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Abstract. This paper investigates optimal portfolio strategies in a mar-
ket where the drift is driven by an unobserved Markov chain. Information

on the state of this chain is obtained from stock prices and expert opin-

ions in the form of signals at random discrete time points. As in Frey et
al. (2012), Int. J. Theor. Appl. Finance, 15, No. 1, we use stochastic filtering

to transform the original problem into an optimization problem under full

information where the state variable is the filter for the Markov chain. The
dynamic programming equation for this problem is studied with viscosity-

solution techniques and with regularization arguments.

1. Introduction

It is well-known that optimal investment strategies in dynamic portfolio opti-
mization depend crucially on the drift of the underlying asset price process. On
the other hand it is notoriously difficult to estimate drift parameters from histor-
ical asset price data. Hence it is natural to include expert opinions or investors’
views as additional source of information in the computation of optimal portfolios.
In the context of the classical one-period Markowitz model this leads to the well-
known Black-Littermann approach, where Bayesian updating is used to improve
return predictions (see Black & Litterman [1]).

Frey et al. [7] consider expert opinions in the context of a dynamic portfolio
optimization problem in continuous time. In their paper the asset price process is
modelled as diffusion whose drift is driven by a hidden finite-state Markov chain
Y . Investors observe the stock prices and in addition a marked point process
with jump-size distribution depending on the current state of Y that represents
expert opinions. Frey et al. [7] derive a finite-dimensional filter pt with jump-
diffusion dynamics for the state of Y and they reduce the portfolio optimization
problem to a problem under complete information with state variable given by the
filter pt. Moreover they write down the dynamic programming equation for the
value function V of that problem and, assuming that the dynamic programming
equation admits a classical solution, they compute a candidate solution for the
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optimal strategy. The precise mathematical meaning of these preliminary results
is however left open.

This issue is addressed in the present paper. A major challenge in the analysis
of the dynamic programming equation is the fact that the equation is not strictly
elliptic if the number of states of Y is larger than the number of assets. In fact,
due to this non-ellipticity it is not possible to apply any of the known results on
the existence of classical solutions to this equation. We study two ways to address
this problem. First, following the analysis of Pham [13] we show that the value
function is a viscosity solution of the associated dynamic programming equation.
Since the comparison principle for viscosity solutions applies to our model, this
yields an elegant characterization of the value function. However, the viscosity-
solution methodology does not provide any information on the form of (nearly)
optimal strategies.

For this reason we study a second approach based on regularization arguments.

Here an additional noise term of the form m−
1
2 dB̃t, B̃ an independent Brownian

motion of suitable dimension and m ∈ N large, is added to the dynamics of the
state process p. The dynamic programming equation associated with the regu-
larized optimization problem is strictly elliptical so that recent results of Davis
& Lleo [4] imply the existence of a classical solution V m. Moreover, the optimal
strategy for the regularized problem can be characterized as solution of a qua-
dratic optimization problem that involves V m and its first derivatives. We show
that for m → ∞ reward- and value function for the regularized problem and the
original problem converge uniformly for all admissible strategies. This uniform
convergence implies that for m sufficiently large the optimal strategy for the reg-
ularized problem is a nearly-optimal strategy in the original problem, so that we
have solved the problem of finding good strategies. In order to carry out this pro-
gram we need an explicit representation of jump-diffusion processes as a solution
of an SDE driven by Brownian motion and - this is the new part - some exogenous
Poisson random measure; we refer the reader to Section 5 below for details.

The related literature on portfolio optimization under partial information is
discussed in detail in the companion paper [7]. Here we just mention the papers
Rieder & Bäeuerle [14] and Sass & Haussmann[16] that are concerned with port-
folio optimization in models with Markov-modulated drift but without any extra
information.

The paper is organized as follows. In Section 2 we introduce the model of the
financial market and formulate the portfolio optimization problem. For this prob-
lem we derive in Section 3 the dynamic programming equation in the case of power
utility. In Section 4 we reformulate the state equation in terms of an exogenous
Poisson random measure. For this reformulated state equation we provide in Sec-
tion 5 an explicit construction of the jump coefficient. The main results of this
paper are presented in Sections 6 and 7. Here we show that the value function is
a viscosity solution of the dynamic programming equation. Moreover, we study a
regularized version of the dynamic programming equation and investigate nearly
optimal strategies.
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2. Model and optimization problem

The setting is based on [7]. For a fixed date T > 0 representing the investment
horizon, we work on a filtered probability space (Ω,G,G, P ), with filtration G =
(Gt)t∈[0,T ] satisfying the usual conditions. All processes are assumed to be G-

adapted. For a generic G-adapted process H we denote by GH the filtration
generated by H.

Price dynamics. We consider a market model for one risk-free bond with
price S0

t = 1 and n risky securities with prices St = (S1
t , . . . , S

n
t )> given by

dSit = Sit

(
µi(Yt)dt+

n∑
j=1

σijdW j
t

)
, Si0 = si, i = 1, · · · , n. (2.1)

Here µ = µ(Yt) ∈ Rn denotes the mean stock return or drift which is driven by
some factor process Y described below. The volatility σ = (σij)1≤i,j≤n is assumed
to be a constant invertible matrix and Wt = (W 1

t , · · · .Wn
t ) is an n-dimensional

G-adapted Brownian motion. The invertibility of σ always can be ensured by
a suitable parametrization if the covariance matrix σσ> is positive definite. The
factor process Y is a finite-state Markov chain independent of the Brownian motion
W with state space {e1, . . . , ed} where ei is the ith unit vector in Rd. The generator
matrix is denoted by Q and the initial distribution by p̃ = (p̃1, . . . , p̃d)>. The states
of the factor process Y are mapped onto the states µ1, . . . , µd of the drift by the
function µ(Yt) = MYt, where Mlk = µlk = µl(ek), 1 ≤ l ≤ n, 1 ≤ k ≤ d.

Define the return process R associated with the price process S by dRit =
dSit/S

i
t , i = 1, . . . , n. Note that R satisfies dRt = µ(Yt)dt+ σdWt, and it is easily

seen that GR = GlogS = GS . This is useful, since it allows us to work with R
instead of S in the filtering part. For details we refer to [7].

Investor Information. We assume that the investor does not observe the
factor process Y directly; he does however know the model parameters, in par-
ticular the initial distribution p̃, the generator matrix Q and the functions µi(·).
Moreover, he has noisy observations of the hidden process Y at his disposal. More
precisely we assume that the investor observes the return process R and that he
receives at discrete points in time Tn noisy signals about the current state of Y .
These signals are to be interpreted as expert opinions; specific examples can be
found in the companion paper [7].

We model expert opinions by a marked point process I = (Tn, Zn), so that at
Tn the investor observes the realization of a random variables Zn whose distribu-
tion depends on the current state YTn of the factor process. The Tn are modeled
as jump times of a standard Poisson process with intensity λ, independent of Y ,
so that the timing of the information arrival does not carry any useful informa-
tion. The signal Zn takes values in some set Z ⊂ Rκ, and we assume that given
YTn = ek, the distribution of Zn is absolutely continuous with Lebesgue-density
fk(z). We identify the marked point process I = (Tn, Zn) with the associated
counting measure denoted by I(dt, dz). Note that the G-compensator of I is

λdt
∑d
k=1 1{Yt=ek}fk(z)dz.
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Summarizing, the information available to the investor is given by the investor
filtration F with

Ft = GRt ∨ GIt , 0 ≤ t ≤ T. (2.2)

Portfolio and optimization problem. We describe the selffinancing trading
of an investor by the initial capital x0 > 0 and the n-dimensional F-adapted trading
strategy h where hit, i = 1, . . . , n, represents the proportion of wealth invested in
stock i at time t. It is well-known that in this setting the wealth process X(h) has
the dynamics

dX
(h)
t

X
(h)
t

=

n∑
i=0

hit
dSit
Sit

= h>t µ(Yt)dt+ h>t σdWt, X
(h)
0 = x0. (2.3)

We assume that for all t ∈ [0, T ] the strategy ht takes values in some non-empty
convex and compact subset K of Rn that can be described in terms of r linear
constraints. In mathematical terms,

K = {h ∈ Rn : Ψ>l h ≤ νl, 1 ≤ l ≤ r, for given (Ψ1, ν1), . . . , (Ψr, νr) ∈ Rn × R} .
(2.4)

We assume that there is some h0 ∈ Rn such that Ψ>l h
0 < νl for all 1 ≤ l ≤ r

and that 0 ∈ K. The set K models constraints on the portfolio. Moreover, the
assumption that ht ∈ K for all t facilitates many technical estimates in the paper.
For a specific example fix constants c1 < 0, c2 > 1, and let

K = {h ∈ Rn : hi ≥ c1 for all 1 ≤ i ≤ n and

n∑
i=1

hi ≤ c2} .

This choice of K hat would correspond to a limit |c1| on the amount of shortselling
and a limit c2 for leverage.

We denote the class of admissible trading strategies by

H = {h = (ht)t∈[0,T ] : h is F adapted and ht ∈ K for all t} . (2.5)

Since µ(Yt) is bounded and since σ is constant, equation (2.3) is well defined for
all h ∈ H.

We assume that the investor wants to maximize the expected utility of terminal

wealth for power utility U(x) = xθ

θ , θ < 1, θ 6= 0.1 The optimization problem thus
reads as

max{E(U(X
(h)
T )) : h ∈ H}. (2.6)

This is a maximization problem under partial information since we have required
that the strategy h is adapted to the investor filtration F.

Partial information and filtering. Next we explain how the control problem
(2.6) can be reduced to a control problem with complete information via filtering
arguments. We use the following notation: for a generic process H we denote by

Ĥt = E(H|Ft) its optional projection on the filtration F, and the filter for the
Markov chain Yt is denoted by pt = (p1t , · · · , pdt ) with pkt = P (Yt = ek|Ft), k =

1The case θ = 0 corresponds to logarithmic utility U(x) = lnx which is treated in [7].
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1 . . . , d. Note that for a process of the form Ht = h(Yt) the optional projection is

given by ĥ(Yt) =
∑d
k=1 h(ek)pkt . In particular, the projection of of the drift equals

µ̂(Yt) =

d∑
k=1

µ(ek)pkt = Mpt .

The following two processes will drive the dynamics of pt. First, let

W̃t := σ−1(Rt −
∫ t

0

Mpsds).

