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Abstract

We consider the modelling of dependent defaults in large credit portfolios using la-
tent variable models (the approach that underlies KMV and CreditMetrics) and mixture
models (the approach underlying CreditRisk+). We explore the role of copulas in the
latent variable framework and show that for given default probabilities of individual
obligors the distribution of the number of defaults in the portfolio is completely de-
termined by the copula of the latent variables. We present results from a simulation
study showing that, even for �xed asset correlations, assumptions concerning the latent
variable copula can have a profound e�ect on the distribution of credit losses. In the
mixture models defaults are conditionally independent given a set of common economic
factors a�ecting all obligors and we explore the role of the mixing distribution of the
factors in these models. In homogeneous, one-factor mixture models we �nd that the
tail of the mixing distribution essentially determines the tail of the overall credit loss
distribution. We discuss the relationship between latent variable models and mixture
models and provide general conditions under which these models can be mapped into
each other. Our contribution can be viewed as an analysis of the model risk associated
with the modelling of dependence between individual default events.

J.E.L. Subject Classi�cation: G31, G11, C15

Keywords: Portfolio Credit Risk Models, Model Risk, Dependence Mod-

elling, Copulas, Mixture Models

1 Introduction

Introduction to credit-risk paper The development and analysis of quantitative models for
credit losses in large lending portfolios has recently become a focus of attention for practi-
tioners, regulators and academics. These models purport to capture the loss potential due
to defaulting counterparties on the portfolio level; they are intended to be used for the mea-
surement of the overall risk exposure in a large loan book, the active management of credit
portfolios under risk-return considerations, or the pricing of credit insurance. Moreover,
given improved availability of data on credit losses, re�ned versions of these models might
also be used for the determination of regulatory capital for credit risk, much as internal
models are nowadays used for capital adequacy purposes in market risk management.

�We wish to thank Dirk Tasche, Mark Nyfeler, Filip Lindskog, Uwe Schmock and Hans B�uhlmann for

helpful discussions.
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A detailed description of the most popular credit risk models is given in Crouhy, Galai,
and Mark (2000). The models currently in use can be divided into two classes. The
models proposed by the KMV corporation (KMV-Corporation 1997) or the RiskMetrics
group (RiskMetrics-Group 1997) are extensions of the �rm-value model of Merton (1974).
In these models, which are often termed latent variable models, default occurs if a latent
variable, often interpreted as the value of the obligor's assets, falls below some threshold,
often interpreted as the value of the obligor's liabilities. Dependence between defaults is
caused by dependence between the latent variables. CreditRisk+, developed by Credit
Suisse Financial Products (Credit-Suisse-Financial-Products 1997), is, on the other hand, a
typical actuarial model. In this model the default probability of a company is assumed to
depend on a set of economic factors; given these factors, defaults of the individual obligors
are conditionally independent. The common factors causes defaults to be unconditionally

dependent. In the statistics literature, such as Joe (1997), these models are referred to as
mixture models.

Most of the previous research on credit risk concentrates on the modelling of individual
defaults and the pricing of credit derivatives. In particular, researchers have developed
sophisticated �rm-value models extending the work of Merton (1974) and reduced form
models for default of individual �rms; see for instance DuÆe (2000) for an overview. While
these models can be extended to incorporate more than one counterparty { see for instance
DuÆe (1998) { portfolio considerations are not the main focus of this line of research.
However, in the management of large, balanced, loan portfolios, the main risk for the lender
is the occurrence of disproportionately many joint defaults of di�erent counterparties over
a �xed time horizon { in fact this is what might be termed \extreme credit risk" in this
context.

A good model for the dependence of di�erent obligors is essential to capture this type of
extreme credit risk. In the present paper we consider the modelling of dependent defaults
using recent conceptual insights on modelling dependence in risk management (see Em-
brechts, McNeil, and Straumann (2001)). In particular, the copula concept and the notion
of extremal dependence of risk factors play a pivotal role in our analysis. Our �rst result
clari�es the role of copulas in latent variable models. We show that for given default proba-
bilities of individual �rms the joint distribution of several defaults is completely determined
by the copula of the latent variables. In this context it is easily seen that both the KMV and
CreditMetrics are based on a Gaussian copula, as was observed independently by Li (1999).
For multivariate-normally distributed risk factors (here the asset values of the di�erent com-
panies) the occurrence of many joint large movements of the risk factors is a rare event,
since multivariate-normally distributed random variables are asymptotically independent.
This casts some doubt on whether latent variable models based on a Gaussian copula are
necessarily the best choice for modelling dependent defaults. To study this issue we replace
the Gaussian copula by the copula of multivariate normal mean-variance mixtures such as
the multivariate t or the multivariate hyperbolic distribution. We perform a simulation
study which shows that this can have a drastic impact on the tail of the distribution of
credit losses. It is well known that multivariate normal variance mixtures inherit the corre-
lation matrix from the multivariate normal random vector used to construct them. Hence
this shows that a proper �tting of the correlation matrix of the asset returns alone may not
be suÆcient to capture extreme credit risk. A short non-technical summary of this result
can be found in Frey, McNeil, and Nyfeler (2001).

We go on to consider the modelling of dependent defaults in mixture models. We
show that in this class of models the occurrence of extreme credit risk in large portfolios
is closely related to the tail (or the moments) of the mixing distribution. This provides
a theoretical underpinning for simulation results from Gordy (2000). We use simulations
to compare the credit loss distribution for several popular mixing distributions, assuming
that the �rst two moments of the mixing distribution, or equivalently default probability
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and default correlation, have been �xed. We also characterize analytically the worst-case
mixing-distribution when the �rst two moments of the mixing distribution are given.

Moreover, we study the relationship between mixture models and latent variable mod-
els. We give conditions under which latent variable models and mixture models can be
mapped into each other. Our results contain the results of Gordy (2000) on the relationship
between the CreditMetrics and CreditRisk+ models as a special case. Results on the con-
nectios between the model types are of theoretical interest, as they help to clarify structural
similarities and di�erences between the models. Moreover, they are of practical relevance,
as they allow us to use simple simulation techniques for Bernoulli mixtures in the context
of latent variable models.

Finally, we discuss a new estimator for joint default probabilities (moments of the mixing
distribution) in exchangeable mixture models; these estimates are often very useful for
calibrating models to historical default data from homogeneous obligor groups.

2 Models for Loan Portfolios

Consider a portfolio of m obligors and �x some time horizon T . For 1 � i � m, let the
random variable (rv) Si be a state indicator for obligor i at time T . Assume that Si takes
integer values in the set f0; 1; : : : ; ng representing for instance rating classes; we interpret
the value 0 as default and non-zero values represent states of increasing creditworthiness.
At time t = 0 obligors are assumed to be in some non-default state.

Often we will concentrate on the binary outcomes of default and non-default and ignore
the �ner categorization of non-defaulted companies. In this case we write Yi for the default
indicator variables; Yi = 1 () Si = 0 and Yi = 0 () Si > 0. The random vector
Y = (Y1; : : : ; Ym)

0 is a vector of default indicators for the portfolio and

p(y) = P (Y1 = y1; : : : ; Ym = ym); y 2 f0; 1gm;

is its joint probability function; the marginal default probabilities will be denoted by pi =
P (Yi = 1); i = 1; : : : ;m.

We count the number of defaulted obligors at time t = T with the random variable
M :=

Pm
i=1 Yi. In the event of default the actual loss may also be modelled as a random

quantity Ei, known as the loss given default. In practice this is assumed to be a random
proportion of some known deterministic exposure. We will denote the overall loss by L :=Pm

i=1EiYi and make further assumptions about the Ei's as and when we need them.

2.1 Exchangeable Models

To simplify the analysis we will often assume that the state indicator S and thus the default
indicator Y is exchangeable. This seems the correct way to mathematically formalise the
notion of homogeneous groups that is used in practice. Recall that a random vector S is
called exchangeable if

(S1; : : : ; Sm)
d
= (S�(1); : : : ; S�(m));

for any permutation (�(1); : : : ;�(m)) of (1; : : : ;m). This implies in particular that for
any k 2 f1; : : : ;m � 1g all of the

�
m
k

�
possible k-dimensional marginal distributions of

S are identical. In this situation we introduce the following simple notation for default
probabilities and joint default probabilities.

�k := P (Yi1 = 1; : : : ; Yik = 1); fi1; : : : ; ikg � f1; : : : ;mg; 1 � k � m;

� := �1 = P (Yi = 1); i 2 f1; : : : ;mg:
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Thus �k, the kth order (joint) default probability, is the probability that an arbitrarily se-
lected subgroup of k companies defaults in [0; T ]. When default indicators are exchangeable
we can calculate easily that

E(Yi) = E(Y 2
i ) = P (Yi = 1) = �; 8i;

E(YiYj) = P (Yi = 1; Yj = 1) = �2; i 6= j;

cov(Yi; Yj) = �2 � �2; i 6= j;

�(Yi; Yj) = �Y :=
�2 � �2

� � �2
; i 6= j: (1)

In particular, the correlation between default indicators is a simple function of the �rst and
second order default probabilities.

It is important to distinguish �k from P (M = k). The distribution of M can however
be calculated in terms of the �k's in the following way.

P (M = k) =

�
m

k

�
P (Y1 = 1; : : : ; Yk = 1; Yk+1 = 0; : : : ; Ym = 0)

=

�
m

k

� X
S:f1;:::;kg�S�f1;:::;mg

(�1)jSj�k�jSj

=
m�kX
i=0

(�1)i m!

i!k!(m� k � i)!
�k+i:

Existing approaches to modelling the distribution of the random vector S or Y belong
essentially to two model classes - latent variable models and Bernoulli-mixture models. In
the following sections we discuss each of these model types and explore the links between
them.

