
Discussion Paper No. B–306

A Systematic Approach to Pricing and Hedging of

International Derivatives with Interest Rate Risk
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Abstract

The paper deals with the valuation and the hedging of non path-dependent European
options on one or several underlying assets in a model of an international economy
allowing for both, interest rate risk and exchange rate risk. Using martingale theory
and in particular the change of numeraire technique we provide a unified and easily
applicable approach to pricing and hedging exchange options on stocks, bonds, futures,
interest rates and exchange rates. We also cover the pricing and hedging of compound
exchange options.
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1 Introduction

The present paper deals with the valuation and hedging of non- path-dependent Eu-
ropean options on one or several underlyings in a model of an international economy
which allows for both, interest rate risk and exchange rate risk. We study options on
stocks, bonds, future contracts, interest rates and exchange rates; their payoff may be
in any currency and a relatively complex function of one or several underlyings.

There exists meanwhile a huge number of different contracts on various underlying
assets, and it is easy to construct new payoffs by simply combining in a different manner
the elements that make up a certain contract. Hence a case by case analysis as has been
carried out previously is no longer appropriate. This lead Kat and Roozen (1994) to
develop a unified method for the pricing and hedging of non-path-dependent European
stock options. They restrict themselves to a model with deterministic interest rates,
which allows them to use a partial differential equation (PDE) as main tool of their
analysis.

We believe an extension of their study to a framework with stochastic interest rates
to be important for a number of reasons. To begin with, introducing interest rate risk
opens the possibility to treat a huge number of payoffs not amenable to the analysis of
Kat and Roozen. For instance we deal with guaranteed-exchange-rate options on bonds,
options on the difference of two LIBOR rates in different countries or with options on
the spread between the rate of return on a stock and a LIBOR rate, possibly in different
countries. In the last years these and similar payoffs have witnessed a strongly increasing
importance in practice. Moreover, is well known that there is a close interaction between
currency markets and fixed income markets. Hence a good model for the pricing of
derivatives in an international economy setting should be rich enough to incorporate a
wide range of different correlations between these assets. Necessarily such a model must
allow for stochastic interest rates.

We have therefore chosen an international economy model similar to the one introduced
by Amin and Jarrow (1991) as the framework of our analysis. Their model combines a
fully developed stochastic theory of the term structure of interest rates in the sense of
Heath, Jarrow, and Morton (1992) with models for the valuation of exchange rate and
stock options. However, following the approach of El Karoui and Rochet (1989) and
El Karoui, Myneni, and Viswanathan (1992a), we use bond prices instead of forward
rates as primitives for the modelling of interest rate risk. The main tools of our analysis
are stochastic methods and in particular the change of numeraire technique as introduced
among others in (El Karoui and Rochet 1989) and (Jamshidian 1989). This enables us
to give a unified treatment of all international economy models in the sense of Amin and
Jarrow (1991), the only restriction being that the volatility of the underlying assets is
deterministic. The PDE-approach of Kat and Roozen works less well in our framework,
because under stochastic interest rates the precise form of the PDE for derivative prices
depends on the factor structure of the term structure model used in the analysis which
in turn depends on the precise form of the bond price volatilities. Moreover, including
the possibility of stochastic interest rates means enlarging the state space of the pricing
PDE, which renders difficult a numerical treatment of the equation in cases where the
boundary conditions are such that an explicit solution cannot be found.
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Starting from the concept of a lognormal claim — which includes among others stocks,
bonds, future contracts and exchange rates — we derive a generic option pricing formula
for options to exchange two lognormal claims. To make this result operational also
for options on relatively complex lognormal claims we provide a systematic procedure
for calculating the input parameters needed in the generic valuation formula. Since
pricing formulas are of little practical use without knowledge of the corresponding hedge
portfolio we present a systematic approach to computing hedging strategies. In order
to illustrate the flexibility of our method we derive explicit formulas for prices and
hedge portfolios for a wide range of examples containing among others currency options,
guaranteed-exchange-rate options, options on futures or options on the spread of two
LIBOR rates.

We then go on to study the pricing of what we term compound exchange options. This
latter class of derivatives contains for instance spread options. As it is well known from
the case of deterministic interest rates there are in general no explicit valuation formulas
for these contracts. However, by using the change of numeraire technique we are able to
reduce the problem of pricing such contracts to the computation of the probability of a
well-specified domain in IRd under certain multivariate normal distributions. Moreover,
we demonstrate that the hedge portfolio can be expressed in terms of these probabilities.
This is remarkable, since it shows that even in the absence of explicit pricing formulas
we are able to compute hedge portfolios without resorting to numerical differentiation.
In order to illustrate how these results can be applied we study some concrete examples
and sketch along the way some numerical techniques for the evaluation of the proba-
bilities that enter our formulas. This discussion will also show that our approach is far
more efficient than direct Monte Carlo simulation. This stems from the fact that with
stochastic interest rates the latter technique requires the simulation of whole trajectories
even for the pricing of path-independent payoffs.

The pricing of certain types of options belonging to the class of derivatives considered
here, and the development of arbitrage free models of international economies have pre-
viously been adressed in the literature. Among the early work on correlation dependent
options are the papers by Margrabe (1978), Stulz (1982) and Johnson (1987), who all
work in the classical Black-Scholes model. A collection of their results can be found
in the work of Rubinstein (1990) on exotic options. Papers on currency options are
due to Garman and Kohlhagen (1983) and (Grabbe 1983). More recently Amin and
Jarrow (1991) have developed the above mentioned arbitrage free model of an interna-
tional economy. Our treatment of interest rate risk follows (El Karoui, Myneni, and
Viswanathan 1992a) and (El Karoui, Myneni, and Viswanathan 1992b).

Besides the already mentioned work of Kat and Roozen the papers (Jamshidian 1993)
and (Jamshidian 1994) are most closely related to our analysis. In (Jamshidian 1993)
valuation formulas for certain options which fall within our class of options to exchange
two lognormal claims are derived. The paper lacks however a general procedure for
applying the main valuation result to derivatives which are in principle within the scope
of the analysis. The related work (Jamshidian 1994) gives hedge portfolios for certain
correlation-dependent securities including Quanto futures, but it does not provide a
systematic approach to the computation of such portfolios, which would allow one to
deal also with contracts which are not explicitely considered. Moreover, none of the
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two papers treats the pricing and hedging of options on several underlyings such as our
compound exchange options.

The paper is organized as follows:
In Section 2 we present the general N-country model of financial markets and introduce
the concept of a lognormal claim. Section 3 contains the results on pricing and hedging
exchange options on lognormal claims. In Section 4 we discuss compound exchange
options. Section 5 finally concludes.

Notation:

Throughout the paper we denote the inner product of two vectors X, Y ∈ IRd by X ·Y :=∑d
i=1 xiyi; the norm of a vector will be denoted by |X| := (X ·X)

1
2 .