By standard results from filtering theory W̃ is an F-Brownian motion (the so-called
innovations process). Second, define the predictable random measure

νI(dt, dz) = λdt

d∑
k=1

pkt−fk(z)dz.

By standard results on point processes νI is the F-compensator of I, see for instance

Bremaud [2]. The compensated random measure will be denoted by Ĩ(dt, dz) :=
I(dt, dz)− νI(dt, dz).

Using a combination of the HMM filter (see e.g. Wonham [17], Elliott et al. [5],
Liptser & Shiryaev [11]) and Bayesian updating, in [7] the following d-dimensional
SDE system for the dynamics of the filter p is derived

dpt = Q>ptdt+ β>(pt)dW̃t +

∫
Z
γI(pt−, z)Ĩ(dt, dz) (2.7)

with initial condition pk0 = p̃k. Here, the matrix β = β(p) = (β1, . . . , βd) ∈ Rn×d
and the vector γI = γI(p, z) = (γ1I , . . . , γ

d
I )> ∈ Rd are defined by

βk(p) = pk
(
σ−1

(
µk −

d∑
j=1

pjµj
)

= pkσ−1M(ek − p) ∈ Rn

and γkI (p, z) = pk
(
fk(z)

f(z, p)
− 1

)
, 1 ≤ k ≤ d, with f(z, p) =

d∑
k=1

pkfk(z).

(2.8)

It is well-known (see e.g. Lakner [10], Sass & Haussmann [16]) that the F-
semimartingale decomposition of X is given by

dX
(h)
t

X
(h)
t

= h>t Mpt dt+ h>t σdW̃t. (2.9)

Now note that for a constant strategy ht ≡ h ∈ K the (d+ 1)-dimensional process
(X(h), p) is an F-Markov process as is immediate from the dynamics in (2.7) and
(2.9). Hence the optimization problem (2.6) can be considered as a control problem
under complete information with the (d + 1)-dimensional state variable process
(X(h), p). This control problem is studied in the remainder of the paper.
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3. Dynamic programming equation for the case of power utility

A simplified optimization problem. As a first step, we simplify the con-
trol problem by a change of measure. As shown in Nagai & Runggaldier [12]
this measure change leads to a new problem where the set of state variables is
reduced to p and where the dynamic programming equation takes on a simpler
form. First we compute for an admissible strategy h ∈ H the utility of terminal

wealth U(X
(h)
T ) = 1

θ (X
(h)
T )θ. From (2.9) it follows that

1

θ
(X

(h)
T )θ =

xθ0
θ

exp
{
θ

∫ T

0

(
h>s Mps −

1

2

∣∣σ>hs∣∣2 )ds+ θ

∫ T

0

h>sσdW̃s

}
, (3.1)

where |.| denotes the Euclidean norm. Define now the random variable L
(h)
T =

exp
{ ∫ T

0
θh>s σdW̃s − 1

2

∫ T
0

∣∣θσ>hs∣∣2 ds} and the function

b(p, h; θ) = −θ
(
h>Mp− 1− θ

2

∣∣σ>h∣∣2 ). (3.2)

With this notation (3.1) can be written in the form

1

θ
(X

(h)
T )θ =

xθ0
θ
L
(h)
T exp

{∫ T

0

−b(ps, hs; θ)ds
}
. (3.3)

Since σ is deterministic and since h is bounded, the Novikov condition implies

that E(L
(h)
T ) = 1. Hence we can define an equivalent measure Ph on FT by

dPh/dP = L
(h)
T , and Girsanov’s theorem guarantees that Bt := W̃t − θ

∫ t
0
σ>hsds

is a standard F-Brownian motion. Substituting into (2.7) we find the following
dynamics for the filter under Ph

dpt = α(pt, ht)dt+ β>(pt)dBt +

∫
Z
γI(pt−, z)Ĩ(dt, dz) (3.4)

where α = α(p, h) = Q>p+ θβ>(p)σ>h. (3.5)

In view of these transformations, for 0 < θ < 1 the optimization problem (2.6) is
equivalent to

max
{
E
(

exp
{∫ T

0

−b(p(0,p̃,h)s , hs; θ)ds
})

: h ∈ H
}

(3.6)

where we denote by p
(t,p,h)
s the solution of (3.4) for s ∈ [t, T ] starting at time

t ∈ [0, T ] with initial value p ∈ S for strategy h ∈ H. For θ < 0 on the other
hand (2.6) is equivalent to minimizing the expectation in (3.6). In the sequel we
will concentrate on the case 0 < θ < 1; the necessary changes for θ < 0 will
be indicated where appropriate. Moreover, θ will be largely removed from the
notation. The reward and value function for this control problem are given by

v(t, p, h) = E
(

exp
{∫ T

t

−b(p(t,p,h)s , hs)ds
})

for h ∈ H,

(3.7)
V (t, p) = sup{v(t, p, h) : h ∈ H}.

Note that v(T, p, h) = V (T, p) = 1.
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The dynamic programming equation. Next, we derive the form of the
dynamic programming equation for V (t, p). We begin with the generator of the
state process pt (the solution of the SDE (3.4)) for a constant strategy ht ≡ h.

Denote by S = {p ∈ Rd :
∑d
i=1 p

i = 1, pi ≥ 0, i = 1, . . . , d} the unit simplex in
Rd. Standard arguments show that the solution of this SDE is a Markov process
whose generator Lh operates on g ∈ C2(S) as follows

Lhg(p) =
1

2

d∑
i,j=1

β>i (p)βj(p)gpipj +

d∑
i=1

αi(p, h)gpi (3.8)

+ λ

∫
Z
{g(p+ γI(p, z))− g(p)}f(z, p)dz.

By standard arguments the dynamic programming equation associated to this
optimization problem is

Vt(t, p) + sup
h∈K

{
LhV (t, p)− b(p, h; θ)V (t, p)

}
= 0, (t, p) ∈ [0, T )× S, (3.9)

with terminal condition V (T, p) = 1. In case that θ < 0 the equation is similar,
but the sup is replaced by an inf. Plugging in Lh as given in (3.8) and b(p, h) as
given in (3.2) into (3.9) the dynamic programming equation can be written more
explicitly as

0 = Vt(t, p) +
1

2

d∑
k,l=1

β>k (pt)βl(pt)Vpkpl(t, p) +

d∑
k=1

{ d∑
l=1

Qlkpl
}
Vpk(t, p)

+ λ

∫
Z
{V (t, p+ γI(p, z))− V (t, p)}f(z, p)dz (3.10)

+ sup
h∈K

{ d∑
k=1

β>k (pt)σ
>θhVpk(t, p) + θV (t, p)

(
h>Mp− 1

2

∣∣σ>h∣∣2 (1− θ)
)}
.

Suppose for the moment that a classical solution to (3.10) exists. The argument
of the supremum in the last line of (3.10) is quadratic in h and strictly concave
(as σσ> is positive definite). Hence this function attains a unique maximum h∗ on
the convex set K. Moreover, as shown in Davis and Lleo [4], Proposition 3.6, h∗

can be chosen as a measurable function of t and p. Hence there exists a solution p∗

of the SDE (3.4) with ht = h∗(t, p∗t ); this can be verified by a similar application
of the Girsanov theorem as in the derivation of the equation (3.4). Then standard
verification arguments along the lines of Theorem 3.1 of Fleming & Soner [6] or
Theorem 5.5 of Davis and Lleo [4] immediately give that V is the value function
of the control problem (3.6) and that h∗t := h∗(t, p∗t ) is the optimal strategy.

Remark 3.1. If for some (t, p) h∗(t, p) is inner point of K, an explicit formula
for h∗(t, p) can be given. In that case h∗(t, p) is given by the solution h∗ of the
following linear equation (the first-order condition for the unconstrained problem)

σ

d∑
k=1

βk(p)Vpk(t, p) + V (t, p)
(
Mp− σσ>h(1− θ)

)
= 0.
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Since σ is an invertible matrix h∗ equals

h∗ = h∗(t, p) =
1

(1− θ)
(σσ>)−1

{
Mp+

1

V (t, p)
σ

d∑
k=1

βk(p)Vpk(t, p)
}
.

However, the existence of a classical solution of equation (3.10) is an open
issue. The main problem is the fact that one cannot guarantee that the equation
is uniformly elliptic. To see this note that the coefficient matrix of the second
derivatives in (3.10) is given by C(p) = β>(p)β(p). By definition equation (3.10)
is uniformly elliptic if the matrix C(p) is strictly positive definite uniformly in
p. A necessary condition for this is that there are no non-trivial solutions of the
linear equation βx = 0 so that we need to have the inequality n ≥ d (at least
as many assets as states of the Markov chain Y ). Such an assumption is hard to
justify economically; imposing it nonetheless out of mathematical necessity would
severely limit the applicability of our approach.

In the present paper we therefore study two alternative routes to giving a pre-
cise mathematical meaning to the dynamic programming equation (3.10). First,
following the analysis of Pham [13], in Section 6 we show that the value function
is a viscosity solution of the associated dynamic programming equation. Since
the comparison principle for viscosity solutions applies in our case, this provides
an elegant characterization of the value function. However, the viscosity-solution
methodology does not provide any information on the form of the optimal strate-
gies. For this reason, in Section 7 we use regularization arguments to find approx-

imately optimal strategies. More precisely, we add a term 1√
m
dB̃t, with m ∈ N

and B̃ a Brownian motion of suitable dimension and independent of B, to the
dynamics of the state equation (3.4). The HJB equation associated with these
regularized dynamics has an additional term 1

2m∆V , ∆ the Laplace operator, and
is therefore uniformly elliptic. Hence the results of Davis & Lleo [4] apply directly
to the modified equation, yielding the existence of a classical solution V m. More-
over, the optimal strategy mh∗ of the regularized problem is given by the argument
of the supremum in the last line of (3.10) with V m instead of V . We then de-
rive convergence results for the reward- and the value function of the regularized
problem as m→∞. In particular, we show in Theorem 7.5 that for m sufficiently
large mh∗ is approximately optimal in the original problem.