3 Latent Variables Models

De�nition 3.1. Let X = (X1; : : : ;Xm)
0 be an m-dimensional random vector with contin-

uous marginal distribution functions (df) Fi(x) = P (Xi � x). For i 2 f1; : : : ;mg let

�1 = Di
�1 < Di

0 < � � � < Di
n =1

be a sequence of cut-o� levels. Set

Si = j () Xi 2 (Di
j�1;D

i
j ] j 2 f0; : : : ; ng; i 2 f1; : : : ;mg:

Then
�
Xi; (D

i
j)�1�j�n

�
1�i�m

is a latent variable model for the state vector S = (S1; : : : ; Sm)
0.

Xi and D
i
0 are often interpreted as the values of the assets i and liabilities respectively

for an obligor i at time T ; in this interpretation default (corresponding to the event Si = 0)
occurs if the value of a company's assets at T is below the value of its liabilities at time T .
This modelling of default goes back to Merton (1974) and popular examples incorporating
this type of modelling are presented below. Li (1999) works with another interpretation of
the random vector X and takes Xi to be the time-to-default or survival time of company i;
in his model company i defaults if Xi < T .

3.1 Industry examples: CreditMetrics and KMV

Structurally these models are quite similar; they di�er with respect to the interpretation and
calibration of the components of the model. In both models the latent vector X is assumed
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to have a multivariate normal distribution and Xi is interpreted as a change in asset value
for obligor i over the time horizon of interest; Di

0 is chosen so that the probability of default
for company i is the same as the historically observed default rate for companies of a similar
credit quality. In CreditMetrics the classi�cation of companies into groups of similar credit
quality is generally based on an external rating system, such as that of Moodys or Standard
& Poors. In KMV a distance-to-default is calculated for every company and companies
with similar distances to default are grouped together. In both models the calibration of
the correlation matrix is achieved by the use of a factor model relating changes to the latent
variables to sytematic changes in a small number of underlying factors.

3.2 Latent variables and copulas

It is possible to set up di�erent latent variable models which lead to the same multivari-
ate distribution for S; in particular, the distribution of S remains invariant under strictly
increasing simultaneous transformation of the marginals Xi and the threshold values Di

j .
This prompts the idea of equivalence of latent variable models.

De�nition 3.2. Let
�
Xi; (D

i
j)�1�j�n

�
1�i�m

and
� eXi; ( eDi

j)�1�j�n

�
1�i�m

be two latent

variable models with state vectors S and eS. The models are equivalent if S d
= eS.

We now give a criterion for equivalence of two latent variable models in terms of the
marginal distributions of the state vector S and the copula of X. For more information on
copulas we refer to Appendix A and to Embrechts, McNeil, and Straumann (2001).

Proposition 3.3. Let
�
Xi; (D

i
j)�1�j�n

�
1�i�m

and
� eXi; ( eDi

j)�1�j�n

�
1�i�m

be a pair of

latent variable models with state vectors S and eS respectively. The models are equivalent if

1. The marginal distributions of the random vectors S and eS coincide, i.e.

P
�
Xi � Di

j

�
= P

� eXi � eDi
j

�
; j 2 f0; : : : ; ng; i 2 f1; : : : ;mg;

2. X and eX have the same copula.

Proof. For notational simplicity consider the case m = 2. Denote by C the copula of X and
recall the following identity (see (26) in Appendix A for more details).

P (X1 � x1;X2 � x2) = C(P (X1 � x1); P (X2 � x2)); x1; x2 2 R:

Write ui;j := P
�
Xi � Di

j

�
= P

� eXi � eDi
j

�
; j 2 f0; : : : ; ng; i = 1; 2. Hence we get

P (S1 = j1; S2 = j2) = P
�
X1 2

�
D1
j1�1;D

1
j1

�
;X2 2

�
D2
j2�1;D

2
j2

��
= P

�
X1 � D1

j1
;X2 � D2

j2

�� P
�
X1 � D1

j1�1;X2 � D2
j2

�
� P

�
X1 � D1

j1
;X2 � D2

j2�1

�
+ P

�
X1 � D1

j1�1;X2 � D2
j2�1

�
= C (u1;j1 ; u2;j2)� C (u1;j1�1; u2;j2)� C (u1;j1 ; u2;j2�1) + C (u1;j1�1; u2;j2�1)

= : : : = P (eS1 = j1; eS2 = j2) :

For the case m > 2 we recall a useful identity. For all a;b 2 Rm with ai � bi; i = 1; : : : ;m

P (a1 � X1 � b1; : : : ; am � Xm � bm) =
2X

i1=1

� � �
2X

im=1

(�1)i1+���+imF (x1;i1 ; : : : ; xm;im);

where F denotes the df of X, xi;1 = ai and xi;2 = bi.
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Remark 3.4. The converse of the result is not generally true. If two latent variable models
are equivalent then X and eX do not necessarily have the same copula.

This result underlines the structural equivalence of the CreditMetrics and KMV mod-
els. By assuming multivariate normality of the latent vectors both models work with the
Gaussian copula. Moreover the model of Li (1999) can also be seen as equivalent to both
CreditMetrics and KMV since the exponentially distributed survival times in this model are
joined together by a Gaussian copula to form a multivariate distribution with exponential
margins. There is no reason why we have to work with a Gaussian copula. In fact, the
simulations in Section 6 show that the choice of copula may be very critical to the tail of the
overall loss distribution, particularly when we consider relatively large portfolios of credit
risks.

We now give a theoretical explanation why the copula of X is of relevance for the
lower tail of the loss distribution. For simplicity we restrict ourselves to a model with only
two states (default and non-default). Consider a subgroup of k companies fi1; : : : ; ikg �
f1; : : : ;mg, with individual default probabilities pi1 ; : : : ; pik . Then

P (Yi1 = 1; : : : ; Yik = 1) = P
�
Xi1 � Di1

0 ; : : : ;Xik � Dik
0

�
= Ci1;:::;ik (pi1 ; : : : ; pik) ; (2)

where Ci1;:::;ik denotes a k-dimensional margin of C. If X has an exchangeable copula
(i.e. the copula of an exchangeable uniform random vector) and if all individual default
probabilities are equal to some constant �, Y is exchangeable and (2) reduces to the useful
formula

�k = C1;:::;k(�; : : : ; �| {z }
k times

) 1 � k � m: (3)

It is obvious from (2) and (3) that joint default probabilities for groups of obligors depend
critically on the nature of the copula of the latent variables. Since individual default proba-
bilities are typically small, copulas which have a more pronounced tendency to produce small
values in several margins simultaneously than the Gaussian copula are of particular interest
here, as they will lead to more joint defaults and hence to an increased likelihood of large
aggregate losses. Such copulas are said to exhibit lower tail dependence; see Appendix A
for a formal de�nition.

3.3 Latent variable models with non-Gaussian dependence structure

In light of the preceeding discussion it is natural to generalize the existing credit risk mod-
els by replacing the Gaussian copula with an alternative copula which exhibits lower tail
dependence. There are various methods of constructing general m-dimensional copulas and
useful references are Joe (1997), Nelsen (1999) and Lindskog (2000).

In this paper we concentrate on the copulas that are implicit when we assume multi-
variate normal (variance) mixture distributions for the latent variables. Our main example
is the multivariate t-distribution. In contrast to the Gaussian copula, the t-copula has been
shown to possess tail dependence in both tails; see Embrechts, McNeil, and Straumann
(2001). Moreover, multivariate normal mixtures like the multivariate t or the generalized
hyperbolic distribution are popular alternative models for �nancial returns and it is natural
to investigate what happens when we use them in latent variable models for default and
migration. A more formal discussion of this class of models is given in Section 5.2 below.

As an alternative we could use parametric copulas in closed-form. An example is pro-
vided by the class of so-called Archimedian copulas. The copulas in this class su�er from
the de�ciency that they are not rich in parameters and cannot model a fully 
exible de-
pendence between the latent variables. They can, however, model exchangeable or partially
exchangeable random vectors, which may be suÆcient for some latent variable models. The
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Clayton copula provides an example with lower tail dependence. See Section 5.3 for an
example.

4 Mixture Models

In a mixture model the default probability of an obligor is assumed to depend on a (typically
small) set of common economic factors such as macroeconomic variables; given the default
probabilities defaults of di�erent obligors are independent. Dependence between defaults
hence stems from the dependence of the default-probabilities on a set of common factors.

De�nition 4.1 (Bernoulli Mixture Model). Given some p < m and a p-dimensional
random vector 	 = (	1; : : : ;	p), the random vector Y = (Y1; : : : ; Ym)

0 follows a Bernoulli
mixture model with factor vector 	, if there are functions Qi : R

p ! [0; 1], 1 � i � m, such
that conditional on 	 the default indicator Y is a vector of independent Bernoulli random
variables with P (Yi = 1j	) = Qi(	).

Since default is a rare event we also explore the idea of approximating Bernoulli random
variables with Poisson random variables in Poisson mixture models. Here a company is
allowed to default more than once, albeit this is typically a low-probability event; the state
indicator eYi 2 f0; 1; 2; : : :g gives the number of defaults of company i. The formal de�nition
parallels the de�nition of a Bernoulli-mixture model.

