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Foreword

This booklet is a collection of topics which I prepared over the time for my
students. The selection of topics reflects my personal interests and is therefore
biased towards combinatorial mathematics, probability and statistics, opera-
tions research, scheduling theory and, yes, history of mathematics.

It is in the nature of things that the level of difficulty varies from topic to
topic. Some are technically more demanding others somewhat easier. The only
prerequisite to master these topics are courses in mathematics and statistics
at an undergraduate university level. Otherwise, no special prior knowledge in
mathematics is afforded.

However, what is needed is serious interest in mathematics, of course.

How is a Topic organized?

Each topic consists of three parts:

(1) An Invitation

Of course, the major purpose of this invitation is to raise your interest and to
draw your attention to a problem which I found very interesting, attractive and
challenging. Further, in each invitation I introduce some basic terminology so
that you can start reading basic literature related to the topic.

(2) Where to go from here

Some of my invitations are more detailed depending on the topic, so you may
ask yourself: Is there anything left for me to do?

Yes, there is lot of work still to be done. The second section of each topic
contains questions and problems which you may study in your thesis. This list
is by no means exhaustive, so there enough opportunity to unleash your creative
potential and hone your skills. For some topics I explicitly indicate some issues
of general interest, these are points which you should to discuss in your thesis
in order to make it more or less self-contained and appealing to readers not
spezialized in this topic. And sometimes there is also a section What to be
avoided : here I indicate aspects and issues related to the topic which may lead
too far afield or are technically too difficult

(3) An annotated bibliography

This is a commented list of interesting, helpful and important books and journal
articles.

This book has not been finished yet and probably may
never be.

You are free to use this material, though a proper citation is appreciated.

3



4



Contents

1 Recreational Mathematics 11

1.1 An Invitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 The Challenge of Mathematical Puzzles . . . . . . . . . . 12

1.1.2 Some Tiny Treasures From My Collection . . . . . . . . . 14

1.2 Where to go from here . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 An annotated bibliography . . . . . . . . . . . . . . . . . . . . . 23

1.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Shortest Paths in Networks 27

2.1 An Invitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 The problem and its history . . . . . . . . . . . . . . . . . 27

2.1.2 Preparing the stage - graphs, paths and cycles . . . . . . 28

2.1.3 Weighted graphs . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.4 Solvability . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.5 It’s time to relax . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.6 A sample run of the Bellman-Ford Algorithm . . . . . . . 41

2.1.7 The complexity of the Bellman-Ford Algorithm . . . . . . 44

2.2 Where to go from here . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.1 Issues of general interest . . . . . . . . . . . . . . . . . . . 45

2.2.2 Some more suggestions . . . . . . . . . . . . . . . . . . . . 46

2.2.3 To be avoided . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 An Annotated Bibliography . . . . . . . . . . . . . . . . . . . . . 49

2.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 The Seven Bridges of Königsberg 53

3.1 An Invitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Euler’s 1736 paper . . . . . . . . . . . . . . . . . . . . . . 53

3.1.2 Königsberg and a puzzle . . . . . . . . . . . . . . . . . . . 54

3.1.3 Euler takes notice of the puzzle . . . . . . . . . . . . . . . 54

5



Contents

3.1.4 Euler’s solution . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.5 What happened to the problem later? . . . . . . . . . . . 60

3.1.6 An epilog: Königsberg and its bridges today . . . . . . . . 60

3.1.7 The Chinese Postman Problem . . . . . . . . . . . . . . . 61

3.2 Where to go from here . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1 Issues of general interest . . . . . . . . . . . . . . . . . . . 65

3.2.2 Some more suggestions . . . . . . . . . . . . . . . . . . . . 67

3.3 An Annotated Bibliography . . . . . . . . . . . . . . . . . . . . . 69

3.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 The Chains of Andrei Andreevich Markov - I 73

4.1 An Invitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 The Law of Large Numbers and a Theological Debate . . 73

4.1.2 Let’s start with a definition . . . . . . . . . . . . . . . . . 74

4.1.3 Example 1: Will We Have a White Christmas This Year? 77

4.1.4 Example 2: Losing Your Money - Delinquency Of Loans . 84

4.2 Where to go from here . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.1 Make up your mind - absorbing or regular chains? . . . . 88

4.2.2 Google’s PageRank Algorithm . . . . . . . . . . . . . . . 89

4.2.3 Credit Ratings . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.4 Generating Random Text, maybe Bullshit . . . . . . . . . 91

4.2.5 Other Applications . . . . . . . . . . . . . . . . . . . . . . 92

4.3 An Annotated Bibliography . . . . . . . . . . . . . . . . . . . . . 93

4.4 A note on software . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 The Chains of Andrei Andreevich Markov - II 97

5.1 An Inivitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 An Annotated Bibliography . . . . . . . . . . . . . . . . . . . . . 97

5.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Benford’s Law 99

6.1 An Invitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1.1 Simon Newcomb and the First Digit Law . . . . . . . . . 99

6.1.2 The significand function . . . . . . . . . . . . . . . . . . . 102

6



Contents

6.1.3 Benford’s Law and the uniform distribution . . . . . . . . 103

6.1.4 The general digit law . . . . . . . . . . . . . . . . . . . . . 104

6.1.5 Testing the Hypothesis . . . . . . . . . . . . . . . . . . . . 106

6.1.6 Remarkable Properties of Benford’s Law . . . . . . . . . . 109

6.2 Where to go from here . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.1 Statistical Forensics . . . . . . . . . . . . . . . . . . . . . 113

6.2.2 Experimental Statistics . . . . . . . . . . . . . . . . . . . 115

6.3 An Annotated Bibliography . . . . . . . . . . . . . . . . . . . . . 117

6.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 The Invention of the Logarithm 121

7.1 An Invitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1.1 A personal remembrance . . . . . . . . . . . . . . . . . . . 121

7.1.2 Tycho Brahe - the man with the silver nose . . . . . . . . 122

7.1.3 Prostaphaeresis . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1.4 John Napier and Henry Briggs . . . . . . . . . . . . . . . 125

7.2 Where to go from here . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2.1 Historical Issues . . . . . . . . . . . . . . . . . . . . . . . 129

7.2.2 Technical Issues . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3 An Annotated Bibliography . . . . . . . . . . . . . . . . . . . . . 136

7.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 Exercise Number One 139

8.1 An Invitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.1.1 Exercise number one . . . . . . . . . . . . . . . . . . . . . 139

8.1.2 Partitions of integers . . . . . . . . . . . . . . . . . . . . . 139

8.1.3 Partitions with restricted parts . . . . . . . . . . . . . . . 141

8.1.4 Generating functions . . . . . . . . . . . . . . . . . . . . . 142

8.2 Where to go from here . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2.1 Issues of general interest . . . . . . . . . . . . . . . . . . . 143

8.2.2 Some more suggestions . . . . . . . . . . . . . . . . . . . . 143

8.3 An Annotated Bibliography . . . . . . . . . . . . . . . . . . . . . 143

8.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9 The Ubiquitious Binomialcoefficient 145

7



Contents

9.1 An Invitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.1.1 The classical binomialtheorem . . . . . . . . . . . . . . . 145

9.1.2 Pascal’s triangle . . . . . . . . . . . . . . . . . . . . . . . 146

9.1.3 Newton’s binomial theorem . . . . . . . . . . . . . . . . . 148

9.1.4 Binomial sums . . . . . . . . . . . . . . . . . . . . . . . . 150

9.2 Where to go from here . . . . . . . . . . . . . . . . . . . . . . . . 151

9.3 An Annotated Bibliography . . . . . . . . . . . . . . . . . . . . . 152

9.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

10 Prime Time for a Prime Number 153

10.1 An Invitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

10.1.1 A new world record . . . . . . . . . . . . . . . . . . . . . 153

10.1.2 Why primes are interesting . . . . . . . . . . . . . . . . . 153

10.1.3 Primes and RSA-encryption . . . . . . . . . . . . . . . . . 154

10.1.4 Really big numbers . . . . . . . . . . . . . . . . . . . . . . 156

10.1.5 Mersenne numbers . . . . . . . . . . . . . . . . . . . . . . 156

10.1.6 Primality testing . . . . . . . . . . . . . . . . . . . . . . . 157

10.1.7 Generating prime numbers . . . . . . . . . . . . . . . . . 160

10.1.8 Factoring of integers . . . . . . . . . . . . . . . . . . . . . 161

10.2 Where to go from here . . . . . . . . . . . . . . . . . . . . . . . . 162

10.2.1 Computational issues . . . . . . . . . . . . . . . . . . . . 162

10.2.2 Issues of general interest . . . . . . . . . . . . . . . . . . . 163

10.2.3 Some more suggestions . . . . . . . . . . . . . . . . . . . . 164

10.2.4 What to be avoided . . . . . . . . . . . . . . . . . . . . . 164

10.3 An Annotated Bibliography . . . . . . . . . . . . . . . . . . . . . 164

10.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

11 Elementary Methods of Cryptology 167

11.1 An Invitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

11.1.1 Some basic terms . . . . . . . . . . . . . . . . . . . . . . . 168

11.1.2 Caesar’s Cipher . . . . . . . . . . . . . . . . . . . . . . . . 169

11.1.3 Frequency analysis . . . . . . . . . . . . . . . . . . . . . . 172

11.1.4 Monoalphabetic substitution . . . . . . . . . . . . . . . . 174

11.1.5 Combinatorial Optimization . . . . . . . . . . . . . . . . . 177

11.1.6 The Vigenère Cipher, le chiffre indéchiffrable . . . . . . . 179
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Topic 1

Recreational Mathematics

A Contradiction in Terms ?

Mathematics is too serious and, therefore, no opportunity should be missed to
make it amusing.

Blaise Pascal1

Keywords: exciting puzzles, mathematical riddles and mysteries
recreational mathematics

1.1 An Invitation

The subtitle of this topic suggests that mathematics and recreation do not fit
together nicely. Mathematics is generally considered a hard and dry business,

Martin Gardner

1914–2010

how can that be reconciled with enjoyable ac-
tivities like relaxation and recreation?

Martin Gardner (1959b) writes in the foreword
of one of his wonderful books: It’s the element
of play which makes recreational mathemat-
ics recreational and this may take many forms,
may it be solving a puzzle, a magic trick, a
paradox, a fallacy, an exciting game. And it’s
the delight and intellectual pleasure we experi-
ence when having solved a difficult puzzle. For
this reason it should not come as a surprise
that even most brilliant scientists could not resist the temptations of recre-
ational mathematics. Indeed, being a connoisseur of puzzles and the like you
are in best company: Visitors of Albert Einstein, for instance, reported that in
his bookshelf he always had a section stocked with mathematical puzzles and
games.

1Cited from Petkovic (2010).
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Topic 1. Recreational Mathematics

1.1.1 The Challenge of Mathematical Puzzles

Mathematical puzzles are a passion of mine since my childhood and I never
missed an opportunity to get hands on an apparently new one. Unfortunately,
some fifty years ago those opportunities were rarer than they are today. Now
we have the world wide web and finding new and interesting puzzles is very
easy. But in those days one had to rely mostly on newspapers and maga-
zines. Some of them, the better ones, had puzzle corners in their weekend
editions. There you could find besides the obligatory big weekend crossword

Henry E. Dudeney

1857–1930

various picture puzzles, also called rebus, and even prob-
lems coming with a mathematical flavor. Rebus were
often nothing more than pictures cut at random and
one had to rearrange the snippets properly, a very bor-
ing business, recommended only to feeble minded per-
sons, as Henry E. Dudeney2, once remarked. But from
time to time one could find nice little gems, wonderful
mathematical puzzles, exciting challenges of your mind.
Higher mathematical education or scholarship was usu-
ally not required to solve these newspaper puzzles, but
originality, diligence, patience and some basic under-
standing of logic were very helpful. Solutions of these
puzzles were given only one week later in the next weekend edition. So, either
you solved the puzzle and trusted in your solution, or you had to wait pa-
tiently. In the meantime one could discuss the problem with classmates, friends
and even teachers.

Others at my age collected stamps, I collected interesting puzzles by cutting
them out of the newspapers and storing the clippings in folders which, as years
passed by, grew bigger and bigger. Eventually it became necessary to bring
some order into my collection. So I began to categorize my puzzles into those
belonging to arithmetics and geometry, number theory, logic, combinatorics,
magic squares, graph theory and probability. All these are very renown fields of
mathematics, though frankly speaking, at an age of fourteen my mathematical
knowledge was a quantité négligeable. But this changed by and by because by
solving puzzles I learned quite a lot. Well, not necessarily useful mathematics
in the sense that the acquired knowledge was of much use in our math lessons
in school. For instance, knowing how to construct a magic square will be of no
help when dealing with problems from elementary analysis.

Over time I also realized that there exist special books solely devoted to recre-
ational mathematics and that some of these books were available in public
libraries in Vienna. This opened up a whole new world when I could read the
wonderful books of H. E. Dudeney and Martin Gardner, collections of most
exciting and challenging mathematical puzzles and games.