4. Reformulation of the State Equation

To carry out the program described above we have to reformulate the state
equation for a number of reasons. First, in our model the state variable process p
(the solution of (3.4) takes values in the simplex S which is a subset of a d − 1-
dimensional hyperplane of Rd. If we introduce the announced regularization to
the diffusion part of the state equation then the state variable will leave this
hyperplane and takes values in the whole Rd so that the normalization property
of p is violated, which creates technical difficulties. Second, in our analysis we
need to apply results from the literature on the theory of dynamic programming
of controlled jump diffusions, such as Pham [13] and Davis & Lleo [4]. These
papers consider models where the jump part of the state variable is driven by
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an exogenous Poisson random measure, and this structure is in fact essential for
many arguments in these papers. In our model, on the other hand, the measure

Ĩ is not an exogenous Poisson random measure since the law of the compensator
νI depends on the solution πt. Hence we need to reformulate the dynamics of the
state variable process in terms of an exogenous Poisson random measure.

Restriction to a d − 1-dimensional state. We rewrite the state equation
in terms of the ‘restricted’ (d − 1)-dimensional process π = (π1, . . . , πd−1)> =
(p1, . . . , pd−1)>. Then the original state p can be recovered from π by using the
normalization property for the last component pd and we define p = Rπ :=(
π1, . . . , πd−1, 1 −

∑d−1
i=1 π

i
)>

. Assuming p ∈ S implies that the restricted state
process takes values in

S =
{
π ∈ Rd−1 :

d−1∑
i=1

πi ≤ 1, πi ≥ 0, i = 1, . . . , d− 1
}
.

Now the state equation for π ∈ S associated to (3.4) reads as

dπt = α(πt, ht)dt+ β>(πt)dBt +

∫
Z
γ
I
(πt−, z)Ĩ(dt, dz) (4.1)

where the coefficients are given by

α(π, h) = (α1(Rπ, h), . . . , αd−1(Rπ, h))> ∈ Rd−1 (4.2)

β(π) = (β1(Rπ), . . . , βd−1(Rπ)) ∈ Rn×d−1 (4.3)

γ
I
(π, z) = (γ1I (Rπ, z), . . . , γd−1I (Rπ, z))> ∈ Rd−1. (4.4)

It is straightforward to give an explicit expression for α, β and γ
I
, but such an

expression is not needed in the sequel. The original state can be recovered from π
by setting p = Rπ.

Exogenous Poisson random measure. In the remainder of the paper we
assume that the state process solves the following SDE

dπt = α(πt, ht)dt+ β>(πt)dBt +

∫
U
γ(πt−, u)Ñ(dt, du), (4.5)

where α and β are defined above, γ : S × U → Rd−1, and Ñ is the compensated
measure to some finite activity Poisson random measure N with jumps in a set

U ⊂ Rκ. The compensator of N is denoted by ν(du)λdt, i.e. we have Ñ(dt, du) =
N(dt, du)− ν(dz)λdt. In the next section we show that for a proper choice of γ(·)
and Ñ(dt, du) the solution of (4.5) has the same law as the original state process
from (4.1).

In order to ensure that SDE (4.5) has for each control h ∈ H a unique strong
solution and for the proof of some of the estimates in Section 7 the coefficients
α, β and γ have to satisfy certain Lipschitz and growth conditions (see [9] and
[13]). These conditions are given below. For technical reasons we require that the
conditions hold not only for π ∈ S but also for a slightly larger set Sε ⊃ S defined
for sufficiently small ε ≥ 0 by

Sε := {π ∈ Rd−1 : dist (π,S) ≤ ε},
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where we denoted the distance of π ∈ Rd−1 to S by dist (π,S) := inf{|π −
π0|∞ : π0 ∈ S}, for |π|∞ the maximum norm on Rd−1.

Assumption 4.1 (Lipschitz and growth conditions). There exist constants
CL, ε > 0 and a function ρ : U → R+ with

∫
U ρ

2(u)ν(du) < ∞ such that for
all π1, π2 ∈ Sε, ε < ε and k = 1, . . . , d

sup
h∈K
|α(π1, h)− α(π2, h)|+

∣∣∣β
k
(π1)− β

k
(π2)

∣∣∣ ≤ CL |π1 − π2| , (4.6)

|α(π, h)|+
∣∣∣β
k
(π)
∣∣∣ ≤ CL(1 + |π|), (4.7)∣∣γ(π1, u)− γ(π2, u)
∣∣ ≤ ρ(u) |π1 − π2| , (4.8)∣∣γ(π, u)
∣∣ ≤ ρ(u)(1 + |π|). (4.9)

In our case the coefficients α and β are continuously differentiable functions of
π on the compact set Sε and h ∈ K is bounded. Hence, the Lipschitz and growth
condition (4.6) and (4.7) are fulfilled. Specific conditions on the densities fk(·)
that guarantee (4.8) and (4.9) are given in the next section.

For the optimization problem (3.6) we can give an equivalent formulation in
terms of the restricted state variable π with dynamics given in (4.5), that is the
equation driven by an exogenous Poisson random measure. For this it is convenient
to denote for a given strategy h ∈ H the solution of the SDE (4.5) starting at time
t ≤ T in the state π ∈ S by π(t,π,h). This control problem reads as

max
{
E
(

exp
{∫ T

0

−b(Rπ(0,π̃,h)
s , hs; θ)ds

})
: h ∈ H

}
. (4.10)

The associated reward and value function for (t, π) ∈ [0, T ]× S are

v(t, π, h) = E
(

exp
{∫ T

t

−b(Rπ(t,π,h)
s , hs) ds

})
for h ∈ H,

(4.11)
V (t, π) = sup{v(t, π, h) : h ∈ H}.

The generator associated to the solution of the state equation (4.5) reads as

Lhg(π) =
1

2

d−1∑
i,j=1

β>
i

(π)β
j
(π)gπiπj +

d−1∑
i=1

αi(π, h)gπi (4.12)

+

∫
U
{g(π + γ(π, u))− g(π)}ν(du)

and the associated dynamic programming equation is

Vt(t, π) + sup
h∈K

{
LhV (t, π)− b(Rπ, h; θ)V (t, π)

}
= 0, (t, π) ∈ [0, T )× S. (4.13)

5. State Equation with Exogenous Poisson Random Measure

In this section we show how a solution of the state equation (4.1) can be con-
structed by means of an SDE of the form (4.5) that is driven by an exogenous
Poisson random measure. The main tool for constructing γ will be the so-called
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inverse Rosenblatt or distributional transform, see Rüschendorf [15], which is an
extension of the quantile transformation to the multivariate case.

We impose the following regularity conditions on the functions fk(·) that rep-
resent the conditional densities of Zn given YTn = ek.

Assumption 5.1. All densities fk(z), 1 ≤ k ≤ d, are continuously differentiable
and have the common support Z. We assume that Z is a κ-dimensional rectangle
[a, b] ⊂ Rκ, i.e.

Z = {z ∈ Rκ : −∞ < ak ≤ zk ≤ bk <∞, k = 1, . . . , κ}.
Moreover, there is some 0 < C1 such that fk(z) > C1 for all z ∈ Z, k = 1, . . . , d.

Remark 5.2. Examples for densities that satisfy the above assumption are easily

constructed. Start with C1-densities f̃k and choose some (large) rectangle Z then

fk(z) = (1− ε) f̃k(z)∫
Z f̃k(u)du

1Z(z) + ε
1

|Z|
1Z(z) where |Z| =

κ∏
i=1

(bi − ai) (5.1)

k = 1, . . . , κ, ε ∈ (0, 1], satisfy the requirements of Assumption 5.1. Intuitively,

(5.1) corresponds to a mixture of the original density f̃k and the uniform distri-
bution. The latter distribution carries no information so there is uniform a lower
bound on the information carried by a single expert opinion.

Inverse Rosenblatt Transform. In order to write our state equation (4.1)
in the form (4.5) with exogenous Poisson random measure we apply the inverse
Rosenblatt transform, see for instance see [15]. Denote by U = [0, 1]κ the unit cube
in Rκ. In our context the inverse Rosenblatt transform is a mapping G : U → Z
such that for a uniform random variable U on [0, 1]κ the random variable Z = G(U)

has density f(z, p) =
∑d
j=1 p

jfj(z), p = Rπ; the mapping G can thus be viewed
as a generalization of the well-known quantile transform.

Now we explain the construction of the transformation G in detail. First, we
define for k = 1, . . . , κ− 1, p = Rπ, the marginal densities

fZ1...Zk(z1, . . . , zk, p) =

∫ bk+1

ak+1

. . .

∫ bκ

aκ

f(z1, . . . , zk, sk+1, . . . , sκ, p)dsκ . . . dsk+1.

(5.2)
For k = κ we set fZ1...Zκ := f . Next we define for k = 2, . . . , κ the conditional
densities

fZk|Z1...Zk−1
(zk|z1, . . . zk−1, p) :=

fZ1...Zk(z1, . . . , zk, p)

fZ1...Zk−1
(z1, . . . , zk−1, p)

and the associated distribution functions

FZk|Z1...Zk−1
(zk|z1, . . . zk−1, p) =

∫ zk

ak

fZk|Z1...Zk−1
(sk|z1, . . . zk−1, p)dsk;

for k = 1 we denote by FZ1
the distribution function of Z1. Now we introduce the

Rosenblatt transform F̃ : Z → [0, 1]κ = U , z 7→ (F̃1(z, p), . . . , F̃κ(z, p))> by

F̃1(z, p) = FZ1
(z1, p) and F̃k(z, p) = FZk|Z1...Zk−1

(zk|z1, . . . zk−1, p), k = 2, . . . , κ.
(5.3)



12 RÜDIGER FREY, ABDELALI GABIH, AND RALF WUNDERLICH

Clearly, F̃k(z, p) depends on the first k variables z1, . . . , zk, only. The desired

transformation G will be the inverse of F̃ , and the explicit form of F̃ is needed
when we estimate the derivatives of G in the proof of Lemma 5.4 below.

Assumption 5.1 ensures that the joint density f(z, p) is finite and bounded
away from zero. Hence, the conditional densities fZk|Z1...Zk−1

(z|z1, . . . zk−1, p) are
strictly positive, and the mapping z 7→ FZk|Z1...Zk−1

(z|z1, . . . zk−1, p) is strictly
increasing and hence invertible. In the sequel we denote the corresponding inverse
function by F−1Zk|Z1...Zk−1

(·|z1, . . . zk−1, p).
Now the desired transformation Z = G(U) = G(U, p) with transformation

function G : U → Z, u 7→ (G1(u, p), . . . , Gκ(u, p))> can be defined recursively by

G1(u, p) = F−1Z1
(u1, p) , and for k = 2, . . . , κ,

Gk(u, p) = F−1Zk|Z1...Zk−1

(
uk | G1(u, p), . . . , Gk−1(u, p)

) (5.4)

Note, that by construction it holds G(F̃ (z, p), p) = z. From [15] it is known that
for U is uniformly distributed in [0, 1]κ, the random vector Z = (Z1, . . . , Zκ)> =
G(U, p) has the joint distribution density f(z, p).

