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RÜDIGER FREY† AND ULRIKE POLTE‡

Abstract. We study properties of solutions to fully nonlinear versions of the standard Black–
Scholes partial differential equation. These equations have been introduced in financial mathematics
in order to deal with illiquid markets or with stochastic volatility. We show that typical nonlinear
Black–Scholes equations can be viewed as dynamic programming equation of an associated control
problem. We establish existence and comparison results and show that the equation induces a convex
risk measure on the set of all continuous terminal value claims. Moreover, we study the asymptotic
behavior of solutions as market frictions get “large.” Finally, the pricing of individual contracts
relative to a book of derivatives is discussed.
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1. Introduction. While the standard Black–Scholes model was the single most
important step in the development of modern derivative asset analysis, the underlying
assumptions of constant volatility and of a perfectly liquid market are clearly at odds
with reality. As a consequence a number of approaches for dealing with the pricing
and the hedging of derivatives in markets with limited liquidity or with stochastic
volatility have been developed. Often prices and hedging strategies in these models
are described by fully nonlinear versions of the standard parabolic Black–Scholes par-
tial differential equation (PDE); see, for instance, [13], [7], or [2]. A brief overview,
including further references, is given in section 2. It turns out that despite substan-
tial differences in the underlying financial framework, these nonlinear Black–Scholes
equations have a very similar structure, making them a useful tool for measuring the
risk management cost for a (book of) derivatives in illiquid markets or in markets
with stochastic volatility.

In this paper we are interested in properties of solutions to typical nonlinear
Black–Scholes equations. Our starting point is the observation that after a minor
modification the equations can be viewed as Hamilton–Jacobi–Bellmann (HJB) equa-
tion of an associated stochastic control problem. Moreover, this control problem has
a natural economic interpretation. The HJB equation is studied in detail in section 3.
We establish existence and comparison results for classical and viscosity solutions.
Moreover, we show that the equation induces a convex risk measure on the set of
all continuous terminal value claims (derivatives with payoff h(ST )), and we use the
control problem associated with the equation to give a dual representation of this risk
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186 RÜDIGER FREY AND ULRIKE POLTE

measure in the sense of [11]. Section 4 is concerned with asymptotic properties of
solutions to the nonlinear Black–Scholes equations: it is shown that for large market
frictions the solution converges to the concave envelope of the payoff h(ST ). Clearly,
both properties are fully in line with economic intuition. The latter half of the pa-
per is devoted to specific applications. In section 5 we discuss the application of our
general results on nonlinear Black–Scholes equations to the illiquid market models of
[13] and of [6]. In section 6 we finally explain how the control problem associated
with the modified nonlinear Black–Scholes equation can be used to determine prices
for individual contracts in a book of derivatives in a way that is consistent with the
contribution of each contract to the risk management cost of the overall position.

We are not aware of similar results in the literature. On the technical side our work
is related to the papers from the dynamic programming approach to superreplication
under stochastic volatility or liquidity cost, most notably [9] and [7]. Further related
references are given in the body of the paper.

2. Nonlinear Black–Scholes equations in derivative asset analysis. In
order to put the subsequent analysis into context we briefly discuss a number of fi-
nancial models leading to nonlinear Black–Scholes equations for the risk management
cost associated with path independent derivative securities. We begin with two mod-
els for pricing and hedging of derivatives in the presence of liquidity risk, followed
by the uncertain volatility model of [2]. In all models there will be two assets, a
risk-free money-market account B, which is perfectly liquid, and a risky and illiquid
asset S (the stock). We work directly with discounted quantities; hence Bt ≡ 1, S
represents the forward price of the stock, and interest rates can be taken equal to
zero. Throughout we consider a filtered probability space (Ω,F ,F, P ) supporting a
Brownian motion W .

Models for illiquid markets can be grouped into two classes. On the one hand,
there are models in which the impact of trading on the stock price is purely temporary,
reflecting mainly a widening of the bid-offer spread in reaction to the proposed trade.
On the other hand, there are models in which the price impact is permanent. In this
class one attempts to model the effect of the additional supply or demand created by
hedging activities on the equilibrium price of the stock.

2.1. Illiquid market models with temporary price impact. The predomi-
nant model in this class has been put forward by [6]; see also [5]. For our purposes it is
enough to concentrate on a special case of the CJP-framework, the so-called extended
Black–Scholes economy. In this economy there is a fundamental stock price process
S0, which follows geometric Brownian motion with volatility σ > 0. The transaction
price to be paid at time t for trading α shares is

(1) S̄t(α) = eραS0
t , α ∈ R, ρ ≥ 0.

Note that in the model (1) the trader has to pay a bid-ask spread, whose size depends
on the parameter ρ and on the amount α which is traded. The parameter ρ models
the liquidity of the market: for ρ = 0 the market is perfectly liquid, whereas for ρ
large a trade has a substantial impact on the transaction price. Empirical evidence
from [5] shows that for the stock of major U.S. corporations ρ is small (of the order
of 10−4) but significantly different from zero.

As shown in [6], under the model (1) the liquidity cost of implementing a con-
tinuous stock trading strategy φ is proportional to the quadratic variation [φ]t of the
strategy. More precisely, consider a self-financing trading strategy with stock position
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NONLINEAR BLACK–SCHOLES EQUATIONS 187

φt, bond position ηt, and value Vt = φtS
0
t + ηt. In line with the standard Black–

Scholes model let φt = ϕ(t, S0
t ) for a smooth function ϕ. Theorem A3 of [6] then

yields the following dynamics of Vt:

(2) dVt = ϕ(t, S0
t )dS

0
t − ρS0

t d[φ]t = ϕ(t, S0
t )dS

0
t − ρS0

t ϕ
2
S(t, S

0
t )σ

2(S0
t )

2dt,

and the term ρS0
t ϕ

2
S(t, S

0
t )σ

2(S0
t )

2dt can be viewed as additional liquidity cost. We
remark that Vt is the so-called paper value of the position; under (1) the liquidation
value of the strategy (the amount of money the large trader receives if he actually
liquidates his stock position) will be lower than Vt. Following [7] we concentrate on
the paper-value concept, liquidation values are discussed, for instance, in [3].

Suppose now that u and ϕ are smooth functions and that u(t, S0
t ) gives the value

of a self-financing trading strategy with stock position ϕ(t, S0
t ). According to the Itô

formula, u(t, S0
t ) has dynamics

du(t, S0
t ) = uS(t, S

0
t )dS

0
t +

(
ut(t, S

0
t ) +

1

2
σ2(S0

t )
2uSS(t, S

0
t )

)
dt .

Comparing this with (2) it is immediate that u must satisfy the equation ut +
1
2σ

2S2uSS + ρS3σ2ϕ2
S = 0 and that ϕ = uS . Hence ϕS = uSS , and we obtain

the following nonlinear PDE for u:

(3) ut +
1

2
S2vCJP(S, uSS) = 0 with vCJP(S, q) = σ2q(1 + 2ρSq) .

Note that for ρ = 0, (3) reduces to the standard linear Black–Scholes PDE.
Consider now a terminal value claim with payoff h(ST ). It follows that the value

of a self-financing replicating strategy for this claim is given by the solution u of the
PDE (3) with boundary condition u(T, S) = h(S) (provided that this equation admits
a solution). The corresponding strategy is then given by φt = uS(t, St). In a recent
paper [7] it was shown that u is indeed the superreplication price of h provided that h
is convex. In more general situations the superreplication price of h can be described
by the parabolic envelope of (3). This is a PDE of the form (3) but with vCJP(S, ·)
replaced by the largest increasing minorant v̂CJP(S, ·) of vCJP(S, ·). This is discussed
in detail in section 5.2.