2 The Model

In this section we introduce an arbitrage-free model of an international economy that
incorporates stochastic interest rates and exchange rates. This model will serve as
our framework for the valuation of derivatives. We consider N countries indexed by
n ∈ {0, . . . , N}. Country 0 will be the domestic country. The exchange rate between
country 0 and country n ∈ {1, . . . , N} will be denoted by en, that is en units of the
domestic currency can be exchanged for one unit of the foreign currency. When working
with only two countries we simply talk about the domestic and the foreign country and
index them with d and f . The choice of the domestic country is arbitrary and depends
on the particular pricing and hedging problem under consideration. We call an asset a
domestic asset if its payoffs are denominated in the domestic currency. Notice that every
asset whose payoffs are not originally denominated in this currency can be transformed
into a domestic asset by translating its payoffs into the domestic currency using the
corresponding exchange rate.

We assume that in all countries zero coupon bonds of all maturities T ∈ [0, TF ] are
traded. The zero coupon bond in country n with maturity date T shall be denoted by
Bn(t, T ) for t ∈ [0, T ]. By assumption Bn(T, T ) ≡ 1 ∀T, n. The short rate in country
n, rn, is given by

rn
t = − ∂

∂T

∣∣∣
T = t

ln Bn(t, T ) . (1)

For an explicit formula deduced from (1) see for instance (El Karoui, Myneni, and
Viswanathan 1992a). By βn

t,T := exp(
∫ T
t rn

s ds) we denote the savings-account of country
n. Apart from zero coupon bonds we consider other primitive assets such as dividend
free stocks. They are denoted by Sn,j, 0 ≤ n ≤ N, 0 ≤ j ≤ in where Sn,j is the price of
asset j in country n.

We now introduce our model of asset price dynamics. When modelling asset price
processes one usually starts from assumptions on their dynamics under the so-called
historical probabilities which govern the actual evolution of asset prices. Since we are
only interested in the pricing of derivatives by no-arbitrage arguments it is legitimate to
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model the asset price dynamics directly under a domestic risk-neutral measure P . Under
such a measure all non-dividend paying domestic assets are martingales after discounting
with the domestic savings account. This implies that their mean instantaneous growth
rate — in the sequel simply referred to as their drift — is equal to r0.

Assumption 2.1 Let there be given a filtered probability space (Ω,F , P ), (Ft)t∈[0,TF ]

supporting a d-dimensional Brownian Motion W = (Wt)0≤t≤Tf
. We work with the fol-

lowing assumptions on asset price dynamics: We put for the domestic assets

dB0(t, T ) = r0
t B

0(t, T )dt + η0(t, T )B0(t, T )dWt

dS0,j
t = r0

t S
0,j
t dt + η0,j(t)S0,j

t dWt ,
(2)

and for the foreign assets

dBn(t, T ) = (rn
t − ηn(t, T ) · ηen

(t))Bn(t, T )dt + ηn(t, T )Bn(t, T )dWt

dSn,j
t = (rn

t − ηn,j(t) · ηen

(t))Sn,j
t dt + ηn,j(t)Sn,j

t dWt .
(3)

Finally the dynamics of the exchange rates are given by

den(t) = (r0
t − rn

t )en(t)dt + ηen

(t)en(t)dWt . (4)

Here ηn(t, T ), ηn,j(t), ηen
(t) : [0, TF ] → IRd are deterministic square integrable functions

of time. For the bonds we require moreover that ηn(t, T ) = 0 ∀t ≥ T and that ηn(t, T ) is
smooth in the second argument.

Remarks: The assumption of deterministic dispersion coefficients is essential as we
want to obtain explicit pricing formulas.

As shown by Amin and Jarrow (1991) the dynamics of asset prices and exchange rates
given in Assumption 2.1 actually specify an arbitrage-free model of an international
economy with P representing a domestic risk-neutral measure. The drift terms of the
exchange rate and the foreign assets are determined by absence of arbitrage considera-
tions. As an example we derive the drift of en. Consider the domestic asset Y := enβn

(0,·) .

By absence of arbitrage its drift must equal r0. Using Itô’s Lemma to compute the dy-
namics of Y it is immediate that the drift of Y equals r0 if and only if the drift of the
exchange rate equals the interest rate differential.

The volatility of asset Sn,j is given by σn,j(t) := |ηn,j(t)|. The instantaneous correlations
between the assets in our economy are given by

ρ(Sn1,j1 , Sn2,j2) :=
ηn1,j1 · ηn2,j2

σn1,j1σn2,j2
.1

Only volatilities and instantaneous correlations matter for the pricing of derivatives,
since they determine the law of the asset prices under the domestic risk neutral measure.

1Of course similar formulas hold for bonds and exchange rates.
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In our analysis this is reflected by the fact that only inner prod-ucts of the dispersion co-
efficients η and hence instantaneous covariances enter the pricing formulas. Nonetheless
we decided to start with independent Brownian motions and to model correlations by
means of the dispersion coefficients η because this faciliates the use of stochastic calcu-
lus. To compute these coefficients from the estimated instantaneous covariance matrix
of the processes one may use the Cholesky decomposition of this matrix as explained for
instance in (Hamilton 1994). The calibration of Gaussian term structure models to mar-
ket data is for instance discussed in (Brace and Musiela 1994); the methods developed
in this article are applicable to our model, too.

Finally we note that the price process of a discounted foreign asset is not a martingale
under the domestic risk-neutral measure as can be seen from (3); hence this measure
must not be used for the valuation of derivatives paying off in foreign currencies.

For our pricing theory we need to assume that the markets in our economy are complete.

Assumption 2.2 There are d traded domestic assets such that for all t ∈ [0, TF ] the
instantaneous covariance matrix of these assets is strictly positive definite.

This assumption guarantees that every contingent claim adapted to the filtration gener-
ated by the asset prices can be replicated by a dynamic trading strategy in the d assets
and the domestic savings-account, see for instance (Duffie 1992, section 6.I). Hence the
domestic risk neutral measure is unique and the price at time t of every domestic con-
tingent claim H with single FT measurable and integrable payoff HT at time T is given
by

Ht := EP
[(

β0
t,T

)−1
·HT

∣∣∣ Ft

]
; (5)

see e.g. (Harrison and Pliska 1981). This equation is the exact probabilistic analogue
of equation (6) of (Kat and Roozen 1994); it will be the starting point for our valuation
results in the next sections.

We now introduce the class of admissible underlyings for the derivative contracts con-
sidered in the paper. A typical example of the kind of options we want to analyze is the
guaranteed-exchange-rate call. This contract is defined by its terminal payoff [ēSf

T−K]+,
where Sf

T is some primitive foreign asset and ē is a guaranteed exchange rate which will
be applied at time T to convert the price of the foreign asset into domestic currency.
Now, ēSf

T is not the time T value of a traded domestic asset. However, it defines a
domestic contingent claim X whose price Xt = EP [(βt,T )−1ēSf

T |Ft] is given by

Xt = X0 exp
(∫ t

0
ηX

s dWs −
1

2

∫ t

0
|ηX

s |2ds +
∫ t

0
rd
sds

)
with X0 = EP

[
(β0,T )−1 XT

]
and ηX

s a deterministic IRd-valued function of time. We will see in section 3.2 below that
this structure is found in many ostensibly complex option contracts. This motivates the
following definition.
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Definition 2.3 A domestic contingent-claim X with a single payoff XT at a certain
date T is called a lognormal claim2 if its price process (Xt)0≤t≤T given by

Xt := EP
[(

βd
t,T

)−1
·XT | Ft

]
admits a representation of the form

Xt = X0 · exp
(∫ t

0
ηX

s dWs −
1

2

∫ t

0
|ηX

s |2ds +
∫ t

0
rd
sds

)
(6)

with some constant X0 and with deterministic dispersion coefficients ηX : [0, T ] → IRd.