What makes mathematical puzzles so attractive, not only to me but to so many
other people? Certainly, it is problem solving, it’s the excitement when working

2Henry E. Dudeney, the famous British grand master of puzzles and mathematical games.
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Topic 1. Recreational Mathematics

on a puzzle, it’s the intellectual pleasure when having solved it. Interestingly,
problem solving in the realm of recreational mathematics is not of highest es-
teem among many professional mathematicians, particularly those adhering to
the pure doctrine. An exemplary representative of these was Edmund Landau3.
He once coined the somewhat contemptuous term Schmierölmathematik. This
is certainly a fairly extreme view of matters. Indeed, when you perform schol-
arly research in the literature on recreational mathematics, you will soon find
out that creative mathematicians are seldom ashamed about their interest in
recreational topics. And regarding problem solving: Andrei A. Markov4, once
remarked (Basharin, Langville, and Naumov, 2004):

The alleged opinion that studies in classes are of the highest scien-
tific nature, while exercises in solving problems are of lowest rank,
is unfair. Mathematics to a considerable extent consists in solving
problems and together with proper discussion, this can be of the high-
est scientific nature while studies in classes might be of the lowest
rank.

There’s nothing more to be said, I think, except that recreational mathemat-
ics is pure mathematics uncontaminated by utility (copyright Martin Gardner
(1959b)).

While problem solving lies at the heart of mathematical puzzles, it would be
certainly wrong to classify as puzzle whenever a mathematical problem is solved,
often by extensive and complicate reasoning and calculation, think of hard exam
problems, for instance.

What we need, is some kind of working definition: What is a mathematical
puzzle?

It’s surprisingly difficult to arrive at a definition which finds general accep-
tance5. But there are some distinguishing characteristics of mathematical puz-
zles Peter Winkler (2011) has worked out when reviewing the book by Miodrag
Petkovic (2010) on famous puzzles of great mathematicians.

• First and foremost: A puzzle is an engaging, self-contained mathematical
question.
• A puzzle should have a raison d’être, something that makes it worth

thinking about.
• It should be easy to communicate among people.
• No special devices like high speed computers are required, all you need is

paper and pencil, if at all.

We may take these characteristics as cornerstones of a more complete and ac-
ceptable definition. But for the moment, let’s dispense with formalities, let’s
look for some recreation and diversion. What would be better suited for this
purpose than some fine puzzle?

3Edmund Landau, 1877–1938, German mathematician.
4Andrei A. Markov, 1856–1922, Russian mathematician, see Topic 4: The Chains of Andrei

A. Markov on page 73.
5This is actually one of the challenges for you when writing your thesis about this topic.
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Please follow me on a short sightseeing tour through my collection.

1.1.2 Some Tiny Treasures From My Collection

Do it with matches

The first object I want to present you is more or less a warm-up. I owe it
to my friend and chess partner Karl Segal (1919–1978). It is one exemplar of
a plenitude of puzzles dealing with matches, checkers, coins etc. The famous
Moscow Puzzles collected by Boris Kordemsky (1972) have a whole chapter
devoted to this class of problems, though this one does not appear there.

One evening in 1972 we were sitting in a Viennese chess café and played chess.
After an exciting game which I terribly lost Karl wanted to cheer me up. He
took a napkin and a pencil and drew an equality sign, Then he grabbed in his
pockets and finally found a box of matches, took out a few and arranged them
on the napkin as shown in Figure 1.1.

Figure 1.1: A puzzle with matches

Karl explained:

Of course, you know how to handle roman numerals. See, this is a
mathematical statement, but obviously it is false as 7 6= 1. You are
allowed to move one match, and only one match, so as to make this
a true statement. The equality sign must not be touched. So, don’t
change it into 6= by moving a match. Can you solve it? It is not
too difficult.

I have tried to find out the puzzle’s origin, but did not succeed. It has been
created sometime by some anonymous. Please give it a try. One hint: this
puzzle shares a wonderful property with many other puzzles: The solution lies
at an unexpected place.

Cutting a plate of gold.

Fallacies belong to the basic repertoire of recreational mathematics. They come
in various forms: arithmetical fallacies, logical or geometrical fallacies. The
latter are particularly interesting and often hidden in puzzles which belong to
the class of dissection problems.

In practically all books on recreational mathematics you can find the following
puzzle, so it’s very likely that you have seen it before. Still, I included it into
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my exhibition because there’s much more behind than a geometrical fallacy.
The origin of the puzzle is obscure, but David Singmaster (2014) has found
indications that the puzzle may be due to Sebastiano Serlio (1475–1554), an
Italian Renaissance architect. In Serlio’s 1545 book Libro Primo d’Architettura
there occurs a geometrical construction which contains a fallacy similar to our
puzzle but it passed unrecognized by Serlio. Graham, Knuth, and Patashnik
(2003, p. 293) report that this puzzle was Lewis Carroll’s favorite6.

Here’s the puzzle:

You have a plate of pure gold. It has the shape of a square solid
with side length 8 cm and thickness 1 cm. You also have a special
high-precision saw to cut the plate which produces no losses due
to cutting. Cut the plate as shown in the figure below (left) and
rearrange pieces in the way as shown below (right). You will find that
the new rectangle has an area of 65 cm2, whereas the square before
cutting had an area of 64 cm2. So you won one cubic centimeter of
gold. Can you explain this miracle?

Figure 1.2: Cutting a plate of gold

At the day of writing this (June 2017) the gain is about 700 ¤. What a fine
business idea, money out of nothing!

Can you find an explanantion? No? Not yet? Then you will be surprised that
the pieces can be arranged also in this way: Please check, now you have lost

one cubic centimeter of gold! But matters are even more mysterious. If you
cut a square of size 13 × 13 in the same way as before (see Figure 1.3), then

6Lewis Carroll, pen name of Charles Lutwidge Dodgson (1832-1898), British author (Alice’s
Adventures in Wonderland), mathematician, logician and photographer.
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Figure 1.3: Cutting a 13× 13 square

you find that after rearranging pieces the resulting rectangle has an area of
168 < 132 = 169. Looking closer at Figure 1.2, you may realize that the pieces
in the square have side length 3, 5 and 8. In Figure 1.3, these are 5, 8 and 13.
These numbers are members of one of the most famous integer sequences:

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

There’s an ingenious device available on the internet, Sloane’s On-Line Ency-
clopedia of Integer Sequences (https://oeis.org/). Just type in the first 5
numbers to learn more about that sequence. You may also consult the bible of
discrete mathematics, Concrete Mathematics by Graham, Knuth, and Patash-
nik (2003) where this dissection problem is discussed on page 292.

In this context it is quite illuminating to see a short note by Oskar Schlömilch
(1868)7. After having described this puzzle to readers of the Zeitschrift für
Mathematik und Physik he concludes: Wir theilen diese kleine Leckerei mit,
weil die Aufsuchung des begangenen Fehlers eine hübsche Schüleraufgabe bildet
und weil sich an die Vermeidung des Fehlers die Lösung und Construction einer
quadratischen Gleichung knüpfen lässt.

So, after all, it is certainly impossible to cut a plane figure, rearrange pieces
and the resulting figure has larger area. It’s a geometrical fallacy.

Not more?

Well, Ian Stewart (2008, pp. 163) points his readers to a really weird mathe-
matical fact, the Banach-Tarski Paradox . In 1924 Stefan Banach and Alfred
Tarski8 proved that it is possible to dissect a sphere into finitely many pieces
(actually 5 pieces suffice!), which can then be rearranged to make two spheres,
each the same volume as the original. There are no overlaps, no missing bits,
the pieces fit together perfectly. It’s a mathematical truth, it can be proved.
Still, this fact is so counter intuitive that we call it a paradox. It originates
from our concept of volume and the impossibility of defining this concept in a
sensible way for really complicated geometrical shapes.

7Oskar Schlömilch, 1823–1901, German mathematician.
8Stefan Banach, 1892–1945, Alfred Tarski, 1901 - 1933, Polish mathematicians.
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Another Paradox

The origin of this treasure is unknown, the puzzle started spreading around the
world in the mid 1990’s like a wave of influenza. You can find it for instance in
Winkler (2004).

You have just moved into an old house with a basement and an attic.
There are three switches in the basement marked with ON and OFF.
One of the three switches is connected to a bulb in the attic. You
have to find out which switch is connected to it. You are allowed to
play with the switches for as long as you need to, but you may only
go up to the attic once to check the bulb and then say which switch
is connected to it. This is the only possibility to find out whether
the bulb in the attic is lit.

Paradoxes convey a counter intuitive fact. This puzzle belongs to a class which
can be termed: I think, I must not have heard correctly! How can one solve the
problem with just one bit of information, the latter coming from climbing up
to the attic? Still, it is possible.

The Returning Hunter

I found this old riddle in a classic text by Martin Gardner (1994). It runs as
follows:

A hunter climbs down from his perch, walks one mile
due south, turns and walks one mile due east, turns
again and walks one mile due north. He finds himself
back where he started. There’s a bear at his perch,
the hunter shoots the bear. What color is the bear?

So, that was easy! Of course, the bear must be white, it must be an ice bear,
since the perch is certainly located exactly at the north pole. Because, otherwise
the hunter could not have walked the way described.

But this was not the problem. Here it comes:

Can you think of another spot on the surface of the earth (assuming it is a
perfect sphere), so that you can walk one mile due south, turn and walk one
mile due east, turn again, walk one mile due north and arrive at the point
where you have started?

If there is such another spot, where is it located? Is there more than one?

The Problem of the Pennies

Let us conclude our sightseeing tour with a real highlight. Our last puzzle is a
very prominent one, several famous mathematicians and physicists have worked
out solution methods and published papers about it. Still, it comes along in a
charming and innocuous manner:
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There is a set of 12 pennies, one of them is a counterfeit penny, it
may be too light or too heavy. Identify this penny with three weigh-
ings only using a simple balance beam. Note, it is unknown to you
whether the counterfeit is too light or too heavy.

A variant of this puzzle appears as an unsolved problem posed by Guy and
Nowakowski (1995) in the Problems and Solutions Section of the American
Mathematical Monthly. The authors report that this puzzle was very popular
on both sides of the Atlantic during World War II. It was even suggested that it
should be printed on paper strips and dropped over Germany in an attempt to
sabotage their war effort. After the war a series of papers proposing solutions
appeared, the most elegant one is due to Freeman J. Dyson (1946), a famous
British mathematician and physicist. Besides giving a complete solution Dyson
shows that if M equals the number of pennies and there is a number n satisfying

M =
1

2
(3n − 3), n = 2, 3, . . . ,

then n weighings are always sufficient to identify the counterfeit penny and its
type. This is exactly the case in our puzzle, for M = 12 we have n = 3. Dyson
also gives a solution for the case 3 ≤M < (3n−3)/2 and shows that the puzzle
has no solution if the number of pennies is too large, i.e. if M > (3n − 3)/2.

So much about theory. Now take a sheet of paper and a pencil and try to solve
this challenging puzzle. I’m sure you will not prove immune to the fascination
of this problem. Have fun!

1.2 Where to go from here

Suppose you have been invited by some renowned magazine to write an article
about recreational mathematics. You have been selected for this prestigious
job because the editors know about your profound knowledge, your expertise
in this field. Thus, the creative challenge is to write a suspenseful report about
recreational mathematics!

Here are some suggestions I find interesting and which you may consider. How-
ever, you should not feel obliged, your own ideas are certainly welcome.
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In any case: please illustrate your work with well-chosen examples and take
care to present also elegant solutions, as far as solutions exist. Not every puzzle
is solvable, however.

1. Recreational Mathematics in Education and Teaching.

It is a remarkable fact that puzzles and riddles have been used in mathe-
matical education since ancient times. The oldest known example is the
Papyrus Rhind or Ahmes Papyrus which dates around 1550 BC. It con-
tains about 85 exercises in geometry, arithmetics and algebra. Some of
them could be called rightly puzzles.

I think it would be quite challenging to write your thesis about the rôle
recreational mathematics plays in education. Puzzles and games are a
wonderful way to let pupils participate and at the same time expand
their capabilities in problem solving. Bonnie Averbach and Orin Chein
have used recreational mathematics in their math lessons over several
years. They gathered a lot of experiences which they finally compiled in a
remarkable book (Averbach and Chein, 1980). Their teaching paradigm
may be condensed in a few motivating sentences addressed to their stu-
dents: You participate and be the mathematician. Take a problem and
use anything you know to solve it. Think about it; strain your mind and
imagination; put it aside, if necessary; keep it in mind; come back to it.
If you can solve it on your own, isn’t the feeling great? If you can’t solve
it, maybe some mathematics (new to you) would be helpful to know. let’s
develop some and see. It’s also my opinion that pedagogically there is
really much to be gained from the inclusion of recreational mathematics
into your lessons9.

2. Famous mathematicians and their puzzles.

Famous mathematicians from the days of antiquity up to our time have
always taken interest in mathematical puzzles. To name just a few:
Archimedes of Syracuse, Cardano, Pascal, Huygens, Newton, Euler, Gauss,
Hamilton, Cayley, Sylvester. In the 20th century and in our days: von
Neumann, Banach, Littlewood, Ramanujan, Conway, Erdős, Knuth and
the physics Nobel-Prize laureate Paul Dirac.

What are the puzzles and games, they created, on what occasion? In this
context the excellent book of Petkovic (2010) will be very helpful.