2.2. Equilibrium or reaction function models. Here the starting point of
the analysis is a smooth reaction function Ψ that gives the equilibrium stock price St

as a function of some fundamental value Ft and of the stock position φt of the large
trader at time t; i.e., one has the relation St = Ψ(Ft, φt). The function Ψ can be
seen as a reduced form representation of an economic equilibrium model such as the
models proposed by [15], [21], or [22]. Variants of the reaction function approach are
also used in [17], [12], and [3]. For concreteness we concentrate on the model from
[21]. Here

(4) Ψ(f, φ) = f exp(ρφ), ρ ≥ 0 a liquidity parameter,

and the process F follows a geometric Brownian motion with volatility σ. As before
we assume that the strategy of the large trader is of the form φt = ϕ(t, St) for a
smooth function ϕ. Using Itô’s formula, equation (4), and the fact that F is geometric
Brownian motion we get that

(5) dSt = Ψf(Ft, φt)dFt +Ψα(Ft, φt)dφt + · · ·+ dt = σStdWt + ρStdφt + · · ·+ dt ;
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188 RÜDIGER FREY AND ULRIKE POLTE

the precise form of the dt-terms is irrelevant. In the model (4) it is assumed that the
variation of the large trader’s trading strategy is small relative to the market in the
sense that

(6)
(
1− ρStϕS(t, St)

)
> 0 a.s.

Plugging the relation dφt = ϕS(t, St)dSt + · · · + dt into (5), rearranging terms, and

integrating
(
1− ρStϕS(t, St)

)−1
over both sides then gives the following dynamics of

S:

(7) dSt = σ[ϕ](t, S)dWt + · · ·+ dt with volatility σ[ϕ](t, S) :=
σ

1− ρSϕS(t, S)
.

Consider now a self-financing trading strategy with value Vt = u(t, St) and stock
position ϕ(t, St). By standard arguments we get that u satisfies the equation ut +
1
2σ

2
[ϕ](t, S)S

2uSS = 0 and that ϕ = uS . Using the definition of σ[ϕ] we obtain the
fully nonlinear PDE

(8) ut +
1

2

σ2

(1− ρSuSS)2
S2uSS = 0.

In order to derive a hedging strategy for a claim with payoff h we add the terminal
condition u(T, ·) ≡ h. As before, u(t, St) gives the cost of implementing the strategy,
and uS(t, St) gives the position in the risky asset, provided that the candidate hedge
uS(t, St) satisfies the condition (6).

Comments. 1. The related papers [13] and [20] specify directly the stock price
dynamics resulting from a given strategy of the large trader: if he uses a semimartin-
gale trading strategy φ, the stock price has differential dSt = σStdWt + ρStdφt, as
in (5). This again leads to the nonlinear Black–Scholes PDE (8); the derivation is
identical to the one given here.

2. Since ρ is usually considered to be a small parameter, it is natural to replace
the “coefficient” of uSS in (8) by the first order Taylor approximation around ρ = 0,
given by

σ2S2

(1− ρSuSS)2
≈ σ2S2 (1 + 2ρSuSS) + o(ρ).

Substituting this relation into (8) immediately leads to the PDE (3). This shows that
the nonlinear PDEs arising in the CJP-model and in the reaction-function setting are
closely related, despite the differences in the underlying economic framework.

2.3. Uncertain volatility. Finally, we turn to the uncertain volatility model of
[2]. Other than in the previous two model classes, here the option hedger is a small
investor. It is assumed that the stock price follows a diffusion process of the form
dSt = σtStdWt. The dynamics of the volatility σt is not specified; [2] merely assume
that there are bounds 0 < σ < σ <∞ such that

(9) σ ≤ σt ≤ σ for all 0 ≤ t ≤ T .

Consider as before an option with payoff h(ST ). Suppose that the function u solves
the following nonlinear PDE (the so-called Barenblatt equation):

(10) ut +
1

2
S2uSS

(
σ21{uSS<0} + σ21{uSS≥0}

)
= 0
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with terminal condition u(T, S) = h(S). Then it is shown in [2] that the strategy
with initial value V0 = u(0, S0) and stock position φt = uS(t, St) is a superreplication
strategy for the option for all volatility processes that satisfy the volatility bounds (9).
The intuition for this result is straightforward: the PDE (10) corresponds to the option
price in a worst-case volatility scenario, where σt = σ whenever the superreplication
price u(t, S) is locally convex in S and where σt = σ whenever u is locally concave.

3. Properties of nonlinear Black–Scholes equations.

3.1. Two boundary value problems. In this section we formally introduce
the nonlinear pricing PDEs which will be studied in what follows. In order to avoid
technical difficulties related to the analysis of PDEs on unbounded domains we study
a terminal-boundary value problem.1 Consider for 0 < S < S < ∞ the set Q :=
[0, T )× (S, S) with closure Q. Following [10], we define the parabolic boundary of Q
by ∂∗Q :=

(
[0, T ] × {S, S}) ∪ ({T } × (S, S)

)
. We consider a terminal payoff of the

form h : [S, S] → R and extend h to a function h̃ on ∂∗Q by setting

(11) h̃(t, S) := h(S) and h̃(t, S) = h(S) for 0 ≤ t ≤ T.

Note that h̃(t, S) and h̃(t, S) can be viewed as a rebate in the case when the asset price
exits the layer (S, S) before maturity T . In applications it is implicitly understood
that S is small and that S is large relative to the current asset price; hence the precise
form of h̃ is irrelevant for the economic interpretation of our results.

The original problem. The starting point of our analysis is the following generic
terminal-boundary value problem, also labeled original problem:

ut +
1

2
S2v(S, uSS) = 0 , (t, S) ∈ Q,(12)

u = h̃ , (t, S) ∈ ∂∗Q .(13)

We make the following assumptions on the data of the problem.
(A1) The payoff h : [S, S] → R is continuous, and h̃ is constructed from h as in

(11). The function v : [S, S] × R → R is continuous on the set dom(v) := {(S, q) ∈
[S, S]× R : v(S, q) <∞}.

(A2) For fixed S ∈ [S, S] the mapping v(S, ·) : q 
→ v(S, q) is convex and lower
semicontinuous. Moreover, v(S, 0) = 0, and there is a constant λ0 > 0 with v−q (S, 0) ≤
λ0 ≤ v+q (S, 0) for all S ∈ [S, S], where v−q and v+q denote the left and right derivative
of the convex function v(S, ·).