De�nition 4.2 (Poisson Mixture Model). Given p and 	 as in De�nition 4.1, the
random vector eY = (eY1; : : : ; eYm)0 follows a Poisson mixture model with factors 	, if there
are functions �i : R

p ! (0;1), 1 � i � m, such that conditional on 	 the random vectoreY is a vector of independent Poisson(�i(	))-distributed random variables.

Suppose that eY has a Poisson mixture model. If we de�ne the indicators Yi = 1
feYi�1g

then Y follows a Bernoulli mixture model and the mixing variables are related by Qi(�) =
1 � exp(��i(�)). For small default-intensities �i the random variable fM =

Pm
i=1

eYi is
approximately equal to the number of defaulting companies. Note that fM is conditionally
Poisson given 	 with parameter �� :=

Pm
i=1 �i(	) so that

P (fM = k j 	) = e�
��
��k

k!
: (4)

We begin our analysis of mixture models with the simplest case of exchangeable mixture
models; more general models are considered in Section 4.3.

4.1 Exchangeable Mixture Models

A Bernoulli-mixture model will be termed exchangeable if the functions Qi are all identical;
in that case the random vector Y is exchangeable. Exchangeable Poisson-mixture models
are de�ned analoguously; here �i(�) = � for some function � with range (0;1) and all
1 � i � m.

We begin our analysis with exchangeable Bernoulli mixture models. It is convenient to
introduce the rv Q := Q1(	). We get for y = (y1; : : : ; ym)

0 in f0; 1gm

P (Y = y j 	) = Q1(	)
Pm

i=1 yi(1�Q1(	))m�
Pm

i=1 yi = P (Y = y j Q) ;

and, in particular, P (Yi = 1 j Q) = Q. Denote by G the distribution function of Q. To
calculate the unconditional distribution of Y or of the number of defaults M we integrate
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over the mixing distribution of Q to get

p(y) =

Z 1

0
q
Pm

i=1 yi(1� q)m�
Pm

i=1 yidG(q)

P (M = k) =

�
m

k

�Z 1

0
qk(1� q)m�kdG(q): (5)

Further simple calculations give � = E(Y1) = E (E(Y1 j Q)) = E(Q) and, more generally,

�k = P (Y1 = 1; : : : ; Yk = 1) = E (E(Y1 � � � Yk j Q)) = E(Qk); (6)

so that unconditional default probabilities of �rst and higher order are seen to be moments
of the mixing distribution. Moreover, for i 6= j

cov(Yi; Yj) = �2 � �2 = var(Q) � 0;

which means that in an exchangeable Bernoulli mixture model the default correlation �Y
(see (1)) is always nonnegative. Any value of �Y in [0; 1] can be obtained by an appropriate
choice of the mixing distribution G. In particular, if �Y = var(Q) = 0 the rv Q has a
degenerate distribution with all mass concentrated on the point � and the default indicators
are independent. The case �Y = 1 corresponds to a model where � = �2 and the distribution
of Q is concentrated on the points 0 and 1. In this model Yi = Q;8i, and the default
indicators are perfectly positively dependent (or comonotonic); see also Section 6.3 below.

The following exchangeable Bernoulli mixture models are frequently used in practice.

� Beta mixing-distribution. Here Q � Beta(a; b) with density g(q) = �(a; b)�1qa�1(1�
q)b�1; a; b > 0. This model is particularly tractable; see Example 4.3 below.

� Probit-normal mixing-distribution. Here Q = �(	) for a rv 	 following a normal
distribution. This model can be viewed as a one-factor version of the CreditMetrics
and KMV-type models; see Section 5.2.

� Logit-normal mixing-distribution. Here Q = 1=(1 + exp(	)) for 	 � N(�; �2). This
model can be thought of as a one-factor version of the CreditPortfolioView model
of Wilson (1997); see Section 5 of Crouhy, Galai, and Mark (2000) for details.

Example 4.3 (Beta-Binomial Model). Of the choices above the most tractable is the
beta distribution since it leads to simple closed form expressions for the integrals in (5) and
(6). Using the well-known fact that �(a+ 1; b)=�(a; b) = a=(a+ b) we �nd that

�k =

k�1Y
j=0

a+ j

a+ b+ j
; k = 1; 2; : : : ;

so that � = a=(a+b), �2 = �(a+1)=(a+b+1) and �Y = (a+b+1)�1. Thus, if we �x any two
of �, �2 or �Y , this determines a and b and the higher order joint default probabilities are
automatic. Observe that �k=�k�1 = 1�b=(a+b+k) increases with k, so that the conditional
probability that a kth obligor defaults, given that some subgroup of k� 1 obligors defaults
increases with k. The number of defaults has a so-called beta-binomial distribution with
probability function

P (M = k) =

�
m

k

�
�(a+ k; b+m� k)

�(a; b)
: (7)

Calculations for the logit-normal, probit-normal and other models generally require
numerical evaluation of integrals. If we �x any two of �, �2 or �Y in a logit-normal or
probit-normal model, then this �xes the parameters � and � of the mixing distribution and
higher order joint default probabilities are again automatic.

We now consider exchangeable Poisson mixture models. From (4) we get P (fM = k j
�) = e�m�(m�)k=k!.
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Example 4.4 (Gamma-Poisson Model). A very natural choice of mixing distribution
for � is the gamma distribution Ga(a; b) with density g(�) = ba�a�1 exp(�b�)=�(a), for
constants a; b > 0. A direct computation shows that this leads to the following distribution
for fM .

P (fM = k) =

�
1� b

m+ b

�k� b

m+ b

�a �(k + a)

�(k + 1)�(a)
:

This is a negative binomial distribution with parameters a and b=(m+ b), which we denotefM � Nb(a; b=(m+b)). In the actuarial literature it is well-known that the negative binomial
distribution can be obtained as Gamma-mixture of Poisson-distributions; see for instance
Grandell (1997).

4.2 Loss distributions for large portfolios in exchangeable Bernoulli mix-

ture models

We now show that in large exchangeable Bernoulli mixture models the quantiles of the
credit loss distribution are essentially determined by the quantiles of the mixing distribution.
Consider an exchangeable Bernoulli mixture model with mixing distribution given by the df
G on [0; 1] and denote by L(m) =

Pm
i=1EiYi the credit-losses in a portfolio with m identical

obligors. The positive rv Ei models the loss given that counterparty i defaults. We assume
that fEigi2N is an iid sequence with mean �E and variance �2E <1, which is independent
of the default indicators and the mixing variable.

Proposition 4.5. Denote by q�(Q) the �-quantile of the mixing distribution G of Q, i.e.
q�(Q) = inffq ; G(q) � �g, and de�ne q�(L

(m)) to be the �-quantile of the credit loss

distribution in a portfolio with m obligors. Assume that the quantile function �! q�(Q) is
continuous in �, i.e. that

G(q�(Q) + Æ) > � for every Æ > 0 : (8)

Then

lim
m!1

1

m
q�(L

(m)) = �E q�(Q) : (9)

Remarks 4.6. 1) If the df G of the mixing distribution is strictly increasing, and in par-
ticular if G admits a density g which is a.e. positive on [0; 1] the condition (8) is satis�ed
for any � 2 (0; 1).
2) Consider two exchangeable Bernoulli mixture models with mixing distributions G1 and
G2 and identical distribution of the loss given default. Suppose that the tail of G1 is heavier
than the tail of G2, i.e. that we have G1(q) < G2(q) for q close to 1. Then Proposition 4.5
implies that for large portfolios the tail of the credit loss distribution in the model with
mixing distribution G1 is heavier than the tail in the model with mixing distribution G2.
This has been observed in several simulation-studies including Gordy (2000); the above
proposition explains this observation.
3) In the special case of the probit-normal mixing distribution, which corresponds to a one-
factor version of the KMV-model, a similar limit result is obtained in (KMV-Corporation
1997).

Proof. Recall that conditional on Q = q the losses fEiYigi2N form an iid sequence with
mean �Eq. Hence we get from the law of large numbers or the central limit theorem for
any � � 0

lim
m!1

P (L(m) � �mjQ = q) =

8><>:
1; if �Eq < �

1=2 if �Eq = �

0; if �Eq > �

: (10)
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Now we get for any " > 0

lim sup
m!1

P (L(m) � m(�E q�(Q)� ")) = lim sup
m!1

Z 1

0
P
�
L(m) � m(�E q�(Q)� ")jQ = q

�
dG(q)

�
Z 1

0
lim sup
m!1

P
�
L(m) � m(�E q�(Q)� ")jQ = q

�
dG(q)

�
Z 1

0
1fq � q�(Q)� "=�Eg dG(q)

= G(q�(Q)� "=�E) < � :

Here the �rst inequality follows from Fatou's Lemma, the second inequality is a consequence
of (10), and the last relation follows from the de�nition of the �-quantile. Similarly we have

lim inf
m!1

P (L(m) � m(�E q�(Q) + ")) � P (Q < q�(Q) + "=�E) > � ;

the last inequality being strict because of (8). Hence form large enough we havem(�Eq�(Q)�
") � q�(L

(m)) � m(�Eq�(Q) + "), which proves the claim.

4.3 Mixture models with more general dependence structures

In this section we consider mixture models suitable for more heterogeneous portfolios where
exchangeability cannot be assumed. One of the simplest ways to generalise the exchange-
able mixture models is by constructing regression models. In these models deterministic
covariates are allowed to in
uence the probability of default; the e�ective dimension of the
mixing distribution is still one. These models may be particularly useful for statistical pur-
poses. If an algorithm exists to �t an exchangeable model then this can be adapted easily
to �t a regression model. We concentrate on Bernoulli regression models; Poisson regression
model can be de�ned in an analogous manner.