Remarks: The main restriction made in the definition of a lognormal claim is the
assumption of ηX being deterministic. In fact, whenever XT is strictly positive,

Xt := EP
[(

βd
t,T

)−1
·XT | Ft

]
is always of the form (6) with possibly stochastic “volatility” ηX , as can easily be shown
by means of the martingale representation theorem. Note that the solution of the SDE
dXt = r0

t Xtdt + ηX
t XtdWt is given by

Xt := X0 · exp
(∫ t

0
ηX

s dWs − 1/2
∫ t

0
|ηX

s |2ds +
∫ t

0
r0
sds

)
.

Hence under our assumption on asset price dynamics every primitive domestic asset,
interpreted as contingent claim with payoff equal to the asset’s price at time T , is a
lognormal claim. However, the class of contingent claims that satisfy Definition 2.3 is
much larger. For instance products and quotients of lognormal claims remain lognormal
claims.

The next proposition gives a method for computing the initial value and the volatility
coefficients of a lognormal claim also in certain cases where these parameters cannot be
read off directly from the asset price dynamics. For an application of this proposition
we refer the reader to the examples considered in section 3.2.

Proposition 2.4 Assume that the payoff XT of a domestic contingent claim X is given
by

XT = γX · exp

(∫ T

0

N∑
n=0

αn,Xrn
s ds +

∫ T

0
µX

s ds +
∫ T

0
vX

s dWs

)

where γX ∈ IR+, αn,X ∈ ZZ ∀n, and where µX : [0, T ] → IR, vx : [0, T ] → IRd are
deterministic functions. Then there is a X0 ∈ IR+ and a deterministic function ηX :
[0, T ] → IRd defined in the proof below such that XT admits a representation of the form

XT = X0 · exp

(∫ T

0
ηX

s dWs −
1

2

∫ T

0
|ηX

s |2ds +
∫ T

0
r0
sds

)
.

In particular X is a lognormal claim.

2This name is motivated by the fact that XT is lognormally distributed. This is immediate if one
writes XT = XT /B0(T, T ) and then expresses the right hand side using (6) and the corresponding
expression for B0(·, T ).
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Proof: Since Bn(T, T ) = 1 we get

XT = XT ·B0(T, T ) ·
N∏

n=0

Bn(T, T )−αn,X

= γX ·B0(T, T ) ·
N∏

n=0

Bn(0, T )−αn,X

· exp

[ ∫ T

0
r0
s ds +

∫ T

0

(
µX

s +
1

2

N∑
n=0

αn,X
(
|ηn(s, T )|2 + ηn(s, T ) · ηen

(s)
)

− 1

2
|η0(s, T )|2

)
ds +

∫ T

0

(
vX

s −
N∑

n=0

αn,Xηn(s, T ) + η0(s, T )
)
dWs

]

If we now define

ηX
s := vX

s −
N∑

n=0

αn,Xηn(s, T ) + η0(s, T ) (7)

X0 := γX
N∏

n=0

Bn(0, T )−αn,X

B0(0, T ) · exp

(∫ T

0
µX

s + (8)

+
1

2

N∑
n=0

αn,X
(
|ηn(s, T )|2 + ηn(s, T ) · ηen

(s)
)
− 1

2
|η0(s, T )|2 +

1

2
|ηX

s |2 ds

)
(9)

we get XT = X0 · exp
(∫ T

0

(
r0
s − 1

2
|ηX

s |2
)

ds +
∫ T
0 ηX

s dWs

)
. From this representation it is

immediate that X is a lognormal claim whose value at time t is given by (8) but with
Bn(t, T ) replacing Bn(0, T ) and with t as lower bound of the integral in the argument
of the exponential term. 2.

3 Exchange Options on Lognormal Claims

3.1 The Theoretical Result

In this section we give a rather general theorem which leads to a unified treatment of the
pricing of European options on various underlyings such as foreign and domestic zero
coupon bonds, foreign or domestic stocks or forward and future contracts on foreign and
domestic assets. It is similar in spirit to a result by Jamshidian (1993); however, we feel
that our theorem is more easily applicable.

Theorem 3.1 Let X, Y be lognormal claims. Consider an option to exchange X for Y
at the maturity date T , i.e. a European option with payoff [XT − YT ]+.

1. The price process C = (Ct)0≤t≤T of this option is given by

Ct = C(t,Xt, Yt) := XtN (d1
t )− YtN (d2

t )

7



where N denotes the one-dimensional standard normal distribution function, and where
d1

t and d2
t are given by

d1
t =

ln (Xt/Yt) + 1
2

∫ T
t |ηX

s − ηY
s |2ds√∫ T

t |ηX
s − ηY

s |2ds
, d2

t = d1
t −

√∫ T

t
|ηX

s − ηY
s |2ds .

2. The hedge portfolio PC = (PC
t )0≤t≤T for this option in terms of the lognormal claims

X and Y is given by

δC
X(t) := N (d1

t ) units of X and δC
Y (t) := −N (d2

t ) units of Y .

Proof: The main tool in the proof is the change of numeraire technique developed
among others in (El Karoui, Geman, and Rochet 1995). We now recall a few facts from
this theory. Define for a lognormal claim X a new equivalent probability measure QX

on FT by

dQX

dP
=

XT ·
(
βd

0,T

)−1

X0

.

Then for every domestic asset Z whose discounted price process is a martingale under
P — that is for every asset that pays no dividends in [0, T ) — the process Z/X is a
martingale under QX , i.e. QX is the martingale measure corresponding to the numeraire
X. Moreover we have the transition formula

EP
[(

βd
t,T

)−1
·XT · ZT |Ft

]
= Xt · EQX

[ZT |Ft] (10)

Remark: If X = Bd(·, T ) the measure QX is just the forward risk adjusted measure
associated with Bd(·, T ). This measure is well known in the interest rate literature.

In our setup it is easy to determine the law of the asset price processes by means
of the Girsanov theorem. Applying this theorem to dQX/dP immediately yields that
WX

t := Wt −
∫ t
0 ηX

s ds is a new Brownian Motion under QX .