3. Famous puzzles and their history.

Recall that a good puzzle should have a raison d’être. Some of those puz-
zles gained the distinctive character of being exceptional challenges. They
are so interesting that even today many people are discussing them, new

9I have three sons, now adult. One became a chemist, one a physicist and one an artist, each
of them has a sound mathematical education. During their childhood and youth I regularly
entertained them with exciting puzzles, and we really enjoyed. Recently at a family meeting
on occasion of an anniversary we remembered those good old days and all those puzzles and
riddles. But then one of my sons said: “Dear dad, frankly speaking, sometimes this puzzle
stuff was really a torture.” Well, perhaps one should not exaggerate it.
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solutions are published, variations invented. The Problem of the Pennies
presented above is a typical representative. Archimdes’ Cattle Problem
is a computationally hard puzzle from number theory with remarkable
history. Originally due to Archimedes of Syracuse (287–212 BC), it was
rediscovered by Gotthold Ephraim Lessing in 1773 and not solved before
1880. It is still discussed in various mathematical journals. You will have
no problem to find more exciting examples. For helpful references please
see the annotated bibliography below and search the web.

4. Classes of puzzles.

Another way to organize your thesis is to concentrate on a particular class
of puzzles. There are many such classes: puzzles from number theory,
geometry, probability, packing problems, magic squares, paper folding,
topology (e.g. knots, Borromean rings), combinatorics and logic (there’s
some overlap between these classes). Paradoxes and fallacies are another
way to categorize puzzles. They have always been very popular. Rich
sources of paradoxa and fallacies are geometry, arithmetics, topology and,
last but not least, probability theory. One word on topology. In abbrevi-
ated form, it deals with properties of geometric forms and space which are
invariant with respect to continuous transformations. Today it is a major
branch of mathematics, but, interestingly, it has its origin in a mathemat-
ical puzzle, The Seven Bridges of Königsberg, which has been solved by
Leonhard Euler in 173610. Puzzles with a topological background abound,
here is one I like very much:

Can a tire tube be turned inside out through a hole in its side?

Hint: Think big!

Or what about river crossing puzzles whose origin may be traced back
to medieval times, or train shunting? Never heard about this? Train
shunting (switching) problems are particularly popular in Great Britain
where they have a very loyal fan base. There are board games, clubs
and even regular meetings and conventions devoted to train shunting.
The background is a serious one coming from operations research and the
good old days of infancy of railroading when there were no double tracks,
no automatic switches and no turn tables. Here I have an example from
my collection, it comes in many variations (see Figure 1.4 below):

At the end of the main line there is a circular track, furthermore
there are two wagons and an engine. The objective is to use the
engine to change the position of the two wagons and for the
engine then to return to the main line. Unfortunately, there is
also a low bridge which the engine can pass under, but neither
of the two wagons can. The engine can push and pull wagons.

10There will be a topic in this collection on The Seven Bridges of Königsberg in near future.
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Engine

BA

bridge

Figure 1.4: Exchange railway wagons A and B

5. Puzzle Composers and Authors.

When reading books or papers on recreational mathematics ever and ever
again you will come across a couple of famous names: Henry E. Dudeney,
Martin Gardner and Ian Stewart have been mention already. But there is
also Sam Loyd, the great American author on puzzle, a somewhat contro-
versial person, a short biography can be found in Gardner (1959b). We
should not forget about Lewis Carroll, Peter Winkler, W. W. Rouse Ball
and H. S. M. Coxeter, or John Horton Conway. The wide class of logic
puzzles is intimately connected with the name of Raymond Smullyan, the
great philosopher, logician and piano player. You may not forget about
the important and original contributions of French authors. Among these
Claude Gaspard Bachet de Méziriac (1581–1638), jesuit clergyman and
mathematician, who authored an influential book on recreational mathe-
matics in 1612, Problémes Plaisants, which contains e.g., several variants
of medieval river crossing problems, weighing puzzles and magic squares.
Or Jacques Ozanam (1640–1718) who has also a fine book on mathemati-
cal puzzles. And, finally I must mention another French author, Edouard
Lucas (1842–1898). He has written a classical four-volume book on recre-
ational mathematics and is the inventor of the famous solitaire game The
Towers of Hanoi .

It would be a fine and promissing idea to develop your thesis around the
lives and works of these recognizable people. What was their mathemat-
ical background? How did they become authors of texts on recreational
mathematics? What about their scientific work apart from recreational
maths? What were their greatest successes? Did they have teaching po-
sitions? Are there puzzles and games which are inseparably linked with
these people?

6. Recreational Mathematics in Media.

As I already remarked in the Invitation, newspapers and magazines have
always been sources for new and sometimes interesting mathematical puz-
zles. This has a surprisingly long tradition. A wonderful example in many
respects worth to be mentioned is the Ladies’ Diary or Woman’s Al-
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manack which was published from 1704 until 1840 when it was succeeded
by The Lady’s and Gentleman’s Diary. As an almanach it contained calen-
dar information, medical advice, short stories and mathematical puzzles.
These were either invented by John Tipper (before 1680–1713), the first
editor of the Diary, or sent by readers. In issue 25 from 1709 Tipper
wrote regarding puzzles: Arithmetical Questions are as entertaining and
delightful as any other Subject whatever, they are no other than Enigmas
to be solved by Numbers (Albree and Brown, 2009). At the beginning
puzzles were rather easy but later the level of difficulty increased sub-
stantially. Today many periodicals still have puzzle corners, but their
character changed somewhat. Now, it’s Sudoku and its companions like
Kenken, Hashiwokakero etc. which are dominating the field. I dare not
say that these are puzzles in the sense to be discussed in your thesis. They
are tasks, used mainly to kill time when waiting at airports, for instance.
Their availability is almost unlimited because the can be created auto-
matically by diverse computer programs. So, mathematically, they are
not very interesting. However, sophisticated puzzles and games continue
to be invented and published, a major rôle now playing the world wide
web.

I think to examine the issue of perception of recreational mathematics in
diverse media today and in the past would be another interesting approach
to our topic.

7. And What About Games?

All the puzzles considered so far challenged our ability to reason, it was
the delightful play with problems and ideas. Yet, there is another im-
portant class of problems in recreational mathematics, games. There are
solitaire games, like Lucas’ Towers of Hanoi, solitaire with pegs (in may
variants), with polyominoes (an appealing generalization of dominoes with
a surprisingly rich mathematical theory behind), etc. And then, we have
games for two players. Now a new element comes into play (literally): one
has to account for the ability of reasoning of an opponent. In many games
the player when it is his turn has a choice between two or more possible
moves. Which should be selected? This raises the fascinating problem of
finding a winning strategy. For some sufficiently simple classes of games
it can be proved that such strategies do exist, for others not.

Why not dedicate your thesis to this aspect of recreational mathematics?
In almost all books on puzzles you will also find discussions of various
sorts of games, see the Annotated Bibliography below. If you decide to
pursue this approach then you should have a look at the classical book of
Berlekamp, Conway, and Guy (2001–2004).
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1.3 An annotated bibliography

You will find that the list of references at the end of this Topic is a rather
long one. Do not be afraid, there’s no need to read all these books and journal
articles, it’s just an offer. Please read whatever you need for your thesis and
whatever you find interesting (maybe all?) and make your choice. Of course,
you are free to use other texts and resources.

Let’s begin with the good old books on recreational mathematics. Edouard
Lucas has written classical and often cited textbooks on recreational mathe-
matics, in particular Récréations mathématiques (4 volumes, 1882–1894) and
L’arithmétique amusante, 1895. In volume 3 of his Récréations you will find
one of the most popular games/puzzles, the Towers of Hanoi. Unfortunately,
no English translations are available, to the best of my knowledge, but digitized
version of the French original texts can be read via the web. One of the grand
seigneurs of puzzle and game literature is Henry E. Dudeney. Probably his best-
known book is The Canterbury Puzzles (1908). The puzzles are presented by
characters based from The Canterbury Tales by Geoffrey Chaucer (1343-1400),
the greatest English poet of the Middle Ages. On-line editions of the collection
are available via www.gutenberg.org.

Rouse Ball and Coxeter (1987) is one of those fine books which offer an excellent
mix of interesting puzzles and games, partly revivals from very old sources, and
nontrivial mathematical theory required to understand and solve the problems
presented. My first book on puzzles and games was The Moscow Puzzles by
Kordemsky (1972). It is still abailable today and offers a wealth of problems
and games (and solutions) in 14 chapters. By the way, the English translation
has been edited by Martin Gardner.

The book of Averbach and Chein (1980) is written in the same spirit, but the
presentation is organized differently. The author’s intention is not only to raise
interest of students in recreational mathematics, but it also introduces basic
concepts needed to solve puzzles. You find there readable short introductions
into logic, graph theory, number theory, etc. Thus the emphasis lies on problem
solving. Regarding the latter, which as we know is central to mathematical
puzzles, you should also read the famous booklet Pólya (2004). It’s title is How
to Solve It and it presents in a charming way rather general guidelines when it
comes to solving a mathematical problem. You will enjoy this book.

Martin Gardner’s list of publications in recreational maths is quite long. He has
been editor of puzzle columns in diverse magazines like The Scientific Ameri-
can, many of the problems presented there were later collected in books. Let me
mention only a few: Best Mathematical Puzzles of Sam Loyd (1959a), Mathe-
matical Puzzles and Diversions, (1959b), Hexaflexagons, Probability Paradoxes,
and the Tower of Hanoi, (2008).

Regarding puzzles and games from logic I recommend reading the excellent and
entertaing books by Raymond M. Smullyan. He has authored more than 30
books about logic and logic puzzles. At the first place I should mention the
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rather recent Gödelian Puzzle Book (2013). Here you can find entertaining
variations of Kurt Gödel’s Incompleteness Theorems, puzzles related to basic
concepts of modern logic like truth, provability and undicidability. You may
find amusing and interesting also What is the Name of This Book? (2011) and
The Lady or the Tiger? (1982). His many puzzles about truth-tellers and liars

Raymond M. Smullyan

1919-2017

have become really famous. Some of his
books are available in the web.

Fine collections of rather recently invented
puzzles are the books by Peter Winkler
(2004) and (2007). Winkler is professor
of discrete mathematics at the Dartmouth
College. Berlekamp, Conway, and Guy
(2001–2004) is the textbook on mathemati-
cal games. Volumes 1-3 deal with strategies
for two-person games, volume 4 is devoted
to solitaire games, topological puzzles and
even Rubik’s Cube finds its place there. Last but not least I want to point you
to Petkovic (2010). This book is a collection of stories and puzzles due to great
mathematicians. Carefully worked out solutions are given also.
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Shortest Paths in Networks

It’s one thing to feel that you are on the right path, but it’s another to think
yours is the only path.

Paulo Coelho, 2006

Keywords: combinatorial optimization, graph theory, algorithms
computer science

2.1 An Invitation

2.1.1 The problem and its history

One of my sons is living with his family in a small village close zu Zürich.
From time to time I set out to visit him and normally, I travel by airplane
because it takes only one hour flight time. But I could also use the car. In this
case I have to expect eight or even more stressful hours of driving. On the rare
occasions when I decide to use the car, then, of course, I want to drive a shortest
route, so I use a navigation system. Typing in the point of departure and the
destination of my journey, the navigation system calculates two suggestions of
optimal routes I could drive, and this takes only fractions of a second.

How can this be done so quickly?

A näıve approach to carry out calculations is this one:

• Find all possible routes and calculate their lengths.
• Select the route with shortest length.

This idea is not a good one: even for moderate sized networks of roads the
number of possible routes is in general an extremely large number. Furthermore,
most of these routes are not worth to be considered. For instance, travelling
from Vienna to Zürich via Milan hardly makes any sense.

Modern navigation systems do their job in a completly different way, they use
an algorithm for solving a shortest path problem (SPP).

Any famous problem has its history. But for the SSP it is rather difficult to
pin down the origins of the problem exactly because we have almost no written
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evidence from ancient times. There is an exception, though, the SPP does occur
implicitly in a few medieval texts, sometimes hidden in some sort of puzzle.

This is of course a curiosity. But seriously, we may imagine that even in very
primitive societies finding shortest paths was an essential task for gathering
food, distributing goods, i.e., trading, and for communication. Besides human
beings also animal societies are confronted with SPPs. Due to evolution certain
animal societies are really high performers when solving SPPs. An interesting
and striking example is the argentine ant, Linepithema humile. These ants
form mega colonies of monstrous size. One of these mega colonies ranges over
more than 6000 km from the northern parts of Spain to the south of Italy and
its subcolonies are connected by well organized and optimized paths. Thus
it should not come as a surprise that in modern combinatorial optimization
metaheuristics based on ant colonies are routinely applied to solve very difficult
and large scaled vehicle routing problems (which involve SSPs, of course).

The modern theory of shortest paths has its origins in the 1950’s when providers
of communication systems were facing an enormous growth of traffic volume.
For instance, when at that time a customer made a long-distance call the major
difficulty was to get the call to its destination. If the route of first choice was
busy then the operators had to send the call along a second best route, a third
best, etc. In the process of automation of communication it was necessary to
program telefone exchange facilities to find such alternate routes quickly. This
certainly involves solving nontrivial SPPs. So, it is not surprising that within
a couple of years many people came up independently with almost the same
algorithms for solving SPPs. An interesting account of the developments during
these years is Schrijver (2012).

Today SPPs are among the most important and most fundamental optimiza-
tion problems. They are intesting and challenging not only per se, but occur
ever and ever as subproblems in more complex settings. The latter range from
vehicle routing and related transportation problems, the analysis of large social
networks, molecular biology (DNA sequence alignment) to the development of
highly integrated microprocessors. Since the networks arising in these appli-
cations are usually of extraordinary size, efficiency of algorithms is certainly a
major issue.

