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Abstract

We propose a method for estimating VaR and related risk measures describing the
tail of the conditional distribution of a heteroscedastic �nancial return series. Our
approach combines pseudo-maximum-likelihood �tting of GARCH models to estimate
the current volatility and extreme value theory (EVT) for estimating the tail of the
innovation distribution of the GARCH model. We use our method to estimate con-
ditional quantiles (VaR) and conditional expected shortfalls (the expected size of a
return exceeding VaR), this being an alternative measure of tail risk with better theo-
retical properties than the quantile. Using backtesting of historical daily return series
we show that our procedure gives better one-day estimates than methods which ignore
the heavy tails of the innovations or the stochastic nature of the volatility. With the
help of our �tted models we adopt a Monte Carlo approach to estimating the condi-
tional quantiles of returns over multiple-day horizons and �nd that this outperforms
the simple square-root-of-time scaling method.

J.E.L. Subject Classi�cation: C.22, G.10, G.21

Keywords: Risk Measures, Value at Risk, Financial Time Series, GARCH models,
Extreme Value Theory, Backtesting

1 Introduction

The large increase in the number of traded assets in the portfolio of most �nancial in-
stitutions has made the measurement of market risk (the risk that a �nancial institution
incurs losses on its trading book due to adverse market movements) a primary concern for
regulators and for internal risk control. In particular, banks are now required to hold a
certain amount of capital as a cushion against adverse market movements. According to
the Capital Adequacy Directive by the Bank of International Settlement (BIS) in Basle,
(Basle Comittee 1996) the risk capital of a bank must be suÆcient to cover losses on the
bank's trading portfolio over a ten-day holding period in 99% of occasions. This value is
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Bonn. The binomial test in section 3 was suggested by Daniel Straumann. Financial support from Swiss
Re (McNeil) and from UBS (Frey) is gratefully acknowledged.



usually referred to as Value at Risk (VaR). Of course, holding period and con�dence level
may vary according to application; for purposes of internal risk control most �nancial
�rms also use a holding period of one day and a con�dence level of 95%. From a mathe-
matical viewpoint VaR is simply a quantile of the Pro�t-and-Loss (P&L) distribution of
a given portfolio over a prescribed holding period.

Alternative measures of market risk have been proposed in the literature. In two recent
papers, Artzner et al. (1997, 1998) show that VaR has various theoretical de�ciencies as
a measure of market risk; they propose the use of the so-called expected shortfall or tail
conditional expectation instead. The expected shortfall measures the expected loss given
that the loss L exceeds VaR; in mathematical terms it is given by E[LjL > VaR]. From
a statistical viewpoint the main challenge in implementing one of these risk-measures is
to come up with a good estimate for the tails of the underlying P&L distribution; given
such an estimate both VaR and expected shortfall are fairly easy to compute.

In this paper we are concerned with tail estimation for �nancial return series. Our
basic idealisation is that returns follow a stationary time series model with stochastic
volatility structure. There is strong empirical support for stochastic volatility in �nancial
time series; see for instance Pagan (1996). The presence of stochastic volatility implies that
returns are not necessarily independent over time. Hence with such models there are two
types of return distribution to be considered { the conditional return distribution where
the conditioning is on the current volatility and the marginal or stationary distribution
of the process.

Both distributions are of relevance to risk managers. A risk-manager who wants to
measure the market risk of a given portfolio is mainly concerned with the possible extent
of a loss caused by an adverse market movement over the next day (or next few days)
given the current volatility background. His main interest is in the tails of the conditional
return distribution, which are also the focus of the present paper. The estimation of
unconditional tails provides di�erent, but complementary information about risk. Here
we take the long-term view and attempt to assign a magnitude to a speci�ed rare adverse
event, such as a 5-year loss (the size of a daily loss which occurs on average once every
5 years). This kind of information may be of interest to the risk manager who wishes to
perform a scenario analysis and get a feeling for the scale of worst case or stress losses.

In a referee's report the concern was raised that the use of conditional return distri-
butions for market risk measurement might lead to capital requirements that uctuate
wildly over time and are therefore diÆcult to implement. Our answer to this important
point is threefold: First, while it is admittedly impossible for a �nancial institution to
rapidly adjust its capital base to changing market conditions, the �rm might very well
be able to adjust the size of its exposure instead. Moreover, besides providing a basis for
the determination of risk capital, measures of market risk are also employed to give the
management of a �nancial �rm a better understanding of the riskiness of its portfolio, or
parts thereof. We are convinced that the riskiness of a portfolio does indeed vary with the
general level of market volatility, so that the current volatility background should be re-
ected in the risk-numbers reported to management. Finally, we think that the economic
problem of de�ning an appropriate risk-measure for setting capital-adequacy standards
should be separated from the statistical problem of estimating a given measure of market
risk, which is the focus of the present paper.

Schematically the existing approaches for estimating the P&L distribution of a portfo-
lio of securities can be divided into three groups: the nonparametric historical simulation
(HS) method; fully parametric methods based on an econometric model for volatility dy-
namics and the assumption of conditional normality (e.g. J.P. Morgan's Riskmetrics and
most models from the ARCH/GARCH family); and �nally methods based on extreme
value theory (EVT).

In the HS-approach the estimated P&L distribution of a portfolio is simply given by the
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empirical distribution of past gains and losses on this portfolio. The method is therefore
easy to implement and avoids \ad-hoc-assumptions" on the form of the P&L distribution.
However, the method su�ers from some serious drawbacks. Extreme quantiles are noto-
riously diÆcult to estimate, as extrapolation beyond past observations is impossible and
extreme quantile estimates within sample tend to be very ineÆcient | the estimator is
subject to a high variance. Furthermore, if we seek to mitigate these problems by consid-
ering long samples the method is unable to distinguish between periods of high and low
volatility.