Now it is easy to proof the first part of the theorem. According to (5) the price of the
option is given by

Ct = EP
[(

βd
t,T

)−1
[XT − YT ]+

∣∣∣ Ft

]
= EP

[(
βd

t,T

)−1
XT · 1{YT /XT <1}

∣∣∣ Ft

]
− EP

[(
βd

t,T

)−1
YT · 1{XT /YT >1}

∣∣∣ Ft

]
= Xt · EQX

[
1{YT /XT <1}

∣∣∣ Ft

]
− Yt · EQY

[
1{XT /YT >1}

∣∣∣ Ft

]
The last line follows from (10) if we take once X and once Y as numeraire. Now we get
under QX for YT /XT

YT

XT

=
Yt

Xt

· exp

(∫ T

t
(ηY

s − ηX
s )dWX

s − 1

2

∫ T

t
|ηY

s − ηX
s |2ds

)

8



Hence

QX
[
YT

XT

< 1
∣∣∣ Ft

]
= QX [ln YT − ln XT < 0 | Ft]

= QX

∫ T
t (ηY

s − ηX
s )dWX

s√∫ T
t |ηY

s − ηX
s |2ds

<
ln XT − ln YT + 1

2

∫ T
t |ηY

s − ηX
s |2ds√∫ T

t |ηY
s − ηX

s |2ds


Since ηX and ηY are deterministic,

∫ T
t (ηY

s − ηX
s )dWX

s /
√∫ T

t |ηY
s − ηX

s |2ds is a standard
normally distributed random variable so that

QX
[
YT

XT

< 1
∣∣∣ Ft

]
= N (d1

t ) .

Analogously we get QY [XT /YT > 1 | Ft] = N (d2
t ) , and the first part of the theorem

follows.

To prove the second claim we note that the proposed hedge portfolio duplicates the
option if the martingale part of the portfolio’s value process is the same as that of the
option and if the value of the portfolio equals the option’s price for all 0 ≤ t ≤ T . We
now check these two conditions.

(i) Let (Z)M denote the (uniquely determined) martingale part of a continuous semi-
martingale Z. As Ct is a function only of Xt and Yt we get from Itô’s Lemma

d (C)M
t =

∂C

∂x
(t,Xt, Yt)d (X)M

t +
∂C

∂y
(t,Xt, Yt)d (Y )M

t .

Now following El Karoui, Myneni, and Viswanathan (1992b) we may compute the deriva-
tives of the option:

∂C

∂x
(t,Xt, Yt) = EP

t

[
∂

∂Xt

((
βd

t,T

)−1
[XT − YT ]+

)]

= EP
t

[(
βd

t,T

)−1
1{XT≥YT }

∂XT

∂Xt

]

=
1

Xt

EP
t

[(
βd

t,T

)−1
1{XT≥YT }XT

]
As shown in the first part of the proof this expression equals N (d1

t ). Similarly we get
∂C/∂y (t,Xt, Yt) = −N (d2

t ) .

Remark: While unnecessary in the present proof where explicit pricing formulas are
available this technique of exchanging differentiation and expectation will prove very
helpful in the absence of explicit pricing formulas in Section 4.

On the other hand we get from the selffinancing condition and from
(
βd

0, ·

)M

t
= 0 for the

value process V of the hedge portfolio

d (V )M
t = N (d1

t )d(X)M
t −N (d2

t )d(Y )M
t and hence d (V )M

t = d (C)M
t .
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(ii) By Euler’s Theorem we get from the linear homogeneity of C in Xt and Yt

Ct =
∂C

∂x
(t,Xt, Yt) ·Xt +

∂C

∂y
(t,Xt, Yt) · Yt = N (d1

t )Xt −N (d2
t )Yt ,

which shows that also the second condition is satisfied. 2

Whenever the lognormal claims X and Y are assets for which liquid markets exist,
Theorem 3.1 is sufficient for the construction of a hedge portfolio. Otherwise we must
go on and duplicate X and Y by a dynamic trading strategy. The existence of such
a strategy is guaranteed by Assumption 2.2; it can be computed as in the proof of
Theorem 3.1. The following observation then shows how to construct hedging strategies
for C from the hedge portfolios for X and Y . Suppose that the hedge portfolios for X
and Y in terms of domestic assets HX

i and HY
i for which we assume the existence of

liquid markets are given by

PX
t =

LX∑
i=1

δX
i (t)HX

i and P Y
t =

LY∑
i=1

δY
i (t)HY

i .

Then the hedge portfolio for the exchange option on X and Y in terms of HX
i and HY

i

is given by

Pt =
LX∑
i=1

N (d1
t ) · δX

i (t)HX
i −

LY∑
i=1

N (d2
t ) · δY

i (t)HY
i .

The application of this principle is illustrated in certain examples presented below.

3.2 Examples

Now we want to consider a number of examples which illustrate flexibility and generality
of Theorem 3.1.

Currency Options: The payoff of a plain vanilla currency option equals [eT − K]+.
Define the domestic assets X := e · Bf (·, T ) and Y := KBd(·, T ); the parameters of
their price processes can be read off from the asset price dynamics and are given by
X0 = e0B

f (0, T ), ηX(t) = ηe(t) + ηf (t, T ) and Y0 = KBd(0, T ), ηY (t) = ηd(t, T ),
respectively. Since Bd(T, T ) = Bf (T, T ) = 1 the option’s payoff equals [XT − YT ]+, and
its price can be computed by means of Theorem 3.1. Since we assume Bf and Bd to be
traded assets we can use directly Theorem 3.1 to compute a feasible hedge portfolio.3

Currency Converted Options: There are two types of currency converted options.
The payoff of a Foreign Asset/ Domestic Strike Option equals [eT Sf

T−K]+. To deal with
this claim we set X := eSf and notice that this is a lognormal claim with Xt = etS

f
t

and ηX = ηe +ηSf
. Next set Y := K ·Bd(·, T ). Theorem 3.1 can now be directly applied

to give the price and the hedging strategy of this contract. Similarly for a Domestic

3In practice liquid markets for zero coupon bonds of arbitrary maturity usually do not exist. How-
ever, at least in a one-factor term structure model it is possible to duplicate a zero coupon bond by a
dynamic trading strategy in a futures contract on some coupon bond and cash. Details are for instance
given in (Frey and Sommer 1995).
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Asset/ Foreign Strike Option with payoff [Sd
T − eT K]+, where K is in foreign currency

we use the lognormal claims X := Sd and Y = KeBf (·, T ).

Guaranteed-Exchange-Rate Options: The payoff of this derivative equals
[ēSf

T − ēK]+, where Sf is a foreign asset and ē some predetermined exchange rate.
This contract can be interpreted as an option to exchange the lognormal claims X and
Y with payoff XT = ēSf

T and YT := ēK. Whereas YT equals the time T value of K · ē
units of Bf (·, T ), there is no traded asset whose value at T is equal to XT . To price and
hedge the option we therefore have to compute the parameters of X using Proposition
2.4. We have ∑

i

αi,Xri
s = rf

s , µX
s = −1

2
|ηSf

s |2, vX
s = ηSf

s .