The convexity of v(S, ·) will be crucial for our analysis. Assumptions A1 and A2
are satisfied for the nonlinear PDEs introduced in the previous section. In the PDE
(3) from the CJP-model we have

(14) v(S, q) = vCJP(S, q; ρ, σ) := σ2q(1 + 2ρSq) for (S, q) ∈ [S, S]× R;

in the PDE (8) from the models of [21] and [13] we have

(15) v(S, q) = vreac(S, q; ρ, σ) :=

{
σ2 q

(1−ρSq)2 for 1− ρSq > 0,

∞ otherwise,

1We are confident that under strong growth conditions most results in this paper can be extended
to the case of a stock price in the domain (0,∞). However, this leads to considerable technical
difficulties without yielding much extra economic insight, so we refrain from such an analysis.
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190 RÜDIGER FREY AND ULRIKE POLTE

so that dom v =
{
(S, q) ∈ [S, S]× R : 1− ρSq > 0

}
; in the PDE (10) corresponding

to the uncertain volatility model of [2] we have

(16) v(S, q) = vuv(S, q;σ, σ) := q
(
σ21{q<0} + σ21{q≥0}

)
for (S, q) ∈ [S, S]× R .

Whenever possible the parameters ρ, σ, σ, σ will be omitted from the notation.

The modified problem. In what follows we will often work with a modified version
of (12). For fixed S ∈ [S, S], denote by

(17) v∗(S, ·) : R → [0,∞] , λ 
→ sup{λq − v(S, q) : q ∈ R}

the conjugate function of v(S, ·). As v(S, ·) is convex and lower semicontinuous by
A2, the duality theorem for conjugate functions yields

(18) v(S, q) = sup
{
λq − v∗(S, λ) : λ ∈ R

}
.

Consider constants 0 ≤ v ≤ λ0 ≤ v < ∞ (typically v small and v large), and define
in analogy with (18)

(19) ṽ(S, q) = sup
{
λq − v∗(S, λ) : λ ∈ [v, v]

}
.

Note that ṽ is in general better behaved than v: we have dom ṽ = [S, S]×R, and the
mapping q 
→ ṽ(S, q) is increasing with v ≤ ṽq(S, q) ≤ v; see section 5 for details. The
PDE

(20) ut +
1

2
S2ṽ(S, uSS) = 0 , (t, S) ∈ Q,

will be called the modified nonlinear Black–Scholes equation. From a mathematical
viewpoint this equation has very desirable properties: the modified equation (20) is
parabolic—which is in general not true for the original problem—and it has a natural
interpretation as a dynamic programming equation.

For the function vuv from the uncertain volatility model, v is equal to ṽ provided
that v = σ2 and v = σ2, so that the original and the modified problem coincide.
For the illiquid market models, on the other hand, the equality v(S, q) = ṽ(S, q)
holds only if |q| is not too large relative to the liquidity parameter ρ (see Figure 1),
so that the two problems are in general different. This calls for a justification of
the modified Black–Scholes equation from a financial point of view, and we have the
following arguments to offer: To begin with, it will be shown in section 5 that by and
large the results derived for the modified equation (20) apply to the illiquid market
models as well. In particular, for a smooth payoff, solutions of the modified boundary
problem solve also the original problem. Moreover, the superreplication price in the
CJP-model is the limit of an increasing sequence of solutions to the modified equation
with vn → ∞. Finally, the modified equation—and its limit as vn → ∞—induces a
convex risk measure on the space of all terminal value claims. This is a very desirable
feature of any methodology that attempts to measure the risk management cost of a
book of derivatives in an incomplete or illiquid market.

3.2. Interpretation as an HJB equation. In this subsection we show that
the modified nonlinear Black–Scholes equation (20) can be viewed as a formal HJB
equation of an associated stochastic control problem. This observation will be funda-
mental for the subsequent analysis.
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Fig. 1. A graph of the function vCJP and of the modified function ṽ for v = 0.2 and v = 3.

Denote by U [v,v] the set of all progressively measurable processes Λ = (λt)0≤t≤T

with values in [v, v]. Assume that for a given control Λ ∈ U [v,v] the state process S
has dynamics

(21) dSt =
√
λtStdWt , S0 = S ∈ (S, S) .

Define the stopping time τ = inf{t ≥ 0: (t, St) /∈ Q} (note that τ ≤ T by definition),
and for (t, S) ∈ Q and Λ ∈ U [v,v] let

J(t, S,Λ) := Et,S

(∫ τ

t

−1

2
S2
sv

∗(Ss, λs) ds+ h̃(τ, Sτ )

)
,(22)

J∗(t, S) := sup
{
J(t, S,Λ): Λ ∈ U [v,v]

}
.(23)

The HJB equation associated with the control problem (21), (22) is

(24)

ut + sup

{
1

2
S2λuSS − 1

2
S2v∗(S, λ) : λ ∈ [v, v]

}
= 0 for (t, S) ∈ Q, u = h̃ on ∂∗Q.

By definition of ṽ in (19), this equation is identical to the modified nonlinear Black–
Scholes equation (20).

The control problem (21), (22) admits the following interpretation: The con-
troller, nature, say, chooses the path (

√
λt)0≤t≤T of the stock price volatility in order

to maximize the expected value E(h̃(τ, Sτ )) of the payoff; in doing so she faces an
instantaneous control cost of size 1

2S
2
t v

∗(St, λt). Note that the properties of v∗(S, ·)
imply that the control cost is nonnegative and convex in λt. In the uncertain volatility
model the control cost (vuv)∗ vanishes for λ ∈ [σ2, σ2] so that the optimal strategy of
nature is to switch between the squared volatility bounds σ2 and σ2. In the illiquid
market models, on the other hand, v∗(S, λ) > 0 for λ �= 0, and inner values λt ∈ (v, v)
may be optimal.

3.3. Existence and comparison results. The dynamic programming, or HJB,
equation (24) has been studied extensively in the literature; see, for instance, [10].
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Hence we may use known results for dynamic programming equations to give exis-
tence, uniqueness, and comparison results for the modified nonlinear Black–Scholes
equation (20).

Classical existence. Here we have the following result.

Theorem 3.1. Let assumptions A1 and A2 hold. Suppose that v > 0, that v∗

is smooth on [S, S]× [v, v] and that the payoff h can be extended to a C3-function on
(0,∞). Then the boundary value problem (20), (13) admits a solution u ∈ C1,2(Q) ∩
C(Q). Moreover, ‖uSS‖∞ is bounded by a constant which depends only on v, v, ‖v∗‖∞
and on the Hölder norm of hS and hSS.

Proof. The result follows from Theorem 6.4.1(b) and Example 6.1.8 of [19]; see
also Theorem IV.4.1 of [10]. It is straightforward to check that the assumptions of
that theorem are satisfied. Note in particular that (20) is uniformly parabolic, as

1

2
S2λ ≥ 1

2
S2v > 0, (S, λ) ∈ [S, S]× [v, v] ,

and that the control set [v, v] is compact.
Uniqueness is discussed in the context of viscosity solutions; see Theorem 3.3.

Viscosity solutions. Alternatively, we may consider viscosity solutions of the mod-
ified boundary value problem. We refer the reader to [8] or to [10] for background
information regarding this solution concept. We remark that in the literature one typ-
ically considers (20) in the form −ut − ṽ(S, uSS) = 0. In particular, sign conventions
in the definition of sub- and supersolutions correspond to this latter form.

Our first result is concerned with the characterization of the value function J∗.
Proposition 3.2. Under (A1) and (A2) J∗ is a viscosity solution of the modified

boundary value problem (20), (13).

Note that Proposition 3.2 requires weaker regularity assumptions on the data of
the problem than Theorem 3.1: we may allow for v = 0, and the payoff function
h(T, ·) is merely assumed to be continuous instead of C3.