With the transformation G at hand we define the jump coefficient γ(π, u) by

γk(π, u) = πk
( fk(G(u,Rπ))

f(G(u,Rπ), Rπ)
− 1
)

for u ∈ U , k = 1, . . . , d− 1. (5.5)

Moreover, we choose the Poisson random measure N(dt, du) in (4.5) such that the
associated compound Poisson process has constant intensity λ and jump heights
which are uniformly distributed on U = [0, 1]κ. Then, the compensator of N is

ν(du)dt = λdu dt and the compensated measure reads as Ñ(dt, du) = N(dt, du)−
λdu dt. Note that with this definition the solution πt of (4.5) satisfies for some
Borel set A ⊂ Rd−1

P (∆πTn ∈ A | FTn−) =

∫
U

1A
(
γ(πTn−, u)

)
du

=

∫
U

1A

(
γ
I

(
πTn−, G(u,RπTn−)

))
du

=

∫
Z

1A
(
γ
I
(πTn−, z)

)
f(z,RπTn−) dz .

Hence with the above choice of γ and N(dt, du), for constant h the process Rπ,
π the solution of the SDE (4.5), solves the martingale problem associated to the
generator Lh from (3.8). Below we show that under Assumption 5.1 the Lips-
chitz and growth conditions from Assumption 4.1 hold, so that the SDE (4.5) has
a unique solution. It is well-known that this implies that the martingale prob-
lem associated with Lh has a unique solution, see for instance Jacod & Shiriaev
[9], Theorem III.2.26. Hence Rπ has the same law as the state variable process
p in (3.4), which shows that we have achieved the desired reformulation of the
dynamics of the problem in terms of an exogenous Poisson random measure.

Remark 5.3. Admittedly, the construction of G and γ is quite involved. The main
reason for this is the fact that we consider the case of multidimensional expert
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opinions with values in Rκ for some κ > 1. Note however, that such a multivariate
situation arises naturally in a model with more than one risky asset.

Lipschitz and growth conditions. The next Lemma states that under As-
sumption 5.1 the functions γk(π, u) satisfy the Lipschitz and growth conditions
(4.8) and (4.9). The proof is given in Appendix A.

Lemma 5.4. Under Assumption 5.1 and for ε ≤ ε := C1

(d−1)C2
the coefficient

γ(π, u) defined in (5.5) satisfies for π ∈ Sε the Lipschitz and growth condition
(4.8) and (4.9).

6. Viscosity Solution

In this section we show that the value function of the control problem (4.11)
is a viscosity solution of the dynamic programming equation (4.13). Since it is
known from the literature that the comparison principle holds for these equation
(a precise reference is given below) we obtain an interesting characterization of the
value function as viscosity solution of (4.13). This part of our analysis is based to
a large extent on the work of Pham [13].

Preliminaries. The following estimates are crucial in proving that the value
function V (t, p) is a viscosity solution of (4.13).

Proposition 6.1. For any k ∈ [0, 2] there exists a constant C > 0 such that for
all δ ≥ 0, t ∈ [0, T ], π, ξ ∈ S, h ∈ H and all stopping times τ between t and T ∧t+δ

E
( ∣∣π(t,π,h)

τ

∣∣k ) ≤ C(1 + |π|k) (6.1)

E
( ∣∣π(t,π,h)

τ − π
∣∣k ) ≤ C(1 + |π|k)δ

k
2 (6.2)

E
({

sup
t≤s≤t+δ

∣∣∣π(t,π,h)
s − π

∣∣∣ }k) ≤ C(1 + |π|k)δ
k
2 (6.3)

E
( ∣∣π(t,π,h)

τ − π(t,ξ,h)
τ

∣∣k ) ≤ C |π − ξ|2 . (6.4)

The proof is given in Appendix B.
Next we state the dynamic programming principle associated to the control

problem (4.10).

Proposition 6.2 (Dynamic Programming Principle). For t ∈ [0, T ], π ∈ S and
every stopping time δ such that 0 ≤ δ ≤ T − t we have

V (t, π) = sup
h∈H

E
(

exp
{∫ t+δ

t

−b(Rπ(t,π,h)
s , hs)ds

}
V
(
t+ δ, π

(t,π,h)
t+δ

))
For the proof of dynamic programming principle we refer to Pham [13], Proposi-
tion 3.1.

Applying the dynamic programming principle yields the next proposition on
the continuity of the value function. The proof is given in Appendix C.

Proposition 6.3. There exists a constant C > 0 such that for all t, s ∈ [0, T ] and
π1, π2 ∈ S

|V (t, π1)− V (s, π2)| ≤ C
[
(1 + |π1|)|t− s|

1
2 + |π1 − π2|

]
. (6.5)
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Viscosity Solution. Following Pham [13] we adapt the notion of a viscosity
solution introduced by Crandall and Lions [3] to the case of integro-differential
equations. This concept consists in interpreting equation (4.13) in a weaker sense.
To simplify notation we split the generator Lh given in (4.12) into

Lhg(π) = Ahg(π) + B(π)

where for g ∈ C2(S) the linear second-order differential operator Ah is defined by

Ahg(π) =
1

2

d−1∑
i,j=1

β>
i

(π)β
j
(π)gπiπj (π) +

d−1∑
i=1

αi(π, h)gπi(π)

and B is the integral operator

Bg(π) = λ

∫
U
{g(π + γ(π, u))− g(π)}ν(du).

Moreover Dπg and D2
πg denote the gradient and Hessian matrix of g w.r.t π.

Definition 6.4. (1) A function V ∈ C0([0, T ] × S) is a viscosity supersolution
(subsolution) of equation (3.9) if

−∂ψ
∂t

(t, π)− sup
h∈K

(
− b(Rπ, h)V (t, π) +Ahψ(t, π)

)
− Bψ(t, π) ≥ 0 (6.6)

(resp. ≤ 0) for all (t, π) ∈ [0, T ]×S and for all ψ ∈ C1,2([0, T ]×S) with Lipschitz
continuous derivatives ψt, D

2
πψ such that (t, π) is a global minimizer (maximizer)

of the difference V − ψ on [0, T ]× S with V (t, π) = ψ(t, π).

(2) V is a viscosity solution of (3.9) if it is both super and subsolution of that
equation.

Proposition 6.5 (Viscosity solution). The value function V (t, π) associated to
the optimization problem (3.6) is a viscosity solution of (3.9)

Proof. Supersolution inequality. Let be ψ such that

0 = (V − ψ)(t, π) = min
[0,T ]×S

(V − ψ). (6.7)

We apply the dynamic programming principle for a fixed time δ ∈ [0, T − t] to get

V (t, π) = ψ(t, π) = sup
h∈H

E
(

exp
{∫ t+δ

t

−b(Rπ(t,π,h)
s , hs)ds

}
V (t+ δ, π

(t,π,h)

t+δ
)
)
.

From (6.7) we obtain

0 ≥ sup
h∈H

E
(

exp
{∫ t+δ

t

−b(Rπ(t,π,h)
s , hs)ds

}
ψ(t+ δ, π

(t,π,h)

t+δ
)− ψ(t, π)

)
. (6.8)

We now define for u ∈ [t, T ]

ηu := exp
{∫ u

t

−b(Rπ(t,π,h)
s , hs)ds

}
and Zu := ηu ψ(u, π(t,π,h)

u ). (6.9)
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Then, we apply Itô’s formula to Zt+δ, where we use the shorthand notation πs for

π
(t,π,h)
s . Since dZt = −b(Rπt, ht)ηtψ(t, πt)dt+ ηtdψ(t, πt), we have

Zt+δ = ψ(t, π) +

∫ t+δ

t

−b(Rπs, hs)ηsψ(s, πs)ds

+

∫ t+δ

t

ηs
{
ψt(s, πs) +Ahψ(s, πs) + Bψ(s, πs)

}
ds

+

∫ t+δ

t

ηsDπψ(s, πs)β
>(πs)dBs

+

∫ t+δ

t

ηs

∫
U

(
ψ(s, πs + γ(πs, u))− ψ(s, πs)

)
Ñ(ds× du).

Due to our assumptions on b and ψ, the last two terms are martingales with zero
expectations. From (6.8) we therefore obtain

0 ≥ sup
h∈H

E(Zt+δ − ψ(t, π))

= sup
h∈H

E
(∫ t+δ

t

−b(Rπ(t,π,h)
s , hs)ηsψ(s, π(t,π,h)

s )ds (6.10)

+

∫ t+δ

t

ηs{ψt(s, π(t,π,h)
s ) +Ahψ(s, π(t,π,h)

s ) + Bψ(s, π(t,π,h)
s )}ds

)
.

We now show for the first integral that

E
(∫ t+δ

t

−b(Rπ(t,π,h)
s , hs)ηsψ(s, π(t,π,h)

s )ds
)
≥

E
(∫ t+δ

t

−b(Rπ, hs)ψ(t, π)ds
)
− δε(δ). (6.11)

where ε(δ) → 0 as δ → 0. Using the Lipschitz continuity of ψ we obtain the

inequality |ψ(s, π
(t,π,h)
s )− ψ(t, π)| ≤ C(|s− t|+ |π(t,π,h)

s − π|), which leads to

sup
h∈H

E
(∫ t+δ

t

−b(Rπ(t,π,h)
s , hs)ηsψ(s, π(t,π,h)

s )
)
ds ≥

sup
h∈H

E
(∫ t+δ

t

−b(Rπ(t,π,h)
s , hs)ηsψ(t, π)ds

)
− Cδ

{
δ + E

(
sup

0≤s≤δ
|π(t,π,h)
s − π|

)})
.