Applying Proposition 2.4 yields

X0 = ēSf
0

Bd(0, T )

Bf (0, T )
exp

{∫ T

0
|ηf (s, T )|2 + ηSf

(s) · ηd(s, T ) + ηe(s) · ηf (s, T )−(11)

ηSf

(s) · ηf (s, T )− ηf (s, T ) · ηd(s, T )− ηSf

(s) · ηe(s)ds

}
ηX

s = ηSf

(s) + ηd(s, T )− ηf (s, T )

The price of the option can now be computed by plugging these parameters into the
pricing formula of Theorem 3.1. Next we want to determine the hedge portfolio for the
option. As XT is not the terminal value of a traded asset we have to go through the
procedure outlined after the proof of Theorem 3.1. To replicate XT by a dynamic trading
strategy we first note that by (11) Xt is given by a function X̃ of the domestic assets
e · Sf , Bd(t, T ) and e · Bf (t, T ) with derivatives ∂X̃/∂eSf = X̃/(etS

f
t ), ∂X̃/∂eBf =

−X̃/(etB
f (t, T )) and ∂X̃/∂Bd = X̃/Bd(t, T ). As X̃ is linear homogenous in the prices

of these assets, an argument similar to the proof of the second part of Theorem 3.1
shows that the hedge portfolio for X equals

δX
e·Sf (t) =

Xt

et · Sf
t

, δX
e·Bf (t) = − Xt

et ·Bf (t, T )
, δX

Bd(t) =
Xt

Bd(t, T )
.

Remark: Our formula contains the pricing formula of (Kat and Roozen 1994) as a
special case. To derive their formula one simply has to set all the bond volatilities
to zero. It is of interest to analyze the effect of the additional correlations that enter
the pricing formula if interest-rate risk is taken into account. We see that allowing for
interest-rate risk does not necessarily raise the price of a GER Option over that of a
GER Option in a model with deterministic interest rates, since e.g. ηe ·ηf , the covariance
between exchange rate and foreign bonds will typically be negative, while ηSf ·ηf , that is
the covariance between foreign bonds and stocks, will typically be positive. Both effects
lead to a reduction in the option price, while the direct effect of stochastic interest rates,
namely |ηf |2 unambiguously raises the option price.

Options on Futures: Let (X̃t)0≤t≤T̄ be the price process of a lognormal claim. It is

well known that the futures price at time t of a futures contract on X̃ with maturity
date T2 equals X̃f

t := EP [X̃T2 | Ft], see e.g. (Duffie 1992). A European option on this

11



futures contract with maturity date T1 < T2 and strike K has payoff [X̃f
T1
−K]+. We

now show that the contingent claim X with payoff XT1 = X̃f
T1

at date T1 is a lognormal
claim. We get

X̃f
T1

= EP
[
X̃T2

∣∣∣ FT1

]
= EP

[
X̃T2 ·

(
Bd(T2, T2)

)−1 ∣∣∣ FT1

]

= EP

[
X̃0

Bd(0, T2)
· exp

(
−1

2

∫ T2

0
|ηX̃ |2 − |ηd(t, T2)|2dt +

∫ T2

0
ηX̃ − ηd(t, T2)dWt

) ∣∣∣FT1

]

=
X̃0

Bd(0, T2)
exp

(∫ T2

0
|ηd(t, T2)|2 − ηX̃ · ηd(t, T2)dt

)
︸ ︷︷ ︸

=: γX

· exp

(∫ T1

0
ηX̃ − ηd(t, T2)dWt −

1

2

∫ T1

0
|ηX̃ − ηd(t, T2)|2dt

)

To compute the parameters of X we may now apply Proposition 2.4 with µX
t := −1

2
|ηX̃−

ηd(t, T2)|2, vX := ηX̃ − ηd(t, T2) and γX as above. We leave the computations to the
reader. To duplicate X by dynamic trading in the futures contract and in the domestic
zero coupon bond with maturity T1 one has to hold the following hedge portfolio.

δX
futures(t) =

Xt

X̃f
t

, δX
Bd(·,T1)(t) =

Xt

Bd(t, T1)
.

Options on Interest Rates: We are mainly interested in contracts where one of the
underlying assets is a foreign or domestic LIBOR rate. For a fixed α > 0 (in practice
usually α = 0.25 or α = 0.5) the LIBOR rate Ln(t, α) prevailing in country n over the
period [t, t + α] is defined by the equation

(1 + α · Ln(t, α))Bn(t, t + α) = 1 ,

that is Ln(t, α) = α−1(1/Bn(t, t + α)− 1).

Caps: Perhaps the most important LIBOR derivatives are caps and floors. A cap is a
portfolio of caplets. The payoff of a caplet with face value V , underlying interest rate
process Ld(t, α), level K and maturity date T + α equals

V · α · [Ld(T, α)−K]+ = V ·
[

1

Bd(T, T + α)
− (αK + 1)

]+

As the payoff of this caplet is known already at T we may compute its present value at
T which equals V [1 − (αK + 1) · Bd(T, T + α)]+. From this we see that the price and
the hedge portfolio for caplets can be inferred directly from Theorem 3.1 if we use the
lognormal claims X = Bd(·, T ) and Y = (αK + 1) · Bd(·, T + α). Of course this choice
of X and Y reflects the well-known fact that caplets can be considered as options on
zero coupon bonds.

LIBOR spreads: Next we want to consider an option on the spread between a domestic
and a foreign LIBOR rate. The payoff (in domestic currency) in T + α of this option is

12



given by V α[Ld(T, α)− Lf (T, α)]+, i.e. αV units of the positive difference between the
domestic and the foreign LIBOR rate. Using the definition of the LIBOR rate we see
that the present value at T of this payoff equals V [1−Bd(T, T +α)/Bf (T, T +α)]+. To
value this contract we have to compute the parameters of the lognormal claim Y with
payoff YT = Bd(T, T + α)/Bf (T, T + α). Applying Proposition 2.4 we get

Y0 =
Bd(0, T + α)Bf (0, T )

Bf (0, T + α)

· exp

[ ∫ T

0
|ηf (s, T + α)|2 + ηd(s, T + α) · ηf (s, T )− ηf (s, T + α) · ηf (s, T )

− ηf (s, T + α) · ηd(s, T + α)− ηe(s) · (ηf (s, T )− ηf (s, T + α)) ds

]

The hedge portfolio for Y can be computed as in the case of the guaranteed exchange
rate option.

Remark: The valuation of interest rate derivatives in a Gaussian framework is some-
what problematic because of the occurrence of negative interest rates. However for
reasonable parameter values and not too long times to maturity these problems are
rather minor; see e.g. (Rogers 1996).

4 Compound Exchange Options

We define compound exchange options as European options with payoff given by[
[X1

T − Y 1
T ]+ − [X2

T − Y 2
T ]+

]+
, (12)

where X i and Y i, i = 1, 2 are lognormal claims. While the payoff is interesting in its own
right it can, if combined with ordinary exchange options and lognormal claims, also serve
as a building block to construct a great number of other payoffs. These include among
others options on the maximum or the minimum of two lognormal claims, spread options
and dual strike options. In Appendix A we explain how the payoffs of these options are
related to equation (12).