Proof. According to [10, Corollary V.3.1], J∗ is a viscosity solution of the HJB
equation (20) if J∗ ∈ C(Q) and if J∗ moreover satisfies a suitable dynamic program-
ming principle. Sufficient conditions for this are given in [10, Theorem V.2.1], and we
now check the applicability of this result. Conditions (IV.6.1) and (IV.6.3) from that
theorem are obviously satisfied. An inspection of the proof of [10, Theorem V.2.1]
shows that Condition (V.2.8) is needed only to ensure that there is some Markov
control in U [v,v] such that for all 0 < s ≤ T − t,

Pt,S

(∫ s

t

(S − Sr)
+ dr > 0

)
= Pt,S

(∫ s

t

(Sr − S)+ dr > 0

)
= 1,

where S is the state process from (21). Taking Λ ≡ λ0 so that S follows a geometric
Brownian motion, these conditions can be easily verified directly.

It remains to verify Condition (V.2.11). For this we need to find a smooth and
bounded subsolution g of (20) on [0, T ]× (0,∞) such that g(t, S) = h(S), g(t, S) =
h(S), and g(T, S) ≤ h(S) on (S, S). In order to construct g we choose 0 < M < S <
S < M < ∞ and a smooth and bounded function ψ : (0,∞) → R, which is convex
on [M,M ] and which moreover satisfies ψ ≤ h, ψ(S) = h(S), and ψ(S) = h(S).
Moreover, we extend the dynamic programming equation (24) (which is equivalent
to (20)) to an equation on [0, T ] × (0,∞) as follows. Choose a smooth function
ν : (0,∞) → [0,∞) such that ν(S) = 1 for S ∈ [S, S] and ν(S) = 0 for S ≤ M or
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S ≥M , and consider the equation

ut+sup

{
1

2
(ν(S)S)2λuSS − 1

2
(ν(S)S)2v∗(S, λ) : λ ∈ [v, v]

}
= 0, (t, S) ∈ [0, T )×(0,∞).

Then the constant function κ(t, S) = ψ(S) is obviously a subsolution of this equation
with κ(T, S) ≤ h(S) on [S, S], and Condition (V.2.11) holds.

Comparison principle. Next we derive a comparison principle for viscosity solu-
tions of (20). We need the following assumption.

(A3) The functions v∗(S, λ) and v∗S(S, λ) are continuous on [S, S]× [v, v].

The following result is an immediate consequence of [10, Lemma V.7.1 and The-
orem V.8.1] applied to the HJB equation (20).

Theorem 3.3. Suppose that assumptions A1, A2, and A3 hold. Let u1 ∈ C(Q)
be a viscosity subsolution of (20) and u2 ∈ C(Q) be a viscosity supersolution of (20).
Then

sup
{
u1(t, S)− u2(t, S) : (t, S) ∈ Q

}
= sup {u1(t, S)− u2(t, S) : (t, S) ∈ ∂∗Q} .

It follows that if u1 ≡ u2 on ∂∗Q, then u1 ≤ u2 in Q. Since a viscosity solution
of (20) is both a sub- and a supersolution, under (A1)–(A3) uniqueness holds for
viscosity solutions of the boundary value problem (20), (13). In particular, under
(A1)–(A3) the value function J∗ is the unique viscosity solution of the problem (20),
(13).

Example 3.4. The comparison principle can be used to establish bounds on
solutions of the modified problem (20), (13). Since under (A2) we have v∗(S, λ0) =
0 ≤ v∗(S, λ) for all (S, λ) ∈ [S, S]× [v, v], the following inequalities hold:

(25) vmin(S, q) := λ0q ≤ ṽ(S, q) ≤ vq1{q<0} + vq1{q≥0} =: vmax(S, q).

Note, moreover, that vmin and vmax are both of the form (19) with (vmin)∗(S, λ) =
0 for λ = λ0 and (vmin)∗(S, λ) = ∞ otherwise, and with (vmax)∗(S, λ) ≡ 0. In eco-
nomic terms vmin corresponds to the standard Black–Scholes equation with volatility√
λ0, and v

max corresponds to the Barenblatt equation (10) from the uncertain volatil-
ity model. Consider now a (viscosity) subsolution umin and a supersolution umax of
the equations

umin
t +

1

2
S2λ0umin

SS = 0 and umax
t +

1

2
S2vmax(S, umax

SS ) = 0,

both with boundary condition (13). Let ϕ ∈ C1,2 be a test function with (ϕt, ϕs, ϕss) ∈
P2,+(umin(t, s)) (the superjet of umin in the point (t, S)). Using the definition of
subsolutions and the left part of the inequality (25) we get

0 ≤ ϕt +
1

2
S2λ0ϕSS ≤ ϕt +

1

2
S2ṽ(S, ϕSS) ,

so that umin is a subsolution of (20). Similarly, umax is a supersolution of that
equation. It follows from Theorem 3.3 that under (A1)–(A3) the bounds umin ≤ u ≤
umax hold for the viscosity solution u of (20), (13).
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3.4. Relation to convex risk measures. The next proposition shows that
solutions of the terminal-boundary value problem (20), (13) satisfy the axioms of a
convex measure of risk.

Proposition 3.5. Suppose that assumptions (A1)–(A3) hold. Consider two con-
tinuous terminal value claims h0 and h1, and denote by u0 and u1 the corresponding
(viscosity) solutions of the boundary value problem (20), (13). Then the following
hold:

1. Monotonicity. If h0 ≤ h1 on ∂∗Q, then u0(t, S) ≤ u1(t, S) for (t, S) ∈ Q.
2. Convexity. For γ ∈ [0, 1] denote by uγ the solution of (20), (13) with boundary

value hγ = (1 − γ)h0 + γh1. Then uγ ≤ (1− γ)u0 + γu1.
Proof. Under (A1)–(A3) the functions uγ , γ ∈ [0, 1], are uniquely defined and

equal to the value function of the control problem (21), (22). Hence they can be
written in the form

(26) uγ(t, S) = sup
{
Et,S

(
h̃γ(τ, Sτ )−

∫ τ

t

1

2
S2
sv

∗(Ss, λs) ds

)
: Λ ∈ U [v,v]

}
.

Monotonicity is obvious from this representation. Denote the expectation on the right-
hand side of (26) by Jγ(t, S,Λ). Then convexity follows from the following chain of
inequalities:

(1− γ)u0(t, S) + γu1(t, S) = (1− γ) sup
Λ∈U [v,v]

J0(t, S,Λ) + γ sup
Λ̃∈U [v,v]

J1(t, S, Λ̃)

≥ sup
{
(1− γ)J0(t, S,Λ) + γJ1(t, S,Λ): Λ ∈ U [v,v]

}
= sup

{
Jγ(t, S,Λ): Λ ∈ U [v,v]

}
,

and the last expression is obviously equal to uγ(t, S).
Fix (t, S) ∈ Q , put H = {h : [S, S] → R, h is continuous}, and define a mapping

� : H → R, h 
→ uh(t, S), where uh is the solution of (20) and (13). In view of our
discussion in section 2, �(h) can be interpreted as the risk management cost of the
position h. By Proposition 3.5 � then satisfies the axioms of a convex measure of
risk.2 Interestingly, a corresponding dual representation in the sense of [11] can be
read off directly from (26). For Λ ∈ U [v,v] denote by QΛ the law of the process (21),
and set Q := {QΛ : Λ ∈ U [v,v]}. For QΛ ∈ Q define the penalty function

(27) α(QΛ) = EQΛ

t,S

(∫ τ

t

1

2
S2
sv

∗(Ss, λs) ds

)
.