Example 4.7 (Bernoulli regression model). Formally, a Bernoulli regression model
is a one-factor Bernoulli mixture model with conditional default probabilities of the form
Q(	; zi) ; 1 � i � m:Here zi 2 Rl is a vector of deterministic covariates and Q : R� Rl !
[0; 1] is strictly increasing in its �rst argument. There are many possibilities for this function;
see for instance Joe (1997). Useful examples include

� Q( ; zi) = F ( )exp(��
0

zi), where F is some continuous df on R.

� Q( ; zi) = F (
0zi + �0zi) where 

0zi > 0.

The vectors � and 
 are vectors of regression parameters. Obviously if zi = z; 8i, so that all
risks have the same covariates, then we are back in the situation of full exchangeability. Note
also that, since the function Q( ; �) is increasing in  , the conditional default probabilities
form a comonotonic random vector; in particular, in a state of the world where the default-
probability is high for one counterparty it is high for all counterparties. This is a useful
feature for modelling default-probabilities corresponding to di�erent rating classes.

The regression model may not be 
exible enough to model the true heterogeneity we
observe in a large portfolio. We can generalise the model by increasing the dimension of
the mixing distribution through the assumption of more common stochastic factors.

Example 4.8. We now introduce a Bernoulli mixture model with factor structure where
the factors have a Gaussian dependence structure; we will see in Section 5.2 below that this
model is closely related to the models proposed by KMV and CreditMetrics. Assume that
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	 � Np(0; I) and let wi = (wi;1; : : : ; wi;p)
0 be a vector of weights for obligor i. Let c be an

m-dimensional vector of constants. We put

Qi( ) = �

0@ci � pX
j=1

wi;j j

1A ;

where � is the standard normal distribution function. Thus each individual default proba-
bility has a probit-normal distribution where ��1(Qi) � N(ci;w

0
iwi).

We now consider an industry-example of a Poisson-mixture model with factor structure.

Example 4.9 (CreditRisk+). CreditRisk+is essentially a Poisson mixture model with
factor structure. For the mixing variables in De�nition 4.2 it is assumed that

�i(	) = w0i	; 8i; (11)

where 	 = (	1; : : : ;	p)
0 is a random vector of independent gamma distributed risk factors

with p < m and wi = (wi;1; : : : wi;p)
0 is now a vector of non-negative factor weights for

obligor i. To calibrate the model obligors are divided into rating classes, for which it is
assumed that individual default rates are constant so that E(�i(	)) = qg(i) where qg(i)
represents an estimate of the default rate for all obligors in the group g(i) to which obligor
i belongs.

We now show that the rv fM :=
Pm

i=1
eYi is equal in distribution to a sum of independent

negative binomial random variables, which facilitates the application of the model. Suppose
that 	j � Ga(aj; bj); j = 1; : : : ; p. Conditional on 	 the rv fM is then Poisson-distributed
with parameter

mX
i=1

pX
j=1

wij	j =

pX
j=1

	j

 
mX
i=1

wij

!
:

Now consider p random-variables fMj , 1 � j � p, which conditional on 	 are independent

Poisson(	j (
Pm

i=1wij))-distributed. Clearly, by the independence of the 	j the fMj are

independent and fM d
=
Pp

j=1
fMj. Moreover, fMj has a negative binomial distribution since

	j

Pm
i=1 wij � Ga(aj; bj=

Pm
i=1wij); cf Example 4.4.

4.4 Multinomial mixture models

For reasons of notational simplicity and ease of understanding we have so far dealt exclu-
sively with Bernoulli mixture models for two states (default and non-default). We now show
brie
y that these ideas can be generalised to multinomial mixture models, which allow us
to model defaults and rating transitions over the period of interest. To de�ne these models
we introduce the notation Sn = f(q0; q1; : : : ; qn)0 2 Rn+1 : 0 � qj � 1;8j;Pn

j=0 qj = 1g for
the n-dimensional simplex, which is the support of our mixing distribution in the general
multi-state model. The de�nition follows the pattern of De�nition 4.1 and De�nition 4.2.

De�nition 4.10 (Multinomial Mixture Model). Given some p < m and a p-dimensional
random vector 	 = (	1; : : : ;	p) then for n 2 N the random state vector S = (S1; : : : ; Sm)

0

follows an n-dimensional multinomial mixture model with factor vector 	, if there are func-
tions Qi : R

p ! Sn, 1 � i � m, such that conditional on 	 the state vector S is a vector
of independent multinomial random variables with

P (Si = j j 	) = [Qi(	)]j ; i = 1; : : : ;m; j = 0; 1; : : : ; n;

where [:]k denotes the kth element of a vector and indexing starts at zero.
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Remark 4.11. A 1-dimensional multinomial mixture model corresponds to a two-state
model, which is equivalent to a Bernoulli mixture model.

For the mixing distribution on the simplex there are again many possibilities, but the
most analytically tractible example is the Dirichlet distribution, a multivariate distribution
whose margins are beta. The following exchangeable mixture model generalises the beta-
binomial model of Example 4.3.

Example 4.12 (Dirichlet-Multinomial Model). Consider a homogeneous portfolio of
m non-defaulted obligors. For j = 0; 1; : : : ; n let Kj denote the number of obligors who
have migrated to state j bt time T . Assume an exchangeable model with Q1(	) = � � � =
Qm(	) =: Q and denote the df of Q by G(q) := G(q0; : : : ; qn). For a general mixing
distribution we have

P (K0 = k0; : : : ;Kn = kn) =

�
m

k0 : : : kn

�Z
q2Sn

qk00 � � � qknn dG(q);

nX
j=0

kj = m:

The density of the Dirichlet is given by

g(q) = �

0@ nX
j=0

aj

1A nY
j=0

q
aj�1
j

�(aj)
; q 2 Sn; aj > 0; j = 0; 1; : : : ; n;

and simple calculations show that in this case

P (K0 = k0; : : : ;Kn = kn) =

�
m

k0 : : : kn

� �
�Pn

j=0 aj

�
�
�Pn

j=0(aj + kj)
� nY

j=0

�(aj + kj)

�(aj)
:

It may be veri�ed that when n = 1 this model reduces to the beta-binomial distribution
in (7).

5 Relationship between the model types

At a �rst glance latent variable models and Bernoulli mixture models appear to be very
di�erent types of models. However, as has already been observed by Gordy (2000), these
di�erences are often related more to presentation and interpretation than to mathematical
substance. Gordy showed that the CreditMetrics and KMV-type models can be written
as Bernoulli mixture models if the asset returns have a factor structure. In this section
we generalize this observation and provide a fairly general result linking latent variable
models and mixture models. This result and many of the other ideas we present extend
quite naturally to multinomial mixture models, but we again concentrate on the Bernoulli
case for clarity of presentation and restrict ourselves to a couple of remarks concerning the
extension to the multinomial case.

Results on the relationship between latent variable models and mixture models are
useful from a theoretical and an applied perspective. From a theoretical viewpoint results
on the connection between these model classes help to distinguish essential from inessential
features of credit risk models; see for instance the excellent discussion in Gordy (2000).
From a practical point of view a link between the di�erent types of models enables us to
apply numerical and statistical techniques for solving and calibrating the models which are
natural in the context of latent variable models also to mixture models and vice versa. For
instance, we will see in Section 6 below that the distribution of the number of defaults in
a CreditMetrics-type latent variable model can be determined much faster if we simulate
Bernoulli random variables from the corresponding mixture model.
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5.1 A general result

The following condition ensures that a latent variable model can be written as a Bernoulli
mixture model.

De�nition 5.1. A latent-variable-vector X has a p-dimensional conditional independence
structure with conditioning variable 	, if there is some p < m and a p-dimensional random
vector 	 = (	1; : : : ;	p) such that conditional on 	 the rv's (Xi)1�i�m are independent.

Interesting examples of latent variable models with a p-dimensional conditional indepen-
dence structure are provided by multivariate normal mixture models with factor structure.
These models are discussed in more detail below.

Proposition 5.2. Consider an m-dimensional latent variable vector X with continuous

marginal distributions and a p-dimensional (p < m) random vector 	. Then the following

are equivalent.

(i) X has a p-dimensional conditional independence structure with conditioning variable

	.

(ii) For any choice of thresholds Di
0, 1 � i � m the default indicators Yi = 1fXi�Di

0
g

follow a Bernoulli mixture model with factor 	; the conditional default probabilities

are given by Qi(	) = P (Xi � Di
0 j 	).

Proof. Suppose that (i) holds. We have for y 2 f0; 1gm

P (Y1 =y1; : : : ; Ym = ym j 	) =

= P ((�1)1�y1X1 < (�1)1�y1D1
0; : : : ; (�1)1�ymXm < (�1)1�ymDm

0 j 	)

=

mY
i=1

P ((�1)1�yiXi < (�1)1�yiDi
0 j 	) :

Hence conditional on 	 the Yi are independent Bernoulli variates with success-probability
Qi(	) := P (Xi < Di

0 j 	) : The converse is obvious.
Remark 5.3. This result extends very easily to the multinomial case. (ii) may be replaced
by the equivalent condition that for any sequence of cut-o� levels �1 = Di

�1 < Di
0 < � � � <

Di
n = 1; 1 � i � m, the state indicator vectors Si given by Si = j () Di

j�1 < Xi �
Di
j ; j = 0; : : : ; n, follow an n-dimensional multinomial mixture model with factor vector 	:

The probability of being in state j is given by [Qi(	)]j = P (Di
j�1 < Xi � Di

j j 	).