Econometric models of volatility dynamics that assume conditional normality, such as
GARCH-models, do yield VaR estimates which reect the current volatility background.
The main weakness of this approach is that the assumption of conditional normality does
not seem to hold for real data. As shown, for instance, in Danielsson and de Vries (1997c),
models based on conditional normality are therefore not well-suited to estimating large
quantiles of the P&L-distribution.1

The estimation of return distributions of �nancial time series via EVT is a topical issue
which has given rise to some recent work (Embrechts, Resnick, and Samorodnitsky 1998b,
Embrechts, Resnick, and Samorodnitsky 1998a, Longin 1997b, Longin 1997a, McNeil 1997,
McNeil 1998, Danielsson and de Vries 1997b, Danielsson and de Vries 1997c, Danielsson,
Hartmann, and de Vries 1998). In all these papers the focus is on estimating the un-
conditional (stationary) distribution of asset returns. Longin (1997b) and McNeil (1998)
use estimation techniques based on limit theorems for block maxima. Longin ignores
the stochastic volatility exhibited by most �nancial return series and simply applies es-
timators for the iid-case. McNeil uses a similar approach but shows how to correct for
the clustering of extremal events caused by stochastic volatility. Danielsson and de Vries
(1997a,b) use a semiparametric approach based on the Hill-estimator of the tail index.
Embrechts, Resnick, and Samorodnitsky (1998a) advocate the use of a parametric esti-
mation technique which is based on a limit result for the excess-distribution over high
thresholds. This approach will be adopted in this paper and explained in detail in Section
2.2.

EVT-based methods have two features which make them attractive for tail estimation:
yhey are based on a sound statistical theory; they o�er a parametric form for the tail of
a distribution. Hence these methods allow for some extrapolation beyond the range of
the data, even if care is required at this point. However, none of the previous EVT-based
methods for quantile estimation yields VaR-estimates which reect the current volatility
background. Given the conditional heteroscedasticity of most �nancial data, which is well-
documented by the considerable success of the models from the ARCH/GARCH family,
we believe this to be a major drawback of any kind of VaR-estimator.

In order to overcome the drawbacks of each of the above methods we combine ideas
from all three approaches. We use GARCH-modelling and pseudo-maximum-likelihood es-
timation to obtain estimates of the conditional volatility. Statistical tests and exploratory
data analysis con�rm that the error terms or residuals do form, at least approximately, an
iid series that exhibit heavy tails. We use historical simulation (for the central part of the
distribution) and threshold methods from EVT (for the tails) to estimate the distribution
of the residuals. The application of these methods is facilitated by the (approximate) in-
dependence over time of the residuals. An estimate of the conditional return distribution
is now easily constructed from the estimated distribution of the residuals and estimates
of the conditional mean and volatility. This approach reects two stylized facts exhib-
ited by most �nancial return series, namely stochastic volatility and the fat-tailedness of
conditional return distributions over short time horizons.

1Note that the marginal distribution of a GARCH-model with normally distributed errors is usually
fat-tailed as it is a a mixture of normal distributions. However, this matters only for quantile estimation
over longer time-horizons; see e.g. DuÆe and Pan (1997).
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In a very recent paper Barone-Adesi, Bourgoin, and Giannopoulos (1998) have inde-
pendently proposed an approach with some similarities to our own. They �t a GARCH-
model to a �nancial return series and use historical simulation to infer the distribution of
the residuals. They do not use EVT-based methods to estimate the tails of the distribu-
tion of the residuals. Their approach may work well in large data sets | they use 13 years
of daily data | where the empirical quantile provides a reasonable quantile estimator in
the tails. With smaller data sets threshold methods from EVT will give better estimates
of the tails of the residuals. During the revision of this paper we also learned that the
central idea of our approach | the application of EVT to model residuals | has been
independently proposed by Diebold, Schuermann, and Stroughair (1999).

We test our approach on various return series. Backtesting shows that it yields better
estimates of VaR and expected shortfall than unconditional EVT or GARCH-modelling
with normally distributed error terms. In particular, our analysis contradicts Danielsson
and de Vries (1997c), who state that \an unconditional approach is better suited for VaR
estimation than conditional volatility forecasts" (page 3 of their paper). On the other
hand, we see that models with normally distributed conditional return distribution yield
very bad estimates of the expected shortfall, so that there is a real need for working
with leptokurtic error distributions. We also study quantile estimation over longer time-
horizons using simulation. This is of interest, if we want to obtain an estimate of the
10-day VaR (as required by the BIS-rule) from a model �tted to daily data.

2 Methods

Let (Xt; t 2 Z) be a strictly stationary time series representing daily observations of the
negative log return on a �nancial asset price.2 We assume that the dynamics of X are
given by

Xt = �t + �tZt; (1)

where the innovations Zt are a strict white noise process (i.e. independent, identically
distributed) with zero mean, unit variance and marginal distribution function FZ(z). We
assume that �t and �t are measurable with respect to Gt�1, the information about the
return process available up to time t� 1.

Let FX(x) denote the marginal distribution of (Xt) and, for a horizon h 2 N, let
FXt+1+:::+Xt+hjGt(x) denote the predictive distribution of the return over the next h days,
given knowledge of returns up to and including day t. We are interested in estimating
quantiles in the tails of these distributions. For 0 < q < 1, an unconditional quantile is a
quantile of the marginal distribution denoted by

xq = inf fx 2 R : FX(x) � qg ;

and a conditional quantile is a quantile of the predictive distribution for the return over
the next h days denoted by

xtq(h) = inf
�
x 2 R : FXt+1+:::+Xt+hjGt(x) � q

	
:

We also consider an alternative measure of risk for the tail of a distribution known as the
expected shortfall. The unconditional expected shortfall is de�ned to be

Sq = E [X j X > xq] ;

2In the present paper we test our approach on return series generated by single assets only. However,
the method obviously also applies to the time series of pro�ts and losses generated by portfolios of �nancial
instruments and can therefore by used for the estimation of market risk measures in a portfolio context.
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2. Consider the residuals to be a realisation of a strict white noise process and use
extreme value theory (EVT) to model the tail of FZ(z). Use this EVT model to
estimate zq for q > 0:95.

We go into these stages in more detail in the next sections and illustrate them by means
of an example using daily negative log returns on the Standard & Poors index.