We shall first state a general theorem on the pricing and hedging of the payoff in equation
(12) and explain then how this theorem can be applied. We have

Theorem 4.1 Let (X i
t)0≤t≤T , (Y i

t )0≤t≤T , i = 1, 2 be lognormal claims. Let Ct be the
value at time t of a compound exchange option with payoff as in (12).

1. We have the following near explicit pricing formula

Ct = C(t,X1
t , Y 1

t , X2
t , Y 2

t ) := X1
tN2

(
d1

t , d
2
t , ρt

)
− Y 1

t N2

(
d3

t , d
4
t , ρt

)
+X1

t QX1

t [A] + Y 2
t QY 2

t [A]−
(
X2

t QX2

t [A] + Y 1
t QY 1

t [A]
)
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where the arguments of the normal distributions4 are as defined in equations (14), (15),
(16) below and where the set A is given by

A =
{
ω ∈ Ω | X2

T ≥ Y 2
T ∧X1

T − Y 1
T ≥ X2

T − Y 2
T

}
. (13)

The probability measures QXi

t , i = 1, 2 and QY i

t , i = 1, 2 are as defined in the proof of
Theorem 3.1.

2. The exercise probabilities QXi

t [A] and QY i

t [A] are given by the measure of the domain
Ã ⊂ IR4 defined by

Ã =
{
(x1, . . . , x4) ∈ IR4 | exp(x3) ≥ exp(x4) ∧ exp(x1)− exp(x2) ≥ exp(x3)− exp(x4)

}
under a — possibly degenerate — four-dimensional normal distribution whose mean and
covariance matrix depend smoothly on t, X i

t , Y i
t and the volatility coefficients ηXi

and
ηY i

of the lognormal claims.5

3. The hedge portfolio (Pt) in terms of the lognormal derivatives X i and Y i is given by

δC
X1(t) = N2

(
d1

t , d
2
t , ρt

)
+ QX1

t [A] , δC
X2(t) = −QX2

t [A]

δC
Y 1(t) = −

(
N2

(
d3

t , d
4
t , ρt

)
+ QY 1

t [A]
)

, δC
Y 2(t) = QY 2

t [A] .

Remark: This theorem shows that even under stochastic interest rates the valuation
of a compound exchange option can be reduced to an integration with respect to the
joint conditional terminal distribution of the underlying claims and hence to a problem
of numerical integration in IR4. We will see below that there are numerical techniques
for the evaluation of the exercise probabilities that are far more efficient than a direct
evaluation of the option’s price by Monte Carlo simulation. Another advantage of our
approach is that we are able to obtain the price and the hedge portfolio in one single
step and with equal precision. No numerical differentiation is necessary.

Proof: We consider first the pricing problem. A suitable decomposition of the payoff
in (12) is given by:[[

X1
T − Y 1

T

]+
−
[
X2

T − Y 2
T

]+]+
=

(
X1

T − Y 1
T

)
1{X1

T≥Y 1
T}1{X2

T≤Y 2
T} +

(
X1

T − Y 1
T −X2

T + Y 2
T

)
1{X2

T≥Y 2
T}1{X1

T−Y 1
T≥X2

T−Y 2
T}

Proceeding as in the proof of Theorem 3.1 we get for the first expression

EP
t

[(
βd

t,T

)−1
X1

T 1{X1
T≥Y 1

T}1{X2
T≤Y 2

T}
]

= X1
t ·QX1

t

[{
ln

Y 1
T

X1
T

≤ 0

}
∩
{

ln
X2

T

Y 2
T

≤ 0

}]
.

4By N2

(
d1, d2, ρ

)
we denote the probability of the rectangle (−∞, d1] × −(∞, d2] ⊂ IR2 under the

centered bivariate normal distribution with covariance matrix (σi,j)1≤i,j≤2 given by σ1,1 = σ2,2 = 1,
σ1,2 = σ2,1 = ρ.

5In concrete examples these parameters can easily be computed from the parameters of the lognormal
claims involved, see Example 1 below.
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Now under QX1

t the random variables ln
Y 1

T

X1
T

and ln
X2

T

Y 2
T

are jointly normally distributed

with correlation ρt given by

ρt =

∫ T
t

(
ηY 1

s − ηX1

s

)
·
(
ηX2

s − ηY 2

s

)
√

(
∫ T
t |ηY 1

s − ηX1

s |2ds) · (
∫ T
t |ηX2

s − ηY 2

s |2ds)
. (14)

Hence this expectation equals X1
tN2 (d1

t , d
2
t , ρt), where d1

t and d2
t are given by

d1
t =

ln
(

X1
t

Y 1
t

)
+ 1

2

∫ T
t |ηX1

s − ηY 1

s |2ds√∫ T
t |ηX1

s − ηY 1

s |2ds

d2
t =

ln
(

Y 2
t

X2
t

)
+ 1

2

∫ T
t |ηX2

s |2 − 2
(
ηX2

s − ηY 2

s

)
ηX1

s − |ηY 2

s |2ds√∫ T
t |ηX2

s − ηY 2

s |2ds
.

(15)

Similarly we get

EP
t

[(
βd

t,T

)−1
Y 1

T · 1{X1
T≥Y 1

T}1{X2
T≤Y 2

T}
]

= Y 1
t N2

(
d3

t , d
4
t , ρt

)
with ρt as before and with

d3
t =

ln
(

X1
t

Y 1
t

)
− 1

2

∫ T
t |ηX1

s − ηY 1

s |2ds√∫ T
t |ηX1

s − ηY 1

s |2ds

d4
t =

ln
(

Y 2
t

X2
t

)
+ 1

2

∫ T
t |ηX2

s |2 − 2
(
ηX2

s − ηY 2

s

)
ηY 1

s − |ηY 2

s |2ds√∫ T
t |ηX2

s − ηY 2

s |2ds
.

(16)

For the remaining four expectations for i = 1, 2 we immediately get using the appropriate
probability measures

EP
t

[(
βd

t,T

)−1
X i

T 1{A}

]
= X i

tQ
Xi

t [A] and EP
t

[(
βd

t,T

)−1
Y i

T 1{A}

]
= Y i

t QY i

t [A] .

Now observe that under each of the four probability measures the four random variables
(ln X1

T , ln Y 1
T , ln X2

T , ln Y 2
T ), obey a four-dimensional normal distribution. The mean

µ(QXi
) or µ(QY i

) of this distribution — which depends on the particular probability
measure — is a smooth function of time and the initial values X i

t , i = 1, 2 and Y i
t , i =

1, 2, whereas Σ, the covariance matrix6 of this normal distribution, depends only on time
and the instantaneous volatilities and correlations of the four assets under consideration.
Hence QX1

t [A] is given by the measure of the set Ã defined in the theorem under the
four dimensional normal distribution with mean µ(QX1

) ∈ IR4 and covariance matrix Σ.

6Σ is the same for all probability measures. We remark that the distribution might be degenerate,
i.e. Σ might not have full rank. A concrete example for the computation of Σ is given in Example 1
below.
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A similar result holds for the other exercise probabilities which proves the second part
of the theorem.