5.2 Normal mean-variance mixtures with factor structure

This class of models is constructed from an m-dimensional random vector Z � Nm(0;�)
with a p-dimensional linear factor structure for some p < m. For more details of the linear
factor model see Appendix B. Basically we assume that the components of Z can be written
as

Zi =

pX
j=1

ai;j�j + �i"i; (12)

for a p-dimensional random vector � � Np(0;
) and independent standard normally dis-
tributed rv's "1 : : : ; "m, which are also independent of �. Obviously Z has p-dimensional
conditional independence structure when we condition on �.

Consider now a random variableW which is independent of Z and functions �i : R! R

and g : R! (0;1). Assuming that Z is of the form (12), de�ne the latent variables X by

Xi := �i(W ) + g(W )Zi; 1 � i � m: (13)
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Then X has a (p+ 1)-dimensional conditional independence structure. De�ne the (p+ 1)-
dimensional random vector 	 by 	 := (�1; : : : ;�p;W )0. Conditional on 	 the rv's Xi

are obviously independent normally distributed with mean �i(W ) + g(W )
Pp

j=1 aij�j and

variance (g(W )�i)
2. The equivalent Bernoulli mixture model is now easy to compute. Given

thresholds (Di
0)1�i�m we get that

Qi(	) = P (Xi < Di
0 j 	) = �

 
Di

0 � �i(W )� g(W )
Pp

j=1 aij�j

g(W )�i

!
: (14)

Example 5.4 (Gaussian latent variables). In the special case where no mixing takes
place such that X = Z, the equivalent mixture model has the form given in Example 4.8.
This is the Bernoulli mixture model corresponding to the CreditMetrics/KMV-type models;
it is also derived in Gordy (2000). Of course any latent variable model where the copula is
that of a multivariate normal distribution with p-factor structure will lead to this type of
Bernoulli-mixture model.

Example 5.5 (Student t latent variables). If we use construction (13) and take

�i � 0 ; i = 1; : : : ;m ; g(w) =

r
�

w
; and W � �2(�); (15)

then X has an m-dimensional t distribution with � degrees of freedom, mean 0 and, for � >
2, covariance matrix �

��2�. This is usually denoted by tm(�;0;�). Note that the correlation-
matrix ofX equals the correlation matrix of Z andX inherits the linear factor structure of Z.
This property holds more generally for all normal variance mixtures, where the mean does
not depend on the mixing variable W . Normal variance mixtures are important examples
of elliptical distributions; see for instance Embrechts, McNeil, and Straumann (2001) for
more on elliptical distributions in risk management. The default indicators in the t-model
follow a (p + 1)-factor Bernoulli mixture model with conditional default probability given
by

Qi(	) = �
�
��1i

�
Di

0

p
W=� �

Xp

j=1
aij�j

��
: (16)

Example 5.6 (Generalized hyperbolic latent variables). This is an example of a full
mean-variance mixture which is no longer an elliptical distribution. To obtain a general-
ized hyperbolic distribution we assume that the mixing variableW follows a normal inverse
Gaussian distribution and take �i(W ) = �iW

2 for constants �i and g(W ) =W : The gener-
alized hyperbolic distribution has been advocated by Eberlein and Keller (1995) as a model
for stock returns.

5.3 Relationship between the model types: the exchangeable case

In the special case of exchangeable default indicators the connection between the model
types is related to well-known results of De Finetti and Hausdor�. We refer to Feller (1971)
for important background material to this section.

De Finetti's theorem concerns in�nite sequences of exchangeable Bernoulli random vari-
ables; extensions to random variables which can take an arbitrary but �nite number of val-
ues, such as the multinomial distribution, are also available. The in�nite sequence Y1; Y2; : : :
is said to be exchangeable if the random vectors (Y1; : : : ; Yk) are exchangeable for all k 2 N.
De Finetti's theorem essentially shows that in�nite exchangeable Bernoulli sequences can
be modelled by an in�nite exchangeable Bernoulli mixture.

Theorem 5.7 (De Finetti). For any in�nite sequence Y1; Y2; : : : of exchangeable Bernoulli
random variables there is a probability distribution G on [0; 1] such that for all k � m 2 N

P (Y1 = 1; : : : ; Yk = 1; Yk+1 = 0; : : : ; Ym = 0) =

Z 1

0
qk(1� q)m�kdG(q): (17)
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We can use this result to show that certain latent variable models induced by an ex-
changeable copula, which are not immediately seen to have a conditional independence struc-
ture, can be represented as exchangeable Bernoulli mixtures. We consider latent variable
models de�ned using Archimedean copulas; see for instance Nelsen (1999). A k-dimensional
Archimedean copula is the distribution function of an exchangeable uniform random vector
and has the form

C1;:::;k(u1; : : : ; uk) = ��1 (�(u1) + � � �+ �(uk)) ; (18)

where � : [0; 1] 7! [0;1] is a continuous, strictly decreasing function, known as the copula
generator which satis�es �(0) =1 and �(1) = 0; ��1 is the generator inverse. A theorem
of Kimberling (1974) (see also Schweizer and Sklar (1983)) shows that a necessary and
suÆcient condition for (18) to de�ne a proper copula for all k is that ��1 is a completely

monotonic function on [0;1), i.e. (�1)k dk

dtk
��1(t) � 0; k 2 N:

Observe that for Archimedian copulas C1;:::;k is the k-dimensional marginal distribution
of C1;:::;k+1. This allows us to construct an in�nite sequence of exchangeable uniform random
variables Un, n 2 N whose k-dimensional margin is equal to C1;:::;k for all k 2 N. The
existence of such a sequence sequence is the key to the following result.

Proposition 5.8. Consider a latent variable model
�
Xi; (D

i
j)�1�j�n

�
1�i�m

and suppose

that X has an exchangeable Archimedean copula (18) with completely monotonic genera-

tor. Assume P (Xi � Di
0) = �;8i. Then the default indicators Yi = 1fXi�Di

0
g follow an

exchangeable Bernoulli mixture model.

Proof. The existence of an in�nite sequence Un, n 2 N of rv's with k-dimensional margin
equal to C1;:::;k is equivalent to the existence of a probability measure �1 on [0; 1]1 whose
k-dimensional marginal equals C1;:::;k for all k 2 N. Let �1 be the uniform distribution on
[0; 1]. At the (k + 1)th step use the conditional distribution Ck+1j1;:::;k(Uk+1 j U1; : : : Uk) to

de�ne a transition kernel Kk from [0; 1]k to [0; 1] and de�ne the measure �k+1 on [0; 1]k+1

by �k+1 := �k 
Kk; obviously �k = C1;:::;k for all k. The existence of �1 now follows from
the Ionescu-Tulcea theorem (see for instance Theorem 3, Chapter 22 in Fristedt and Gray
(1997)).

If we de�ne eYi = 1fUi��g; i = 1; 2; : : : we have an in�nite exchangeable Bernoulli se-
quence. Observe that

�
Xi;D

i
0

�
1�i�m

and (Ui; �)1�i�m are two equivalent latent variable

modes by Proposition 3.3. Therefore (Y1; : : : ; Ym) and (eY1; : : : ; eYm) have the same multivari-
ate Bernoulli distribution. But eY1; : : : ; eYm form the �rstm terms of an in�nite exchangeable
Bernoulli sequence and thus De Finetti shows the existence of a random variable Q with
support in [0; 1] so that

�k = P (Y1 = 1; : : : ; Yk = 1) = ��1 (k�(�)) = E
�
Qk
�
; k = 1; 2; : : : : (19)

Remarks 5.9. 1) This result also extends to the multinomial case. If we de�ne state vectorseSi by dividing the range of Ui into more than two intervals then we can construct in�nite
exchangeable multinomial sequences and appeal to variants of De Finetti for the existence
of mixing distributions.
2) With Archimedean copulas of the form (18) it is very easy to calculate higher order joint
default probabilities �k = ��1(k�(�)), which are the moments of the equivalent mixing
variable Q. From these it is theoretically possible to calculate, or at least approximate, the
distribution function G of Q. To do this we could make use of an approximation result
found for instance in Feller (1971), which shows how a distribution G on [0; 1] is determined
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by iterated di�erences between its moments. De�ne �1�k := �k+1 � �k and recursively
�j�k = �1�j�1�k; j = 2; 3 : : :. Then the distribution with mass

pnk :=

�
n

k

�
(�1)n�k�n�k�k

on the points k=n, 1 � k � n, converges to G as n!1.

Example 5.10. There are many possibilities for generating Archimedean copulas (Nelsen
1999). If we take the generator ��(t) = t�� � 1 we get Clayton's copula family; it may be
veri�ed that the generator inverse is a completely monotonic function.

De Finetti's theorem shows that any exchangeable model forY which can be extended to
arbitrary portfolio size m has a representation as exchangeable Bernoulli-mixture model. In
order to further illustrate the di�erence between �nite and in�nite exchangeable models we
now adapt an example of Feller (1971) and construct a latent variable model yielding a �nite
exchangeable Bernoulli sequence which does not follow an exchangeable Bernoulli mixture
model. Clearly, the example is of limited practical relevance, but it serves to illustrate that
for a �xed portfolio size m the class of m-dimensional exchangeable latent variable models
is larger than the class of exchangeable Bernoulli mixtures. To do this we use a theorem of
Hausdor�.

Theorem 5.11 (Hausdor�). A sequence �1; �2; : : : represents the moments of a probability

distribution G with support in [0; 1] if and only if it is completely monotonic, i.e.