2.1 Estimating �t+1 and �t+1 using PML

For predictive purposes we �x a constant memory n so that at the end of day t our data
consist of the last n negative log returns (xt�n+1; : : : ; xt�1; xt). We consider these to be
a realisation from a AR(1){GARCH(1,1) process. Hence the conditional variance of the
mean-adjusted series �t = Xt � �t is given by

�2t = �0 + �1�
2
t�1 + ��2t�1; (4)

where �0 > 0, �1 > 0 and � > 0. The conditional mean is given by

�t = �Xt�1: (5)

This model is a special case of the general �rst order stochastic volatility process con-
sidered by Duan (1996), who uses a result by Brandt (1986) to give conditions for strict
stationarity. The mean-adjusted series (�t) is strictly stationary if

E
�
log
�
� + �1Z

2
t�1

��
< 0: (6)

By using Jensen's inequality and the convexity of � log(x) it is seen that a suÆcient
condition for (6) is that �+�1 < 1, which moreover ensures that the marginal distribution
FX(x) has a �nite second moment.

This model is �tted using the pseudo-maximum-likelihood (PML) method. This means
that the likelihood for a GARCH(1,1) model with normal innovations is maximized to
obtain parameter estimates �̂ = (�̂; b�0; b�1; �̂)T . Whilst this amounts to �tting a model
using a distributional assumption we do not necessarily believe, the PML method delivers
reasonable parameter estimates. In fact, it can be shown that the PML method yields a
consistent and asymptotically normal estimator; see for instance Chapter 4 of Gouri�eroux
(1997).

Estimates of the conditional mean and standard deviation series (�̂t�n+1; : : : ; �̂t) and
(�̂t�n+1; : : : ; �̂t) can be calculated recursively from (4) and (5) after substitution of sen-
sible starting values. In Figure 1 we show an arbitrary thousand day excerpt from our
dataset containing the stock market crash of October 1987; the estimated conditional
standard deviation derived from the GARCH �t is shown below the series.

Residuals are calculated both to check the adequacy of the GARCH modelling and to
use in Stage 2 of the method. They are calculated as

(zt�n+1; : : : ; zt) =

�
xt�n+1 � �̂t�n+1

�̂t�n+1
; : : : ;

xt � �̂t
�̂t

�
;

and should be iid if the �tted model is tenable. In Figure 2 we plot correlograms for
the raw data and their absolute values as well as for the residuals and absolute residuals.
While the raw data are clearly not iid, this assumption may be tenable for the residuals.3

If we are satis�ed with the �tted model, we end stage 1 by calculating estimates of
the conditional mean and variance for day t+ 1, which are the obvious 1{step forecasts

�̂t+1 = �̂xt;

�̂2t+1 = c�0 +c�1�̂2t + �̂�̂2t ;

where �̂t = xt � �̂t.

3We also ran some Ljung-Box tests in selected time periods and found no evidence against the iid{
hypothesis for the residuals.
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2.2 Estimating zq using EVT

We begin stage 2 by forming a QQ{Plot of the residuals against the normal distribution to
con�rm that an assumption of conditional normality is unrealistic, and that the innovation
process has fat tails or is leptokurtic { see Figure 3.

We then �x a high threshold u and we assume that excess residuals over this threshold
have a generalized Pareto distribution (GPD) with df

G�;�(y) =

(
1� (1 + �y=�)�1=� if � 6= 0;

1� exp(�y=�) if � = 0;

where � > 0, and the support is y � 0 when � � 0 and 0 � y � ��=� when � < 0.
This particular distributional choice is motivated by a limit result in EVT. Consider

a general df F and the corresponding excess distribution above the threshold u given by

Fu(y) = P fX � u � y j X > ug =
F (y + u)� F (u)

1� F (u)
;

for 0 � y < x0 � u, where x0 is the (�nite or in�nite) right endpoint of F . Balkema and
de Haan (1974) and Pickands (1975) showed for a large class of distributions F that it is
possible to �nd a positive measurable function �(u) such that

lim
u!x0

sup
0�y<x0�u

jFu(y)�G�;�(u)(y)j = 0: (7)

For more details consult Theorem 3.4.13 on page 165 of Embrechts, Kl�uppelberg, and
Mikosch (1997).

In the class of distributions for which this result holds are essentially all the common
continuous distributions of statistics,4 and these may be further subdivided into three
groups according to the value of the parameter � in the limiting GPD approximation to
the excess distribution. The case � > 0 corresponds to heavy-tailed distributions whose
tails decay like power functions, such as the Pareto, Student's t, Cauchy, Burr, loggamma
and Fr�echet distributions. The case � = 0 corresponds to distributions like the normal,
exponential, gamma and lognormal, whose tails essentially decay exponentially. The �nal
group of distributions are short-tailed distributions (� < 0) with a �nite right endpoint,
such as the uniform and beta distributions.

We assume the the tail of the underlying distribution begins at the threshold u. From
our sample of n points a random number N = Nu > 0 will exceed this threshold. If
we assume that the N excesses over the threshold are iid with exact GPD distribution,
Smith (1987) has shown that maximum likelihood estimates �̂ = �̂N and �̂ = �̂N of the
GPD parameters � and � are consistent and asymptotically normal as N !1, provided
� > �1=2. Under the weaker assumption that the excesses are iid from Fu(y) which is
only approximately GPD he also obtains asymptotic normality results for �̂ and �̂. By
letting u = un ! x0 and N = Nu !1 as n!1 he shows essentially that the procedure
is asymptotically unbiased provided that u ! x0 suÆciently fast. The necessary speed
depends on the rate of convergence in (7). In practical terms this means that our best
GPD estimator of the excess distribution is obtained by trading bias o� against variance.
We choose u high to reduce the chance of bias whilst keeping N large (i.e. u low) to control
the variance of the parameter estimates. The choice of u (or N) is the most important
implementation issue in EVT and we discuss this issue in the context of �nite samples
from typical return distributions in Section 2.3.

4More precisely, the class comprises all distributions in the maximum domain of attraction of an extreme
value distribution.
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Consider now the following equality for points x > u in the tail of F

1� F (x) = (1� F (u)) (1� Fu(x� u)) : (8)

If we estimate the �rst term on the right hand side of (8) using the random proportion of
the data in the tail N=n, and if we estimate the second term by approximating the excess
distribution with a generalized Pareto distribution �tted by maximum likelihood, we get
the tail estimator

[F (x) = 1�
N

n

�
1 + �̂

x� u

�̂

��1=�̂
;

for x > u. Smith (1987) also investigates the asymptotic relative error of this estimator
and gets a result of the form

N1=2

 
1�[F (x)

1� F (x)
� 1

!
d
! N(0; v2);

as u = un ! x0 and N = Nu ! 1, where the asymptotic unbiasedness again requires
that u! x0 suÆciently fast.