Then � can be written in the form

(28) �t(h) = sup
{
EQΛ

t,S

(
h̃(τ, Sτ )

)− α(QΛ) : QΛ ∈ Q} .
Note that for � to be coherent in the sense of [1] the penalty function α—and

hence the conjugate function v∗—needs to take its values in the set {0,∞}. This holds
true for the function vuv in (16) from the uncertain volatility model. The situation is
different for the illiquid market models and the associated functions vCJP and vreac :
here the range of the conjugate function v∗ does contain strictly positive but finite
values, so that � is convex but not coherent. This is natural from an economic point
of view. In fact, a major motivation for considering convex but noncoherent risk
measures is the observation that the axiom of positive homogeneity is hard to defend
on illiquid markets.

2Translation invariance is obvious as for c ∈ R the solution of (20) with boundary value h̃+ c is
obviously equal to uh + c.
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4. Asymptotic properties. In this section we study the asymptotics of so-
lutions of (20) as the market frictions modeled by the function ṽ become “large.”
Fix some payoff h : [S, S] → R, and consider a sequence of modified Black–Scholes
equations

(29) u
(n)
t +

1

2
S2ṽ(n)(S, u

(n)
SS ) = 0 with u

(n)
|∂∗Q = h .

We assume that ṽ(n) is of the form (19) (but with v, v, and v∗ depending on n). Our
key assumption is the following.

(A4) The sequence ṽ(n) is increasing and converges pointwise to

v∞(S, q) :=

{
0 , q ≤ 0, S ∈ [S, S],

∞ , q > 0, S ∈ [S, S].

Assumption (A4) is satisfied if we consider the uncertain volatility model with
widening volatility bounds σ n ↓ 0 and σn ↑ ∞. In the illiquid market models, that
is, for v = vreac or v = vCJP, assumption (A4) holds if we consider sequences ρn ↑ ∞
(increasing price impact of the large trader), v n ↓ 0, and vn ↑ ∞.

We denote by hconc the concave envelope of the payoff h, that is, the smallest
concave function greater than h on [S, S]. Formally,

hconc(S) = min{f(S) | f : [S, S] → R concave and f ≥ h}
= min{c ∈ R : ∃α ∈ R with c+ α(S̃ − S) ≥ h(S̃) for all S̃ ∈ [S, S]} ;(30)

the equivalence of both characterizations follows from a separation theorem for convex
sets. Note that by (30), hconc gives the minimal cost of a static (buy and hold) strategy
that superreplicates the payoff h. Now we have the following theorem.

Theorem 4.1. Under (A1)–(A4) the sequence u(n) is increasing with limn→∞u(n)=
hconc.

In economic terms the theorem states that for “large market frictions,” such
as a very strong price impact of the option hedger or very wide volatility bounds,
the solution u(n) of the modified Black–Scholes equation (29)—which can be seen
as dynamic hedge cost of the claim h—converges to the cost of the cheapest static
replication strategy. A related result has been established by [9] in the context of
superhedging in stochastic volatility models, and our proof uses arguments similar to
theirs. A graphical illustration of Theorem 4.1 for the case of a call-spread is given in
Figure 2.

Proof. Without loss of generality we may assume that h ≥ 0 and hence also
u(n) ≥ 0. The sequence u(n) is increasing as ṽ(n) is increasing; this follows from
Theorem 3.3 (the comparison principle for solutions of the modified Black–Scholes
equation) by an argument similar to that in Example 3.4. Moreover, the function
κ(t, S) := hconc(S) is a supersolution of (29) for n fixed, as ṽ(n)(S, q) ≤ 0 for q ≤ 0.
Again by Theorem 3.3 we thus have u(n)(t, S) ≤ hconc(S) for all t ∈ [0, T ], S ∈ [S, S].
Define

(31) u∞(t, S) := lim
n→∞ u(n)(t, S) and u∞(t, S) := lim inf

n→∞,
(t̃,S̃)→(t,S)

u(n)(t̃, S̃) .

We obviously have the inequalities u∞ ≤ u∞ ≤ hconc. In Lemmas 4.2 and 4.3 below
we will show that u∞ is concave in S for fixed t and nonincreasing in t. Moreover,

u∞(T, S) ≥ lim inf
(t,S̃)→(T,S)

u(1)(t, S) = h(S)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Fig. 2. Solutions of PDE (29) (for v = vreac and varying values of ρ) in comparison to the
concave envelope and to the payoff function for the case of a European call-spread with strikes
K1 = 80 and K2 = 120 , i.e., h(S) = [S−K1]+ − [s−K2]+. The initial stock price is 100, and the
time to maturity is six months.

by the monotonicity of the sequence u(n). Hence we have u∞(T, S) ≥ hconc. Combin-
ing the two inequalities gives u∞ = u∞ = hconc, and the theorem is proved.

Lemma 4.2. The function u∞(t, ·) is concave in S for fixed t.
Proof. In the first step of the proof we show that u∞ is a supersolution of the

equation −uSS = 0. Fix n0 and note that u(m) is a supersolution of (29) for every
m > n0. Theorem A.1 in the appendix (a stability result for viscosity solutions from
[4]) shows that u∞ is also a supersolution of (29) for every n = n0 and, as n0 was
arbitrary, for every n. Assume now that u∞ is not a supersolution of the equation
−uSS = 0. Then there exist a point (t, s) ∈ [0, T )× [S, S] and a test function ϕ ∈ C1,2

with (ϕt, ϕS , ϕSS) ∈ P2,−(u∞(t, S)) (the subjet of u∞ in the point (t, S)), so that
−ϕSS(t, S) < 0. Using assumption (A4), we have for n sufficiently large

(32) ϕt(t, S) +
1

2
S2ṽ(n)(S, ϕSS(t, S)) > 0,

contradicting the fact that u∞ is a supersolution of (29) for every n.
Now we turn to the concavity of u∞. By [9, Lemma 4.1], the function u∞(t, ·)

is also a viscosity supersolution of −uSS = 0 for fixed t. Now we fix t and a, b with
S ≤ a < b ≤ S. Consider for δ > 0 the boundary value problem

(33) δu− uSS = 0, S ∈ (a, b), with u(a) = u∞(t, a) and u(b) = u∞(t, b) .

Since u∞ ≥ 0, it is a viscosity supersolution of the equation u = 0, and by the first
step it is also a supersolution of (33) for every δ > 0. Following [9], a subsolution of
(33) is given by

H [δ](S) =
u∞(t, a)[e

√
δ(b−S) − 1] + u∞(t, b)[e

√
δ(S−a) − 1]

e
√
δ(a−b) − 1

.