By Proposition 6.1 we have E
(

sup0≤s≤δ |π
(t,π,h)
s − π|

)
≤ C(1 + |π|)δ 1

2 and hence

we obtain

E
(∫ t+δ

t

−b(Rπ(t,π,h)
s , hs)ηsψ(s, π(t,π,h)

s )ds
)
≥

E
(∫ t+δ

t

−b(Rπ(t,π,h)
s , hs)ηsψ(t, π)ds

)
− δε(δ). (6.12)
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Recall from (3.2) that b(Rπ, h) = −θ
(
h>MRπ − 1−θ

2

∣∣σ>h∣∣2 ). Since this expres-

sion depends linearly on π and hs and since hs takes values in the compact set K
we have

|b(Rπ(t,π,h)
s , hs)− b(Rπ, hs)| ≤ C|π(t,π,h)

s − π|.
Using |ηs − ηt| = |ηs − 1| ≤ C|s − t| and the same computations to get (6.12) it
yields

E
(∫ t+δ

t

−b(Rπ(t,π,h)
s , hs)ηsψ(s, π

(t,π,h)
t+s )ds

)
≥ E

(∫ t+δ

t

−b(Rπ, hs)ψ(t, π)ds
)
− δε(δ).

Applying similar computations to the other terms in (6.10) by using the estimates
for the state process π and the Lipschitz continuity of D2

πψ we obtain

ε(δ) ≥ 1

δ
sup
h∈H

E
(∫ t+δ

t

{−b(π, hs)ψ(t, π) + ψt(t, π) +Ahψ(t, π) + Bψ(t, π)}ds
)
.

Replacing h ∈ H by a constant strategy in the above sup we get

ε(δ) ≥ 1

δ

(∫ t+δ

t

sup
h∈K

(
− b(Rπ, hs)ψ(t, π) + ψt(t, π) +Ahψ(t, π) + Bψ(t, π)

)
ds.

Applying the mean value theorem and sending δ to 0 we get the supersolution
viscosity inequality:

−∂ψ
∂t

(t, π)− sup
h∈K

(
− b(Rπ, h)V (t, π) +Ahψ(t, π)

)
− Bψ(t, π) ≥ 0.

Subsolution inequality. Let ψ be such that

0 = (V − ψ)(t, π) = max
[0,T ]×S

(V − ψ) (6.13)

As a consequence of dynamic programming principle in Proposition 6.2 we have

V (t, π) = sup
h∈H

E
(

exp
{∫ t+δ

t

−b(Rπ(t,π,h)
s , hs)ds

}
V (t+ δ, π

(t,π,h)
t+δ )

)
Equation (6.13) implies that

0 ≤ sup
h∈H

E
(

exp
{∫ t+δ

t

−b(Rπ(t,π,h)
s , hs)ds

}
ψ(t+ δ, π

(t,π,h)
t+δ )− ψ(t, π)

)
.

Using similar computations by applying Itô’s formula to the process Zu given in
(6.9) and using the estimates for the state process π we obtain

ε(δ) ≤ 1

δ
sup
h∈H

E
(∫ t+δ

t

{−b(Rπ, hs)ψ(t, π) + ψt(t, π) +Ahψ(t, π) + Bψ(t, π)}ds
)
.

Replacing h ∈ H by a constant strategy in the above sup, applying mean the value
theorem and sending δ to 0 we obtain the subsolution viscosity inequality

−ψt(t, π)− sup
h∈K

(
− b(Rπ, h)V (t, π) +Ahψ(t, π)

)
− Bψ(t, π) ≤ 0.

2

Comparison principle. Here we quote the following result, which is Theo-
rem 4.1 of [13].
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Theorem 6.6. Suppose that Assumption 4.1 holds and that u1 and u2 are contin-
uous functions on [0, T ]×S such that u1 is a subsolution and u2 is a supersolution
of the dynamic programming equation (3.9). If u1(T, π) ≤ u2(T, π) for all π ∈ S,
then

u1(t, π) ≤ u2(t, π) for all (t, π) ∈ [0, T ]× S .

Together with Proposition 6.5, this result implies immediately that the value
function V (t, π) associated to the optimization problem (3.6) is the unique con-
tinuous viscosity solution of (3.9).

7. Regularized Dynamic Programming Equation

In this section we introduce the regularized version of our dynamic program-
ming problem and we discuss the convergence of reward and value function as
the regularization-terms converge to zero. In Corollary 7.5 we finally show that
optimal strategies in the regularized problem are nearly optimal in the original
problem.

Regularized state equation. Since regularization will drive the state process
outside the set S we need to extend the definition of the coefficients α, β and γ

from S to the whole Rd−1. For π ∈ Rd−1, h ∈ K and ε > 0 we define

α̃(π, h) :=

{
α(π, h)(1− dist (π,S)/ε) for π ∈ Sε

0 otherwise.

Note, that S ⊂ Sε and there is a continuous transition to zero if dist (π,S) reaches
ε. Moreover, on S it holds α̃(π, h) = α(π, h), i.e. the coefficients coincide. Analo-

gously we define β̃ and γ̃ as extensions of β and γ.

Lemma 7.1. Under the assumptions of Lemma 4.1 the coefficients α̃, β̃ and γ̃

satisfy the Lipschitz and growth conditions (4.6) to (4.9) for π ∈ Rd−1.

Proof. The Lipschitz and growth conditions for the coefficients α, β and γ given
in Lemma 4.1 hold for π ∈ Sε for ε ≤ ε. Multiplication of these functions by the
bounded and Lipschitz continuous function 1−dist (π,S)/ε preserves the Lipschitz
and growth property. 2

For the sake of simplicity of notation in the sequel we will suppress the tilde

and simply write α, β and γ instead of α̃, β̃ and γ̃.
Next we define the dynamics of the regularized state process mπt

dmπt = α(mπt, ht)dt+ β>(mπt)dBt +

∫
U
γ(mπt−, u)Ñ(dt, du) +

1√
m
dB̃t (7.1)

where B̃t denotes a d− 1-dimensional Brownian motion independent of Bt. This
state process is now driven by an n+d−1-dimensional Brownion motion. Note that
the diffusion coefficient of the regularized equation (β>(πt),

1√
m
Id−1)> satisfies the

Lipschitz and growth condition (4.6) and (4.7) given in Lemma 4.1 since β(πt)

satisfies these conditions and 1√
m
Id−1 does not depend on p.

L2-Convergence mπt → πt. We now compare the solution mπt of the regular-
ized state equation (7.1) with the solution πt of the unregularized state equation
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(4.5) and study asymptotic properties for m→∞. This will be crucial for estab-
lishing convergence of the associated reward function of the regularized problem
to the original optimization problem.

We assume that both processes start at time t0 ∈ [0, T ] with the same initial
value q ∈ S, i.e. mπt0 = πt0 = q. The corresponding solutions are denoted by
mπ

(t0,q,h)
t and π

(t0,q,h)
t .

Lemma 7.2 (Uniform L2-convergence w.r.t. h ∈ H). It holds for m→∞

E
(

sup
t0≤t≤T

∣∣∣mπ(t0,q,h)
t − π(t0,q,h)

t

∣∣∣2) −→ 0 uniformly for h ∈ H.

Proof. To simplify the notation we suppress the superscript (t0, q, h) and write πt
and mπt. Moreover, we denote by C a generic constant.

We give the proof for t0 = 0, only. Using the corresponding representation as
stochastic integrals for the solutions of the above SDEs we find

mπt − πt = Amt +Mm
t where

Amt :=

∫ t

0

(α(mπs, hs)− α(πs, hs))ds and

Mm
t =

∫ t

0

(β(mπs)− β(πs))
>dBs +

∫ t

0

∫
U

(γ(mπs, u)− γ(πs, u))Ñ(ds, du)

+
1√
m
dB̃t.

Note that here we have used the fact that the SDE for mπ and for π is driven by an
exogenous Poisson random measure, since this permits us to write the difference
of the jump-terms as stochastic integral with respect to the same compensated
random measure.

Denoting Gmt := E
(

sups≤t |mπs − πs|2
)

it holds

Gmt = E
(

sup
s≤t
|Ams +Mm

s |2
)
≤ 2E

(
sup
s≤t
|Ams |

2
)

+ 2E
(

sup
s≤t
|Mm

s |
2
)
. (7.2)

For the first term on the r.h.s. we find by applying Cauchy-Schwarz inequality and
the Lipschitz condition (4.6) for α

sup
s≤t
|Ams |

2
= sup

s≤t

∣∣∣∣∫ s

0

(
α(mπu, hu)− α(πu, hu)

)
du

∣∣∣∣2
≤ sup

s≤t
s ·
∫ s

0

∣∣∣α(mπu, hu)− α(πu, hu))
∣∣∣2du

≤ t ·
∫ t

0

CL|mπu − πu|2du ≤ t ·
∫ t

0

CL sup
v≤u
|mπv − πv|2du.

Note that the constant CL does not depend on h. Taking expectation it follows

E
(

sup
s≤t
|Ams |

2
)
≤ t · CL

∫ t

0

E
(

sup
v≤s
|mπv − πv|2ds

)
≤ C

∫ t

0

Gms ds. (7.3)
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For the second term on the r.h.s. of (7.2) Doob’s inequality for martingales yields

E
(

sup
s≤t
|Mm

s |
2
)
≤ 4E(|Mm

t |
2
)

= 4
(∫ t

0

E
(

tr[(β(mπs)− β(πs))
>(β(mπs)− β(πs))]

)
ds (7.4)

+

∫ t

0

∫
U
E
( ∣∣γ(mπs, u)− γ(πs, u))

∣∣2 )ν(du)ds+
(d− 1)t

m

)
.

Using the Lipschitz conditions (4.6) and (4.8) for the coefficients β and γ it follows

E
(
tr[(β(mπs)− β(πs))

>(β(mπs)− β(πs))]
)
≤ C2

LE(|mπs − πs|2)

≤ C2
LE
(

sup
v≤s
|mπv − πv|2

)
= C2

LG
m
s

E
( ∣∣γ(mπs, u)− γ(πs, u))

∣∣2 ) ≤ ρ2(u)E(|mπs − πs|2)

≤ ρ2(u)E
(

sup
v≤s
|mπv − πv|2

)
= ρ2(u)Gms .

Substituting the above estimates into (7.4) it follows that

E
(

sup
s≤t
|Mm

s |
2
)
≤ 4

(∫ t

0

C2
LG

m
s ds+

∫ t

0

Gms ds

∫
U
ρ2(u)ν(du) +

(d− 1)t

m

)
≤ C

∫ t

0

Gms ds+
4(d− 1)t

m
. (7.5)

Substituting (7.3) and (7.5) into (7.2) we find

Gmt ≤
4(d− 1)T

m
+ C

∫ t

0

Gms ds.