2.1.2 Preparing the stage - graphs, paths and cycles

The mathematical structure underlying the SPP is that of a graph. In this
subsection I’ll introduce to you a few important definitions and basic terminol-
ogy. As the focus of this Invitation does not lie on mathematical rigor we may
approach the concept of a graph in a rather pedestrian-like fashion.

A graph is a set of points V where some pairs of these points are related in a
certain way. A most natural way to visualize this concept is a roadmap: the
points correspond to villages of junctions of roads in a certain area. Two points
are related, if there exists a road connection between these points. This idea of
a network of roads appears as early as 1736 when Leonhard Euler (1707-1783)
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solved the famous problem of the Seven Bridges of Königsberg. Indeed, Euler’s
work marks the beginning of a mathematical discipline known today as Graph
Theory1.

The points in the set V will be called vertices. If two points (locations) u, v ∈ V
are related, e.g. by a road connection, then we call the ordered pair (u, v) an
arc and denote the set of all arcs by A. Note carefully, that these pairs (u, v)
are considered to be ordered, i.e., (u, v) 6= (v, u). Therefore, in the context of a
network of roads arcs represent one-way roads.

More formally, a graph G is an ordered pair G = [V,A] of the set of vertices
and the set of arcs. The number of vertices n = |V | will be called the order of
the graph G, the number of arcs m = |A| the size of G.

As long as the order n of G is not too large we may draw a diagram of G. This
is simply done in the following way:

• Draw n labeled points in the plane, these are the vertices.
• For each arc (u, v) ∈ A draw an arrow connecting vertices u and v such

that the arrow points from u to v.

Here is an example: let V = {1, 2, 3, 4} and define the set of arcs by

A = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 4), (4, 2)}

Then one possible diagram of G = [V,A] would be:

1

2

3

4

A little bit more has to be said about the arcs of a graph.

• Our definition allows A to equal the empty set ∅, but normally A will be
nonempty and contain m = |A| > 0 arcs.
• If there exists a pair a = (u, v) in A then we say that the arc a connects

the vertices u and v. It is also customary to say that a is incident from u
and incident to vertex v. For instance in our example above there is an
arc a = (2, 3), thus a is incident from vertex 2 and incident to vertex 3.
• We assume that an arc never connects a vertex with itself, so there are

no loops (u, u).
• Furthermore, as A is a set, no arc occurs more than once in A. It is

possible to extend the definition of a graph so that its arc set A becomes
a multiset with multiple occurrences of arcs but we will not do so in this
Invitation2.

1There will be a Topic devoted to the Königsberg Problem.
2Such parallel arcs are interesting in certain routing problems, e.g., the Chinese Postman

Problem.
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If for each arc (u, v) ∈ A there is also its opposite (v, u) ∈ A, then G is called an
undirected graph, otherwise G is a directed graph, sometimes called a digraph.
It helps intuition to think of a directed graph as a system of oneway roads,
whereas an undirected graph may be seen as a network of roads each being
twoway. There is a one-to-one correspondence between directed und undirected
graphs: if we add to A for each arc (u, v) its opposite (v, u) unless it is already
in A, then we obtain an undirected graph. This is a pretty simple idea but
unfortunately, it has its limitations in a shortest path context.

For definiteness: in all what follows, when the term graph occurs, then it alway
means directed graph, unless stated otherwise.

Here is an example of an undirected graph: V = {1, 2, 3}, and arc set

A = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}

When drawing a diagram of an undirected graph it is customary to draw a
single line segment without arrow tips of each pair of arcs {(u, v), (v, u)}:

1

2

3

Let G = [V,A] be a graph. A path P from vertex s to some vertex t is a
sequence of contiguous arcs

P = [(s, a), (a, b), (b, c), . . . , (y, z), (z, t)]

P is a simple path if does not use the same arc more than once, P is elementary,
if it does not use the same vertex more than once.

1

2

3

4

A path P from 1→ 4

P = [(1, 2), (2, 3), (3, 4)]

P is simple and elementary

The path P in the graph displayed above may be written more compactly as
P = [1, 2, 3, 4].

If for a path P initial vertex and terminal vertex coincide, then P is called a
cycle. For instance C = [1, 3, 4, 2, 1] is a cycle3:

3 A note on terminology. Many authors prefer the term circuit, but we use the term
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1

2

3

4

Note that in this graph [1, 2, 1] is also a cycle, a 2-cycle.

A graph is weakly connected , if for each pair of vertices u, v ∈ V there exists
either a path from u→ u or from v → u. A graph is called strongly connected,
if for each pair of vertices there exists a path from u→ v and also a path from
v → u. It easy to verify by inspection that the sample graph given above is
strongly connected. But in general, proving connectedness is a rather nontrivial
task. In the sequel we will always assume that the graphs we are dealing with
are at least weakly connected.

2.1.3 Weighted graphs

Let G = [V,A] be a graph and assign weights to arcs. Each arc (u, v) ∈ A is
attached a weight w(u, v) which we assume to be an arbitrary real number. Let
me now present some examples, and I will use this opportunity to show you
which meaning we can give the notion of length of a path.

Example 1. (Transportation)

In a transportation network the weights most often represent physical distances
between destinations. But weights may also be cost of transportation, as it is
the case with the graph in Figure 1.1. The weight w(3, 6) = 2 means that
transportation from vertex 3 to vertex 6 costs 2 ¤ per unit, whereas when
transporting goods from 3 to 2 we make a profit of 4 ¤ per unit because
w(3, 2) = −4.

In this example it is most natural to define the length `(P ) of a path P as the
sum of its constituent arcs. Thus for a path P = [v0, v1, . . . , vk] we define:

`(P ) =
∑
i=1

w(vi−1, vi).

For instance, the path P = [1, 3, 2, 5, 6] in the graph displayed in Figure 1.1 has

cycle, as it prevails in the literature on shortest paths. Interestingly, although the theory of
graphs is a rather mature field of mathematics there is still some babylonian confusion. Indeed,
Richard Stanley (MIT and Clay Institute) once said: The number of systems of terminology
presently used in graph theory is equal, to a close approximation, to the number of graph
theorists.
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Figure 2.1: A transportation network

length

`(P ) = 7 + (−4) + 3 + 5 = 11.

By simple inspection you will find that this P is not the shortest path from
1→ 6.

Example 2. (Reliability)

The weights assigned to arcs of a graph may also be probabilities. When does
this make sense?

Consider for instance a communication network. We may model this as a graph
with vertices representing transmitters or relay stations, arcs are radio or cable
connections. An interesting type of weight of the arc (u, v) is the maximum
capacity of the wire connecting vertices u and v. But here we are more interested
in the reliability of a connection, the probability that the connection is available
at a particular time.

Figure 1.2 gives an example of a small communication network.

1

2

3

4

5

6

7

0.98

0.92

0.94
0.94

0.99

0.94

0.98

0.87

0.99 0.96

0.95 0.98

Figure 2.2: A communication network
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Consider the path P = [1, 2, 3, 5, 7] in the corresponding graph. What is the
reliability of this path? Assuming statistical independence, we would calculate:

R(P ) = 0.98 · 0.94 · 0.99 · 0.98 = 0.89375

In other words, the reliability of a path is just the product of the weights of
those arcs which lie on the path P . Of course, we would be interested in finding
a path of maximum reliability.

The problem now looks somewhat different from that in Example 1. But this is
not so. We may most easily transform our problem to that of finding a shortest
path. Just take logs!

If we define the reliability of P = [v0, v1, . . . , vk] as

R(P ) =
k∏
i=1

w(vi−1, vi),

then

lnR(P ) =
k∑
i=1

lnw(vi−1, i)

There are two important observations you can make at this point:

• MaximizingR(P ) is equivalent to maximizing lnR(P ), since the logarithm
is a monotone increasing function.
• Because arc weights w(u, v) are probabilities, we have 0 < w(u, v) ≤ 1.

But this implies that the logs are negative: lnw(u, v) ≤ 0 for all arcs in
the graph.

Therefore

R(P )→ max ⇔ lnR(P )→ max ⇔ − lnR(P )→ min

In other words, if we replace the arc weights w(u, v) by − lnw(u, v) then finding
a path of maximum reliability becomes a shortest path problem!

Example 3. (Trading currencies)

This beautiful example is taken from Sedgewick and Wayne (2011, p. 679).
Trading currencies is an important branch of business for many big banks like
Deutsch Bank and others. The basic idea lying at the heart of this business
is to exploit short term deviations from equilibrium state on foreign exchange
markets. To see how it works consider a set of five currencies: U.S. dollars
(USD), Euros (EUR), British pounds (GBP), Swiss francs (CHF) and Canadian
dollars (CAD). At a particular day4 the following exchange rates between these
currencies were:

4Unfortunately the authors do not disclose to us the exact date when these data have been
recorded.
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USD EUR GBP CHF CAD

USD 1 0.741 0.657 1.061 1.005

EUR 1.349 1 0.888 1.433 1.366

GBP 1.521 1.126 1 1.614 1.538

CHF 0.942 0.698 0.619 1 0.953

CAD 0.995 0.732 0.650 1.049 1

Suppose now, we want to change 1000 USD into CAD. How much Canadian dollars
do we get? Easy, just calculate:

1000 USD = 1000 · 1.005 = 1005 CAD

Can we get more? Let’s try this: first convert USD into Swiss francs and then
we convert these into Canadian dollars:

1000 USD = 1000 · 1.061 · 0.953 = 1011.1 CAD

You see: it makes a differences. Alternatively, we may convert to EUR first and
then to CAD:

1000 USD = 1000 · 0.741 · 1.366 = 1012.2 CAD

This is again a little bit more, compared to direct conversion USD → CAD we
have a plus of 0.72 percent. Not very much it seems, but thinking of a global
player moving around billions of dollars, the situation appears in another light.

Now, it is quite natural to ask: is there an optimal strategy of converting cur-
rencies? We do not want to rely on trial and error any longer, we need a
mathematical model.

Let’s model the currency exchange problem by a graph: as vertices we take
the five currencies. Each vertex is connected to every other vertex by an arc,
because we can convert every currency in any other. The weights w(u, v) of the
arcs are the exchange rates from currency u to currency v given in the table
above. Figure 1.3 shows a diagram of this graph. Note that I have drawn this
graph in such a way that the orientations of the arcs are encoded in the arc
labels together with exchange rates. Otherwise the diagram would have become
too messy to be useful.

A sequence of conversions corresponds to a path in this graph, the weight of the
path is the product of the exchange rates along the path and equals the total
exchange rate along that path. For instance, the path P = [USD, EUR, CAD] has
a weight of w(P ) = 0.741 · 1.366 = 1.0122.

For a path P = [v0, v1, . . . , vk] the total exchange rate equals:

E(P ) =

k∏
i=1

w(vi−1, vi)

Of course, we want paths which maximize E(P ). As in Example 2 by taking
logarithms of weights and changing their signs we turn this maximum problem
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Figure 2.3: The currency exchange problem

into a problem of finding a shortest path:

E(P )→ max ⇔ − lnE(P ) = −
k∑
i=1

lnw(vi−1, vi)→ min

At first sight the situation looks completly analogous to that encountered in
Example 2. But there is a subtle difference. In Example 2 the weight trans-
formation w(u, v) 7→ − lnw(u, v) resulted in weights all nonnegative because
weights were probabilities. Here this is no longer the case. The transformed
weights may be positive or negative. This has serious consequencies.

Example 4. (Scheduling)

This nice example has been adapted from Gondran and Minoux (1995, pp. 65).
The construction of a single-family house requires the performance of a number
of certain tasks like masonry, making the roof, sanitary installations, etc. These
tasks cannot be performed in arbitrary order. For instance the carpentry of the
roof requires a greater part of masonry to be finished. The following table gives
a (highly aggregated and simplified) list of tasks, their duration in days and
their dependencies:
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Task Nr. Task Duration Previous tasks

1 masonry 10 –
2 carpentry of roof 3 1
3 tiling of roof 1 2
4 sanitary and electrical installations 8 1
5 front 2 3,4
6 windows 1 3,4
7 garden 4 3,4
8 ceiling 3 6
9 painting 2 8
10 moving in 1 5, 7, 9

Let’s represent the project of building a house by constructing a precedence
graph G = [V,A]. This allows us to take explicitly care of dependencies of
tasks. G has as vertices the 10 tasks, so V = {1, 2, . . . , 10}. Whenever a task
v requires another task u to be finished, then this induces an arc (u, v) ∈ A in
G. These arcs we assign weights equal to the duration of task u.

1

2 3

4 5

6
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8 9

10

10

10

3

8

1

1

8

8

1

2

1 3

4

1

Figure 2.4: The precedence graph for building a house

See Figure 2.4 for a diagram of this precedence graph.

One of the most important properties of precedence graphs is that they cannot
have cycles. Looking at Figure 2.5 reveals immediately why this is so.

If we try to interpret the graph in Figure 2.5 as precedence graph we run into
serious trouble, for it says:

• Task 2 cannot start before task 1 has been finished.
• Task 3 cannot start before task 2 has been finished.
• Task 1 cannot start before task 3 has been finished ???

The last statenment says that task 1 precedes itself which is impossible. Proper
precedence graphs are so-called DAGs, an acronym for directed acyclic graph.

What about paths and their lengths in a precedence graph?
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Figure 2.5: Precedence graphs must be acyclic.

