(ρ̃T ) + (ℓ + q)
rL

ρ̃
(exp(ρ̃T ) − 1)

)]

P(PT = q)

≤
∞

∑

q=0

Ũ (C1ℓ + C2c + C3q)
(λP T )q

q!

≤ C1ℓ + C2c + C3

for generic constants Ci dependent on T , where we have used increasingness and concavity
of U . 2

It is trivial that v is bounded from below if U is bounded from below. If U is not bounded
from below (e.g., U(0) = −∞ as in case of a log-utility function), then the existence of a
lower bound is a question of controllability. We can make sure that v(t, x) > −∞ if there
is an α ∈ A(t, x) and an ε = ε(t, x) > 0 such that P

(t,x)(Lα
τ + Cα

τ ≤ ε) = 0. This is the
case if there is an impulse control that immediately puts the bank permanently out of
danger. Boundedness from below thus holds if these strategies exist with uniform ε > 0,
which can only be the case if η(x3, ζ) ≥ ζ.

Remark 3.1. For the proof of Prop. 3.2, we could also have used a verification theorem in
the style of Øksendal and Sulem [32], Theorem 8.1. We chose the above approach because
the strict increasingness property is useful in itself and less abstract.

3.2 Viscosity solution property

In this subsection, we will state that the value function of our combined stochastic and
impulse control problem (4) is the unique viscosity solution of the HJBQVI (9) from
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§3. The proof (in the appendix) consists mainly in checking that the assumptions of the
general results in Seydel [39], Theorem 2.2 are satisfied. See the references in this paper,
or [32], [11] for more information on viscosity solutions in connection with stochastic
control.

A viscosity solution of (9) is defined pointwise by replacing the solution with suitable C2

differentiable functions. Since the definition of viscosity solution is rather involved, and
not needed elsewhere in this paper, we refer to Seydel [39] for its precise statement (and
relegate the technical proof to the appendix).

Theorem 3.3. Assume that c 7→ rB(ℓ, c,m) is continuous ∀(ℓ, c,m) ∈ S, and that U is
continuous and bounded from below. Further assume that lim infc↓−ℓ rB(ℓ, c, ·) > rL for
ℓ > 0, that ρ̃ := supx∈S+ rB(x) < ∞, ρ̃ ≤ supx∈S− rB(x) (roughly: refinancing cost greater
than risk-free interest rate), and η(·, ζ) ≤ ζ. Then the value function v in (4) is the unique
viscosity solution of (9) in the class of linearly bounded functions, and it is continuous on
[0, T ] × S (i.e., continuous in time and in cash).

4 Frictionless markets

We investigate in this section stochastic control models related to our original model that
help us to understand better the model in a few special cases. Without transaction costs
(i.e., for η(·, ζ) ≡ ζ and cf = 0), the model can be reduced in dimension, and the controls
boil down to one scalar control variable representing the leverage of the bank. If we define
πt := Lt−

Lt−+Ct
, then the dynamics for the equity value Yt := Lt + Ct reads as follows:

dYt = −δ(Mt−)dNt + (rB(Xt)Ct + rLLt) dt

= −δ(Mt−)dNt + ((1 − πt)rB(πtYt, (1 − πt)Yt,Mt) + πtrL) Ytdt
(12)

Note that in the original model setting, πt cannot be chosen freely by the controller: While
it is possible to reduce immediately πt to 0 (impulses in the original model), the possible
increase ∆πt in time depends on the “new business arrival process” P , and the previous
leverage πt. To obtain meaningful results, we leave all these restrictions aside, and analyze
the Hamilton-Jacobi-Bellman (HJB) equation of stochastic control for π ∈ [0, K] for some
K > 0:2

sup
π∈[0,K]

{ut + Lπu} = 0 in ST

u = g in ∂+ST

(13)

where this time, S = (0,∞) × {0, 1}, and the infinitesimal generator Lπ on S has the
form

Lπu(y,m) = (u(y − δ(m),m) − u(y,m)) λ(m)πy

+ (u(y, 1 − m) − u(y,m)) λm,(1−m) + ((1 − π)rB(πy, (1 − π)y,m) + πrL)yuy(y,m).