In practice we will actually modify the procedure slightly and �x the number of data
in the tail to be N = k where k � n. This e�ectively gives us a random threshold
at the (k + 1)th order statistic. Let z(1) � z(2) � : : : � z(n) represent the ordered
residuals. The generalized Pareto distribution with parameters � and � is �tted to the
data (z(1)�z(k+1); : : : ; z(k)�z(k+1)), the excess amounts over the threshold for all residuals
exceeding the threshold. The form of the tail estimator for FZ(z) is then

\FZ(z) = 1�
k

n

�
1 + �̂

z � z(k+1)

�̂

��1=�̂
: (9)

For q > 1� k=n we can invert this tail formula to get

bzq = czq;k = z(k+1) +
�̂

�̂

 �
1� q

k=n

���̂
� 1

!
; (10)

we use the czq;k notation when we want to emphasize the dependence of the estimator on
the choice of k and the simpler bzq notation otherwise.

In Table 1 we give threshold values and GPD parameter estimates for both tails of the
innovation distribution of the test data in the case that n = 1000 and k = 100; we discuss
this choice of k in Section 2.3. In Figure 4 we show the corresponding tail estimators
(9). We are principally interested in the left picture marked Losses which corresponds
to large positive residuals. The solid lines in both pictures correspond to the GPD tail
estimates and can be seen to model the residuals well. Also shown is a dashed line which
corresponds to the standard normal distribution and a dotted line which corresponds to
the estimated conditional t distribution (scaled to have variance 1) in a GARCH model
with t-innovations. The normal distribution clearly underestimates the extent of large
losses and also of the largest gains, which we would already expect from the QQ{plot.
The t-distribution, on the other hand, underestimates the losses and overestimates the
gains. This illustrates the drawbacks of using a symmetric distribution with data which
are asymmetric in the tails.

With more symmetric data the conditional t-distribution often works quite well and
it can, in fact, be viewed as a special case of our method. As already mentioned, it is an
example of a heavy-tailed distribution, i.e. a distribution whose limiting excess distribution
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Tail z(k+1) �̂ s.e. �̂ s.e.

Losses 1.215 0.224 (0.122) 0.568 (0.089)
Gains 1.120 -0.096 (0.090) 0.589 (0.079)

Table 1: Threshold values and maximum likelihood GPD parameter estimates used in the
construction of tail estimators for both tails of the innovation distribution of the test data.
Note that k = 100 in both cases. Standard errors (s.e.s) are calculated using a standard
likelihood approach based on the observed Fisher information matrix.

is GPD with � > 0. Gnedenko (1943) characterized all such distributions as having tails
of the form

1� F (x) = x�1=�L(x); (11)

where L(x) is a slowly varying function and � is the positive parameter of the limiting
GPD. 1=� is often referred to as the tail index of F . For the t-distribution with � degrees
of freedom the tail can be shown to satisfy

1� F (x) �
�(��2)=2

B(1=2; �=2)
x�� ; (12)

where B(a; b) denotes the beta function, so that this provides a very simple example of
a symmetric distribution in this class, and the value of � in the limiting GPD is the
reciprocal of the degrees of freedom (see McNeil and Saladin (1997)).

Fitting a GARCH model with t innovations can be thought of as estimating the � in
our GPD tail estimator by simpler means. Inspection of the form of the likelihood of the
t-distribution shows that the estimate of � will be sensitive mainly to large observations
so that it is not surprising that the method gives a reasonable �t in the tails although all
data are used in the estimation. Our method has, however, the advantage that we have
an explicit model for each tail. We estimate two parameters in each case, which gives a
better �t in general.

We also use the GPD tail estimator (9) to estimate the right tail of the negative
return distribution FX(x) by applying it directly to the raw return data xt�n+1; : : : ; xt;
in this way we calculate an unconditional quantile estimate x̂q using unconditional EVT.
We investigate whether this approach also provides reasonable estimates of xtq. It should
however be noted that the assumption of independent excesses over threshold is much less
satisfactory for the raw return data. The asymptotics of the GPD-based tail estimator
are therefore much more poorly understood if applied directly to the raw return data.

Even if the procedure can be shown to be asymmptotically justi�ed, in practice it is
likely to give much more unstable results when applied to non{iid, �nite sample data. Em-
brechts, Kl�uppelberg, and Mikosch (1997) provide a related example (see Figure 5.5.4. on
page 270); they construct a �rst order autoregressive AR(1) process driven by a sym-
metric, heavy-tailed, iid noise, so that both noise distribution and marginal distribution
of the process have the same tail index. They apply the Hill estimator (an alternative
EVT procedure described in Section 2.3) to simulated data from the process and also
to residuals obtained after �tting an AR(1) model to the raw data and �nd estimates of
the tail index to be much more accurate and stable for the residuals, although the Hill
estimator is theoretically consistent in both cases. This example supports the idea that
pre-whitening of data through �tting of a dynamic model may be a sensible prelude to
EVT analysis in practice.

9



2.3 Simulation study of threshold choice

To investigate the issue of threshold choice (i.e. choice of k) we perform a small simulation
study. We also use this study to compare the GPD approach to tail estimation with the
approach based on the Hill estimator and the approach based on the empirical distribution
function (historical simulation).

The Hill estimator (Hill 1975) is designed for data from heavy-tailed distributions
admitting the representation (11) with � > 0. The estimator for �, based on the k
exceedances of the (k + 1)th order statistic, is

�̂(H) = �̂
(H)
k = k�1

kX
j=1

log z(j) � log z(k+1);

and an associated quantile estimator is

bzq(H) = czq;(H)
k = z(k+1)

�
1� q

k=n

���̂(H)

; (13)

see Danielsson and de Vries (1997b) for details. The properties of these estimators have
been extensively investigated in the EVT literature; in particular, a number of recent
papers show consistency of the Hill estimator for dependent data (Resnick and St�aric�a
1995, Resnick and St�aric�a 1996) and develop bootstrap methods for optimal choice of the
threshold z(k+1)(Danielsson and de Vries 1997a).