Consider for instance the path P1 = [1, 4, 5] in Figure 2.4, it has total length
`(P1) = 18. This tells us that performing tasks 1 and 4 in this order will take
18 days. But can we start working on task 5 immediately after task 4 has been
completed?

No! From the precedence graph we can read off that task 5 also depends on
task 3, this in turn depends on task 2. So we find: The earliest time that task 5
can be started is the length of the longest path from 1 to 5 in the graph because
this takes care of all activities task 5 is depending on.

This fact is of considerable significance in project scheduling : any activity or
task u represented by a vertex in a precedence graph cannot be started earlier
than the length of some longest path to u. In our example vertex u = 10 is of
particular interest, because the length of a longest path from 1 → 10 gives us
the makespan of building the house, the earliest time (counted from t = 0) that
the house is finished.

So, in Example 4 we end up with a longest path problem5.

Is it possible as in Examples 2 and 3 to transform this problem into a shortest
path problem? Yes, and that is again very easy, just negate all arc weights, i.e.,
apply the transformation w(u, v) 7→ −w(u, v). In general, as the next section
shows, this transformation leads into serious trouble. But for precedence graphs
it works fine, because precedence graphs have no cycles, they are DAGs.

2.1.4 Solvability

In the last section we have seen that several optimal path problems can be
reduced to the SSP. Thus at first sight it seems more or less obvious that the
SSP must have a solution for any given weighted graph. But unfortunately,
this is not so. The problem arises only when we have negative weights. The
following small example shows why. What is a shortest path from 1→ 4?

Well, guided by intuition you may suggest that P = [1, 2, 3, 4] is a shortest path
with length `(P ) = 20. But is it really the shortest path from 1→ 4?

No! Consider Q = [1, 2, 3, 5, 2, 3, 4]. This path has length `(Q) = 15, so Q
is shorter than P . But Q isn’t a shortest path either because the path R =
[1, 2, 3, 5, 2, 3, 5, 2, 3, 4] is even shorter, it has length `(R) = 12.

Now you can see the problem very clearly: the paths R and Q contain the

5Eric Denardo once ironically remarked that only a notorious pessimist can be interested
in longest paths.
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Figure 2.6: There’s a problem with this graph!

cycle C = [2, 3, 5, 2] which has negative length `(C) = −3. Each time a path
traverses the cycle C the length of a path 1→ 4 is reduced by 3 units. Since we
can traverse this cycle as often as we like, it follows that the length of any path
1 → 4 can be made arbitrarily small. In other words, the SSP has no solution
for the graph given in Figure 1.4!

Thus we have the important result: whenever a connected graph contains neg-
ative cycles then the SSP has no solution, one also says the SSP is an ill posed
problem.

Although the SSP has no solution, the existence of negative cycles in a graph
is a truly significant message, it tells us something very important about the
problem at hand!

To see this, let’s look once again at the currency exchange problem discussed
in Example 3. Consider the path P = [USD, EUR, CAD, USD] which is a cycle.
After transforming the exchange rates w(uv) 7→ − lnw(u, v), we find that P
has length

`(P ) = − ln(0.741)− ln(1.366)− ln(0.955) = −0.0071196,

so this cycle has negative length. What does it mean? At the first place it
means that the SSP on this graph has no solution. There exists no (finite!)
optimal path to convert USD to CAD.

At the second place the existence of a negative cycle opens a fascinating eco-
nomic perspective! The total exchange rate along this cycle equals

E(P ) = e−`(P ) = e−0.0071196 = 1.0071

In other words, starting with 1000 USD, converting these to EUR, then EUR to
CAD and these back to USD we get 1007.1 USD. Of course the profit does not
appear to be very high. But you may bear in mind that a trader with an initial
capital of USD 1 000 000 can make a profit of USD 1 007.1 every minute, about
USD 420 000 per hour! In practice the so-called arbitrage profit is limited only by
the time required to perform the exchanges, but using high frequency trading
devices the profit may be extremly large, indeed.

Thus we get money out of nothing! What a fine business idea.

Frankly speaking, the picture I have drawn is not a complete one as it does not
account for transaction cost. But if the trader is a global player like Deutsche
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Bank then transaction cost can be kept at minimum level. Thus the arbitrage
business is plenty profitable in the real world.

Let us pause for a moment here. In this section we have seen that the SSP has
a solution if the underlying graph has no cycles of negative length. Thus an
algorithm for the SSP should be capable of:

• Detection of negative cycles;
• Efficient determination of a shortest path.

In the next section I will introduce you to a very general idea to cover both
issues.

2.1.5 It’s time to relax

Let G = [V,A] be a directed and connected graph with given arc weights. Before
we embark on formulating an algorithm for the SSP we should become clear
about what we really want :

• If there is a negative cycle then it should be detected.

otherwise

• We may fix two vertices s and t and find the shortest path connecting s
and t. This is known as single-pair shortest path problem (SPSP).

• We may fix one vertex s and want to find the shortest paths to all
other vertices, commonly refered to as single-source shortest path prob-
lem (SSSP).

• Alternatively we want to determine the shortest paths between all pairs
of vertices in G, the all-pairs shortest path problem (APSP).

Quite remarkably, from a computational point of view finding shortest paths
from one source to all other vertices is not significantly more expensive than
solving the single-pair problem. In this section we shall concentrate on SSSP
and defer the all-pairs problem to Section 2.

A majority of algorithms for the single-source problem are based on a very
simple and effective idea: relaxation of arcs. The origin of this idea is not
completely clear. As far as I could find out it appeared for the first time in
Ford (1956), and independently in the 1958 French edition of Berge (1962, p.
70).

Relaxation is a very simple and intuitive concept: suppose we have found a
path P (s, u) connecting s and u with length d(u) and a path P (s, v) to v
having length d(v). Neither P (s, u) nor P (s, v)need be shortest paths! Suppose
further that there exists an arc (u, v) with length w(u, v).
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Relaxing the arc (u, v) means that we test whether we can improve the path to
v found so far by going through u. This would be the case, if

d(v) > d(u) + w(u, v). (2.1)

If inequality (2.1) happens to hold then just take the shortcut by going to v via
u, that’s the idea! Easy, isn’t it?

Any arc (u, v) satisfying (2.1) is called eligible for relaxation, otherwise ineligi-
ble.

Now let’s craft this into an iterative algorithm. This is apart from implementa-
tion details (some of which will be discussed shortly) the famous Bellman-Ford
Algorithm6.

For our algorithm to run we need two vectors d and p, each of dimension n = |V |,
the number of vertices.

• The vector d = [d(1), d(2), . . . , d(n)] holds the lengths of the shortest
paths from s to any other vertex found so far. We initialize the distance
vector by:

d(s) = 0
d(k) = ∞ for k 6= s

• The second vector p is used to keep track of shortcuts. Initially all com-
ponents of p are set to zero. Whenever an arc (u, v) is relaxed then we set
p(v) = u thus indicating that going to v is shorter by passing through u
and then take arc (u, v). We will need p to reconstruct the shortest paths
from s to any other vertex.

After initialization we perform the following two steps:

(A) Find any eligible arc (u, v). If there is none, then STOP.
(B) If (u, v) is eligible, then set d(v) = d(u) + w(u, v), update

the predecessor vector p by putting p(v) = u and return to (A).

Before we give this algorithm a try, we have to discuss briefly some important
questions.

6Richard Bellman (1920–1984), Lester Randolph Ford jun. (1927–)
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1. Does this algorithm actually find all shortest paths from s to any other vertex
in G?

Yes, unless G has a negative cycle because, as we already know, in this case
the SPP is ill posed and has no solution. As the algorithm is iterative, finding
the solution requires the algorithm to converge meaning that the sequence of
distance vectors has a limit. An informal argument for convergence is this: at
any stage of the algorithm the distances in vector d are bounded from below by
the actual minimum lengths of shortest paths. It can never happen that some
d(u) is smaller than the length of a shortest path from s→ u. Furthermore, the
relaxation condition (2.1) guarantees that the values in vector d will decrease
monotonically. Note that this is an informal and incomplete argument. Of
course, convergence of the Bellman-Ford Algorithm requires a rigorous proof,
please see Section 2.

2. In which order?

In step (A) we required to find any eligible arc, nothing was said about how
and in which order eligible arcs are processed. The Bellman-Ford Algorithm
resolves this ambiguity by first forming a list of all arcs in some order, there
are m = |A| of them, and then processing them one after the other by checking
eligibility. By organizing search for eligible arcs in a more sophisticated manner
we get other algorithms for SPP which are more efficient than Bellman-Ford.
See Section 2.

3. When to stop?

We stop when there are no more eligible arcs. But how many iterations are
necessary? Suppose that there is no negative cycle, then a shortest path from s
to some vertex v cannot have more than n−1 arcs. For, if it had, then the path
would have passed through at least one vertex more than once. But that can
happen only if it passed through a cycle. If there are only cycles of length ≥ 0
then the relaxation (2.1) would have been violated. So that’s impossible. On
the other hand, if there are negative cycles, we will always find eligible arcs and
the algorithm will never stop unless we force it to do so. In the Bellman-Ford
Algorithm this is simply done by:

• Process the list of all arcs n − 1 times. Stop earlier when there are no
more eligible arcs.
• Check if there is still an eligible arc. If so, then we have encountered a

negative cycle.

2.1.6 A sample run of the Bellman-Ford Algorithm

Let’s return to the simple transportation network of Example 1 and let’s find all
shortest paths from vertex 1 to any other vertex. The weighted graph G = [V,A]
of this network is repeated here for ease of reading:
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The list of arcs and their weights is:

(u, v) (1, 2) (1, 3) (2, 4) (2, 5) (2, 6) (3, 2) (3, 6) (5, 3) (5, 4) (5, 6)
w(u, v) 10 7 6 3 5 −4 2 4 1 5

We initialize the distance and predecessor vectors d and p:

u 1 2 3 4 5 6

d 0 ∞ ∞ ∞ ∞ ∞
p 0 0 0 0 0 0

Now we perform a first pass through the list of arcs. Each of them is eligible
for relaxation, so we get step by step:

arc (1, 2) : d(2)=∞ > d1 + w(1, 2) = 0 + 10 = 10

thus relax (1, 2) and put d(2) = 10, p(2) = 1

arc (1, 3) : d(3)=∞ > d1 + w(1, 3) = 0 + 7 = 7

thus relax (1, 3) and put d(3) = 7, p(3) = 1

. . .

arc (3, 2) : d(2)=10 > d3 + w(3, 2) = 7 + (−4) = 3

thus relax (3, 2) and put d(2) = 3, p(2) = 3

. . .

The first pass results in distances d and predecessors p:

u 1 2 3 4 5 6

d 0 3 7 12 11 9
p 0 3 1 5 3 3

In the second pass we find that out of 10 arcs only 5 are still eligible for relax-
ation, viz.,

(2, 4), (2, 5), (2, 6), (5, 4), (5, 6)

The second pass yields distances and predecessors:

u 1 2 3 4 5 6

d 0 3 7 7 6 8
p 0 3 1 5 2 2

(2.2)
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Passing through the arc list a third time we find that no more arcs are eligible
for relaxation, therefore we stop here. The distances and predecessors (2.2)
found during the second pass are optimal.

Now let’s see what we have found: column u = 4 (2.2) tells us that a shortest
path from 1 to 4 has length d(4) = 7. Also, a shortest path 1 → 6 has length
d(6) = 8, etc.

But, what is the shortest path to, say, u = 4? This path can be found by means
of the p-row in table (2.2). Let P1,4 = [1, . . .? . . . 4] denote the shortest path
from 1→ 4.

In column u = 4 we have p(4) = 5. Thus in the shortest path 1→ 4 the vertex
visited immediately before 4 is vertex 5, so

P1,4 = [1, . . .? . . . 5, 4]

The vertex visited before u = 5 is the predecessor p(5) = 2. The predecessor of
2 is p(2) = 3, the predecessor of 3 is p(3) = 1, Here we may stop, because 1 is
the starting vertex, thus a shortest path from 1→ 4 is

P1,4 = [1, 3, 2, 5, 4]

But we have found even more! Looking closer to the predecessor vector p,

u 1 2 3 4 5 6

p(u) 0 3 1 5 2 2
,

we see that the columns u = 2, 3, 4, 5, 6 determine arcs of the form (p(u), u).
They form a subset B ⊂ A of the arcs of our graph G = [V,A], a very special
subset. We used some of them to determine of shortest path 1 → 4. Let
us redraw the diagram of our graph and emphasize these arcs, also add the
calculated distances d(u) to the vertices of the graph:
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The arcs in subset B together with the original vertex set V = [1, 2, 3, 4, 5, 6]
form a subgraph T = [V,B] of G = [V,A]. It has two very special properties:

• T is a tree: in T there is exactly one path from vertex 1 to any other
vertex in T .
• It is a spanning tree because all vertices of G graph belong to this tree.
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This spanning tree is called the shortest path tree of G rooted in vertex 1. From
T we can determine immediately all shortest paths from 1 to any other vertex
in V . For instance, a shortest path from 1 → 6 is Q = [1, 3, 2, 6] and it has
length d(6) = 8.

2.1.7 The complexity of the Bellman-Ford Algorithm

What is the amount of computational work to be done when solving the SSSP
for an arbitrary graph G by means of the Bellman-Ford Algorithm? Of course,
this depends on both, the order n = |V | of G and its size m = |A|. Let us
perform a worst case analysis.