2
K may be interpreted as some upper bound regulators impose on the bank’s leverage.
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If (13) has a suitably differentiable solution, then verification results say (see, e.g., Øksendal
and Sulem [32], Theorem 3.1) that this solution is equal to the value function, and a max-
imizer in (13) yields an optimal stochastic control. Let us assume that this is the case for
our stochastic control value function ṽ, and for simplicity that rB is constant. Then for
δ = δ(m), λ = λ(m)

π 7→ πy [(ṽ(t, y − δ) − ṽ(t, y))λ + (rL − rB)vy(t, y)]

has to be maximized (separately for each m), with the solutions

π̂ =











0 if (ṽ(t, y − δ) − ṽ(t, y))λ + (rL − rB)ṽy(t, y) < 0,

K if (ṽ(t, y − δ) − ṽ(t, y))λ + (rL − rB)ṽy(t, y) > 0,

[0, K] else.

Which of the conditions is satisfied, depends very much on the boundary values in Sc and
on their propagation inside S.

Our above analysis shows that quite trivial optimal controls (either no loans, or highest
possible leverage) can be expected in this simple setting; these results are confirmed in
§5. More interesting results can be expected if we introduce a risk-dependent refinancing
function for rB, as done in our model. If rB depends only on the leverage (in our case
π), then one can derive criteria rB has to satisfy to ensure that the maximum in (13) is
attained in (0, K).

We would like to stress that these trivial stochastic controls were derived under several
assumptions (notably the smoothness of the corresponding value function), and are only
optimal if π can be set in an arbitrary way in the interval [0, K]. In general (including the
Markov-switching economy, and restrictions on the control process π), the picture it so no
clear anymore: there may be an incentive to keep loans although they are not profitable
in the momentary economic situation. In the impulse control case, this can be observed
in the numerical results of §5.

Large portfolio approximation

Next, we consider an approximation with an infinitely granular portfolio. In the limit, the
randomness related to individual defaults disappears, and the economy process M remains
the only risk factor. If we increase for constant loan nominal the portfolio granularity to
n ∈ N, then loan defaults are more frequent, but have a smaller proportional effect. This
is reflected in the generator of the n-granular SDE (for x̃ = (x1, x2)):

Ln,βu(x) =

(

u(x̃ +
1

n

(

−1
1 − δ(x3)

)

, x3) − u(x)

)

λ(x3)nx1+

(

u(x̃ +
1

n

(

β
−β

)

) − u(x)

)

λP n

+ (u(x̃, 1 − x3) − u(x)) λx3,(1−x3) + (rB(x)x2 + rLx1)ux2
,

For u ∈ C1(S), the generator Ln,βu converges uniformly on each compact for n → ∞ to:

L∞,βu(x) = −λ(x3)x1ux1
(x) + (1 − δ(x3))λ(x3)x1ux2

(x) + βλP ux1
(x) − βλP ux2

(x)

+ (u(x̃, 1 − x3) − u(x)) λx3,(1−x3) + (rB(x)x2 + rLx1)ux2
(x),
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Following Jacod and Shiryaev [21], ch. IX.4, this implies the weak convergence in law of
the n-granular SDE solution of (1.L), (1.C) to the solution of

dL∞
t = (−λ(Mt)L

∞
t + βtλP ) dt, L∞

0 ∈ R
+
0

dC∞
t = (rB(X∞

t )C∞
t + rLL∞

t + (1 − δ(Mt))λ(Mt)L
∞
t − βtλP ) dt

(14)

with the still unchanged Markov switching process M . Here, the dynamics for the equity
value Y ∞

t := L∞
t + C∞

t with controlled leverage π (and no transaction costs) is:

dY ∞
t = (−πtδ(Mt)λ(Mt) + (1 − πt)rB(πtY

∞
t , (1 − πt)Y

∞
t ,Mt) + πtrL) Y ∞

t dt (15)

If we assume that we are able to control freely the leverage π ∈ [0, K], the corresponding
HJB equation is again (13), but with the infinitesimal generator Lπ equal to

Lπu(y,m) = (−πδ(m)λ(m) + (1 − π)rB(πy, (1 − π)y,m) + πrL) yuy(y,m)

+ (u(y, 1 − m) − u(y,m)) λm,(1−m).