In the simulation study we generate samples of size n = 1000 from Student's t-
distribution which, as we have observed, provides a rough approximation to the observed
distribution of model residuals. The size of sample corresponds to the window length
we use in applications of the two-step method. From (12) we know the tail index of the
t-distribution and quantiles are easily calculated. We calculate �̂k and czq;k (the maximum-
likelihood and GPD-based estimators of � and zq based on k threshold exceedances) as

well as �̂
(H)
k and czq;(H)

k for various values of k; for the quantile estimates we restrict our
attention to values of k such that k > 1000(1 � q), so that the target quantile is beyond
the threshold. Of interest are the mean squared errors (MSEs) and biases of these es-
timators, and the dependence of these errors on the choice of k. For each estimator we
estimate MSE and bias using Monte Carlo estimates based on 1000 independent samples.
For example, we estimate MSE(czq;k) by

[MSE(czq;k) = 1000X
j=1

�czq;(j)k � zq

�2
;

where czq;(j)k represents the quantile estimate obtained from the jth sample.
Although the Hill estimator is generally the most eÆcient estimator of � (it gives the

lowest MSE for sensibly chosen k) it does not provide the most eÆcient nor the most stable
quantile estimator. Our simulations suggest that the GPD method should be preferred
for estimating high quantiles.

An example is given in Figure 5. We plot the bias and MSE of estimators of the 99th
percentile against k, in the case that the degrees of freedom of the t{distribution is � = 4.
The Hill estimator is marked with a solid line, the GPD estimator is marked with a dashed
line and the empirical HS-estimate z(11) of the quantile is marked by a dotted line.

The Hill method has a negative bias for low values of k that becomes positive and
then grows rapidly with k; the GPD estimator has a positive bias that grows much more
slowly; the empirical estimate has a negative bias. The MSE reveals more about the
relative merits of the methods: the GPD estimator attains its lowest value corresponding
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to a k value of about 100 but, more importantly, the MSE is very robust to the choice of
k because of the slow growth of the bias. The Hill method performs well for k � 70 but
then deteriorates rapidly. The HS method is obviously less eÆcient than the two EVT
methods, which shows that EVT does indeed give more precise estimates of the 99th
percentile based on samples of size 1000 from the t-distribution.

For the 99th percentile both the GPD and Hill estimators are clearly useful, if used
correctly. In the case of GPD we must ensure that the variance of the estimator is kept
low by setting k suÆciently high, but as long as k is greater than about 50 the method is
robust; the issue of choosing an optimal threshold does not seem so critical for the GPD
method. For the Hill method it is more important because the eÆcient range for k is
smaller; it is important that the bias be kept under control by choosing a low k.

In this paper we only show results for the t-distribution with four degrees of freedom,
but further simulations suggest that the same qualitative conclusions hold for other values
of � and other heavy-tailed distributions. For estimating more distant quantiles we observe
that the GPD method appears to be more eÆcient than the Hill method and maintains its
relative stability with respect to choice of k. The greater complexity of the GPD quantile
estimator, which involves a second estimated scale parameter �̂ as well as the tail index
estimator �̂�1, seems to lead to better �nite sample performance.

2.4 Summary: Advantages of the GPD approach

We favour the GPD approach to tail estimation in this paper for a variety of reasons that
we list below.

� In �nite samples of the order of 1000 points from typical return distributions EVT
quantile estimators (whether maximum-likelihood and GPD-based or Hill-based) are
more eÆcient than the historical simulation method.

� The GPD-based quantile estimator is more stable (in terms of mean squared error)
with respect to choice of k than the Hill quantile estimator. In the present applica-
tion a k value of 100 seems reasonable, but we could equally choose to use k values
of 80 or 150.

� For high quantiles with q � 0:99 the GPD method is at least as eÆcient as the Hill
method.

� The GPD method allows e�ective estimates of expected shortfall to be constructed
as will be described in Section 4.

� The GPD method is applicable to light-tailed data (� = 0) or even short-tailed data
(� < 0), whereas the Hill method is designed speci�cally for the heavy-tailed case
(� > 0). There are periods when the conditional distribution of �nancial returns
appears light-tailed rather than heavy-tailed.

3 Backtesting

We backtest the method on �ve historical series of log returns: the Standard & Poors
index from January 1960 to June 1993, the DAX index from January 1973 to July 1996,
the BMW share price over the same period, the US dollar British pound exchange rate
from January 1980 to May 1996 and the price of gold from January 1980 to December
1997.

To backtest the method on a historical series x1; : : : xm, where m � n, we calculate
x̂tq on days t in the set T = fn; : : : ;m� 1g using a time window of n days each time.
In our implementation we have set n = 1000 so that we use somewhat less than the last
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four years of data for each prediction. In a long backtest it is less feasible to examine the
�tted model carefully every day and to choose a new value of k for the tail estimator each
time; for this reason we always set k = 100 in these backtests, a choice that is supported
by the simulation study of the previous section. This means e�ectively that the 90th
percentile of the innovation distribution is estimated by historical simulation, but that
higher percentiles are estimated using the GPD tail estimator. On each day t 2 T we �t a
new AR(1)-GARCH(1,1) model and determine a new GPD tail estimate. Figure 6 shows
part of the backtest for the DAX index. We have plotted the negative log returns for a
three year period commencing on the �rst of October 1987; superimposed on this plot
is the EVT conditional quantile estimate x̂t0:99 (dashed line) and the EVT unconditional
quantile estimate x̂0:99 (dotted line).

We compare x̂tq with xt+1 for q 2 f0:95; 0:99; 0:995g. A violation is said to occur
whenever xt+1 > x̂tq. The violations corresponding to the backtest in Figure 6 are shown
in Figure 7. We use di�erent plotting symbols to show violations of the conditional EVT,
conditional normal and unconditional EVT quantile estimates. In Figure 8 the portion of
Figure 7 relating to the crash of October 1987 has been enlarged.