Finally we deal with the hedging problem. By Itô’s Lemma we have for the martingale
part of Ct

d (C)M
t =

2∑
i=1

∂C

∂xi
(t,X1

t , Y 1
t , X2

t , Y 2
t )d

(
X i
)M

t
+

2∑
i=1

∂C

∂yi
(t,X1

t , Y 1
t , X2

t , Y 2
t )d

(
Y i
)M

t

Now we get for the partial derivatives

∂C

∂x1
(t,X1

t , Y 1
t , X2

t , Y 2
t ) =

∂

∂X1
t

EP
t

[(
βd

t,T

)−1 [
X1

T − Y 1
T

]+
1{X2

T≤Y 2
T}
]

+
∂

∂X1
t

EP
t

[(
βd

t,T

)−1 [
X1

T − Y 1
T −

(
X2

T − Y 2
T

)]+
1{X2

T≥Y 2
T}
]

Now by arguments similar to those in the proof of part 2 of Theorem 3.1 this equals

EP
t

[(
βd

t,T

)−1 X1
T

X1
t

· 1{X1
T≥Y 1

T}1{X2
T≤Y 2

T}

]
+EP

t

[(
βd

t,T

)−1 X1
T

X1
t

· 1{X1
T−Y 1

T >X2
T−Y 2

T}1{X2
T >Y 2

T}

]
.

By the same argument as in the the first part of the proof this equals N2 (d1
t , d

2
t , ρt) +

QX1

t [A]. Similarly it is easy to show that

∂C

∂y1
= −

(
N2

(
d3

t , d
4
t , ρt

)
+ QY 1

t [A]
)
,

∂C

∂x2
= −QX2

t [A] and
∂C

∂y2
= QY 2

t [A] .

Notice that C(t, x1, y1, x2, y2) is linear homogeneous in its last four arguments, since the
payoff of our option is linear homogeneous in the terminal values X i

T and Y i
T , and since

X i
T and Y i

T are linear functions of the initial values X i
t and Y i

t . The remainder of the
argument is, therefore, as in the proof of Theorem 3.1 2

Inspection of the set A in equation (13) shows that in general one will not be able to price
a compound exchange option explicitely in the framework of our model. This is simply
due to the fact that the distribution of a linear combination of lognormal distributed
random variables is not known analytically.

There are, however, a number of numerical procedures that can be used to evaluate the
respective integrals. In some special cases there are even closed form solutions. In the
sequel we shall discuss an example and sketch different numerical procedures for the
evaluation of the integrals. Finally, we shall also consider another example where the
set A is such that a closed form solution for the option price and the hedge portfolio
can be obtained.

Example 1: Consider pricing and hedging an option on the spread between the rate
of return over a certain period in the stock market and the fixed income market in a
foreign country. Assume that the payoff is received in the currency of another country,
the domestic country. As an example think of the following construction: The maturity
date of the option is nine month from now. The option is written on the difference
between the realization of three months LIBOR on French Francs six months from
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the present and the annualized rate of return on the CAC40 index over the last three
months of the lifetime of the option. The payoff of the entire derivative is received in
Deutschmarks.

To be precise for α > 0 let 1
α

(
Sf

T+α/Sf
T − 1

)
be the annualized rate of return on the

stock index in the foreign country over the period from T to T + α. As in Section
3.2 the LIBOR rate in the foreign country for the period from T to T + α is given by
1
α

(
1/Bf (T, T + α)− 1

)
. Hence the payoff of our option equals

V

[
Sf

T+α

Sf
T

− 1

Bf (T, T + α)
−K

]+

= V

[Sf
T+α

Sf
T

− 1

Bf (T, T + α)

]+

− [K − 0]+
+

for some K > 0. To apply Theorem 4.1 we define the lognormal claims X1
T+α :=

Sf
T+α/Sf

T , Y 1
T+α := 1/Bf (T, T + α) and X2 = K · Bd(·, T + α). As a first step we

need to determine the price process (X1
t )0≤t≤T+α and (Y 1

t )0≤t≤T+α under P . Applying
Proposition 2.4 we have

X1
t = X1

0 exp


t∫

0

rd
sds− 1

2

t∫
0

|ηX1

s |2ds +

t∫
0

ηX1

s dWs

 , (17)

where

X1
0 =

Bf (0, T )

Bf (0, T + α)
Bd(0, T + α) exp

{
−1

2

∫ T+α

0

(
|ηf (s, T )1{s≤T}|2

+ |ηSf

s 1{s>T}|2 − |ηf (s, T + α)|2|ηd(s, T + α)|2
)
ds

−
∫ T+α

0

(
ηf (s, T )1{s≤T}+ηSf

s 1{s≥T} − ηf (s, T + α)
)
ηe

s +
1

2
|ηX1

s |2ds

}

ηX1

s = ηf (s, T )1{s≤T} + ηSf

s 1{s>T} − ηf (s, T + α) + ηd(s, T + α) .

(18)

The corresponding formulas for Y 1 are easily obtained from those for X1 by simply
replacing ηSf

s by ηf (s, T + α). The next step is to determine the joint distribution of
(ln X1

T+α, ln Y 1
T+α, ln X2

T+α). Since X2
T+α is constant and equal to K this distribution

is a bivariate normal distribution. Again the mean of this distribution depends on the
numeraire, while the covariance matrix Σ does not. The parameters µ(QX1

), µ(QY 1
),

µ(QX2
) and Σ are given in Appendix B. With this information at hand there are now

several possibilities for evaluating the option pricing formula.

First one might evaluate the integral by a simple Monte-Carlo simulation. To obtain one
simulated value we first make a draw from two independent standard normal variates,
denoted by (z1, z2). We then transform the result as follows(

x̃1(z1, z2)
x̃2(z1, z2)

)
= µ(QX1

) + Σ̃
(

z1

z2

)
(19)

where Σ̃Σ̃
T

= Σ. We then check, if the vector (x̃1(z1, z2), ỹ
1(z1, z2)) belongs to Ã which

in our case reduces to the set {(x̃1, x̃2) ∈ IR2 | exp(x̃1)− exp(x̃2) ≥ K}. If so we denote
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a 1, otherwise we denote a 0. Summing the ones over all simulations and deviding
by the total number of simulations gives an estimate of QX1

[A]. Analogously we can
use the simulated values (z1, z2) to obtain estimates for QY 1

[A] and QX2
[A] and hence

obtain a simulation of all four exercise probabilities from one draw of (z1, z2). Of course
variance reduction methods like the antithetic variable technique and modern Monte
Carlo methods using quasi random numbers may be used to improve the accuracy of
the method. For an account of these techniques see for instance (Boyle, Broadie, and
Glasserman 1995).