At the heart of the Bellman-Ford Algorithm there is the relaxation part:

if d(v) > d(u) + w(u,v)

d(v) = d(u) + w(u,v)

p(v) = u

The CPU-time t required to perform the relaxation of an arc (u, v) certainly
depends on computer architecture and processor. This time is bounded by some
constant a, i.e., t ≤ a, where the constant a is machine dependent. However,
in any case a is independent of n and m.

The graph has m arcs, so the time required to perform one pass through all
arcs cannot be larger than a ·m. If we cannot exclude apriori the existence of
a negative cycle, then n passes are necessary. It follows that in total Bellman-
Ford requires computing time not more than a ·m · n. Thus, if we denote by
τ the running time of the Bellman-Ford Algorithm, we have in the worst case
τ ≤ a ·m · n, where a is a constant independent of m and n. Mathematicians
have a nice formalism to express this bounding, they say that τ is a big-Oh of
m · n, written as

τ = O(m · n), (2.3)

This is the time complexity of the Bellman-Ford algorithm.

The big O’s follow some rather weird arithmetic rules, but as it is a really
important concept, so you should learn how to handle it. Chapter 9 of Graham,
Knuth, and Patashnik (2003) is a wonderful source and very helpful.

The upper bound (2.3) looks somewhat harmless but it is not. Size m and
order n of a graph are not really independent. The number of arcs m may be
any number between m = 0 (the graph has no arcs at all) to m = n(n − 1).
In the latter case there is an arc between any pair of vertices, such a graph is
called complete. These are two extremes, of course. If m is of order O(n2), i.e.
m ≤ Mn2, M independent of n, then the graph G is said to be dense, it has
really a lot of arcs. If m is of order O(n) then we say that G is a sparse graph,
there are about as many arcs as there are vertices. Practical experience tells us
that most graphs in real world applications of the SSSP are sparse.
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To summarize: the running time of the Bellman-Ford alogorithm is of order
O(n3) when G is dense, and is runs considerably faster, namely in O(n2) time
when G is sparse.

So, after all, is Bellman-Ford an efficient algorithm ?

Under particular circumstances (negative weights, possibility of negative cycles)
it is fairly efficient. But you will find out that for graphs having certain special
properties Bellman-Ford is rather slow compared to other algorithms for the
SSSP, see Section 2 below.

After having read this Invitation so far the question arises:

Are you still interested in this topic?

If so, fine! Welcome on board! Please read on and see what I want from you.

2.2 Where to go from here

There are a few points which I find you should discuss carefully, issues of general
interest. I have also collected some ideas and suggestions, optional issues, which
you may find worth to be explored and presented in your thesis. But, of course,
you are free (and strongly encouraged) to formulate your own ideas and make
them part of your work.

Regarding structure and design: Your thesis should be a fine mixture of theory
and practice. Develop theoretical concepts and underpin these by appropriate
examples. Note that this makes it necessary to implement algorithms in some
computing environment. Regarding the latter there are practically no restric-
tions. The computing environment may be R, matlab/octave, java, python
or some other programming language.

2.2.1 Issues of general interest

Data structures

A most important point to be discussed quite early in your thesis is how to
represent graphs numerically. You will have to learn about adjacency matrices
and adjacency lists. Explain these concepts, discuss their implementation, their
advantages and disadvantages, see Cormen et al. (2001, chapter 23) or Gondran
and Minoux (1995, chapter 1).

Ralaxation

Provide a more detailed discussion of the relaxation principle. It has some inter-
esting properties which deserve a presentation, see Cormen et al. (2001, chapter
25). Also, give a complete proof that relaxation converges to the optimum and
actually finds all shortest paths from a single source vertex. Good references
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in this context are Sedgewick and Wayne (2011, chapter 4) and Gondran and
Minoux (1995, chapter 2).

The Bellman-Ford Algorithm

Implement the Bellman-Ford Algorithm whose basics we have discussed above.
Demonstrate it by running the algorithm on a graph of your choice (may be
you find some interesting application). How does your algorithm work in case
of a graph having a negative cycle?

Dijkstra’s Algorithm

This is one of the most famous and most efficient algorithms for solving the
single-source shortest path problem. It is due to Edsger W. Dijkstra (1959)7.
Recall that in the Bellman-Ford Algorithm we process the list of all arcs in some
order. However, a clever choice of processing order may improve efficiency a
lot. Explain in detail how Dijkstra’s algorithm determines the order in which
arcs are processed. Show that a näıve implementation has running time O(n2),
where as always n = |V | is the number of vertices. If the graph is sparse,
then using special data structures this time bound can be improved to O((m+
n) log n), m = |A| the number of arcs. However, Dijkstra’s Algorithm can be
used only when arc weights are positive. It fails in presence of negative weights,
why?

2.2.2 Some more suggestions

Unit weight graphs - Breadth-First Search

There are interesting applications of the shortest path problem where all arcs
of the underlying graph have the same weight, say w(u, v) = 1 for all u, v ∈ V .
Find an interesting application of unit weight graphs and give an example.
Interestingly, there are some problems in recreational mathematics, which lead
to unit weight graphs8. The most efficient way to solve the SSSP for these
special graphs is a method commonly known as Breadth-First Search (BFS).
Explain this algorithm, show that its running time is O(m+ n). One also says
that BFS is linear in time. Actually, this is the best we can hope for. The
book of Dasgupta, Papadimitriou, and Vazirani (2008, chapter 4) will be very
helpful in this context.

7(1930–2002), dutch computer scientist
8Alcuin of York’s (ca. 735-804) medieval puzzle of the goat, the wolfe and the cabbage

is a quite famous example, also the Two Jugs or Wine Decanting Problem is a SPP on unit
weight graphs.
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Longest paths in scheduling

In Example 4 I have presented a classical problem from scheduling theory, find-
ing the makespan of a project consisting of several concurrent tasks. The un-
derlying precedence graphs have no cycles and therefore it is always possible to
put some order on vertices, a topological order. Once such an order is estab-
lished (you should explain how this can be done), finding the longest path in a
precedence graph can be accomplished in linear time. Discuss various aspects
of the planning problem by means of an interesting example. See Gondran and
Minoux (1995, pp. 67). You may also point out the relation to a classical
optimization paradigm, dynamic programming.

All pairs of shortest paths

There are several interesting problems in combinatorial optimization where it is
necessary to determine shortest paths between any pair of vertices in a weighted
graph. The most prominent application is the Traveling Salesman Problem. A
salesman has to visit customers in n different cities which we regard as vertices
in a network of roads. How can we design a shortest route such that each city is
visited at least once and the salesman returns to the city where he has started
his tour. Note, I have emphasized that each city has to be visited at least once.
If it where possible to the design the tour in such a way that each city is visted
exactly once then the route would by a Hamiltonian Cycle. The Hamiltonian
Property is very special. Except for special cases of network structure, for
instance when the graph is complete, no efficient methods are known to find
out whether such a cycle even exists, not to talk about finding it. However, it
is possible to embed a connected graph into a complete graph which is always
hamiltonian. For this to be accomplished, all pairs of shortest paths have to be
found.

One reasonable possibility is to apply Dijkstra’s Algorithm on each vertex pro-
vided there are no negative arc weights. Using a fast implementation of Di-
jkstra’s Algorithm this can be done very efficiently. But there are also other
methods of comparable efficiency, the most prominent being the Algorithm of
Floyd-Warshall which has running time of O(n3). A nice feature of this algo-
rithm and some of its refinements is that it can handle negative arc weights
also. Of course, negative cycles are still not permitted.

Negative arc weights

Negative weights cause problems as we have seen. Not only that they may
induce negative cycles which render the SPP unsolvable, they also affect effi-
ciency. Dijkstra runs much faster than Bellman-Ford. So it’s quite natural to
ask whether there is a way to get rid of negative weights?

The following idea is attractive because of its simplicity and seems so obvious,
but it does not work in general. Possible troubles are sketched in Figure 2.7.
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In the graph shown on the left side we have a negative weight, w(3, 4) = −9.
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Figure 2.7: Adding constants may cause troubles

A shortest path 1 → 4 certainly exists and is easily found by inspection: P =
[1, 2, 3, 4]. Suppose we add 9 to all weights, then these become nonnegative,
but the shortest path changes also, as can be seen from the righthand picture.
Now a shortest path 1→ 4 is simply P = [1, 4].

Although this idea is too simple to work in general, a more sophisticated ap-
proach of changing weights does work and give rise to another interesting way
of solving the APSP, Johnson’s Algorithm which on sparse graphs is even more
efficient than the algorithm of Floyd-Warshall.

Scaling

Substantial impovements in efficiency are achievable when arc weights are inte-
gers. This is not an uncommon situation, for instance in scheduling arc weights
are processing times which are typically given by positive integers. Scaling al-
gorithms take the binary representation of the weights and uncover the bits one
at a time from the most significant (leftmost) bit down to the least significant
bit. In a first pass shortest paths are determined using the most significant
bit of arc weights only, in the second pass we use the two highest order bits,
and so on. The point is that these problems are not independent and it is
possible to find optimal paths lengths dk(u) based on the first k bits from the
path lengths dk−1(u) very efficiently. This idea has been introducted by Gabow
(1985), see also Cormen et al. (2001, pp. 547). Scaling algorithms have a run-
ning time of order O(m logW ), where W = maxw(u, v) is the maximum arc
weight. Variants of these algorithms can handle also negative arc weights.

2.2.3 To be avoided

Your thesis should not become a new booklet on graph theory. It is not neces-
sary to give an introduction into the basic concepts of graph theory and explain
the terms graph, path, cycle, etc. You may presuppose that your interested read-
ers either have some knowledge in this field or are willing to aquire it. In the
latter case it is sufficient to give some references to books or other ressources
of have found to be useful during your studies. See the Annotated Bibliograpy
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in Section 3.

Avoid discussion of the SSP on undirected graphs unless you know what you
are doing. As long as arc weights are positive there is no problem, all standard
algorithms will work also for undirected graphs because these can be trans-
formed easily into directed graphs, we have talked about that very briefly on
page 30. However, in case of negative weights this simple transformation will
inevitably create negative cycles and render the SSP unsolvable. Solving the
SSP on undirected graphs with general weights is much more difficult because
this requires the concept of matching, a very advanced theme in graph theory.

As this thesis topic is one with a strong graph theoretic flavour, you will have to
draw diagrams of graphs, there will be tables, outlines and listings of algorithms,
etc. Do not copy such items from anywhere and paste it into your text. This
is very bad style and will not be accepted. As your thesis has to be typeset in
LATEX, watch out for appropriate LATEX packages. For instance, graph drawing
is very easy when you use the tikz-package, available from various sites in the
web. This packages is also very well documented thus you will have no troubles
when drawing fine diagrams. By the way, all graphs in this Invitation have
been created with tikz.

2.3 An Annotated Bibliography

There is a large number of excellent books on graph theory. One of the best
introductory texts is Chartrand (1975). It is strongly recommended if you want
to get an overview of major concepts of graph theory (which you should). An-
other (more advanced) book is Berge (1962). Claude Berge (1926–2002) was one
of the most influential french mathematicians in the 20th century contributing
many deep results in combinatorics and graph theory. Berge was also interested
in arts, he was sculptor, painter and novelist9. Berge’s book has a chapter on
shortest paths (chapter 7). In this you can find one of the first formulations of
the relaxation pronciple. Interestingly, most books on graph theory do not cover
the SSP. An explanation might be that most graph theorists view the SSP not
as a problem interesting in graph theory but as one belonging to combinatorial
optimization. However, there is a couple of books emphasizing algorithms for
graphs and these books usually contain thorough discussions of the SSP. The
books I like most are Gondran and Minoux (1995), Christofides (1975) and
Gibbons (1991). The text of Michel Gondran and Michel Minoux is strongly
influenced by Claude Berge, it has a long chapter on the SSP. There you will
find a simple proof that iterated relaxations actually converge to the optimal
solution. And you will find there also a detailed acount of the project scheduling
problem and longest paths.

In textbooks on combinatorial optimization the SSP always occurs at a promi-

9Among other things he wrote the murder mystery Who killed the Duke of Densmore?
Sherlock Holmes could answer this question by means of a theorem on perfect graphs, an
important topic in the scientific work of Berge.
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nent place as it is the classical combinatorial optimization problem. A won-
derful book is Lawler (2001). This text is more or less selfcontained, it has
a very readable introductory chapter on graph theory (chapter 2) and gives a
deep coverage of the SSP in chapter 3. The approach to the SSP is somewhat
different from ours, as it is not directly based on the relaxation idea but on a
fundamental system of nonlinear equations arising from Bellman’s Optimality
Principle which lies at the heart of dynamic programming. When talking about
combinatorial optimization one must also mention Papadimitriou and Steiglitz
(1998) as it is a classical textbook in this field. The SSP occurs in this book
at various places (there’s no chapter devoted exclusively to the SSP). Really
interesting is the formulation of the SSP as a linear programming problem with
integer-valued decision variables. When you have some background in linear
programming, you may find this book a valuable source.

The SSP is also of some significance in computer science, so it does not come
as a surprise that textbooks from this field usually contain interesting material.
There are three books I strongly recommend. On the first place there is the
Bible Of Computer Programmers, Cormen et al. (2001). It is a quite voluminous
book with an extensive part on algorithms for graphs. There you can find among
other things a thorough discussion of the relaxation principle. A fine text is
Dasgupta, Papadimitriou, and Vazirani (2008), a really gentle introduction to
algorithms with a careful coverage of the SSP. Last, but not least, there is the
excellent book of Sedgewick and Wayne (2011). Like Cormen et al. it has a
part in algorithms for graphs with a fine chapter on the SSP. This book also
discusses in detail the computer implementation of algorithms, the language
used throughout the book is java.