S&P DAX BMW $/$ Gold
Length of Test 7414 5146 5146 3274 3413

0.95 Quantile
Expected 371 257 257 164 171
Conditional EVT 366 (0.81) 258 (0.97) 261 (0.82) 151 (0.32) 155 (0.22)
Conditional Normal 384 (0.49) 238 (0.22) 210 (0.00) 169 (0.69) 122 (0.00)
Conditional t 404 (0.08) 253 (0.80) 245 (0.44) 186 (0.08) 168 (0.84)
Unonditional EVT 402 (0.10) 266 (0.59) 251 (0.70) 156 (0.55) 131 (0.00)

0.99 Quantile
Expected 74 51 51 33 34
Conditional EVT 73 (0.91) 55 (0.62) 48 (0.67) 35 (0.72) 25 (0.12)
Conditional Normal 104 (0.00) 74 (0.00) 86 (0.00) 56 (0.00) 43 (0.14)
Conditional t 78 (0.68) 61 (0.18) 52 (0.94) 40 (0.22) 29 (0.39)
Unonditional EVT 86 (0.18) 59 (0.29) 55 (0.62) 35 (0.72) 25 (0.12)

0.995 Quantile
Expected 37 26 26 16 17
Conditional EVT 43 (0.36) 24 (0.77) 29 (0.55) 21 (0.26) 18 (0.90)
Conditional Normal 63 (0.00) 44 (0.00) 57 (0.00) 41 (0.00) 33 (0.00)
Conditional t 45 (0.22) 32 (0.23) 18 (0.14) 21 (0.26) 20 (0.54)
Unonditional EVT 50 (0.04) 36 (0.05) 31 (0.32) 21 (0.26) 11 (0.15)

Table 2: Backtesting Results: Theoretically expected number of violations and number
of violations obtained using our approach (conditional EVT), a GARCH-model with nor-
mally distributed innovations, a GARCH-model with Student t-innovations, and quantile
estimates obtained from unconditional EVT for various return series. p-values for a bino-
mial test are given in brackets.

It is possible to develop a binomial test of the success of these quantile estimation
methods based on the number of violations. If we assume the dynamics described in (1),
the indicator for a violation at time t 2 T is Bernoulli

It := 1fXt+1>xtqg
= 1fZt+1>zqg � Be(1� q):

Moreover, It and Is are independent for t; s 2 T and t 6= s, since Zt+1 and Zs+1 are
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independent. Therefore X
t2T

It � B (card(T ); 1 � q) ;

i.e. the total number of violations is binomially distributed under the model.
Under the null hypothesis that a method correctly estimates the conditional quantiles,

the empirical version of this statistic
P

t2T 1fxt+1>x̂tqg
is from the binomial distribution

B (card(T ); 1� q). We perform a two-sided binomial test of the null hypothesis against
the alternative that the method has a systematic estimation error and gives too few or too
many violations.5The corresponding binomial probabilities are given in Table 2 alongside
the numbers of violations for each method. A p-value less than or equal to 0.05 will be
interpreted as evidence against the null hypothesis.

In 11 out of 15 cases our approach is closest to the mark. On two occasions GARCH
with conditional t innovations is best and on one occasion GARCH with conditional normal
innovations is best. In one further case our approach and the conditional t approach are
joint best. On no occasion does our approach fail (lead to rejection of the null hypothesis),
whereas the conditional normal approach fails 11 times; unconditional EVT fails three
times. Figures 7 and 8 give some idea of how the latter two methods fail. The conditional
normal estimate of xt0:99 like the conditional EVT estimate responds to changing volatility
but tends to be violated rather more often, because it does not take into account the
leptokurtosis of the residuals. The unconditional EVT estimate cannot respond quickly
to changing volatility and tends to be violated several times in a row in stress periods.

4 Expected Shortfall

In two recent papers Artzner et. al (1997, 1998) have criticized quantile-based risk-
measures such as VaR as a measure of market risk on two grounds. First they show
that VaR is not necessarily subadditive, i.e. there are cases where a portfolio can be split
into sub-portfolios such that the sum of the VaR corresponding to the sub-portfolios is
smaller than the VaR of the total portfolio. They explain that this may cause problems,
if one bases a risk-management system of a �nancial institution on VaR-limits for indi-
vidual books. Moreover, VaR gives only an upper bound on the losses that occur with a
given frequency; VaR tells us nothing about the potential size of the loss given that a loss
exceeding this upper bound has occurred. The expected shortfall, as de�ned in Section 2,
is an alternative risk measure to the quantile which overcomes the theoretical de�ciencies
of the latter. In particular, this risk measure gives some information about the size of the
potential losses given that a loss bigger than VaR has occurred.

In this section we discuss methods for estimating the expected shortfall in our models.
Moreover, we develop an approach for backtesting our estimates. Not surprisingly, we
�nd that the estimates of expected shortfall are very sensitive to the choice of the model
for the tail of the return distribution. In particular, while the conditional 0.95 quantile
estimates derived under the GPD and normal assumptions typically do not di�er greatly,
we �nd that the same is not true of estimates of the expected shortfall at this quantile. It
is thus much more problematic to base estimates of the conditional expected shortfall at
even the 0.95 quantile on an assumption of conditional normality when there is evidence
that the residuals are heavy{tailed.

5See also Christo�ersen, Diebold, and Schuermann (1998) for related work on tests of data on VaR
violations.
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as x ! 1, from which it is clear that the expected shortfall to quantile ratio converges
to one as q ! 1.6 This can be compared with the limit in the GPD case; for � > 0 the
ratio converges to (1� �)�1 > 1 as q ! 1; for � � 0 the ratio converges to 1.

In Table 3 we give values for E [Z j Z > zq] =zq in the GPD (� > 0) and normal cases.
For the value of the threshold u and the GPD parameters � and � we have taken the values
obtained from our analysis of the positive residuals from our test data (see Table 1). The
table shows that when the innovation distribution is heavy{tailed the expected shortfall
to quantile ratio is considerably larger than would be expected under an assumption of
normality. It also shows that, at the kind of probability levels that interest us, the ratio is
considerably larger than its asymptotic value so that scaling quantiles with the asymptotic
ratio would tend to lead to an underestimation of expected shortfall.

q 0.95 0.99 0.995 q ! 1

GPD 1.52 1.42 1.39 1.29
Normal 1.25 1.15 1.12 1.00

Table 3: Values of the expected shortfall to quantile ratio for various quantiles of the
noise distribution under two di�erent distributional assumptions. In the �rst row we
assume that excesses over the threshold u = 1:215 have an exact GPD distribution with
parameters � = 0:224 and � = 0:568 (see Table 1). In the second row we assume that the
innovation distribution is standard normal.