(�1)j�j�k � 0; �0 = 1: (20)

Example 5.12. Consider three oil companies (m = 3), and assume that each of these com-
panies owns drilling rights for a particular area in a new oil�eld. There are two exploitable
petroleum reservoirs in the �eld, although these have yet to be found. Assume that all 6
di�erent possibilities of allocating these reservoirs among the claims (two on claim 1, two
sources on claim 2, and so on) have equal probability 1=6. Let Zi denote the number of
reservoirs in the possession of company i; clearly Zi 2 f0; 1; 2g. Now take three independent
rv's Wi � U(0; 1) and let Xi = Wi + Zi be the asset value of company i. Set the liabilities
to be D0

i = 1 for all companies. (Xi;D
0
i )1�i�3 de�nes a latent variable model yielding a

trivariate exchangeable Bernoulli vector (Y1; Y2; Y3), where Yi = 1fXi�D0

i g
= 1fZi=0g, i.e. a

company defaults if and only if there is no oil on its claim. It is easily calculated that
�1 = 1=2; �2 = 1=6; �3 = 0. If this were the beginning of a completely monotonic
sequence we would have �4 = �5 = � � � = 0. But in this case �4�1 < 0 contradicting (20),
so these cannot be the moments of a distribution with support in [0; 1].

Note however, that X has a two-dimensional conditional independence structure with
conditioning variable 	 = (Z1; Z2) and can therefore be written as two-factor Bernoulli-
mixture model.

6 Sensitivity of Losses to Dependence Speci�cation

6.1 Fixing default-probability and asset correlation

In the CreditMetrics and KMV approaches the correlations of the latent variables X, rep-
resenting changes in asset values, are modelled by a linear factor model (see Appendix B).
Suppose that a factor model has been set up and that factor weights have been determined.
This �xes the correlation matrix R of X, but not the multivariate distribution of X and,
in particular, not its copula. Here we are interested in the e�ect of di�erent distributional
assumptions for X on the distribution of the number of defaultsM , assuming that the asset
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correlation matrix R has been �xed. We are particularly interested in the sensitivity of
the credit loss distribution with respect to the assumption of multivariate normality, since
popular models such as CreditMetrics and KMV assume a Gaussian copula; cf Section 3.

We compare two models, a model with Gaussian latent variables and a model where
latent variables follow a t distribution. For simplicity we conduct this investigation in the
setting of an exchangeable one-factor model, i.e. we model Z in (12) as

Zi =
p
��+

p
1� �"i; i = 1; : : : ;m; � � 0 :

In the normal case we put Xi = Zi, i = 1; : : : ;m; in the t case we put Xi =
p
�=WZi for a

rv W � �2(�) independent of Z (see Example 5.5). In both cases we choose cut-o� levels
so that P (Yi = 1) = �; 8i.

Note that for both models the asset correlation matrix R is given by aa equicorrelation
matrix with o�-diagonal element �. In the �rst case the copula of X is the exchangeable
Gaussian copula CGa

� which has a single parameter � (see Appendix A for more details). In
the second X has an exchangeable t copula, denoted by Ct

�;�, which has an extra parameter
�. Higher order joint default probabilities take the form given in (3), and we expect more
defaults in the t model, due to the tail dependence of the t copula.

We conduct a simulation study where we vary the portfolio sizem, the individual default
probabilities �, the correlation of the latent variables � and the degrees of freedom � of
the t copula. To perform the simulation we use the equivalent Bernoulli mixture model
representations, since this is more eÆcient than simulating the latent variables directly; the
conditional default probabilities are given in (14).

We de�ne 3 groups of decreasing credit quality, which we label A, B and C. In Group
A we set � = 0:06% and � = 2:58%; in Group B we set � = 0:50% and � = 3:80%; in
Group C � = 7:50% and � = 9:21%. These do not correspond exactly to the A, B and C
rating categories used by any of the well-known rating agencies, but they are nonetheless
realistic values for Gaussian latent variable models for real obligors and were chosen after
discussions with a Swiss bank. Similar simulation studies are also reported in Frey, McNeil,
and Nyfeler (2001).

m Group dq0:95(M) dq0:99(M)
� =1 � = 50 � = 10 � = 4 � =1 � = 50 � = 10 � = 4

1000 A 2 3 3 0 3 6 13 12
1000 B 12 16 24 25 17 28 61 110
1000 C 163 173 209 261 222 241 306 396

10000 A 14 23 24 3 21 49 118 126
10000 B 109 153 239 250 157 261 589 1074
10000 C 1618 1723 2085 2587 2206 2400 3067 3916

Table 1: Results of Simulation study. Estimated 95th and 99th percentiles of the distri-
bution of M , the number of defaulting obligors, in an exchangeable model. See text for
the values of � and � corresponding to the 3 groups A, B and C. Note that the quantiles
are approximately proportional to the size of the portfolio; this shows that the asymptotic
result of Proposition 4.5 is useful even for relatively small portfolios.

In all simulations we generate 100000 realisations of M . Of course E(M) = mE(Q) =
m� in all cases, and it is easily con�rmed that the empirical average number of defaults
is always very close to m�. Of greater interest are high quantiles of the distribution of M
which give a better indication of the extreme risk in the model. We denote the empirically
estimated 95% and 99% quantiles of the distribution of the number of defaults M by dq0:95(M)
and dq0:99(M) respectively and tabulate them in Table 1. In Figure 1 we plot the ratio of

17



estimated quantiles for a Student t model with 10 degrees of freedom and a Gaussian model
in the case of Group B and a portfolio of size 10000.

Clearly � has a massive in
uence on these risk measures, particularly for groups of
poorer credit quality (B and C) and larger portfolio sizes. If we only specify the latent
variable correlation � and do not �x the degrees of freedom � then our inference concerning
extreme risk is subject to huge model risk. This simulation study indicates that an attenpt
to calibrate latent variable models based on marginal default probabilities and assumptions
about latent variable correlations alone is not advisable.

The cause of these di�erences is clearly seen in Figure 2 where the densities of ��1(Q) are
shown for Group B in all four cases (Gaussian, � = 50; 10; 4). For all of these distributions
E(Q) = � = 0:005. The heavier the right tail of the distribution of ��1(Q) (or equivalently
of Q) the heavier the tail of the distribution of M in suÆciently large portfolios.

6.2 Fixing default-probability and default correlation

In this Section we look at exchangeable Bernoulli mixture models where the default proba-
bility � and the default correlation �Y , or equivalently the joint default probability �2, are
assumed to be known and �xed. We de�ne two groups of obligors, B and C, with equal � and
�Y . The values of the parameters �, �Y and �2 are given in Table 2. The �2 (or �Y ) values
are the values implied by the latent variable correlation values � of the previous section in
the case where latent variables are multivariate Gaussian; in other words �2 = CGa

� (�; �).

Group � �2 �Y
B 0.005 0.000034 0.0018
C 0.075 0.007650 0.0292

Table 2: Values of �, �2 and �Y for groups B and C.

We compare the Gaussian and Student t latent variable models as well as the beta and
logit-normal mixture models. The beta is easily calibrated to given � and �2 values using
the explicit formulae from Example 4.3, whereas a combination of numerical integration
and root-�nding is needed to accurately calibrate the other models. In the t model there is
the added subtlety that for given � it may be impossible to �nd a latent variable correlation
value � which yields the desired default correlation. Unlike the Gaussian copula, the t
copula does not give independence when � = 0 and we have Ct

�;0(�; �) > �2. If default
correlation is weak, as it often is in groups of better credit quality, we may have to choose
� high in order to calibrate the t model. In our study we choose � = 100 when we work
with Group B and � = 20 when we work with Group C.

As before we simulate 100000 realisations of M for portfolio sizes of 1000 and 10000
drawn from groups B and C. We tabulate empirical estimates of the 95% and 99% quantiles
of the distribution of M in Table 3. Clearly the quantile estimates now di�er much less and
we have to go to the 99% level to see small di�erences emerging. The Gaussian model is
slightly riskier (in the quantile sense) than both the t model and the Beta mixture model;
the logit-normal mixture model is slightly riskier than the Gaussian model.

These di�erences can again be explained by di�erences in the tail of the underlying
mixture distribution ofQ, cf Remark 4.6, although this time the di�erences are more diÆcult
to see in a density plot. In Figure 3 we plot the tail function on a logarithmic y-scale in the
Gaussian, beta and logit-normal cases. (The t case is more diÆcult to plot as the df of the
mixture distribution is not easily calculated.) Although the distributions are very similar
up to the 99th percentile, they begin to diverge in the way we expect beyond that point. If
we were interested in higher percentiles of the loss distribution these di�erences would be
meaningful.
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m Group dq0:95(M) dq0:99(M)
Gauss t Beta Logit-N Gauss t Beta Logit-N

1000 B 12 12 12 12 17 17 17 18
1000 C 163 163 163 163 222 221 216 231

10000 B 109 109 109 108 155 154 148 158
10000 C 1612 1617 1615 1623 2214 2181 2141 2294

Table 3: Results of Simulation study. Estimated 95th and 99th percentiles of the distri-
bution of M , the number of defaulting obligors, in various exchangeable Bernoulli mixture
model with �rst two moments of mixing distribution �xed.