Finally we apply Gronwall Lemma to derive

GmT ≤
4(d− 1)T

m
eCT → 0 for m→∞

which concludes the proof.
2

Note, that the L2-convergence for the restricted state process mπt established
in Lemma 7.2 also holds for the associated d-dimensional process mpt = Rmπt.

We now extend the notions of reward and value function given in (3.7) to the
process mpt = Rmπt with mπt satisfying the regularized state equation (7.1).
Since mpt takes values in Rd (and not only in S) we extend the function b given
in (3.2) to p = Rπ ∈ Rd. With the notation b∗ = min{b(p, h), p ∈ S, h ∈ K} and
b∗ = max{b(p, h), p ∈ S, h ∈ K} we define

b̃(p, h) := (b(p, h) ∨ b∗) ∧ b∗.

Then b̃ is bounded on Rd ×K and for p ∈ S the function b̃ coincides with b. In

the sequel we simply write b instead of b̃. We define the reward and value function
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associated to the regularized state equation (7.1) by

vm(t, π, h) = E
(

exp
{∫ T

t

−b(R(mπ(t,π,h)
s ), hs)ds

})
for h ∈ H,

V m(t, π) = sup{vm(t, π, h) : h ∈ H}.

Recall that v(t, π, h) and V (t, π) defined in (4.11) denote the reward and value
function associated to the unregularized state equation (4.5). The generator asso-
ciated to the solution of the regularized state equation (7.1) reads as

mLhg(π) =
1

2

d−1∑
i,j=1

β>
i

(π)β
j
(π)gπiπj +

1

2m

d−1∑
i=1

gπiπi +

d−1∑
i=1

αi(π, h)gπi

+

∫
U
{g(π + γ(π, u))− g(π)}ν(du)

and the associated dynamic programming equation is

V mt (t, π) + sup
h∈K

{
mLhV m(t, π)− b(Rπ, h; θ)V m(t, π)

}
= 0, (t, π) ∈ [0, T )× Rd−1.

(7.6)
Note, that for the generator mLh the ellipticity condition for the coefficients of the
second derivatives holds: we have for all z ∈ Rd−1 \ {0}

z>(β>β +
1

2m
Id−1)z = z>β>βz +

1

2m
z>z = |βz|2 +

1

2m
|z|2 > 0.

Hence the results of Davis & Lleo [4] apply to this dynamic programming problem.
equation. According to Theorem 3.8 of their paper, there is a classical solution
V m of (7.6). Moreover, for every (t, π) there is a unique maximizer mh∗ of the
problem

sup
h∈K

{
mLhV m(t, π)− b(Rπ, h; θ)V m(t, π)

}
,

mh∗ can be chosen as a Borel-measurable function of t and π and the optimal strat-
egy is given by mh∗t = mh∗(t,mπt); see also the discussion preceding Remark 3.1.

Convergence of reward and value function. The next theorem on the
uniform convergence of reward functions is our main result; convergence of the
value function and ε-optimality of mh∗ follow easily from this theorem.

Theorem 7.3 (Uniform Convergence of reward functions). It holds

sup
h∈H
|vm(t, π, h)− v(t, π, h)| → 0 for m→∞, t ∈ [0, T ], π ∈ S.

Proof. We introduce the notation

J :=

∫ T

t

−b(Rπ(t,π,h)
s , hs)ds and Jm :=

∫ T

t

−b(Rmπ(t,π,h)
s , hs)ds.

Then the reward functions read as v(t, π, h) = E(eJ) and vm(t, π, h) = E(eJ
m

)
and it holds

|vm(t, π, h)− v(t, π, h)| = |E(eJ
m

− eJ)| ≤ E(|eJ
m

− eJ |)
≤ CE(|Jm − J |), (7.7)
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where we used Lipschitz continuity of f(x) = ex on bounded intervals and the
boundedness of J and Jm which follows from the the boundedness of b. Using
Lipschitz continuity of b we derive

E(|Jm − J |) = E
(∣∣∣ ∫ T

t

[
b(Rπ(t,π,h)

s , hs)− b(Rmπ(t,π,h)
s , hs)

]
ds
∣∣∣)

≤
∫ T

t

C E(|mπ(t,π,h)
s − π(t,π,h)

s |) ds

≤ C

∫ T

t

(
E(|mπ(t,π,h)

s − π(t,π,h)
s |2

)1/2
ds→ 0 (7.8)

for m→∞ and uniformly w.r.t. h ∈ H which follows from Lemma 7.2. Plugging
(7.8) into (7.7) we find

sup
h∈H
|vm(t, π, h)− v(t, π, h)| → 0 for m→∞.

2

Corollary 7.4 (Convergence of value functions). It holds

V m(t, π)→ V (t, π) for m→∞, t ∈ [0, T ], π ∈ S.

Proof. For θ ∈ (0, 1) the assertion follows from

|V m(t, π)− V (t, π)| =
∣∣∣ sup
h∈H

vm(t, π, h)− sup
h∈H

v(t, π, h)
∣∣∣

≤ sup
h∈H
|vm(t, π, h)− v(t, π, h)|

and Lemma 7.3. Analogously, for θ < 0 it follows

|V m(t, π)− V (t, π)| =
∣∣∣ inf
h∈H

vm(t, π, h)− inf
h∈H

v(t, π, h)
∣∣∣

=
∣∣∣ sup
h∈H

(−vm(t, π, h))− sup
h∈H

(−v(t, π, h))
∣∣∣

≤ sup
h∈H
|vm(t, π, h)− v(t, π, h)|.

2

On ε-optimal stratgies. Finally we show that the optimal strategy mh∗ for
the regularized problem is ε-optimal in the original problem. This gives a method
for computing (nearly) optimal strategies.

Corollary 7.5 (ε-optimality). For every ε > 0 there exists some m0 ∈ N such
that

|V (t, π)− v(t, π,mh∗)| ≤ ε for m ≥ m0,

i.e. mh∗ is an ε-optimal strategy for the original control problem.

Proof. It holds

|V (t, π)− v(t, π,mh∗)|
≤ |V (t, π)− vm(t, π,mh∗)|+ |vm(t, π,mh∗)− v(t, π,mh∗)|
= |V (t, π)− V m(t, π)|+ |vm(t, π,mh∗)− v(t, π,mh∗)| (7.9)
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where for the first term on the r.h.s. we used vm(t, π,mh∗) = V m(t, π). Using the
convergence properties for the reward function given in Lemma 7.3 and for the
value function given in Corollary 7.4 we can find for every ε > 0 some m0 ∈ N
such that for m ≥ m0 it holds

|V (t, π)− V m(t, π)| ≤ ε

2
and |vm(t, π,mh∗)− v(t, π,mh∗)| ≤ ε

2
.

Plugging the above estimates into (7.9) it follows for m ≥ m0

|V (t, π)− v(t, π,mh∗)| ≤ ε

2
+
ε

2
= ε.

2

Remark 7.6. Note that in the proof of the corollary we use that the sequence of
reward functions vm converges to v uniformly in h. This is a stronger property
than convergence of the value functions V m to V so that standard stability results
for dynamic programming equations are not sufficient to proof the corollary.
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Appendix A. Proof of Lemma 5.4

Proof. We give the proof for the maximum norm |.|∞ in Rd. From this the assertion
for the Euclidean norm can be deduced from the equivalence of norms.

Note that the fact that all densities are C1 with compact support Z = [a, b]
implies the existence of constants C2, Cd <∞ such that for all 1 ≤ k ≤ d, z ∈ Z,

fk(z) ≤ C2 and
∣∣∣ ∂
∂zi

fj(z)
∣∣∣ ≤ Cd, i = 1, . . . , κ. (A.1)

Boundedness of f(z,Rπ). First we show that for π ∈ Sε, z ∈ Z and ε < ε
there are constants 0 < C∗ ≤ C∗ <∞ such that

C∗ ≤ f(z,Rπ) ≤ C∗. (A.2)

For this, observe that for p = Rπ,

f(z, p) =

d∑
j=1

pjfj(z) =
∑
pj<0

pjfj(z) +
∑
pj≥0

pjfj(z). (A.3)

For the lower bound we deduce

f(z, p) ≥
∑
pj<0

(−ε) max
j
fj(z) +

∑
pj≥0

pj min
j
fj(z)

≥ −ε(d− 1)C2 +
(

1−
∑
pj<0

pj
)
· C1 ≥ −ε

C1

ε
+ 1 · C1 = C∗,

where we used Assumption 5.1, (A.1), pj ≥ −ε and
∑d
j=1 p

j = 1. For the upper
bound from A.3 we find

f(z, p) ≤ 0 +
∑
pj≥0

pj max
j
fj(z) ≤

(
1−

∑
pj<0

pj
)
C2 ≤ (1 + ε(d− 1))C2 = C∗

Note that the lower bound in (A.2) implies that f(·, Rπ) is strictly positive for
π ∈ Sε. Moreover, since the components of p = Rπ sum up to one by definition
f(·, Rπ) is a strictly positive probability density for π ∈ Sε. Hence, the inverse
Rosenblatt transform G(u,Rπ) and thus the function γ(π, u) defined in (5.5) is
well defined for π ∈ Sε (and not just for π ∈ S).

Proof of the Lipschitz condition (4.8). Clearly, (4.8) holds for some con-
stant function ρ(u) = ρ if we can show that the derivatives of γ(π, u) with respect

to πj are bounded for all 1 ≤ j ≤ d− 1. This is obviously equivalent to estimating
the derivatives of

γk(p, u) = pk
( fk(G(u, p))

f(G(u, p), p)
− 1
)
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with respect to the components pj where p = Rπ. Let

ckj (p, u) :=
∂

∂pj

( fk(G(u, p))

f(G(u, p), p)
− 1
)
, j, k = 1, . . . , d.

Then it holds

∂

∂pj
γk(p, u) = δjk

( fk(G(u, p))

f(G(u, p), p)
− 1
)

+ pkckj (p, u).