A general comparison theorem for viscosity solutions such as Theorem 3.3 in [8] pro-
vides the relation u∞(t, S) ≥ H [δ](S) for all δ > 0. Setting S = λa + (1 − λ)b for
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some λ ∈ [0, 1] and sending δ to zero, we obtain

u∞(t, λa+ (1− λ)b) ≥ λu∞(t, a) + (1− λ)u∞(t, b),

as claimed.
Lemma 4.3. The function u∞(·, S) is decreasing in t.
Proof. First, we show that the function u∞ is a viscosity supersolution of the

equation −ut = 0. Assume to the contrary that there exists a point (t, S) and a test
function ϕ ∈ C1,2 with (ϕt, ϕS , ϕSS) ∈ P2,−(u∞(t, S)) and ϕt(t, S) > 0. We consider
the expression

b := ϕt(t, S) +
1

2
S2ṽ(n)

(
S, ϕSS(t, S)

)
.

Since ϕt(t, S) > 0, using assumption (A4) we can choose n sufficiently large such that
b > 0, which contradicts the fact that u∞(t, s) is a viscosity supersolution of (29). As
before, [9, Lemma 4.1] shows that the function u∞(·, S) is also a viscosity supersolution
of −ut = 0 for constant S. Now consider for arbitrary 0 ≤ t1 < t2 ≤ T and fixed
S the terminal value problem −ut = 0, u(t2) = u∞(t2, S). The constant function
c(t) = u∞(t2, S), t ∈ [t1, t2], is a solution of the equation. Theorem 3.3 in [8] yields
the inequality c(t) ≤ u∞(t, S) and in particular u∞(t2, S) = c(t1) ≤ u∞(t1, S).

5. Application to models for illiquid markets. As mentioned before, for
the functions vCJP and vreac introduced in (14) and (15) the equality v(S, q) = ṽ(S, q)
holds only if |q| is not too large relative to the liquidity parameter ρ. Hence the
results from the previous section—which were derived for the modified Black–Scholes
equation governed by ṽ—have to be applied with some care. In this section we study
this issue in more detail.

5.1. Existence of classical solutions. We begin by discussing the relation
between v and ṽ for v = vCJP and v = vreac. Since in both cases the mapping
q 
→ vq(S, q; ρ) is strictly increasing and continuous, we get from elementary calculus
that for ρ > 0 fixed,

v(S, q) = vq(S, q)q − v∗
(
S, vq(S, q)

)
.

It follows that the supremum in the dual representation (18) is attained at λ =
vq(S, q), so that v(S, q) = ṽ(S, q) for all q with vq(S, q) ∈ [v, v]. On the other hand,
for q1 and q2 with vq(S, q1) < v, respectively, vq(S, q2) > v, we have

ṽ(S, q1) = q1v − v∗(S, v) < v(S, q1) and ṽ(S, q2) = q2v − v∗(S, v) < v(S, q2).

Note that this implies in particular that ṽq(S, q) ∈ [v, v] for all q ∈ R and all S. A
graphical illustration of the relation between v and ṽ is given in Figure 1 in section 3.

Now for v = vCJP and v = vreac one has vq(S, q; ρ) → σ2 locally uniformly
as ρ → 0. Hence v(S, q; ρ) = ṽ(S, q; ρ) if ρ and |q| are sufficiently small. In the
next proposition we use this fact to establish the existence of classical solutions of
the original nonlinear Black–Scholes equation for small ρ. Related results have been
obtained previously by [12] and [20].

Proposition 5.1. Fix two constants 0 < v ≤ σ2 ≤ v < ∞. Suppose that the
assumptions of Theorem 3.1 are in force and that v is as in (14) or (15). Then for
all ρ sufficiently small the solution u of the modified terminal-boundary value problem
(20), (13) solves also the original equation ut +

1
2S

2v(S, uSS ; ρ) = 0.
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Proof. Fix some constant M1. According to Theorem 3.1, for all ρ ≥ 0 and all
constants λ, λ such that v ≤ λ ≤ λ ≤ v and sup

{
v∗(S, λ; ρ) : S, λ ∈ [S, S]× [λ, λ]

} ≤
M1, there is a classical solution of the PDE

(34) ut +
1

2
S2 sup

{
λuSS − v∗(S, λ; ρ) : λ ∈ [λ, λ]

}
= 0

satisfying the boundary condition (13). Moreover, there is some M2 such that for all
such solutions, ‖uSS‖∞ ≤ M2. Suppose now that we can find for ρ sufficiently small
two constants λ(ρ) ≤ λ(ρ) ∈ [v, v] such that the following two conditions hold:

(i) vq(S, q; ρ) ∈ [λ(ρ), λ(ρ)] for all |q| ≤M2 and all S ∈ [S, S];
(ii) v∗(S, λ; ρ) ≤M1 for all λ ∈ [λ(ρ), λ(ρ)] and all S ∈ [S, S].

Then v(S, q; ρ) = sup
{
λq − v∗(S, λ; ρ) : λ ∈ [λ(ρ), λ(ρ)]

}
for all |q| ≤ M2, S ∈ [S, S],

so that the solution of (34) solves also the original equation (12).
Condition (i) obviously holds for ρ sufficiently small if we choose

λ(ρ) := inf
S∈[S,S]

vq(S,−M2; ρ) and λ(ρ) := sup
S∈[S,S]

vq(S,M2; ρ) .

In order to establish (ii) we show that for ρ→ 0, v∗
(
S, vq(S, q; ρ); ρ

)
converges to zero

uniformly on [S, S]× [−M2,M2]. For this, note that

(35) v∗
(
S, vq(S, q; ρ); ρ

)
= qvq(S, q; ρ)− v(S, q; ρ) .

A Taylor approximation around ρ = 0 shows that the right-hand side of (35) is of the
form

q (vq(S, q; 0) + ρvqρ(S, q; 0))− (v(S, q; 0) + ρvρ(S, q; 0)) + o(ρ) .(36)

Without loss of generality we put σ ≡ 1. A direct computation shows that for v as in
(14) and (15) one has

v(S, q; 0) = q; vρ(S, q; 0) = 2Sq2; vq(S, q; 0) = 1; vqρ(S, q; 0) = 4Sq .

Plugging this into (36) we get

v∗
(
S, vq(S, q; ρ); ρ

)
= q(1 + 4Sq)− (q + 2Sq2) + o(ρ) = ρ2Sq2 + o(ρ).

Hence v∗ (S, vq(S, q; ρ); ρ) → 0 for ρ → 0, and the proof of the proposition is
complete.

Implications for hedging. In section 2 we have derived the nonlinear Black–Scholes
equation for the illiquid market models using informal hedging arguments. From these
arguments we can conclude that under the assumptions of Proposition 5.1, a standard
delta hedge with hedge ratio φt = uS(t, St) is a perfect replication strategy for ρ
sufficiently small, where “sufficiently small” means that

(37) v ≤ inf
(t,S)∈Q

vq(S, uSS(t, S); ρ) and sup
(t,S)∈Q

vq(S, uSS(t, S); ρ) ≤ v.