It is clear from (15) that the optimal strategy is obtained by maximizing the instantaneous
return for each economy state separately. Under the assumption that rB = rB(·,m) only
depends on the leverage π (and on the economy state), the instantaneous return R to
maximize is (δ = δ(m), λ = λ(m))

R(π) := −πδλ + (1 − π)rB(π) + πrL

with derivative
R′(π) = −δλ + rL − rB(π) + (1 − π)r′B(π).

We assume for the moment rB ∈ C2, rB ≥ ρ, rB ≡ ρ on {π ≤ 1}, r′B(π) > 0 on {π > 1}
and r′B(π) > δ on {π > 1 + 1/δ} for some δ > 0. Then the maximizer π̂ is 0 if loans are
not profitable on average (rL − ρ− δλ < 0). If loans are profitable (rL − ρ− δλ > 0), then
there is a maximizer π̂ ∈ (1,∞), and R′(π̂) = 0. Typical R and R′ are shown in Figure 2
for rB as proposed in §2.2, Example 2.2.

As the maximal rate of return R is deterministic for each state of the economy, the
corresponding value function then depends only on how long the bank spends in each
state of the economy until T . An explicit representation of the value function in form
of a matrix exponential can then be given using the results in the appendix (§7.1). The
reader will certainly agree that the assumption of being able to manipulate freely the
proportion of loans in the bank’s portfolio is quite unrealistic. In reality, issuing loans
will be a slow process, and reducing loan exposure may be quick, but costly – so we would
expect some sort of interplay between the economic states. We see that transaction costs
and/or control restrictions are keys to a good model, because otherwise the result can be
as unrealistic as for the large portfolio approximation. Furthermore, the large portfolio
approximation shows that the discreteness of our portfolio is necessary to have risk other
than economy switching.
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Figure 2: Return rate R (solid line) and R′ (dotted) dependent on leverage π in large
portfolio approximation. Example parameters are as used in §5 for expansion: δ = 1,
λ = 0.026, rL = 0.08, ρ = 0.04. The variable refinancing rate rB is based on a Vasicek
loss distribution with default probability p = 1.5δλ, correlation ̺ = 0.2 and LGD = 0.4
(PD according to Example 2.2, form (b))

5 Numerical results

This section starts with a short description of the numerical scheme used to solve the
PDE (9) and thus the combined impulse and stochastic control problem. Then, numerical
results are presented and discussed from an economic point of view.

5.1 Finite Difference scheme

The main problem with solving the HJBQVI (9) is that the impulse intervention operator
M introduces a circular reference to the value function: We need the value function
for Mv to be able to solve the PDE for the value function.3 A common approach to
circumvent this problem is the method of iterated optimal stopping, which we employ
here. The idea is simple: First calculate the value function v0 without impulses, then
compute Mv0. In the second iteration, find the solution v1 of the optimal stopping
problem “Either do not stop at all, or stop to get payoff Mv0”. This means that v1

includes already one optimally placed impulse. Defining recursively in the same way vj

for j ≥ 2, we can hope that vj converges to the value function v of the impulse control
problem. Further information and proofs that this method really works can be found in
Bensoussan and Lions [2], Øksendal and Sulem [32]. For alternative methods, the reader
may consult again [32], or Chen and Forsyth [6].

The corresponding impulse control strategy after j iterations is to do the first impulse ac-

3This is why it is called quasi -variational inequality (quasi refers to the fact that the obstacle Mv is
dependent on the value function v itself).
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cording to “Jump in points where vj ≤ Mvj−1”, and the j-th impulse according to “Jump
in points where v1 ≤ Mv0” (see [32]). The approximately optimal strategy depicted in
our graphs follows the rule “Jump in points where vj ≤ Mvj−1” (perhaps infinitely often);
it can be proved that this strategy is at least as good as if the true optimal strategy were
applied at most j times.

Computations were carried out in MATLAB. The initial PDE iteration and the optimal
stopping problems are solved using a finite difference scheme on a rectangular space grid.
The optimal control to use in each time step is calculated using the value function from the
previous timestep (explicit), the rest of the timestepping is done in a θ-scheme with θ = 0.5
(Crank-Nicolson); see for instance Quarteroni et al. [35] or [38] for details. The (discrete)
optimal stopping problem is solved using PSOR (projected successive over-relaxation)
with adaptive relaxation parameter. We used a bespoke optimization routine for the im-
pulse maximization; the destination of a potential impulse from (t, x) is determined by the
maximizer in Mvj−1(t, x). To handle boundary values at ∞, the computational domain
was enlarged in all iterations, and Neumann boundary values equal to the derivative of
the discounted utility function were applied at the cutoff boundary.