Finally, regarding the origins of the SSP in the 1950s, you may consult the
paper of Schrijver (2012).
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The Seven Bridges of Königsberg

This question is so banal, but seemed to me worthy of attention in that neither
geometry, nor algebra, nor even the art of counting was sufficient to solve it.

Leonhard Euler, March 13, 1736 (in a letter to Giovanni Marinoni)

Keywords: graph theory, Euler paths, Euler cycles,

the Chinese Postman Problem and its variants,

urban operations research

3.1 An Invitation

3.1.1 Euler’s 1736 paper

This topic deals with a classical problem from graph theory which is very easy
to state and also easy to understand. In pictorial language: consider a network
of roads and find a tour through the network such that each road is used

Leonhard Euler

(1707-1783)

exactly once. Such a tour, when it exists, will be
called an Euler cycle, if the tour returns to the loca-
tion where it started. If initial point and end point
of the tour do not coincide but still all raods are tra-
versed exactly once, then we shall call it an Euler
path.

The problem has its origin in a famous puzzle which
attracted Euler’s interest in 1736. The results of Eu-
ler’s efforts to solve the puzzle were compiled into one
of Euler’s most celebrated publications (Euler, 1736).
This paper marks the beginning of two new branches
of mathematics: topology and graph theory. Topol-
ogy, today a basic discipline of modern mathematics,
deals with properties of space and bodies which remain invariant with respect
to continuous transformations, like stretching, etc. Topology goes back to Gott-
fried Leibniz (1646–1716) who envisaged a new kind of analysis, a geometry of
position (geometria situs). On the other hand, graph theory deals with binary
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relations between elements of a given set. As such it is a prominent part of
what is known today as discrete mathematics.

There is some confusion with respect to the date of publication of Euler’s paper.
In the records of the St. Petersburg Academy of Science it is noted that Euler
presented the Königsberg problem and its solution in a talk given on August 26,
1735. The paper is contained in the Commentarii of 1736, but their publication
was delayed so that this volume did not appear in print before 1741. Very likely,
the presentation date 1735 is a misprint (Grötschel and Yuan, 2012).

3.1.2 Königsberg and a puzzle

In the 18th century Königsberg (Regiomonti), the old capital of East Prus-
sia, was one of the most important cultural and economic centers around the
Baltic Sea. It was home of the Albertina University, home of the philosopher
Immanuel Kant and of several famous mathematicians, just to mention Gustav
J. Jacobi, David Hilbert and Hermann Minkowski. Over centuries Königsberg
grew into a large and wealthy town with many beautiful churches and a fine

Königsberg arround 1930

In the foreground the open Schmiedebrücke

cathedral dedicated to Virgin
Mary and St. Adalbert. In
the midth of the 18th century
(the time our story plays)
Königsberg had about 50 000
inhabitants. Its situation on
the Pregel River made it an
ideal trading center for many
commodities, such as grain,
potash, salt, hemp, and wood
(R. J. Wilson, 1986). The
city was set on both sides of
the Pregel, and included two
large islands which were con-
nected to each other and the

mainland by seven bridges: Grüne Brücke, Krämer Brücke, Schmiedebrücke,
Hohe Brücke, Holzbrücke, Köttelbrücke, and Honigbrücke.

In Königsberg there was the nice tradtion of Corso. On sunday afternoon
families used to promenade through the center of the city, having some rest in
one of the cafés, meeting friends, having conversation, and, yes, reasoned about
a remarkable puzzle which must have originated at that time:

Is it possible to walk through the city, crossing every of the seven bridges once
and only once and to return to the point where the promenade has started?

3.1.3 Euler takes notice of the puzzle

Nobody could solve this puzzle and since all attempts to solve it had always
failed it was commonly believed that this task is impossible. The question re-
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Figure 3.1: Map of Königsberg and its seven bridges, Source: Heritage Schoolhouse

mained unsettled until the famous Swiss mathematician Leonhard Euler (1707-
1783) took notice of it. It is not know when and from whom Euler learned about
this problem for the first time. Actually, Euler never visited Königsberg, as far
as we know. But very likely the historical course was this (Sachs, Stiebitz, and
J. R. Wilson, 1988): Carl Leonhard Gottlieb Ehler, at that time mayor of the
city of Dantzig was a friend of Euler and a mathematical enthusiast. During the
years 1735-1742 he corresponded with Euler in St. Petersburg, mainly acting
as an intermediary between Euler and Heinrich Kühn, professor of mathematics
at the Academic Gymnasium in Dantzig. Via Ehler Kühn communicated the
Königsberg Problem to Euler. In a letter dated from March 9, 1736, Ehler
wrote to Euler1:

You would render to me and our friend Kühn a most valuable service,

putting us greatly in your debt, most learned Sir, if you would send us

the solution. which you know well, to the problem of the seven Königsberg

bridges, together with a proof. It would prove to be an outstanding example

of the calculus of position [Calculi Situs], worthy of your great genius. I

have added a sketch of the said bridges . . .

It took Euler only a few days to find a solution. He immediately reported it
to Giovanni Jacobo Marinoni (1670–1755), astronomer at the court of Emperor
Leopold I. in Vienna. In a letter dated from March 13, 1736, Euler wrote:

A problem was proposed to me about an island in the city of Königsberg,

surrounded by a river spanned by seven bridges, and I was asked whether

someone could traverse the separate bridges in a connected walk in such

a way that each bridge is crossed only once. I was informed that hitherto

no-one had demonstrated the possibility of doing this, or shown that it is

1This and the following excerpts of letters are translations taken from Sachs, Stiebitz, and
J. R. Wilson (1988).
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impossible. This question is so banal, but seemed to me worthy of atten-

tion in that neither geometry, nor algebra, nor even the art of counting [ars

combinatoria] was sufficient to solve it. In view of this, it occurred to me

to wonder whether it belonged to the geometry of position [geometria situs],

which Leibniz had once so much longed for. And so, after some delibera-

tion, I obtained a simple, yet completely established, rule with whose help

one can immediately decide for all examples of this kind, with any number

of bridges in any arrangement, whether such a round trip is possible, or

not. . .

And on April 13, 1736 Euler replied to Ehler’s letter of March 9. The following
citation reveals clearly that Euler didn’t consider the Königsberg problem an
interesting one from the standpoint of a mathematician. Indeed, he considered
it merely a puzzle:

Thus you see, most noble Sir, how this type of solution bears little rela-

tionship to mathematics, and I do not understand why you expect a math-

ematician to produce it, rather than anyone else, for the solution is based

on reason alone, and its discovery does not depend on any mathematical

principle. Because of this, I do not know why even questions which bear so

little relationship to mathematics are solved more quickly by mathemati-

cians than by others. In the meantime. most noble Sir, you have assigned

this question to the geometry of position, but I am ignorant as to what

this new discipline involves, and as to which types of problem Leibniz and

Wolff2 expected to see expressed in this way.

Not much later Euler must have changed his mind, now considering this puzzle
important enough to write a paper about it.

3.1.4 Euler’s solution

In the sequel I will cite freely from Euler’s paper and the translation due to
Michael Behrend (2012). Euler starts his paper by relating the Königsberg
Problem to the geometry of position (geometria situs) initiated by Leibniz.

And now let us listen to Euler’s own words. In paragraph 2 he writes:

§ 2. This problem, then, which was described to me as quite well known, was as

follows: At Königsberg in Prussia there is an island A called der Kneiphof, and the

river around it is divided into two branches, as shown in the figure; and the branches of

this river are crossed by seven bridges a, b, c, d, e, f , and g. The following question was

now raised concerning these bridges: whether someone could arrange a walk in such a

way as to travel over every bridge once and not more than once. Some people (I was

told) deny that this is possible, and others doubt it; but nobody asserts it. From this I

set myself the following quite general problem: whatever the form of the river and its

2Abraham Wolff (1710–1795), jewish mathematician in Berlin, friend of Euler. Gotthold
Ephraim Lessing memorialized Wolff by the figure of the dervish Al Hafi in his drama Nathan
der Weise.
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distribution into branches, and whatever the number of bridges, to find whether it is

possible for each bridge to be crossed only once, or not.

Figure 3.2: A simplified map of Königsberg

Euler begins his analysis by replacing the map of the city by a simpler diagram,
as it is shown in Figure 3.2.

It is likely that for his study Euler used an even more simplified diagram which
represents what is called a graph.

A

B

C

D

a b

c d

e

g

f

Figure 3.3: The translation of Figure 3.2 into a graph

You can find a more formal definition of graphs in Topic 2: Shortest Paths
in Networks. However, for our purpose it is sufficient to pursue a somewhat
pedestrian-like approach: A graph is a pair G = (V,E) where V is a set of
points (in our case V = {A,B,C,D}, the islands and riverbanks) and E a set
of lines connecting these points (the bridges E = {a, b, c, d, e, f, g}). The points
are called vertices, the line segments edges.

Euler then remarks that in principle it is possible to solve the Königsberg Prob-
lem by making an exhaustive list of all possible routes and finding by inspection
whether a particular route satisfies the conditions of the problem. But he im-
mediately rejects this approach as impractical because the number of different
routes will be too large, in general. Indeed, Euler doesn’t want to solve only the
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Köngsberg Problem, he is seeking a general method suitable for much bigger
networks.

Next Euler represents routes as sequences of capital letters. For instance ABDC
represents the route starting on the island A, then passing to the riverbank B
by using bridge a or b, continuing to island D crossing the bridge f and going
to C by passing bridge g.

In modern graph-theoretic terms such a sequence is called a walk. Observe that
Euler when writing ABDC for a walk allows for some ambiguity in that the
used bridges are not specified. Later in his paper he resolves this ambiguity by
writing more explicitely for a possible walk from A to C:

AaBfDgC

More generally: If a graph has vertex set V and edge set E, then a walk is a
sequence of alternating vertices and edges v0, e1, v1., . . . , en, vn. If all edges are
different (which is certainly required by the Königsberg Problem) the walk is
called a path. If initial and terminal vertex of a path coincide, the path becomes
a cycle. If this cycle contains all edges of the graph the path (cycle) is called
Euler path (cycle).

By careful analysis Euler identifies the crucial condition for the existence of a
solution of the Königsberg Problem and its generalizations to more complex
networks. It is the parity (odd or even) of the number of bridges which lead to
an area. He writes in paragraph 20:

§ 20. Therefore in any given case it will be very easy to decide straightaway whether a

crossing by each bridge once only can be planned or not, with the help of the following

rule. If there are more than two regions with an odd number of bridges leading into

them, then it can safely be stated that there is no such crossing. And if there are exactly

two regions with an odd number of bridges leading into them, then the crossing can be

done, provided the walk is started in one of these two regions. Finally, if there is no

region at all with an odd number of bridges leading to into it, then the crossing can be

planned in the desired way, and the start of the walking can be placed in any region.

Therefore the rule just given fully satisfies the statement of the problem.

In modern graph theory, the number of edges leading to a vertex v is called
the degree of that vertex. It is usually denoted by d(v). Thus § 20 may be
summarized by the statement: let G = (V,E) be a graph which is connected,
which means, that it is possible to find a path between any pair of vertices, so
there are no isolated areas. Then:

1. G contains an Euler cycle, if there are no vertices of odd vertex degree.

2. It contains an Euler path (initial and terminal vertex are different), if G
has at most two vertices of odd degree.

These conditions are really easy to check. For the Königsberg Problem we read
off from Figure 3.3:

d(A) = 5, d(B) = 3, d(C) = 3, d(D) = 3,
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so, all vertex degrees are odd numbers, therefore the Königsberg Problem has
no solution. There is no Euler cycle and also no Euler path.

Euler discusses also another example, where an Eulerian path exists but no
Euler cycle. See Figure 3.4.

Figure 3.4: Another example in Euler’s paper

Representing areas again as vertices, it is an easy task to draw the graph rep-
resenting this map. Counting the vertex degrees yields:

d(A) = 8, d(B) = 4, d(C) = 4, d(D) = 3, d(E) = 5, d(F ) = 6

There are exactly two vertices of odd degree, D and E, thus no Euler cycle
exists, but an Euler path can be found. It must lead from D to E (or vice
versa) such that it traverses each bridge exactly once.

Can you find this path?

Of course, you can find one such path (may be more?) just by patiently search-
ing in the graph for an Eulerian path. But, certainly, you will come to the
conclusion, that a näıve search may be too cumbersome in bigger graphs. What
is needed, is an algorithm! Let us read what to Euler says about this problem.
In paragraph 21 (the last in his paper) he writes:

§ 21. But when it has been found that such a crossing can be arranged, the question

remains how the walk is to be carried out. For this I use the following rule: in imag-

ination, let the bridges that lead from one region to another be removed in pairs as

many times as possible, by which the number of bridges will in most cases be greatly

reduced; then let a walk be planned across the remaining bridges, which is easily done;

then the bridges that were imagined as removed will not much disturb the walk so

found, as will at once be seen on very little consideration; nor do I think it necessary

to give more rules for arranging the walks.

Frankly speaking, the rule Euler formulates can hardly be considered an algo-
rithm. Still, there is no doubt that Euler knew how to construct an Eulerian
path. But we should bear in mind that the theory of algorithms did not exist
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in Euler’s time nor did Euler have the concept of recursion which proves to be
very useful (Grötschel and Yuan, 2012).