While ρ is typically small (recall that [5] obtained a value of the order of 10−4),
condition (37) is hard to verify a priori as it depends also on ‖uSS‖∞. This quantity
depends on, in turn, among others, the size and the degree of nonlinearity of the payoff
h to be hedged. Results from numerical experiments in [14] indicate, however, that
for typical payoffs and parameter values, violations of (37) arise at most if the time
to maturity is very short. Hence from a practical point of view it appears reasonable
to use a standard delta hedging strategy with φt = uS(t, St) for risk management
purposes.
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5.2. Superhedging cost in the CJP-model. In the CJP-model it is not a
priori clear that a solution of the original CJP equation (3) gives the minimal hedge
cost for a terminal value claim h. In fact, it has been shown in [6] that in the model
(1) any payoff can be hedged approximately by using continuous trading strategies
of finite variation and that the associated minimal hedge cost is the standard Black–
Scholes price of the claim.3 However, the class of continuous hedging strategies of
finite variation is not useful for practical trading. Using a narrower—and in fact more
reasonable—class of admissible trading strategies [7] showed that under growth con-
ditions the minimal superhedging cost for a claim h is given by the unique continuous
viscosity solution uCJP of the boundary value problem

(38) ut +
1

2
S2v̂CJP(S, uSS) = 0 for (t, S) ∈ Q; u = h̃ on ∂∗Q.

Here v̂CJP is the so-called parabolic envelope of vCJP, that is, the largest increasing

minorant of the function vCJP(S, ·). Since vCJP is convex, v̂CJP is given by

(39) v̂CJP(S, q) = sup
{
λq − (vCJP)∗(S, λ) : λ ∈ [0,∞)

}
.

Moreover, [7] establish a comparison principle for (38).
Remark 5.2. The results of [7] have been obtained for a stock price in (0,∞), but

we are certain that the results carry over to the simpler case of a bounded domain. In
fact, the comparison principle for (38) on a bounded domain can be verified directly
using Theorem V.8.1 of [10].

Consider now a sequence λn → ∞, denote by ṽ(n) = sup{λq− (vCJP)∗(S, λ) : λ ∈
[0, λn]} the modified function associated with vCJP via (19), and let u(n) be the solu-
tion of the corresponding modified Black–Scholes equation with boundary condition
(13). Then we have the following lemma.

Lemma 5.3. The sequence u(n) converges monotonically to uCJP.

Proof. Obviously, the sequence ṽ(n) converges pointwise monotonically to v̂CJP.
Moreover, Theorem 3.3 (the comparison principle for the modified Black–Scholes equa-
tion) implies that the sequence u(n) is increasing; the comparison principle for (38)
implies that u(n) ≤ uCJP. Denote by u∞ the pointwise limit of the sequence u(n).
Define

u∞(t, S) = lim inf
n→∞,

(t̃,S̃)→(t,S)

u(n)(t̃, S̃) and u∞(t, S) = lim sup
n→∞,

(t̃,S̃)→(t,S)

u(n)(t̃, S̃) .

Theorem A.1 in the appendix shows that u∞ is a supersolution and u∞ is a subsolution
of (38). Since comparison holds for (38) we get that u∞ ≤ u∞. On the other hand,
the definition of u∞ and u∞ gives the obvious inequality u∞ ≤ u∞ ≤ u∞. Combining
these inequalities, we obtain that u∞ = u∞ = u∞, so that u∞ is the unique viscosity
solution of (38) and thus equal to uCJP.

By combining Lemma 5.3 and Proposition 3.5 we immediately get the following
corollary (modulo the caveat of Remark 5.2).

Corollary 5.4. In the CJP-model the superhedging price uCJP satisfies the
axioms of a convex measure of risk on the set of all continuous terminal value claims.

We conjecture that analogous results can be obtained for the reaction-function
models of section 2.2. However, to date there is no formal characterization of the
superhedging price in these models available in the literature.

3Bank and Baum [3] establish a similar result that also covers the reaction-function models from
section 2.2.
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6. Pricing relative to a book of derivatives. In this section we discuss the
pricing of individual contracts in a book of derivatives given that the modified non-
linear Black–Scholes equation (20) is used in order to determine the risk management
cost of the entire book. Consider a market maker trading in N different option con-
tracts with payoff hi(ST ), 1 ≤ i ≤ N , and suppose that his overall liability at some

given time point t < T is given by h(ST ) =
∑N

i=1 nih
i(ST ). We suppose that the

market maker uses the modified nonlinear Black–Scholes equation

(40) ut + sup

{
1

2
S2λuSS − 1

2
S2v∗(S, λ) : λ ∈ [v, v]

}
= 0 in Q, u = h̃ on ∂∗Q,

to measure the risk management cost associated with the liability. For technical
reasons we moreover assume that v > 0 (uniform parabolicity) and that v∗ is smooth
on [S, S] × [v, v]. We denote the unique (viscosity) solution of (40) by uh and put,
as before, �(h) = uh(t, St). As explained in section 2, uh can be viewed as the cost
of running a dynamic hedging strategy for the position h in an illiquid market or
in a market with uncertain volatility, perhaps augmented by some additional safety
provision.

In this context it is a priori unclear how the market maker should determine quotes
for the constituents hi of the portfolio in a way that takes into account the contribution
of each contract to the overall risk management cost �(h). This difficulty arises since
(20) is nonlinear, and thus the risk management cost of the entire position is not
equal to the sum of the risk management cost of the individual contracts. In formal
terms we are looking for a rule that sets the quotes π(h) = (π(h1;h), . . . , π(hN ;h))′,
at which the market maker agrees to trade small quantities of the individual contracts
given his current liability h.

We propose two properties for the pricing rule of the market maker. First, we
assume that his pricing rule is linear given the overall position; i.e., we postulate that
the price of a portfolio

∑N
i=1 γih

i is given by
∑N

i=1 γiπ(h
i;h), at least for |γ| small.

This is essentially a consistency requirement that serves to rule out static arbitrage
opportunities for counterparties of the market maker such as violations of put-call
parity. Second, since the market maker has typically no information regarding the
type of the next order (buy or sell order), it seems reasonable that he attempts to set
his quotes π(h) in such a way that he is indifferent with respect to arbitrary small
changes in his position. In order to formalize this idea we introduce the function

r(·;h) : RN → R, γ 
→ �

(
h+

N∑
i=1

γih
i

)
.

Now for given quotes π(h), selling the portfolio
∑N

i=1 γih
i leads to the additional

income
∑N

i=1 γiπ(h
i;h), whereas the risk management cost changes from �(h) to �(h+∑N

i=1 γih
i). Hence the overall profit and loss (P&L) change of the deal is given by

π(h)′γ − (r(γ;h)− r(0;h)
)
.

Indifference with respect to small changes in the market maker’s position thus sug-
gests choosing π(h) as gradient of r(·;h) at γ = 0. Unfortunately, r(·;h) is in general
not differentiable (a counterexample is provided below). However, the convexity of �
established in Proposition 3.5 implies that the function r(·;h) is convex, so that its
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subdifferential is nonempty. A feasible choice for the quote vector reflecting indiffer-
ence as far as possible is therefore to take π(h) as a subgradient (an element of the
subdifferential) of r(·;h) at γ = 0.

The next lemma is the first step in computing a quote vector π(h). Related
arguments are used in [18] to derive capital allocation principles in risk management.

Lemma 6.1. Consider a pair of processes Λ∗, S∗ with Λ∗ ∈ U [v,v] so that S∗ has
dynamics dS∗

t =
√
λ∗tS∗

t dWt for some Brownian motion W . Suppose that the law Q∗

of S∗ solves the optimization problem (28). Then a subgradient of r(·;h) at γ = 0 is

given by π(hi;h) = EQ∗
t,St

(
h̃i(τ, Sτ )

)
, 1 ≤ i ≤ N.