5.2 Numerical examples

In the numerical examples we used the following parameter values: The utility function
is of CRRA-type (constant relative risk aversion) and given by U(x) =

√
x. The Markov

chain intensities for the economy are set to be equal to λ10 = λ01 = 0.3, the default
intensities per loan are 2.6% in expansion and 4.7% in contraction (which seems to be
a rather conservative estimate for the changes between different economic states), with
no loan default recovery (δ ≡ 1). The risk-free rate ρ is constant 0.04, the loan interest
rate is set to 0.08. We used the finite variable refinancing cost in §2.2, Example 2.2
with LGD = 0.4 and PD (b), based on a Vasicek loss distribution with p = 1.5λ, and
correlation ̺ = 0.2 (0.4) in expansion (contraction). The resulting rB is the green dotted
line in Figure 9. (This refinancing cost may seem relatively high, however this reflects
that our bank’s only assets are risky loans.) The fixed transaction cost was 0.5, while the
market value of securitized loans was chosen according to form (a) (strongly procyclical
form; see §2.2, Example 2.1), which results in proportional transaction costs of 0% in
expansion and of about 6.5% in contraction.

It will be shown below in Figure 11 that the stochastic control variable β has only a small
impact on the value function and on the optimal impulse control strategy; unless stated
otherwise, we will therefore take β ≡ 0.

The first Figure 3 shows the value function, i.e., the expected terminal utility under opti-
mal impulses, for start in expansion or in contraction. Figure 4 demonstrates the benefit
of controlling the loan exposure: the utility indifference graph displayed in that figure
shows the cash value of impulses (compare also Figure 5). At the risk of oversimplifica-
tion, this quantity can be interpreted as the maximum salary the bank should pay its risk
manager for implementing the optimal impulse strategy (compared to no securitization).
For our chosen parameters, this benefit is greater in good economic times and reaches up
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Figure 3: Value function in expansion time (left) and difference value function in con-
traction minus value function in expansion (right), for T = 7. The x coordinate is the
loan exposure, the y coordinate the cash. Parameters for this example are as described
in the text. The timestep for this numerical simulation was 0.5 years, 5 optimal stopping
iterations were carried out

to about 10% of the loan exposure. This is mainly due to the lower proportional trans-
action costs during expansion.4 The cash value of impulses is lower in recession, simply
because the essence of the optimal strategy is to wait for the next boom (compare Figure
6 and explanation below).

The form of the optimal impulse control strategy is depicted in Figures 6 and 7. Again
we see that securitization in good times is more beneficial than in bad times, essentially
because the high proportional transaction costs of around 6.5% in contraction keep the
bank from acting near {x+y = 0}. This is remarkable as the high leverage and the result-
ing default risk and refinancing costs endanger the bank’s existence. In such a situation,
it is optimal for the bank to wait for better times. This lack of admissible impulses is
compensated in better economic times: here the loan exposure of the problematic region
is reduced to practically 0 as a provision for contraction, which amounts to a (temporary)
liquidation of the bank.
If the market value of loans is less procyclical, then a lot less interventions take place in
expansion, and more in contraction; this can be seen in the right column of Figure 12,
where different function choices for refinancing cost and market value are compared. We
can conclude that (proportional) transaction costs seem to be a crucial input into our
model.

In the impulse graphs dependent on time to maturity (Figure 7; only in expansion), we see
that immediately prior to T , the fixed transaction costs make it optimal to wait rather
than to transact. For comparison, we have also included the same impulses-over-time

4If the market value is chosen according to form (b), the benefit is smaller in expansion, because then
proportional transaction costs are low for both economic states.
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Figure 4: Cash value of impulses in expansion (left) and contraction (right) for T = 7
(in a bird’s view; height according to colour code on the right). Shown for each point
x is the value a such that v3(x1, x2 − a) = v1(x1, x2) (v3 being the value function with
impulses, v1 without), i.e., the cash the impulse-controlled bank can pay out while still
being better off than the uncontrolled bank in the same situation. The cash value of
impulses is practically 0 in the large dark region, and it is maximal in the lower right
corner. Same data as in Figure 3

graph for lower fixed transaction costs cf = 0.2 (Figure 8). We observe in Figure 8 that
for T = 3, the transaction region is larger than for T = 1 — here the fear that at terminal
time the bank may end up in contraction with the corresponding low liquidation value of
loans dominates the desire to get a higher return rate until terminal time, and dominates
also the reluctancy to pay the (fixed) transaction costs now. We note that naturally, this
last effect does not affect impulses in contraction.