6.3 Asymptotically worst exchangeable Bernoulli mixtures

Recall from Section 4.2 and in particular from Remark 4.6 that in a large exchangeable
Bernoulli mixture the tail of the loss distribution is essentially determined by the tail of the
mixing distribution. This motivates the following de�nition

De�nition 6.1. Consider two mixing-distributions � and � with df G� and G� on [0; 1].
Then � is called asymptotically worse than � (in tail order), if the tail of G� dominates the
tail of G� , i.e. if there is some Æ > 0 such that G�(q) � G�(q) for all q 2 [1 � Æ; 1] and

moreover
R 1
1�Æ(G�(q)� G�(q))dq > 0.

We can derive the simple forms of the worst-case mixing distributions when the �rst
moment � or the �rst two moments � and �2 (or � and �Y = (�2� �2)=(�� �2)) are �xed.
Of course the resulting worst-case mixing distributions are not to be interpreted as realistic
models for modelling dependency between real world credit losses; rather their purpose is
to illustrate how much model risk remains if we only specify default probability and default
correlation.

The following lemma shows that �nding asymptotically worst distributions amounts to
maximising the probability that the mixing variable Q equals 1; that is maximising the
probability that the entire exchangeable group defaults.

Lemma 6.2. Given two mixing distributions � and �. Suppose that �(f1g) > �(f1g). Then
� is asymptotically worse than �.

Proof. We have

lim
q!1

G�(q) = G�(1�) = 1� �(f1g) > 1� �(f1g) = lim
q!1

G�(q) ;

and hence G�(q) > G�(q) for q close to 1.

1.) Asymptotically worst distributions with given default-probability �
In light of Lemma 6.2 we have to �nd a distribution � maximizing �(f1g) under the con-
straint that E�(Q) :=

R 1
0 qdG�(q) = �. Obviously for any such distribution �(f1g) �

E�(Q) = �. Hence the two-point distribution ��1 with ��1 = (1 � �)Æ0 + �Æ1 and Æx the
Dirac-measure in x is the corresponding worst-case distribution.

2.) Asymptotically worst distributions with given � and �Y
This case is more interesting. By Jensen's inequality we must have �2 2 [�2; �]; the bound-
ary cases �2 = �2 and �2 = � correspond to the mixing distributions � = Æ� (independent
defaults) and � = ��1 (comonotonic defaults, �Y = 1), respectively.
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Proposition 6.3. Fix � 2 (0; 1) and �2 2 [�2; �]. The asymptotically worst mixing distri-

bution with �rst two moments equal to � and �2 is the two-point distribution ��2 with

��2 = (1� p�)Æx� + p�Æ1 ; where p
� :=

�2 � �2

1� 2� + �2
and x� :=

� � �2
1� �

: (21)

Related results on bounds on stop-loss premia for distributions on �nite intervals with
given �rst and second moment can be found in the actuarial literature; see for instance
Chapter 5.5 of Goovaerts, De Vylder, and Haezendonck (1984).

Proof. Elementary calculations show that ��2 satis�es the moment constraints. Optimality
of ��2 can be shown very elegantly by means of the one-sided Chebyshev inequality.1 The
one-sided Chebyshew inequality states that for any rv X on the real line on the real line
with mean E(X) and �nite variance var(X) and any Æ > 0

P (X > E(X) + Æ) � var(X)

Æ2 + var(X)
; (22)

see Marshall and Olkin (1960) or Bertsimas and Popescu (2000) for a proof. Using (22) we
get for any mixing distribution � satisfying our moment constraints

P �(Q = 1) = P �(Q > � + (1� �)) � �2 � �2

(1� �)2 + �2 � �2
= p�;

which shows that ��2 is in fact optimal.

Our previous analysis has underlined the importance of the moments of the mixing
distribution or equivalently the joint default probabilities (�k)k=1;2;::: for the properties of
the tail of the credit loss distribution. Moreover, in certain cases, such as the mixing models
corresponding to the Archimedian copulas, the �k are easily available whereas we do not
have an explicit formula for the mixing distribution; see Remark 5.9 (part 2). Hence it is
natural to ask, if we can use the sequence �k to decide if one distribution is asymptotically
worse than another and vice versa. The following proposition and its corollary give a partial
answer to this question.

Proposition 6.4. Given two distributions � amd � with df G� resp G� on [0; 1]. Suppose

that � is asymptotically worse than � in the sense of De�nition 6.1. Then � is asymptotically

worse than � in moment order, i.e. there is some k0 such that

��k :=

Z 1

0
qkdG�(q) > ��k :=

Z 1

0
qkdG�(q) for all k > k0 : (23)

It follows from Lemma 6.2 and the previous proposition that if two mixing-distributions
� and � satisfy �(f1g) > �(f1g) then � is asymptotically worse than � in moment order.

A partial converse of Proposition 6.4 is the following.

Corollary 6.5. Consider two mixing-distributions � and � with df G� and G� on [0; 1].
Suppose that the two df's are ordered in the sense of De�nition 6.1, i.e. either � is asymp-

totically worse than � in tail order or vice versa. If � is asymptotically worse than � in
moment order it must be the case that � is asymptotically worse than � in tail order.

Essentially the corollary says that if we can assume that two mixing distributions �
and � are ordered in tail order we can use the sequence of moments to check if � or �

1We are grateful to Dirk Tasche for pointing this out to us; the �rst version of the paper contained a

more cumbersome constructive proof.
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is asymptotically worse. There are however pathological examples of mixing distributions
which are not ordered in tail order. For an example we may take G�(q) = q and

G�(q) =

(
0 for q < 1

2

q � 1
4(1� q)3 sin( 1

1�q ) for q � 1
2

Obviously the two df's cross in�nitely often as q ! 1.

Proof of Proposition 6.4. Chose some q0 2 (0; 1) such that G�(q) � G�(q) for all q 2 [q0; 1]

and moreover
R 1
q0
(G�(q)�G�(q))dq > 0. We get by partial integrationZ 1

0
qkdG�(q) = 1� k

Z 1

0
qk�1G�(q)dq

and similarly for G�. HenceZ 1

0
qk(dG�(q)� dG�(q)) = k

Z q0

0
qk�1 (G�(q)�G�(q))| {z }

��1

dq + k

Z 1

q0

qk�1(G�(q)�G�(q))dq

� qk�10

 
�q0 + k

Z 1

q0

�
q

q0

�k�1
(G�(q)�G�(q))dq

!

� qk�10

�
�q0 + k

Z 1

q0

(G�(q)�G�(q)) dq

�
;

which is obviously positive for k large enough.

The following Figure 4 which provides moments of various mixing distributions cali-
brated to have the same �rst two moments illustrates the previous results.

7 Estimating Default Probabilities and Correlations: Ex-

changeable Case

In Section 6.2 we have seen that it is useful to be able to calibrate models for homogeneous
groups to have known default probabilities and default correlations. This raises the question
of how suitable values for the parameters �, �2 and �Y may be estimated from historical
data. In this section we derive a general procedure for estimating �k in an exchangeable
model and make some comments about the asymptotic properties of the estimator. For
simplicity we begin with an estimator for � before explaining how the method is generalised
to �k; k � 1.

7.1 Estimating default probabilities

Assume we can collect historical data on numbers of observed defaults over a speci�ed time
period for an exchangeable group of m obligors. If M of these obligors default then the
obvious unbiased estimator of � is M=m.

In studying the asymptotics of this estimator as m !1 we implicitly assume that we
have an in�nite exchangeable sequence Y1; Y2; : : : for which an appropriate mixing variable
Q with support in [0; 1] exists by De Finetti's Theorem. Simple calculations give

var (M) = E (var(M j Q)) + var (E(M j Q))
= m

�
E(Q) �E(Q2)

�
+m2var(Q) = m(� � �2) +m2(� � �2):
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Writing M (m) for the number of defaulting obligors when the portfolio size is m we have
that

var

 
M (m)

m

!
� var(Q) = �2 � �2 = �Y �(1� �); m!1:

If �Y > 0 (corresponding to var(Q) > 0) then the the variance of the estimator cannot be
made arbitrarily small in large portfolios and we do not have a consistent estimator of �
as m ! 1. To construct a consistent estimator we require repeated observations of the
exchangeable group.

Suppose our time horizon of interest is one year and we have n years of historical
data f(mj ;Mj); j = 1; : : : ; ng, where mj denotes the number of obligors observed in year j
(treated as deterministic) and Mj is the number of these that default (treated as random).
Assume stationarity of the model over time in the sense that there exist identically dis-
tributed mixing variables Q1; : : : ; Qn and defaults in year j are conditionally independent
given Qj . An unbiased estimator of � based on n years of data is

b� := b�(n;m1;:::;mn) :=
1

n

nX
j=1

Mj

mj
:

Consider the behaviour of the estimator b� as n!1. If Q1; : : : ; Qn are independent mixing
variables the variance of the estimator is

var (b�) = �2 � �2

n
+
� � �2
n2

nX
j=1

1

mj

;

and the estimator is clearly consistent as n!1. For large m1; : : : ;mn the approximation
var (b�) � �2��2

n
will be suÆciently accurate and this can be estimated by replacing � and

�2 by suitable estimates (for an estimator of �2 keep reading). Of course, it might not
be realistic to assume independence of the Qj's due to economic cycles inducing serial
dependence.

7.2 Estimating joint default probabilities and default correlation

In a similar fashion to the previous section we seek an unbiased estimator for joint default
probabilities �k which generalises the previous estimator. The following proposition collects
the moment results that are required. Consider again a generic exchangeable group of m
obligors following an exchangeable Bernoulli mixture model, where M obligors default.