Proof. According to the dual representation (28) of the risk management cost �
we get for any γ ∈ RN that

r(γ;h) ≥ EQ∗
t,St

(
h̃(τ, Sτ ) +

N∑
i=1

γih̃
i(τ, Sτ )

)
−α(Q∗) = r(0;h)+

N∑
i=1

γiE
Q∗
t,St

(
h̃i(τ, Sτ )

)
,

where the last equality follows from the optimality of Q∗. Hence

lim
α→0+

1

α

(
r(αγ ;h)− r(0;h)

) ≥ N∑
i=1

γiE
Q∗
t,St

(
h̃i(τ, Sτ )

)
= π(h)′γ,

which establishes the claim.
In the following theorem we use verification results in order to describe Λ∗ and

Q∗.
Theorem 6.2. Suppose that the modified Black–Scholes equation admits a so-

lution uh ∈ C1,2(Q) ∩ C(Q), that v > 0, and that v∗ is smooth. Then the following
hold:

(i) Consider a measurable function α : Q→ [0, 1] and define the function

λα(t, S) = α(t, S)ṽ−q
(
S, uhSS(t, S)

)
+(1−α(t, S))ṽ+q

(
S, uhSS(t, S)

)
, (t, S) ∈ Q.

Then there exists a weak solution S∗,α of the stochastic differential equation
dSt = (λα(t, St))

1
2StdWt, and the law Q∗,α of S∗,α solves the optimization

problem (28), so that the choice π(hi;h) = EQ∗,α
t,St

(
h̃i(τ, Sτ )

)
defines a subgra-

dient of r(·;h) at γ = 0.
(ii) Suppose in addition that the function ṽq(S, q) is locally Lipschitz in [S, S]×R

and that uhSS is locally Hölder-continuous in Q. Then there exists a solution
of the linear boundary value problem

(41) uit(t, S) +
1

2
S2ṽq

(
S, uhSS(t, S)

)
uiSS(t, S) = 0 in Q, ui = h̃i on ∂∗Q,

and we have π(hi;h) = ui(t, St).
Proof. By standard results on conjugate functions we obtain that

λα(t, S) ∈ argmin

{
1

2
λS2uhSS(t, S)−

1

2
S2v∗(S, λ) : λ ∈ [v, v]

}
.

In view of uniform parabolicity the existence of a weak solution S∗,α of the state equa-
tion and the optimality of the associated law then follows from Theorem IV.4.4 of [10]
and the discussion preceding it. For (ii) note that under the regularity assumptions
on uhSS and ṽq the function (t, S) 
→ S2ṽq

(
S, uhSS(t, S)

)
is locally Hölder-continuous
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on Q. The existence of a solution ui to (41) then follows from Corollary 2 on page
71 of [16]. Moreover, since vq is assumed to be continuous, λ(t, S) = ṽq

(
S, uhSS(t, S)

)
,

independent of α. The relation

ui(t, S) = EQ∗
t,St

(
h̃i(τ, Sτ )

)
= π(hi;h)

is finally an immediate consequence of the Feynman–Kac formula.

Comments. 1. The solution ui of (41) (and hence the quote π(hi;h)) can be
viewed as the price of the option hi in a standard one-dimensional diffusion model
with price-dependent volatility

σh(t, S) =
(
ṽq(S, u

h
SS(t, S))

) 1
2 .

Note that σh depends on the overall liability h of the market maker via uh (except in
the special case of the classical Black–Scholes model, where v = σ2q so that ṽq = σ2).
It follows that the pricing principle π(h) tends to increase the price of options with
convexity properties similar to the overall position h and to decrease the price of
contracts with opposite convexity properties. Suppose for concreteness that h(·) is
strictly convex and that v = vCJP(S, q; ρ, σ) for ρ > 0. Then uhSS(t, S) ≥ 0, and hence
for v sufficiently large,

ṽCJP
q(S, u

h
SS(t, S); ρ, σ) = min{v, σ2(1 + 2ρSuhSS(t, S))} > σ2.

If hi is convex (concave), a comparison argument gives that π(hi;h) is bigger (smaller)
than the Black–Scholes price of hi in a reference model with constant volatility σ.

2. If the liability h of the market maker is smooth (at least C3), the existence of
a solution uh ∈ C1,2(Q) ∩ C(Q) with locally Hölder-continuous second derivative uhSS

follows from Theorem 6.4.2 of [19]. A pragmatic way of using Theorem 6.2 is therefore
to approximate h by a smooth function g and to use (41) with “squared volatility”
ṽq
(
S, ugSS(t, S)

)
. A formal justification of this procedure is left for further research.

3. For a simple example where r(·;h) is not differentiable take v = vuv with σ < σ
and assume that h is linear in S. Then uhSS ≡ 0 and λα(t, S) = (ασ2 + (1− α)σ2) so
that Q∗,α is the law of a geometric Brownian motion with volatility (ασ + (1− α)σ).
Suppose, moreover, that h1 is a standard call option. Then we have for constants
0 ≤ α < β ≤ 1 that

EQ∗,α
t,St

(
h̃i(τ, Sτ )

)
< EQ∗,β

t,St

(
h̃i(τ, Sτ )

)
,

so that the subdifferential of r(·;h) at γ = 0 contains more than one element.

7. Conclusion. In this paper we have studied properties of solutions to typi-
cal nonlinear Black–Scholes equations arising in derivative asset analysis in illiquid
markets or in markets with uncertain volatility. Using duality results for conjugate
functions it was observed that after a minor modification the equations can be viewed
as a dynamic programming equation of an associated stochastic control problem. Ex-
istence and comparison results for this equation were established. Moreover, it was
shown that the risk management cost modeled by these equations satisfies the ax-
ioms of a convex measure of risk, and a dual representation of this risk measure was
given. We showed that for large market frictions the solution of typical nonlinear
Black–Scholes equations converges to the concave envelope of the payoff. Finally, we
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explained how the control problem associated with the nonlinear Black–Scholes equa-
tions can be used to determine prices for individual contracts in a book of derivatives
in a consistent way.

Appendix. Stability of viscosity solutions. For the convenience of the reader
we quote a stability result for viscosity solutions [4, Theorem 4.1], which is used at a
number of points in the paper. Given a sequence of functions u(n) : RN → R define

lim sup∗u(n)(x) = lim sup
y→x,n→∞

u(n)(y) and lim inf∗u(n)(x) = lim inf
y→x,n→∞u(n)(y).

Theorem A.1. Let Fn : Ω × R × RN × S(N) be locally uniformly bounded and
proper (S(N) denotes the set of all symmetric N×N matrices). Consider the equation

(42) Fn(x, u,Dxu,D
2
xu) = 0 on Ω ⊆ RN .

Define F = lim inf∗ Fn and F = lim sup∗ Fn. Let u(n) be a sequence of locally
bounded functions on Ω. Suppose that u(n) is a subsolution of (42) for every n.
Then u = lim sup∗ u(n) is a subsolution of F (x, u,Dxu,D

2
xu) = 0 on Ω. Similarly, if

u(n) is a supersolution of (42) for every n, then u = lim inf∗ u(n) is a supersolution
of F (x, u,Dxu,D

2
xu) = 0 on Ω.
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