Further findings from our analysis and numerical results for our chosen set of parameters
are:

(i) A bank has an incentive to reduce a high leverage — the higher the refinancing cost
rB or the loan default rate λ, the stronger the incentive. On the one hand, this can
be inferred from the analysis in frictionless markets (§4). For the original setting,
a comparison of the different function choices for refinancing cost and market value
can be found in Figure 12.

(ii) In expansion, the loan exposure should be reduced to 0 if the initial leverage is
sufficiently high (see Figure 6) — this hinges on the absence of proportional trans-
action costs in our expansion case, and also on the high transaction costs in recession
(compare to right column of Figure 12). Positive proportional transaction costs, on
the other hand, lead to significantly smaller impulses, as can be seen from the right
hand side (contraction) of Figure 6.

(iii) We note without graph that the impact of a different / more risk-averse utility
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Figure 5: Value function with (green stars) and without impulses (blue line) in expansion
(left) and contraction (right) for T = 7. Each (dotted or solid) line shows the value
function along a diagonal with constant equity capital L + C. In the above graph, the x
coordinate is the loan exposure; here, a high loan exposure value corresponds to a high
leverage of the bank. Roughly, an impulse is optimal when the starred line is significantly
above the solid line — the larger the difference, the more valuable an impulse is. The
starred line in expansion is in large parts constant because there impulses always end in
L = 0, independent of the starting point; this line is decreasing in contraction essentially
because the proportional transaction costs lead to a different equity capital level. The
selected equity capital levels range from 4 to 20. Same data as in Figure 3

function is not substantial.

6 Conclusion and Outlook

We have presented and analyzed in this work a new model centered around optimal
(impulse) control of the leverage of a bank. As many input functions complicated the
problem, we resorted to numerical methods to find an approximate solution.

The first and most obvious question for a bank is: Should it reduce its leverage? This
question can be answered by considering the default probabilities, the parameters of the
economy process, and the refinancing rate. But then the next question arises: Is the bank
actually able to reduce its leverage? This is not the case if proportional transaction costs
are too high: the wedge or cone from the origin, spanned by (1,−η(1)) and (1,−1), is a
region where transactions can not reduce leverage. The – at first view surprising – result
is that banks should not securitize in a contraction if transaction costs are high, but rather
wait for better times. Either the leverage is too high, and a transaction only worsens the
situation, or the leverage is not high enough to justify an intervention. This reluctancy
to securitize in contraction is compensated by more impulses in expansion times.

Then why would banks sell loans (or ABS) at such large discounts, as observed in the
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Figure 6: Optimal impulses in expansion (left) and contraction (right) for T = 7. The
light areas mark the impulse departure points (with the lightness indicating how far to
the left the impulses goes, i.e., how many loans are sold), the cyan circles represent the
corresponding impulse arrival points. There are no impulses in the large dark region, and
the largest impulses occur in the lower right corner. Same data as in Figure 3

recent credit crisis? One reason may be that the true value (discounted expected earnings)
justified the discount; another may be that there was a high risk of the economic situation
worsening – in other words, there could be more economic states than just two (this is a
straightforward extension of our model).

As well, regulatory aspects have been neglected in our model. If the bank has in its
portfolio also assets other than loans (e.g., government bonds with non-zero risk weight),
then the conclusions might change under the Basel regulation. This could be another
explanation for some recent sell-offs during the credit crisis.

Even if a complete sale of loans is not admissible, it may still be possible to offset risks by a
synthetic transaction, such as a credit default swap. This introduces an additional running
cost, and will certainly reduce profitability of the bank — but this type of transaction
should still be possible in the transaction-free wedge.