The first term on the r.h.s. is bounded since it holds for k = 1, . . . , d and ε < ε

fk(G(u, p))

f(G(u, p), p)
≤ C2

C∗
, (A.4)

where we have used (A.1) and the lower bound for f(z, p) given in (A.2).
It remains to show that ckj (p, u) is bounded. Abbreviating z = z(p) = G(u, p)

we find

ckj (p, u) =
1

(f(z, p))2

( κ∑
l=1

∂

∂zl
fk(z)

∂

∂pj
Gl(u, p) · f(z, p)

−fk(z) ·
(
fj(z) +

d∑
i=1

pi
κ∑
l=1

∂

∂zl
fi(z)

∂

∂pj
Gl(u, p)

))
.(A.5)

Using (A.1),
∑d
j=1 |pj | ≤ 1 + (d−1)ε and estimate (A.2) for f , we derive for ε < ε

|ckj (p, u)| ≤ 1

C2
∗

(
Cd

κ∑
l=1

∣∣∣ ∂
∂pj

Gl(u, p)
∣∣∣C∗

+C2 ·
(
C2 + (1 + (d− 1)ε)Cd

κ∑
l=1

∣∣∣ ∂
∂pj

Gl(u, p)
∣∣∣ )). (A.6)

In Lemma A.1 below we show that the derivatives ∂
∂pjGl(u, p) are bounded, that is

there is some C > 0 such that for j = 1, . . . , d and l = 1, . . . , κ
∣∣ ∂
∂pjGl(u, p)

∣∣ ≤ C.
From this the boundedness of ckj follows immediately.

Proof of the growth condition (4.9). Here we apply estimate (A.4) and find

|γj(p, u)| =
∣∣∣pj( fj(G(u, p))

f(G(u, p), p)
− 1
)∣∣∣ ≤ |pj |

(C2

C∗
+ 1
)
≤ (1 + |p|∞)

(C2

C∗
+ 1
)

and hence |γ(p, u)|∞ ≤ ρ(1 + |p|∞) with some constant ρ. 2

Lemma A.1. Under the assumptions of Lemma 5.4 there exists a constant C > 0
such that for j = 1, . . . , d and l = 1, . . . , κ∣∣∣ ∂

∂pj
Gl(u, p)

∣∣∣ ≤ C.
Proof. We derive from differentiating Gl(F̃ (z, p), p) = zl w.r.t. pj using the chain
rule

κ∑
i=1

∂

∂ui
Gl(F̃ (z, p), p)

∂

∂pj
F̃i(z, p) +

∂

∂pj
Gl(F̃ (z, p), p) = 0.
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Substituting u = F̃ (z, p) we obtain the estimate∣∣∣ ∂
∂pj

Gl(u, p)
∣∣∣ ≤ κ∑

i=1

∣∣∣ ∂
∂ui

Gl(u, p)
∣∣∣∣∣∣ ∂
∂pj

F̃i(z, p)
∣∣∣. (A.7)

(i) For the proof of the boundedness of the derivatives on the r.h.s. we need the
following auxiliary estimates for the marginal densities fZ1...Zk , k = 1, . . . , κ given

in (5.2). From estimate (A.2) for f we derive the estimate

C∗

κ∏
i=k+1

(bi − ai) ≤ fZ1...Zk(z1, . . . , zk, p) ≤ C∗
κ∏

i=k+1

(bi − ai). (A.8)

For the derivatives of the marginal densities w.r.t. pj the definition of f in (2.8)
yields

∂

∂pj
fZ1...Zk(z1, . . . , zk, p) =

∫ bk+1

ak+1

. . .

∫ bκ

aκ

fj(z1, . . . , zk, sk+1, . . . , sκ)dsk+1 . . . dsκ.

From Assumption 5.1 and (A.1) it follows

0 < C1

κ∏
i=k+1

(bi − ai) ≤
∂

∂pj
fZ1...Zk(z1, . . . , zk, p) ≤ C2

κ∏
i=k+1

(bi − ai). (A.9)

For the derivatives of the marginal densities w.r.t. zj , j = 1 . . . , k we find∣∣∣ ∂
∂zj

fZ1...Zk(z1, . . . , zk, p)
∣∣∣

≤
∫ bk+1

ak+1

. . .

∫ bκ

aκ

d∑
l=1

pl
∣∣∣ ∂
∂zj

fl(z1, . . . , zk, sk+1, . . . , sκ)
∣∣∣dsk+1 . . . dsκ

≤ Cd

κ∏
i=k+1

(bi − ai), (A.10)

where the upper bound from (A.1) on the derivatives of the densities fj has been
used.

(ii) Now we can prove the boundedness for the second term r.h.s. of (A.7). For

k = 2, . . . , κ we obtain from the definition of F̃ (z, p) in (5.3)∣∣∣ ∂
∂pj

F̃i(z, p)
∣∣∣ =

∣∣∣ ∫ zk

ak

∂

∂pj
fZk|Z1...Zk−1

(sk|z1, . . . zk−1, p)dsk
∣∣∣

=
∣∣∣ ∫ zk

ak

∂

∂pj
fZ1...Zk(z1, . . . , zk−1, sk, p)

fZ1...Zk−1
(z1, . . . , zk−1, p)

dsk

∣∣∣
≤

∫ zk

ak

1

f2Z1...Zk−1
(·)

( ∣∣∣ ∂
∂pj

fZ1...Zk(·)
∣∣∣fZ1...Zk−1

(·) +

fZ1...Zk(.)
∣∣∣ ∂
∂pj

fZ1...Zk−1
(.)
∣∣∣ )dsk ≤ C.

Here, we have used estimate (A.8), which states that the marginal densities are
bounded from above and bounded away from zero, and (A.9) for the boundedness
of the derivatives of the marginal densities w.r.t. pj .
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For k = 1 we observe that

∂

∂pj
F̃1(z, p) =

∂

∂pj
FZ1(z1, p) =

∫ z1

a1

∂

∂pj
fZ1(s1, p)ds1.

The boundedness ∂/∂pjF̃1(z, p) is a consequence of estimate (A.9).

(iii) For proving the boundedness of ∂/∂uiGl(u, p) in (A.7) we consider the Jaco-

bian matrices for G(u) and F̃ (z) defined by

JG(u) :=
( ∂

∂uj
Gi(u, p)

)
i,j=1...,κ

and J F̃ (z) :=
( ∂

∂zj
F̃i(z, p)

)
i,j=1...,κ

.

Below we show that for z = G(u, p) the matrix J F̃ (z) is regular, hence JG(u) =

J−1
F̃

(G(u, p)), since G(F̃ (z, p), p) = z. From the definition of F̃ in (5.3) it follows

that J F̃ (z) is a lower triangular matrix since F̃k depends on z1, . . . , zk only.

Next we consider the diagonal elements of J F̃ (z). Using (A.8) we find constants
C and C such that C ≤ fZ1...Zk(z1, . . . , zk, p) ≤ C for all k = 1 . . . , κ. Then it
holds with δ := min{C, C /C}
∂

∂z1
F̃1(z, p) = fZ1

(z1, p) ≥ δ and

∂

∂zk
F̃k(z, p) = fZk|Z1...Zk−1

(zk|z1, . . . zk−1, p) =
fZ1...Zk(z1, . . . , zk, p)

fZ1...Zk−1
(z1, . . . , zk−1, p)

≥ δ,

for k = 2, . . . , κ. Since J F̃ (z) is triangular, its determinant is

det(J F̃ (z)) =

κ∏
k=1

∂

∂zk
F̃k(z, p) ≥ δκ > 0,

hence J F̃ (z) is invertible.

Next we show that the the non-zero off-diagonal elements of J F̃ are bounded.
It holds for k = 2, . . . , κ, j = 1, . . . , k − 1

∂

∂zj
F̃k(z, p) =

∫ zk

ak

∂

∂zj
fZk|Z1...Zk−1

(sk|z1, . . . zk−1, p)dsk

=

∫ zk

ak

∂

∂zj

fZ1...Zk(z1, . . . , zk−1, sk, p)

fZ1...Zk−1
(z1, . . . , zk−1, p)

dsk

≤
∫ zk

ak

1

f2Z1...Zk−1
(·)

( ∣∣∣ ∂
∂zj

fZ1...Zk(·)
∣∣∣fZ1...Zk−1

(·)

+fZ1...Zk(·)
∣∣∣ ∂
∂zj

fZ1...Zk−1
(·)
∣∣∣ )dsk ≤ C.

Here again we have used that the marginal densities are bounded from above and
bounded away from zero, and (A.10) for the boundedness of the derivatives of the
marginal densities w.r.t. zj .

For proving the boundedness of ∂/∂uiGl(u, p) in (A.7) which are the entries

of the Jacobian matrix JG(u) we use that JG is the inverse of J F̃ . Since J F̃ ist
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a triangular matrix the entries of JG can be computed recursively by Gaussian
elimination starting with the first row. This gives that for k, l = 1, . . . , κ

JGkl =
1

J F̃kk

(
δkl −

k−1∑
j=1

J F̃kj J
G
jl

)
,

i.e. the entry JGkl can be represented by an affine linear combination of the bounded

off-diagonal entries in row k of J F̃ divided by J F̃kk. The latter is strictly positive
and bounded from below by δ > 0. Hence, all entries of JG are bounded.

2

Appendix B. Proof of Proposition 6.1

Proof. We give the proof for k = 2. The assertions for k ∈ [0, 2] follow from Hölder
inequality. We denote by C a generic constant.

Proof of inequality (6.1): E(|π(t,π,h)
τ |2) ≤ C(1 + |π|2).

We recall the state equation

dπt = α(πt, ht)dt+ β>(πt)dBt +

∫
U
γ(πt, u)Ñ(dt× du) (B.1)

and for the sake of shorter notation we denote by πτ = π
(t,π,h)
τ the solution of

equation (B.1) starting from π at time t using strategy h for τ ≥ t. Then it holds

|πτ |2 ≤ C
(
|π|2 +

∣∣∣ ∫ τ

t

α(πs, hs)ds
∣∣∣2 +

∣∣∣ ∫ τ

t

β(πs)dBs

∣∣∣2
+
∣∣∣ ∫ τ

t

∫
U
γ(πs, u)Ñ(ds× du)

∣∣∣2)
Taking expectation and using Itô-Levy isometry implies

E(|πτ |2) ≤ C
(
|π|2 + E

(∫ τ

t

|α(πs, hs)|2ds
)

+ E
(∫ τ

t

tr(β>(πs)β(πs))ds
)

+E
(∫ τ

t

∫
U
|γ(πs, u)|2ν(du)ds)

))
.