4.3 Backtesting

It is possible to develop a test along similar lines to the binomial test of quantile violation
to verify that the GPD{based method gives much better estimates of the conditional
expected shortfall than the normal method for our datasets. This time we are interested
in the size of the discrepancy between Xt+1 and Stq in the event of quantile violation. We
de�ne residuals

Rt+1 =
Xt+1 � Stq

�t+1
= Zt+1 �E [Z j Z > zq] :

It is clear that under our model (1) these residuals are iid and that, conditional on�
Xt+1 > xtq

	
or equivalently fZt+1 > zqg, they have expected value zero.

Suppose we again backtest on days in the set T . We can form empirical versions of
these residuals on days when violation occurs, i.e. days on which xt+1 > xtq. We will call
these residuals exceedance residuals and denote them by

�
rt+1 : t 2 T; xt+1 > x̂tq

	
; where rt+1 =

xt+1 � Ŝtq
�̂t+1

;

where Ŝtq is an estimate of the shortfall. Under the null hypothesis that we correctly
estimate the dynamics of the process (�t+1 and �t+1) and the �rst moment of the truncated
innovation distribution (E[Z j Z > zq]), these residuals should behave like an iid sample
with mean zero. In Figure 9 we show these exceedance residuals for the BMW series and
q = 0:95. Clearly for residuals calculated under an assumption of conditional normality
the null hypothesis seems doubtful.

To test the hypothesis of mean zero we use a bootstrap test that makes no assumption
about the underlying distribution of the residuals (see page 224 of Efron and Tibshirani

6A useful approximation to Mill' ratio for x values in the range [��1(0:95);��1(0:995)] is �(x) �

x
�
1 + (

p
1 + 8=x2 � 1)=4

�
; see Johnson and Kotz (1970) for details.
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(1993)). We conduct a one-sided test against the alternative hypothesis that the resid-
uals have mean greater than zero or, equivalently, that conditional expected shortfall is
systematically underestimated, since this is the likely direction of failure. The residuals
derived under an assumption of normality always fail the test with p{values in all cases
much less than 0.01; we conclude that an assumption of conditional normality is useless
for the purposes of calculating expected shortfall.

On the other hand, the GPD{based residuals are much more plausibly mean zero. In
the following Table 4 we give p-values for the test applied to the GPD residuals for all �ve
test series and various values of q. The most problematic series are the two indices (S&P
and DAX); for the former the null hypothesis is rejected (at the 5% level) for q = 0:99 and
q = 0:995; for the latter the null hypothesis is rejected for q = 0:995. The null hypothesis
is also rejected for the Gold price returns series and q = 0:99. In all other cases it is not
rejected and for the BMW and USD-GBP series the hypothesis of zero-mean seems quite
strongly supported.

q 0.95 0.99 0.995

S & P 0.06 0.01 0.01
DAX 0.09 0.06 0.01
BMW 0.36 0.08 0.11
USD.GBP 0.28 0.26 0.62
Gold 0.24 0.04 0.12

Table 4: p-values for a one-sided bootstrap test of the hypothesis that the exceedance
residuals in the GPD case have mean zero against the alternative that the mean is greater
than zero.

5 Multiple Day Returns

In this section we consider estimates of xtq(h) for h > 1. Among other reasons, this is
of interest, if we want to obtain an estimate of the 10-day VaR (as required by the BIS-
rule) from a model �tted to daily data. For GARCH-models FXt+1+:::+Xt+hjGt(x) is not
known analytically even for a known innovation distribution, so we adopt a simulation
approach to obtaining these estimates as follows. Working with the last n negative log
returns we �t as before the AR(1){GARCH(1,1) model and this time we estimate both
tails of the innovation distribution FZ(z). �̂

(1) and �̂(1) are used to denote the estimated
parameters of the GPD excess distribution for the positive tail and �̂(2) and �̂(2) denote
the corresponding parameters for the negative tail.

We simulate iid noise from the innovation distribution by a combination of bootstrap
and GPD simulation according to the following algorithm which was also proposed inde-
pendently by Danielsson and de Vries (1997c).

1. Randomly select a residual from the sample of n residuals.

2. If the residual exceeds z(k+1) sample a GPD(�̂
(1),�̂(1)) distributed excess y1 from the

right tail and return z(k+1) + y1.

3. If the residual is less than z(n�k) sample a GPD(�̂
(2),�̂(2)) distributed excess y2 from

the left tail and return z(n�k) � y2.

4. Otherwise return the residual itself.

5. Replace residual in sample and repeat.
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This gives points from the distribution

\FZ(z) =

8>>>><>>>>:
k
n

�
1 + �̂(2)

jz�z(n�k)j

�̂(2)

��1=�̂(2)
if z < z(n�k)

1
n

Pn
i=1 1fzi�zg if z(n�k) � z � z(k+1)

1� k
n

�
1 + �̂(1)

z�z(k+1)

�̂(1)

��1=�̂(1)
if z > z(k+1);

which approximates FZ(z).
Using this composite estimate of the noise distribution and the �tted GARCH model

we can simulate future paths (xt+1; : : : ; xt+h) and calculate the corresponding cumula-
tive sums which are simulated iid observations from our estimate for the distribution
FXt+1+:::+Xt+hjGt(x). In our implementation we choose to simulate 1000 paths and to con-
struct 1000 iid observations of the conditional h-day return. To increase precision we then
apply a second round of EVT by setting a threshold at the 101st order statistic of these
data and calculating GPD-based estimates of xt0:95(h) and xt0:99(h). In principle it would
also be possible to calculate estimates of St0:95(h) and St0:99(h) in this way, although we
do not go this far.

S&P DAX BMW $/$ Gold
h = 5; length of test 7409 5141 5141 3270 3409

0.95 Quantile
Expected 371 257 257 164 170
Conditional EVT (h-day) 380 247 231 185 156
Square-root-of-time 581 315 322 199 160

0.99 Quantile
Expected 74 51 51 33 34
Conditional EVT (h-day) 81 46 57 44 38
Square-root-of-time 176 71 65 42 27

h = 10; length of test 7405 5136 5136 3265 3404

0.95 Quantile
Expected 370 257 257 163 170
Conditional EVT (h-day) 403 249 231 170 147
Square-root-of-time 623 318 315 196 163

0.99 Quantile
Expected 74 51 51 33 34
Conditional EVT (h-day) 85 48 53 46 34
Square-root-of-time 206 83 70 42 25

Table 5: Backtesting Results: Theoretically expected number of violations and number
of violations obtained using our approach (Monte Carlo simulation from the k-day condi-
tional distribution) and square-root-of-time scaling of 1-day estimates.