A natural and interesting extension of our model would be to handle loan portfolios
dependent on several (economic) factors. As this would increase the dimensionality of the
problem, numerical results would be however more difficult to obtain. The conclusions of
our study might change also if we admit injections of capital into the bank — here we
would have to deal with an additional impulse.

Acknowledgements. The second author wishes to express his thanks to his fellow
PhD student André Schlichting for several fruitful discussions on death processes, and to
Carolin Mohm for her patient explanation of practical aspects of securitization.
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Figure 7: Optimal impulses in expansion for different T : top left T = 1, top right T = 3,
bottom left T = 5 and bottom right T = 7. For the colour code, see the explanations in
Figure 6. Same data as in Figure 3

7 Appendix

7.1 Pricing in a Markov-switching economy

We shortly describe here how the price of infinite-maturity loans in a Markov-switching
economy can be derived, assuming that all parameters are risk-neutral; this price was
used in the discussion of §2.2. First we calculate the risk-neutral valuation formulas for a
loan with maturity T > 0. If τ is the default time of the loan, then its price pT

i (0) if we
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Figure 8: Optimal impulses in expansion for different T , fixed transaction costs cf = 0.2:
top left T = 1, top right T = 3, bottom left T = 5 and bottom right T = 7. For the
colour code, see the explanations in Figure 6. Apart from cf , same data as in Figure 3

start in t = 0 with economy state i is determined by:

pT
i (0) = E

(0,i)

[
∫ T∧τ

0

e−ρtrLdt + (1 − δ(Mτ ))e
−ρτ1τ≤T + e−ρT 1τ>T

]

=

∫ T

0

E
(0,i)[e−

R t

0
λ(Ms)ds]e−ρtrLdt +

∫ T

0

E
(0,i)[(1 − δ(Mt))λ(Mt)e

−
R t

0
λ(Ms)ds]e−ρtdt

+E
(0,i)[e−

R t

0
λ(Ms)ds]e−ρT (16)

where the last equality was obtained by conditioning on the filtration generated by the
economy process (see, e.g., Th. 9.23 in McNeil et al. [27]), and interchanging integration
and expectation. We see that we have to determine for some function f and T > t the
expectation vi(t, x) := E[f(MT )e−XT |Mt = i,Xt = x] for dXs = λ(Ms)ds. v is the unique
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Figure 9: Variable refinancing rates in expansion (left) and contraction (right) used in
Figure 12, based on a Vasicek loss distribution with default probability p = 1.5δλ and
LGD = 0.4. The rates are shown as a function of the inverse leverage L+C

L
in a logarithmic

scale. The green dotted line is rB with loan return (PD according to Example 2.2, form
(b)) and correlation ̺ = 0.2 (0.4) in expansion (contraction); the red dash-dotted line
shows the same rB for ̺ increased by 0.2; the blue line is rB according to form (a)
(infinite at {x + y = 0}) for correlation ̺ = 0.2 (0.4)

solution to the parabolic PDE

vt +

(

λ(0) 0
0 λ(1)

)

vx +

(

−λ01 λ01

λ10 −λ10

)

v = 0, v(T, x) =

(

f(0)
f(1)

)

e−x (17)

on (0, T ) × R. Because we know that v(t, x) = e−xv(t, 0) and thus vx = −v, we have to
solve the standard ODE

v′ = Aλv, v(T ) = fe−x

for Aλ =
(

λ(0)+λ01 −λ01

−λ10 λ(1)+λ10

)

and f =
(

f(0)
f(1)

)

, which has the general solution v(t, x) =

exp(−Aλ(T − t))fe−x. Coming back to our original problem (16), by formal integration
of the matrix exponential, we obtain

pT (0) = A−1
λ,ρ(I − exp(−Aλ,ρT ))

(

rL

(

1
1

)

+

(

(1 − δ(0))λ(0)
(1 − δ(1))λ(1)

))

+ exp(−Aλ,ρT ), (18)

where Aλ,ρ := Aλ + ρI for the unity matrix I. The corresponding formula for an infinite-
maturity loan can be obtained by T → ∞:

p∞(0) = A−1
λ,ρ

(

rL

(

1
1

)

+

(

(1 − δ(0))λ(0)
(1 − δ(1))λ(1)

))

. (19)

25



7.2 Proof of viscosity solution property

The conditions in Seydel [39] for v to be a (unique) viscosity solution of (9) can be roughly
summarized as follows: (Lipschitz) continuity of functions involved ((V*), (B*) and (E2)
conditions), polynomial boundedness of the value function (E1), and continuity of v at
the boundary (E3). Furthermore, we need the existence of a strict supersolution w.