Proposition 7.1. De�ne the random variable�
M

k

�
:=

�
M

k

�(m)

:=

(
M !

k!(M�k)! 1 � k �M;

0 k > M;

to be the number of possible subgroups of k obligors in the M defaulting obligors. Then

E

�
M

k

�
=

�
m

k

�
E(Qk) =

�
m

k

�
�k; 1 � k � m; (24)

var

�
M

k

�(m)

�
�
m

k

�2

var(Qk) =

�
m

k

�2

(�2k � �2k); m!1:

Proof. Using the identity�
M

k

�
=

X
i1;:::;ik: fi1;:::;ikg�f1;:::;mg

Yi1 � � � Yik ;
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equation (24) is immediate upon taking expectations. Furthermore

var

�
M

k

�
= var

�
E

��
M

k

�
j Q
��

+E

�
var

��
M

k

�
j Q
��

=

�
m

k

�2

var(Qk) +E
�
var
�X

Yi1 � � � Yik j Q
��

; (25)

and the second term can be calculated to be order o(m2k) while the �rst term is o(m2k+1).

If we have yearly default data we would use these data to build the estimator

b�k = 1

n

nX
j=1

�Mj

k

��
mj

k

� = 1

n

nX
j=1

Mj(Mj � 1) � � � (Mj � k + 1)

mj(mj � 1) � � � (mj � k + 1)
; 1 � k � minfm1; : : : ;mng:

It is possible (though tedious) to calculate the exact variance of this estimator under an
assumption of indendence of Q1; : : : ; Qn. For example, for k = 2 we can calculate the exact
variance of

�
M
k

�
=
�
m
k

�
in (25) and use this to get

var(b�2) = 1

n2

nX
j=1

�
�4
(mj � 2)(mj � 3)

mj(mj � 1)
+ �3

4(mj � 2)

mj(mj � 1)
+ �2

2

mj(mj � 1)
� �22

�
:

In general, for large m1; : : : ;mn, the approximation var(b�k) � �2k��
2

k

n
can be used.

Cleary �Y can be estimated by taking b�Y = (b�2 � b�2)=(b� � b�2).
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A Copulas

In the following we present a brief introduction to copulas as well as the concept of tail
dependence. For further reading see Embrechts, McNeil, and Straumann (2001), Joe (1997)
and Nelsen (1999).

De�nition A.1 (Copula). A copula is a multivariate distribution with standard uniform
marginal distributions, or the df of such a distribution.

We use the notation C(u) = C(u1; : : : ; ud) for the d-dimensional joint dfs which are
copulas. C is a mapping of the form C : [0; 1]d ! [0; 1], i.e. a mapping of the unit hypercube
into the unit interval. The following three properties characterise a copula C.

1. C(u1; : : : ; ud) is increasing in each component ui.
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2. C(1; : : : ; 1; ui; 1; : : : ; 1) = ui for all i 2 f1; : : : ; dg, ui 2 [0; 1].

3. For all (a1; : : : ; ad); (b1; : : : ; bd) 2 [0; 1]d with ai � bi we have:

2X
i1=1

� � �
2X

id=1

(�1)i1+���+idC(u1i1 ; : : : ; udid) � 0;

where uj1 = aj and uj2 = bj for all j 2 f1; : : : ; dg.
Suppose the random vectorX = (X1; : : : ;Xd)

0 has a joint distribution F with continuous
marginal distributions F1; : : : ; Fd. If we apply the appropriate probability transform to each
component we obtain a transformed vector (F1(X1); : : : ; Fd(Xd)) whose df is by de�nition
a copula, which we denote C. It follows that

F (x1; : : : ; xn) = P (F1(X1) � F1(x1); : : : ; Fd(Xd) � Fd(xd))

= C(F1(x1); : : : ; Fd(xd)); (26)

or alternatively C(u1; : : : ; un) = F (F 1 (u1); : : : ; F
 
d (ud)), where F

 
i denotes the gener-

alised inverse of the df Fi. Formula (26) shows how marginal distributions are coupled

together by a copula to form the joint distribution and is the essence of Sklar's theorem.

Theorem A.2 (Sklar's Theorem). Let F be a joint distribution function with continuous

margins F1; : : : ; Fd. Then there exists a unique copula C : [0; 1]d ! [0; 1] such that for all

x1; : : : ; xd in R = [�1;1] (26) holds. Conversely, if C is a copula and F1; : : : ; Fd are

distribution functions, then the function F given by (26) is a joint distribution function

with margins F1; : : : ; Fd.

For a proof and extensions to discontinuous marginal distributions we refer to Schweizer
and Sklar (1983). Sklar's theorem allows us to de�ne the notion of the copula of a distri-
bution F .

De�nition A.3 (Copula of F ). If F is a joint df with continuous marginals F1; : : : ; Fd
and (26) holds, we say that C is the copula of F (or of a random vector X � F ).

A useful property of the copula of a distribution is its invariance under strictly increasing
transformations of the marginals.

Proposition A.4. Let (X1; : : : ;Xd) be a vector of continuously distributed risks with copula

C and let T1; : : : ; Td be strictly increasing functions. Then (T1(X1); : : : ; Td(Xd)) also has

copula C.

Random variables X1; : : : ;Xd with continuous marginals are independent if and only if
their copula is

Cind(u1; : : : ; ud) =

dY
i=1

ui:

Each of X1; : : : ;Xd is almost surely a strictly increasing function of any of the others (a
concept known as comonotonicity) if and only if their copula is

Cu(u1; : : : ; ud) = minfu1; : : : ; udg:

The copula of the d-dimensional Gaussian distribution takes the form

CGa
R (u) = �R

�
��1(u1); : : : ;�

�1(ud)
�
;

where �R denotes the joint df of a standard d-dimensional normal random vector X with
correlation matrix R, and � is the df of univariate standard normal. We simplify the
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notation to CGa
� in the case when all pairwise correlations of X are equal to � (in which

case X is an exchangeable Gaussian vector).
As in Joe (1997) and Embrechts, McNeil, and Straumann (2001) we de�ne tail de-

pendence as a bivariate concept for pairs of random variables with continuous marginal
distributions.

De�nition A.5 (Lower Tail Dependence). Let X1 and X2 be continuous random vari-
ables and C(u1; u2) their unique copula. The coeÆcient of lower tail dependence is de�ned

to be �` = limu!0
C(u;u)

u
. If �` 2 (0; 1] then the pair (X1;X2) (or the copula C) is said to

have lower tail dependence. If �` = 0 we talk of asymptotic independence in the lower tail.

This de�nition can be understood by observing that, if X1 and X2 have quantile func-
tions F 1 and F 2 respectively, then

�` = lim
u!0

C(u; u)

u
= lim

u!0
P (X2 � F 2 (u) j X1 � F 1 (u)) ;

i.e. the limiting conditional probabilityX2 lies below its u-quantile, given that X1 lies below
its u-quantile (or vice versa). For bivariate Gaussian random variables with correlation � < 1
(and hence the Gaussian copula with parameter �) �` is zero. Suppose CGa

� denotes the
bivariate Gaussian copula with parameter � and C� is some other copula with lower tail
dependence. Then, for any k > 1 there exists u0 such that, for u � u0,

C�(u; u)

CGa
� (u; u)

> k:

B Classical Factor Models

De�nition B.1 (Classical linear factor model). A d-dimensional random vector X
with mean vector � is said to follow a classical p-factor model (p < d) if we can write

Xi =

pX
j=1

ai;j�j + bi"i + �i; i = 1; : : : ; d; (27)

with terms as follows.

1. The ai;j and bi are real constants.

2. � = (�1; : : : ;�p)
0 is a random vector with mean zero (comprising the so-called com-

mon factors).

3. "1; : : : ; "d are uncorrelated random variables with mean zero and variance 1 (compris-
ing the so-called idiosyncratic factors).

4. �j and "i are uncorrelated for all i; j.

The covariance matrix � of X is clearly given by

� = A
A0 + diag(b21; : : : ; b
2
m); (28)

where A is an appropriate matrix of constants and 
 is the covariance matrix of �. (Some
conventions choose the common factors to be uncorrelated so that 
 is the identity matrix.)
In fact, it can be shown that a random vector X has a representation of the form (27) if and
only if its covariance matrix � can be decomposed as in (28) for some symmetric matrix

 2 Rp�p and some A 2 Rd�p See, for instance, Mardia, Kent, and Bibby (1979).

Note that X need not be multivariate normally distributed for the factor model to
hold. However, if X is multivariate normal with covariance matrix satisfying (28), then
�; "1; : : : ; "d can be chosen to be multivariate normal and the word uncorrelated can be
replaced by independent in the de�nition.
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Figure 1: Ratio of estimated quantiles of distribution of M for Student t model with 10
degrees of freedom and Gaussian model in case of Group B with 10000 obligors.
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Figure 2: Densities of ��1(Q) for Group B, when latent variables are either Gaussian or
Student-t. For all of these distributions E(Q) = � = 0:005. The heavier the right tail of
the distribution of ��1(Q) (or equivalently of Q) the heavier the tail of the distribution of
M in suÆciently large portfolios.
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Figure 4: Moments of the mixing distribution G of Q in six di�erent exchangeable Bernoulli
mixture models: probit-normal (equivalent to latent variables with Gaussian copula); logit-
normal; beta; t (i.e. mixing distribution implied by t copula); Clayton (i.e. mixing distribu-
tion implied by Clayton copula); worst-case. In all cases the �rst two moments � and �2
have the values for group C in Table 2.
Note that higher moments are ordered in the same way as the survivor functions of the
corresponding df's in Figure 3; the worst-case distribution clearly dominates all the other
mixing distributions.
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