For horizons of h = 5 and h = 10 days backtesting results are collected in Table 5
for the same datasets used in Table 2. We compare the Monte-Carlo method proposed
above, which we again label conditional EVT, with the approach where the conditional
1-day EVT estimates are simply scaled with the square-root of the horizon h. For a
given historical series x1; : : : ; xm, with m � n, we calculate x̂tq(h) on days t in the set
T = fn; : : : ;m � hg and compare each estimate with xt+1 + : : : + xt+h. Under the null
hypothesis of no systematic estimation error each comparison is a realization of a Bernoulli
event with failure probability 1�q, but we have a series of dependent comparisons because
we use overlapping k-day returns. It is thus diÆcult to construct formal tests of violation
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counts, as we did in the case of 1-day horizons. For the multiple day backtests we simply
provide qualitative comparisons of expected and observed numbers of violations for the
two methods.

In 16 out of 20 backtests the Monte Carlo method is closer to the expected number
of violations and in all cases it performs reasonably well. In contrast, square-root-of-time
seems to severely underestimate the relevant quantiles for the BMW stock returns and
the two stock indices. Its performance is somewhat better for the dollar-sterling exchange
rate and the price of gold.

We are not aware of a theoretical justi�cation for a universal power law scaling rela-
tionship of the form xtq(h)=x

t
q � h� for conditional quantiles. However, if such a rule is to

be used, our results suggest that the exponent � should be greater than a half, certainly
for stock market return series. In this context see Diebold, Schuermann, Hickmann, and
Inoue (1998), who also argue against square-root-of-time scaling. Our results also cast
doubt on the usefulness for conditional quantiles of a scaling law proposed by Danielsson
and de Vries (1997c) where the scaling exponent is �, the reciprocal of the tail index of the
marginal distribution of the stationary time series, which typically takes values around
0.25.

6 Conclusion

The present paper is concerned with tail estimation for �nancial return series and, in
particular, the estimation of measures of market risk such as value at risk (VaR) or
the expected shortfall. We �t GARCH{models to return data using pseudo maximum
likelihood and use a GPD-approximation suggested by extreme value theory to model the
tail of the distribution of the innovations. This approach is compared to various other
methods for tail estimation for �nancial data. Our main �ndings can be summarized as
follows.

� We �nd that a conditional approach that models the conditional distribution of asset
returns against the current volatility background is better suited for VaR estimation
than an unconditional approach that tries to estimate the marginal distribution of
the process generating the returns. The conditional approach is vindicated by the
very satisfying overall performance of our method in various backtesting experi-
ments.

� The distribution of the residuals is often found to be leptokurtic. As an \ad-hoc
approach" the innovations can be modeled by a t-distribution where the degree-of-
freedom parameter is estimated with Maximum Likelihood. This approach works
quite well for return series with symmetric tails but fails when the tails are asym-
metric. We �nd the GPD-approximation to be preferable, because it can deal with
asymmetries in the tails. Moreover, this method is based on a sound theoretical
theory.

� We advocate the expected shortfall as an alternative risk measure with good theo-
retical properties. This risk measure is easy to estimate in our model. A comparison
of estimates for the expected shortfall using our approach and a standard GARCH-
model with normal innovations shows again that the innovation distribution should
be modelled by a fat-tailed distribution, preferably using EVT.

� We �nd that square-root-of-time scaling of one-day VaR estimates to obtain VaR
estimates for longer time horizons of 5 or 10 days does not perform well in practice,
particularly for stock market returns. In contrast we propose a Monte Carlo method
based on our �tted models that gives more reasonable results.
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In practice, VaR estimation is often concerned with multivariate return series. We are
optimistic that our \two-stage-method" can be extended to multivariate series. However,
a detailed analysis of this question is left for future research.
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Figure 1: 1000 day excerpt from series of negative log returns on Standard & Poors index
containing crash of 1987; lower plot shows estimate of the conditional standard deviation
derived from PML �tting of AR(1){GARCH(1,1) model
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Figure 2: Correlograms for the raw data and their absolute values as well as for the
residuals and absolute residuals. While the raw data are clearly not iid, this assumption
may be tenable for the residuals.
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Figure 3: Quantile-quantile plot of residuals against the normal distribution shows resid-
uals to be leptokurtotic.
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Figure 6: Three years of the DAX backtest beginning in October 1987 and showing the
EVT conditional quantile estimate x̂t0:99 (dashed line) and the EVT unconditional quantile
estimate x̂0:99 (dotted line) superimposed on the negative log returns. The conditional
EVT estimate clearly responds quickly to the high volatility around the 1987 stock market
crash.
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Figure 7: Violations of x̂t0:99 and x̂0:99 corresponding to the backtest in Figure 6. Tri-
angles, circles and squares denote violations of the conditional normal, conditional EVT
and unconditional EVT estimates respectively. The conditional normal estimate like the
conditional EVT estimate responds to changing volatility but tends to be violated rather
more often, because it does not take into account the leptokurtosis of the residuals. The
unconditional EVT estimate cannot respond quickly to changing volatility and tends to
be violated several times in a row in stress periods.
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Figure 8: Enlarged section of Figure 7 corresponding to the crash of 1987. Triangles,
circles and squares denote violations of the conditional normal, conditional EVT and
unconditional EVT estimates respectively. The dotted line shows the path of the uncon-
ditional EVT estimate, the dashed line shows the path of the conditional EVT estimate
and the long dashed line shows the conditional normal estimate.
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Figure 9: Exceedance residuals for the BMW series and q = 0:95. Under the null hy-
pothesis that the dynamics in (1) and the tail of the innovation distribution are correctly
estimated, these should have mean zero. The right graph shows clear evidence against the
conditional normality assumption; the left graph shows the assumption of a conditional
GPD tail is more reasonable. Note that there are only 210 normal residuals as opposed
to 261 GPD residuals; refer to Table 2 to see that conditional normality overestimates the
conditional quantile xt0:95 for the BMW data.
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