We note that our setting here is slightly different from the setting in [39] in two main
respects: (a) discrete state variables, and (b) state-dependent intensity. The proofs in [39]
however adapt readily to (a) with effectively no continuity requirements in the discrete
variables. A state-dependent intensity fits into the random measure driven SDE in [39] as
follows: For a Poisson random measure N with intensity measure ν(dz) = 1[0,∞)Leb(dz),

the process
∫ t

0

∫

R
1z≤λs

N(dz, ds) has a time-dependent intensity λs (and the jump measure
effectively has bounded support [0, λs]). The indicator function in the integral does not
satisfy the continuity requirements; however the proofs in [39] can be carried out in the
same way for a state-dependent intensity.

Proof of Th. 3.3: In general, continuity requirements have to hold only in (t, x2) (time
and cash), because loans and economy are discrete state variables.

(V1), (B1) hold because of discreteness, (V3), (E2) and (B2) by discreteness and assump-
tion. (V2) is satisfied because the Hausdorff convergence in discrete loan dimension does
not have to hold (non-emptyness holds wlog because for x1 < 0, we can set the interven-
tion set to {0} without affecting the value function).
(U1), (U2) do not need to hold because the jump measures are finite. (V4) holds trivially
again because of the finiteness of the jump measures; the set PB can be defined with
an arbitrary polynomial. (E4) holds, e.g., by setting β̂ := 10. (E1) holds because of
Proposition 3.2.

(E3) only needs to hold for tn → t ∈ (0, T ], cn ↓ −ℓ due to the loan discreteness. Wlog,
control / interventions are not possible anymore for n → ∞, as η(·, ζ) ≤ ζ. For ℓ > 0,
the (deterministic) explicit solution of

dCt = (rB(Xt)Ct + rLℓ) dt, Ctn = cn

converges to −ℓ for n → ∞ in arbitrarily short time by assumption rB > rL, leading to
g(ℓ,−ℓ, x3) as payout. Possible loan defaults would not change this result, and lead to
the same payout g(Sc) ≡ U(0). For ℓ = 0, the boundedness of rB(x) for x2 > 0 proves
the result.

Finally, we have to find a nonnegative function w as strict supersolution that increases
faster than v for |x| → ∞, e.g., super-linearly in view of Prop. 3.2. As first criterion, this
w has to satisfy supβ∈{0,1}{wt + Lβw} ≤ −κ for a κ > 0 in [0, T ] × S. Consider for some
b > 1, a > 0, and a κ̃ to be specified:

w(t, x) := exp(−κ̃t)
(

1bx1+x2≥0(bx1 + x2)
2 + bx1 + x2 + a

)

(C1 continuity is sufficient, we do not need to consider a suitably smoothed version). Its
generator on S has the following form:

exp(κ̃t)Lβw = C1x
2
1 +C2x

2
2 +C3x1x2 +C4x1 +C5x2 +C6 +x2(2x2 +2bx1 +1)rB(x) (20)

26



for suitable constants Ci = Ci(x3, β) ∈ R. Note that bx1 + x2 is a norm on the cone
{x1 + x2 ≥ 0, x1 ≥ 0}, as is easily checked. By equivalence of all norms, we see that the
first part in (20) (without rB) can be bounded by C (1 + (bx1 + x2)

2). For {x2 < 0} ∩ S,
the factor x2(2x2 + 2bx1 + 1) in front of rB is negative, so that κ̃ only needs to depend on
supx2>0,x3

rB(x) and other constants to achieve our desired goal.