Alternatively we could conduct a regular grid search. Starting from the observation
that the density of the normal distribution is approximately zero outside the inter-
vall I := [−3, 3] one partitions I into n sub-intervalls. One may consider different
ways of partitioning, e.g. such that the n sub-intervals have equal length or such
that the n sub-intervals have equal mass under the standard normal distribution. Let
M(n) = {m(1), . . . ,m(n)} denote the set of the midpoints of the n sub–intervals of I
under one of the two partitioning schemes mentioned. Then a two–dimensional grid
is defined by (M(n))2 := M(n) × M(n). Further denote by Ξ(n) = {ξ(1), . . . , ξ(n)}
the set of increments of the standard normal distribution function over the n sub–
intervals generated by one of the partitions. Then we associate with every element
m = (m(j1), m(j2)) belonging to (M(n))2 the weight π(m) := ξ(j1) · ξ(j2). We now
transform the elements m ∈ (M(n))2 as in (19) and define

s1 : (M(n))2 → {0, 1} , m 7→ s1(m)

by s1(m) := 1 if the vector (x̃1(m(j1), m(j2)), x̃
2(m(j1), m(j2))) belongs to Ã, s1(m) := 0

otherweise. The approximation for Q1[A] is then given by

QX1

[A] =
∑

m∈(M(n))2

s1(m)π(m) .

Of course to compute the exercise probabilities under the measures corresponding to
the numeraires Y 1 and X2 one can proceed analogously.

As to a comparison of the two methods we found that for problems where the rank of
the covariance matrix Σ exceeds 3 the Monte Carlo approach seems more favourable
whereas for rank (Σ) ≤ 3 a grid search approach seems to be advantageous. This is
due to the fact that the number of grid points and hence the number of computations
increases exponentially with the rank of Σ whereas using a Monte Carlo approach the
number of computations grows only linearly with the rank of Σ.

Example 2: As an example of an option whose price and hedge portfolio can be
calculated explicitely consider a put option on the maximum of the rates of the fixed
income market and the stock market, i.e.

V α

[
K −max

{
1

α

(
1

Bf (T, T + α)
− 1

)
;
1

α

(
Sf

T+α

ST

− 1

)}]+

=

V α

[K − 1

α

(
1

Bf (T, T + α)
− 1

)]+

− 1

α

[
Sf

T+α

ST

− 1

Bf (T, T + α)

]+

=
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V

[K̃ − 1

Bf (T, T + α)

]+

−
[
Sf

T+α

ST

− 1

Bf (T, T + α)

]+

,

where K̃ = αK − 1. Again the payoff is assumed to be in domestic currency. The
interpretation of this payoff is simple. If both, the fixed income and the stock market
in the foreign country underperform over the period from T to T + α with respect
to a certain predetermined minimum rate of return this option bails out the portfolio
manager.

To develop this example further we introduce the following notation:
X1 := K̃Bd(·, T + α), X2 is the same as the process X1 in Example 1, and Y is the
same process as Y 1 in Example 1. Using this notation the payoff of the above option
can be rewritten as follows

V
[[

X1
T+α − YT+α

]+
−
[
X2

T+α − YT+α

]+]+
.

From this formula we immediately get that the set A defined in (13) is given by

A = {ω ∈ Ω | (X1
T+α > YT+α) ∩ (X1

T+α > (X2
T+α)}

Since this expression does not contain any differences of lognormal claims, the exercise
probabilities can be computed explicitely. We remark, however, that the formula ob-
tained in this way contains unnecessarily many bivariate normal distributions. A more
efficient decomposition of the payoff is given in (Frey and Sommer 1995).

5 Conclusion

The paper treats the valuation and hedging of non-pathdependent European options
on several underlyings with interest rate risk. Using martingale techniques in many
cases we are able to provide general closed form solutions together with a procedure for
applying these general solutions to some specific payoff at hand. In cases where explicit
solutions do not exist we give near explicit solutions for both pricing and hedging.

The main restriction of our approach is the assumption of deterministic volatilities which
is particularly bothersome in the case of bonds. However, it is known from the interest
rate literature that it is difficult to relax this hypothesis if one is interested in explicit
solutions.

6 Appendix

A Payoffprofiles

Options on the maximum of two lognormal claims: We have[
max{X1

T , X2
T} −K

]+
=
[[

X1
T −K

]+
−
[
X2

T −K
]+]+

+
[
X2

T −K
]+
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Options on the minimum of two lognormal claims:

[
min{X1

T , X2
T} −K

]+
=
[
X1

T −K
]+
−
[[

X1
T −K

]+
−
[
X2

T −K
]+]+

Spread options: We distinguish two cases. First consider a positive strike price K:

[
X1

T −X2
T −K

]+
=
[[

X1
T −KT

]+
−
[
X2

T − 0
]+]+

Next consider a negative strike price K: Define K̃ := −K. The payoff of the option is
now [

X1
T −X2

T + K̃
]+

=
[[

X1
T − 0

]+
−
[
X2

T − K̃
]+]+

+
[
K̃ −X2

T

]+
Dual strike options: Again we have two cases.

max
{[

X1
T −K1

]+
;
[
X2

T −K2
]+}

=
[[

X1
T −K1

]+
−
[
X2

T −K2
]+]+

+
[
X2

T −K2
T

]+
min

{[
X1

T −K1
]+

;
[
X2

T −K2
]+}

=
[
X1

T −K1
]+
−
[[

X1
T −K1

]+
−
[
X2

T −K2
]+]+

.

B Example 1: Distributions

From equation (17) we have for X1
T+α

X1
T+α =

X i
0

Bd(0, T + α)
exp

{
−1

2

∫ T+α

0

(
|ηX1

s |2 − |ηd(s, T )|2
)
ds

+
∫ T+α

0

(
ηX1

s − ηd(s, T + α)
)
dWs

}
.

A similar equation holds for Y 1
T+α if we replace ηX1

by ηY 1
. Hence we see that(

ln X1
T+α

ln Y 1
T+α

)
∼ N2 (µ(·); Σ) ,

where N2 (µ(·), Σ) is now a bivariate normal distibution. For Σ we obtain

σ1,1 =
∫ T+α

0

(
|ηX1

s − η0(s, T + α)|2
)
ds

σ1,2 = σ2,1 =
∫ T+α

0

(
ηX1

s − η0(s, T + α)
) (

ηY 1

s − η0(s, T + α)
)
ds

σ2,2 :=
∫ T+α

0
|ηY 1

s − η0(s, T + α)|2ds .

For µ(·) we obtain

µ(QXi

) = µ̄ +

 ∫ T+α
0

(
ηX1

s − ηd(s, T + α)
)
ηXi

s ds∫ T+α
0

(
ηY 1

s − ηd(s, T + α)
)
ηXi

s ds
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µ(QY 1

) = µ̄ +

 ∫ T+α
0

(
ηX1

s − ηd(s, T + α)
)
ηY 1

s ds∫ T+α
0

(
ηY 1

s − ηd(s, T + α)
)
ηY 1

s ds


where

µ̄ =


ln

X1
0

Bd(0, T + α)
− 1

2

∫ T+α
0

(
|ηX1

s |2 − |ηd(s, T )|2
)
ds

ln
Y 1

0

Bd(0, T + α)
− 1

2

∫ T+α
0

(
|ηY 1

s |2 − |ηd(s, T )|2
)
ds

 .
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