We now use the linear growth of α, β and γ and the integrability property for
ρ (see Assumption 4.1) to obtain

E(|πτ |2) ≤ C
{
|π|2 + E

(∫ τ

t

(1 + |πs|2)ds
)}
≤ C

{
|π|2 + E(τ) + E

(∫ τ

t

|πs|2ds
)}

≤ C
{
|π|2 + 1 + E

(∫ τ

t

|πs|2ds
)}
. (B.2)

For any deterministic time τ = u Fubini’s Theorem gives

E(|πu|2) ≤ C
{
|π|2 + 1 +

∫ u

t

E(|πs|2)ds
}

and applying Gronwall’s Lemma to Gu := E(|πu|2) implies

E(|πu|2) ≤ C(|π|2 + 1)eC(u−t) ≤ C(|π|2 + 1).
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Finally, we note, that for any stopping time τ ∈ [t, T ∧ t+ δ] it holds

E
(∫ τ

t

|πs|2ds
)
≤
∫ t+δ

t

E(|πs|2)ds ≤ C(1 + |π|2).

Substituting the upper estimate back into (B.2) proves the assertion.

Proof of inequality (6.2): E(|π(t,π,h)
τ − π|2) ≤ C(1 + |π|2)δ.

The process (πτ −π) starts from 0 and hence the computations for πτ in the above
proof inequality (6.2) give for τ ∈ [t, T ∧ t+ δ]

E(|πτ − π|2) ≤ C

∫ τ

t

(1 + E(|πs|2))ds ≤ C
∫ t+δ

t

(1 + E(|πs|2))ds

≤ C

∫ t+δ

t

(1 + C(1 + (|π|2))ds ≤ C(1 + |π|2)δ.

Proof of inequality (6.3): E
({

supt≤s≤t+δ |π
(t,π,h)
s − π|

}2)
≤ C(1 + |π|2)δ.

We give the proof for t = 0 from which the claim for general t follows immediately.
Using the corresponding representation as stochastic integrals for the solution of
equation (B.1) we find

πs − π = As +Ms where

As =

∫ s

0

α(πr, hr)dr and Ms =

∫ s

0

β>(πr)dBr +

∫ s

0

γ(πr, u)Ñ(dr × du).

Then it holds

E
({

sup
0≤s≤δ

|πs − π|
}2)

= E
({

sup
0≤s≤δ

|As +Ms|
}2)

≤ 2E
(

sup
0≤s≤δ

|As|2
)

+ 2E
(

sup
0≤s≤δ

|Ms|2
)
. (B.3)

For the first term on the r.h.s. we find by applying Cauchy-Schwarz inequality and
the growth condition (4.7) for α

sup
0≤s≤δ

|As|2 = sup
0≤s≤δ

∣∣∣∣∫ s

0

α(πr, hr)dr

∣∣∣∣2 ≤ sup
0≤s≤δ

s

∫ s

0

|α(πr, hr)|2 dr.

≤ δ

∫ δ

0

C(1 + |πr|2)dr.

Taking expectation and applying estimate (6.1) we find

E
(

sup
0≤s≤δ

|As|2
)
≤ δ

∫ δ

0

C(1 + |π|2)dr ≤ δC(1 + |π|2). (B.4)

For the second term on the r.h.s. of (B.3) Doob’s inequality for martingales and
Itô-Levy isometry yields

E
(

sup
0≤s≤δ

|Ms|2
)
≤ 4E(|Mδ|2) = 4

(∫ δ

0

E
(
tr[β>(πr)β(πr)]

)
dr

+

∫ δ

0

∫
U
E
( ∣∣γ(πr, u)

∣∣2 )ν(du)dr
)
.
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Applying the growth conditions (4.9), (4.7) and estimate (6.1) it yields

E
(

sup
0≤s≤δ

|Ms|2
)
≤ C

(∫ δ

0

E(1 + |πr|2)dr +

∫ δ

0

∫
U
ρ2(u)E(1 + |πr|2)ν(du)dr

)
≤ C(1 + |π|2)

∫ δ

0

(
1 +

∫
U
ρ2(u)ν(du)

)
dr ≤ Cδ(1 + |π|2). (B.5)

Substituting (B.4) and (B.5) into (B.3) yields the assertion.

Proof of inequality (6.4): E(|π(t,π,h)
τ − π(t,ξ,h)

τ |2) ≤ (π − ξ)2.
For the sake of shorter notation we write πs = π

(t,π,h)
s and ξs = π

(t,ξ,h)
s and

we set ∆α(π, ξ, h) = α(π, h) − α(ξ, h), ∆β(π, ξ) = β(π) − β(ξ) and ∆γ(π, ξ) =
γ(π, u)− γ(ξ, u). Then,

Yτ := πτ − ξτ = π − ξ +

∫ τ

t

∆α(πs, ξs, hs)ds+

∫ τ

t

∆β>(πs, ξs)dBs

+

∫ τ

t

∫
U

∆γ(πs, ξs, u)Ñ(ds× du).

Applying Itô’s lemma to Y 2
s and using Itô-Levy isometry we obtain

E(|Yτ |2) = |π − ξ|2 + E
(∫ τ

t

{
2Y >s ∆α(πs, ξs, hs) + tr

(
∆β(πs, ξs)∆β

>(πs, ξs)
)

+

∫
U
|∆γ(πs, ξs, u)|2ν(du)

}
ds
)
.

Hence we obtain from the Lipschitz continuity of α, β, γ given in Assumption 4.1

E(|Yτ |2) ≤ |π − ξ|2 + CE
(∫ τ

t

|Ys|2ds
)
.

For any deterministic time τ = u Fubini’s Theorem gives

E(|Yu|2) ≤ |π − ξ|2 + CE
(∫ u

t

|Ys|2ds
)

and applying Gronwall’s Lemma to Gu := E(|Yu|2) implies

E(|Yu|2) ≤ |π − ξ|2 eC(u−t) ≤ C |π − ξ|2 .

Finally, we note, that for any stopping time τ ∈ [t, T ∧ t+ δ] it holds

E(|Yτ |2) ≤ |π − ξ|2 + CE
(∫ t+δ

t

|Ys|2ds
)
≤ C |π − ξ|2 .

2

Appendix C. Proof of Proposition 6.3

Proof. Boundedness of V . We recall that V (t, π) = suph∈H v(t, π, h) where

v(t, π, h) = E
(

exp
{∫ T

t

−b(Rπ(t,π,h)
s , hs)ds

})
with b(p, h) = −θ

(
h>Mp− 1− θ

2

∣∣σ>h∣∣2 ),



30 RÜDIGER FREY, ABDELALI GABIH, AND RALF WUNDERLICH

and π
(t,π,h)
s is the solution of the SDE (4.5) with initial value πt = π.

The function b is bounded, since it is continuous and π ∈ S and h ∈ K take
values in compact sets, i.e. |b(Rπ, h)| ≤ Cb with some constant Cb > 0. Hence
0 ≤ v(t, π, h) ≤ eCb(T−t) ≤ eCbT for all h ∈ H which implies that 0 ≤ V (t, π) ≤
eCbT .

Note, that since the value function V is bounded, it also satisfies the linear
growth condition V (t, π) ≤ C(1 + |π|) since |π|∞ ≤ 1.
Lipschitz continuity in π. The reward function can be written as

v(t, π, h) = E(eJ(π)) where J(π) :=
∫ T
t
−b(Rπ(t,π,h)

s , hs)ds. It holds for θ ∈ (0, 1)

|V (t, π)− V (t, ξ)| =
∣∣ sup
h∈H

E(eJ(π))− sup
h∈H

E(eJ(ξ))
∣∣ ≤ sup

h∈H

∣∣E(eJ(π) − eJ(ξ))
∣∣

≤ sup
h∈H

E(|eJ(π) − eJ(ξ)|) ≤ sup
h∈H

CE(|J(π)− J(ξ)|), (C.1)

where we used Lipschitz continuitiy of f(x) = ex on bounded intervals and the
boundedness of J(π) which follows, since b is bounded. For θ < 0 we use V (t, π) =
infh∈HE(eJ(π)) = suph∈H−E(eJ(π)) and apply analogous estimates.

Using that b is linear in π and that ht ∈ K is uniformly bounded we derive

E(|J(π)− J(ξ)|) = E
(∣∣∣ ∫ T

t

[
b(Rπ(t,ξ,h)

s , hs)− b(Rπ(t,π,h)
s , hs)

]
ds
∣∣∣)

≤
∫ T

t

C E(|π(t,π,h)
s − π(t,ξ,h)

s |) ds

≤ C

∫ T

t

|π − ξ|2 ds ≤ C(T − t) |π − ξ|2 ≤ C |π − ξ| ,(C.2)

for every h ∈ H, where we used estimate (6.4), |π − ξ| ≤ C |π − ξ|∞ and |π − ξ|∞ ≤
1. Plugging the above estimate into (C.1) it follows |V (t, π)−V (t, ξ)| ≤ C |π − ξ|,
which proves the Lipschitz continuity of V (t, π) in π.

Continuity in t. Let 0 ≤ t < s ≤ T , then the dynamic programming principle
to V (t, π) implies

0 ≤ |V (t, π)− V (s, π)|

= sup
h∈H

E
(

exp
{
−
∫ s

t

b(Rπ(t,π,h)
u , hu)du

}
V (s, π(t,π,h)

s )− V (s, π)
)

≤ sup
h∈H

E
(

exp
{
−
∫ s

t

b(Rπ(t,π,h)
u , hu)du

} ∣∣∣V (s, π(t,π,h)
s )− V (s, π)

∣∣∣)
+ sup

h∈H
E
(∣∣∣ exp

{
−
∫ s

t

b(Rπ(t,π,h)
u , hu)du

}
V (s, π)− V (s, π)

∣∣∣).
Using the Lipschitz continuity of V in π the first term can be estimated by

C sup
h∈H

E
(
|π(t,π,h)
s − π|

)
≤ C|s− t| 12

where we have used (6.3). For the second term the boundedness of b and V yields
the estimate

|eCb(s−t) − 1|V (s, π) ≤ C|s− t|
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where we have used that f(x) = ex is Lipschitz continuous on bounded intervals.
Finally, we obtain

|V (t, π)− V (s, π)| ≤ C(|s− t| 12 + |s− t|) ≤ (C + T
1
2 )|s− t| 12 .
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