One checks easily that thanks to the fixed costs, w −Mw ≥ κ in [0, T ]×S (for another
κ > 0), provided that η(·, ζ) ≤ bζ (i.e., an impulse can increase the equity value at most
by a factor of b − 1).
The function w as defined above does not yet satisfy |w(t, x)| → ∞ for |x| → ∞ on
Sc, the complement of S. However, we have to take care that modifying w on Sc does
not negatively affect the property w − Mw ≥ κ in [0, T ] × S . The idea is to adapt
the impulse function Γ on Sc so that impulses go in the direction of a minimum point
(0,−p, x3) with p > 0 (for each fixed economy), and to introduce a function K ≤ 0 in the
problem formulation to take care of the fixed costs, with

Mw(t, x) = sup
ζ∈{0,...,x1}

{w(t, Γ(x, ζ)) + K(t, x, ζ)}; (21)

correspondingly, the sum of the fixed costs K over all impulses effected is added in the
objective function. All these changes in Γ and K do not affect the value function, because
it is impossible to get back to S once Sc is reached, and thus the value function is constant
on Sc. What is more, for any starting point x ∈ S , we may wlog modify the trajectory
Γ(x, {0, . . . , x1}) ∩ Sc because it is never optimal to jump to Sc. We define on Sc the
function

w̃(t, x) := κ1(t)|(x1 − 0, x2 − (−p))| + κ2(t)

a function whose contour lines form concentric circles around the point (0,−p). We
choose κ2(t) such that w̃(t, (0,−p, x3)) = w(t, (0,−p, x3)). We take as new function
ŵ := max(w, w̃) in a suitably smoothed form. For a small enough κ1 > 0, the intersections
where w = w̃ are curves completely within the interior of Sc (see Figure 10). Denote R :=
{x : w̃(t, x) > w(t, x)} ⊂ Sc, and NR := {x : w̃(t, x) < w(t, x)}. We define the distance
to R for each x1 separately as d(t, x, R) := max(x2 − supy∈R,y1=x1

y2, 0). For any starting
value x ∈ NR, we modify the trajectory of Γ on Sc such that Γ(x, {0, . . . , x1}) ⊂ NR,
while still respecting w(t, Γ(x, ζ)) ≤ w(t, x). For x− (0, cf , 0)T 6∈ NR (which we can take
wlog in Sc), we start modifying K:

K(t, x, ζ) := min(−cf + d(t, x, R), 0)

For any starting point x ∈ R with x1 > 0, we set

Γ(x, ζ) :=
x1 − ζ

x1

x +
ζ

x1

(0,−p, x3)
T ,

such that impulses go towards (0,−p, x3) and the impulse direction is perpendicular to
the contour lines of w̃; if x1 ≤ 0, changing Γ is not necessary. Wlog, we can choose
Γ continuous on R ∩ NR because of the modification of its trajectory in NR ∩ Sc. We
conclude that with the modified Γ, K and M as defined in (21), ŵ−Mŵ ≥ κ in [0, T ]×S

for some κ > 0.
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Figure 10: Contour lines of w, w̃ in the proof of Theorem 3.3 in a (L,C) graph for fixed
economy

The inequality ŵ− g ≥ κ holds in [0, T ]×Sc if we set the constants in w, w̃ large enough.
2
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Figure 11: Impulse and stochastic control: Cash value of additional stochastic control
(top row), and optimal strategy (bottom row) in expansion (left) and contraction (right),
for T = 7. The cash value shows (as in Figure 4) the value a such that vSC(x1, x2 − a) =
v(x1, x2) (vSC being the value function including stochastic control, v only with impulse
control). The impulses are plotted in the same way as in Figure 6, points with positive
stochastic control are marked with a green + (green light for customers). Business arrival
intensity λP = 2, otherwise same data as in Figure 3
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Figure 12: Optimal impulses for different refinancing functions (rows) and different market
values (columns) for T = 7. In each cell, impulses in expansion are on the left, and
impulses in contraction on the right. Refinancing cost from top to bottom: (1) rB equal
to the risk-free rate ρ; (2) rB based on Vasicek loss distribution with loan return (Example
2.2, form (b)) for p = 1.5δλ and correlation ̺ = 0.2 (0.4) in expansion (contraction); (3)
rB with the same form (b), but correlation ̺ = 0.4 (0.6); (4) rB according to form (a)
(infinite at {x + y = 0}) for correlation ̺ = 0.2 (0.4). Market values from left to right:
(1) Market value η according to Example 2.1, form (a) (procyclical), corresponding to no
proportional transaction costs in expansion, and ≈ 6.5% in contraction; (2) market value
η according to form (b), corresponding to about 0% (1.7%) proportional transaction costs
in expansion (contraction). Otherwise, same data as in Figure 3
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