3.1.5 What happened to the problem later?

About 100 years after their publication in the St. Petersburg Commentarii Eu-
ler’s discoveries about the Königsberg Problem were almost forgotten. In 1851
E. Coupy published a french translation of Euler’s paper, mainly intended for
his students at the École Polytechnique in Paris, and in 1875 Louis Saalschütz,
professor at the Königsberg University pointed at, that after a new bridge
(Kaiserbrücke) has been built to connect riverbanks B and D an Euler Path
from A to D was now possible: Hence, there are only two odd vertices, A and

A

B

C

D

a b

c d

e

g

f

g

Figure 3.5: In 1875 a new bridge has been built connecting B and D

C, so at least one Euler path from A → C is possible. E.g.,

[A,D,B,A,B,D, C,A, C]

However, an Euler cycle is still impossible.

Euler’s findings have been rediscovered several times notably in Recreational
Mathematics3, in particular in the context of unicursal problems, mazes and
labyrinths.

An unicursal problem is a diagram tracining puzzle: we are given a diagram
like that the famous Lantern of Santa Claus in Figure 3.6. It is required to
draw the diagram with as few as possible pen strokes without drawing a line
more than once. The lantern is certainly unicursal, as it has an Euler path from
A→ B. Indeed, there are 44 such paths!

3.1.6 An epilog: Königsberg and its bridges today

The beautiful medieval city of Königsberg no longer exists. It has been de-
stroyed by bombing raids in late summer 1944 and military actions during the
battle of Königsberg in winter 1944/45. The bridges, the principal actors in

3You may have seen that Chapter 1 in our booklet is devoted to this subject.

60



Topic 3. The Seven Bridges of Königsberg

A B

C

D

E

Figure 3.6: The Santa Claus Lantern is unicursal

our story, were either destroyed or severly damaged. Today Königsberg is a
Russian naval base named Kaliningrad, the river Pregel has been renamed to
Pregolya. The seven bridges no longer exist. Today there are eight bridges
crossing the Pregolya river, partly reconstructions of the old bridges. From the
Schmiedebrücke only its pillars are still existing.

3.1.7 The Chinese Postman Problem

Are there any useful applications of Euler’s findings? So far, you might have
got the impression that Euler has merely solved a puzzle, not more. Yes, there
are! Let me introduce you to a most famous optimization problem: the Chinese
Postman Problem.

In the city of Qufu4 (Shandong Province, China) there are many post offices.
Each post office serves a certain district of the city, and these districts are di-
vided into subnetworks of roads which are assigned to postmen for mail delivery.
Figure 3.7 displays such a subnetwork of roads to be served by a single post-

PO
5

5

6

3

4

3

6

3

3

2

1

2

Figure 3.7: A road network for a Chinese postman

4Place of birth of the great Chinese philosopher Confucius (551 BC - 479 BC).
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man. The numbers attached to the roads are walking distances in kilometers,
say. On each of his daily tours the postman starts at the post office (PO),
then has to pass through each of the roads at least once and finally returns
to the office. Now, a natural question is: How can we arrange a tour of mini-
mum length? This question has become known as the famous Chinese Postman
Problem (CPP), stated and solved first by the Chinese mathematician Mei-Ko
Kwan in 1960. The name of this problem is very likely due to Jack Edmonds
(1965) who coined the term in honor of Mei-Ko Kwan.

The CPP is a classical combinatorial optimization problem like the Traveling
Salesman Problem (TSP), but unlike the latter, it is well-behaved in the sense
that even large instances of this problem can be solved in reasonable time.

But, how is the CPP related to the Königsberg Puzzle discussed by Euler?

To see this relation, let us first represent the road network of Figure 3.7 schemat-
ically by a graph. The post office, junctions and turns are the vertices of the
graph, the roads are repesented by edges which are assigned as weights the
distances. The resulting graph is shown in Figure 3.8 below, where the post
office is located in vertex 1.

1 2 3

4 5 6

7 8 9

5 2

5 1

6 2

3 3 3

4 6 3

Figure 3.8: The graph corresponding to the network of Figure 3.7

If this graph had an Euler cycle this would immediately yield a solution of
the CPP: the postman simply had to follow the cycle, and as the cycle passes
through each edge it is certanly of minimum length because any Euler cycle
has the same length, just the sum of all edge lengths of the graph. In this case,
there is nothing to optimize.

But looking at Figure 3.8 you realize that this graph is not Eulerian, because
the vertices 2, 4, 6 and 8 have odd degree. Therefore no Euler cycle can exist.

So, what should the postman do? Easy, think in practical terms: he will have
to traverse some of the streets more than once. And now, we do indeed have
an optimization problem: determine those streets which have to be traversed
twice in such a way that the resulting round trip has minimum length.

Mei-Ko Kwan’s solution approach is in principle a very easy one:
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• Determine all vertices of odd degree in the graph. Let this set be denoted
by M . The number m = |M | of elements in M will always be an even
number, as Euler (1736) shows in § 16 of his paper. In our example
M = {2, 4, 6, 8}.
• Find all pairwise matchings of the vertices in M . In other words, find the

set of all pairings of elements in M . If |M | = m, then it is easily seen
that the number of pairwise matchings equals (n − 1)(n − 3) · · · 3 · 1. In
our case we have m = 4 and therefore we have 3 · 1 = 3 matchings:

M1 = {2↔ 4, 6↔ 8}, M2 = {2↔ 6, 4↔ 8}, M3 = {2↔ 8, 4↔ 6}

• For each matching determine the shortest paths connecting the vertices
of each pair:

Matching vertices shortest path length

M1 2↔ 4 [2, 1, 4] 8
6↔ 8 [6, 9, 8] 5

Total length of M1 13

Note that the shortest path 2↔ 4 is not unique. We could have taken as
well the path [2, 5, 4] also having length 8.

Similarly,

Matching vertices shortest path length

M2 2↔ 6 [2, 5, 6] 4
4↔ 8 [4, 7, 8] 10

Total length of M2 14

And finally,

Matching vertices shortest path length

M3 2↔ 8 [2, 5, 8] 9
4↔ 6 [4, 5, 6] 6

Total length of M3 15

Matching M1 has the shortest total length, so duplicate the edges of the two
shortest paths comprising this matching. In other words, for the shortest path
[2, 1, 4] duplicate edges (2, 1) and (1, 4), for the path [6, 9, 8] add edges (6, 9)
and (9, 8). These are the roads the postman has to walk twice.

The last step is to figure out an Euler cycle in the augmented graph. As this
network is a really small one, we may do this by simple inspection. Just take a
pencil and pass along the edges of the graph depicted in Figure 3.9 recording
the vertices visited to obtain:

C = [1, 2, 3, 6, 9, 6, 5, 2, 1, 4, 5, 8, 9, 8, 7, 4, 1]

We note in passing that this solution is not unique.

This was a very simple example, a toy problem, as I have to concede. But the
CPP isn’t merely a toy problem, it has many serious and important applications.
And in these routing has to be performed in networks of really large size. For
this task we need an algorithm, of course. Actually, we need three algorithms:
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Figure 3.9: The augmented graph

1.) An algorithm for determining shortest paths in a weighted graph. Floyd’s
Algorithm mentioned in Topic 2 (Shortest Paths in Networks) is a good
choice.

2.) We need an algorithm to solve the minimum cost matching of odd-degree
vertices.

3.) Finally, we need one more algorithm to determine an Euler cycle in the
augmented graph.

In real world applications of the CPP networks sometimes have hundreds or
even thousands of vertices and edges. Clearly, what is needed are efficient
algorithms to perform the steps outlined above. More about that in Section 2.

Typical examples of large scale CPPs come from urban operations research:

• Routing of trucks for waste collection and street cleaning.
• Optimal organization of snow and ice control on roads during winter time.
• Routing of schoolbuses, etc.

Here are some examples from industrial production where the CPP also proves
to be very useful:

• In shipbuilding industry huge plates of steel have to be cut, a process
usually performed by plasma cutting devices. Here it is necessary to
minimize the number of piercing points and waste of raw material.
• In large storage depots and container terminals stacker cranes are used

to move goods and containers around. A typical stacker crane must start
from an initial position, perform a set of movements, and return to the
initial position. The objective is to schedule the movements of the crane
so as to minimize total cost.
• Multifunctional robots are key elements of modern industrial production.

They must carry out complicated movements depending on the task to
be performed. These movements can be optimized in such a way that
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processing times and consumption of energy are minimized.

In all these examples (and there are many more!) it has been reported that
formulation and solution of the underlying CPPs resulted in impressive gains of
efficiency and savings of cost, see Section 3, An Annotated Bibliography below
for some references.

3.2 Where to go from here

Writing a thesis about Euler cycles and Chinese postmen is a nice challenge as
you will certainly realize when you get more and more involved into the subject.
On one side there is beautiful mathematics, on the other side there are very
interesting applications.

In this section I present you some ideas you make take care of.

3.2.1 Issues of general interest

At the outset, however, an important point: do assume that the graphs you are
dealing with are connected. Roughly, this means that there exist paths between
any pair of vertices in a graph.

You will have to state this assumption, but I recommend not to put too much
emphasis on this issue. This would lead you too far afield as connectivity is a
nontrivial graph property, in particular in case of directed graphs, a concept to
be introduced shortly.

Algorithms for finding Euler cycles

As we have remarked above, Euler did no outline a general procedure to deter-
mine Euler cycles. This gap was closed more than 100 years after Euler’s 1736
paper. Two classical algorithms have been invented during the 19th century,
interestingly without reference to Euler’s original work on the subject which at
that time has been more or less forgotten.

The paper of Carl Hierholzer (1873) presents the first algorithm together with a
complete proof of the statement that a connected graph has an Euler cycle if and
only if all its vertices have even degree. Actually, Euler only proved the if -part,
i.e., a necessary condition for this property. Hierholzer’s approach is simple and
elegant. It successively finds cycles in the graph G = (V,E) and glues them
together to an Euler cycle. When properly implemented (using a stack data
structure) this algorithm is very efficient, the amount of computational work to
find an Euler cycle is proportional to the number of edges |E|.
The other algorithm is due to Fleury (1883). Actually, it is the most often
cited algorithm as you can check by a quick web search. Fleury’s algorithm is
so popular because it is very intuitive: just walk through the graph deleting
each edge after it has been traversed, unless it is a bridge and you are forced to
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walk over it. A bridge is an edge which when removed from the graph results in
disconnected components. Whereas it is easy to figure out whether an edge is
a bridge in small graphs, this tasks becomes quite formidable in bigger graphs
and requires an algorithm, the paper of Jens Schmidt (2012) presents one. As
a result the computational complextity of Fleury’s algorithm is considerably
higher than that of Hierholzer’s algorithm.

There exist alternatives to Hierholzer and Fleury, of course. One such alterna-
tive is an algorithm due to Tucker (1976). You can find a detailed presentation
and analysis of algorithms to find Euler paths and Euler cycles in the profound
book of Fleischner (1991, Chapter X.).

Your thesis should discuss these algorithms (at least those of Hierholzer and
Fleury) carefully, their pros and cons, their time complexity. Maybe (yet an-
other challenge) you write small computer programs to implement them. You
may do this in R, matlab, its clone octave or any other environment you like.
Also, you will have to think about practical and efficient ways to represent
graphs by appropriate data structures. And, of course, you should illustrate
the capabilities of your programs by some nice examples.

The Chinese Postman Problem

The CPP is certainly the most obvious application of Euler cycles. Recall from
the Invitation that the CPP is a combinatorial optimization problem that con-
sists of three layers: at the top level an Euler cycle is sought in a graph which
has been suitably augmented. This augmentation, the addition of edges repre-
senting those which have to be traversed more than once, requires a shortest
path problem and a minimum cost matching problem to be solved.

For the shortest path problem you may have a look into Topic 2 for a first ori-
entation. The book of Christofides (1975) provides more technical information
about shortest paths and about the matching problem. Regarding the matching
problem: this is really difficult. Therefore I recommend to explain briefly the
basics and avoid getting too much involved into the general matching problem.
Just take it as some kind of a blackbox. When you implement the CPP then
use any of the available software libraries to handle the matching part of the
CPP.

It is a very good idea to illustrate your exposition of the CPP by one or more
well-chosen applications. An easy-to-read and very informative first introduc-
tion can be found in chapter 6 of Larson and Odoni (1981). Material useful
in this context is contained in chapters 7 and 16 of Farahani and Miandoabchi
(2013).

A class of important applications is the provision of public services like munic-
ipal waste collection. The paper of Belien, De Boeck, and Van Ackere (2014) is
an up to date exposition with many references which you may find very helpful.
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3.2.2 Some more suggestions

Directed graphs

In a directed graph all edges have an orientation, i.e., using once again the
analogy of a network of roads, all roads are one-way. Such directed edges
are usually called arcs. Also directed graphs can have Euler cycles. Figure
3.10 shows you an example of a directed graph which has an Euler-cycle. You

1

2

3

4

Figure 3.10: An Eulerian digraph

should formulate conditions for a directed graph to have such cycles (or paths)
and devise algorithms for finding them. Do the algorithms of Hierholzer and
Fleury still work in case of directed graphs?

Once again: the Chinese postman

The CPP can also be considered in directed graphs. Now the situation is
somewhat different compared to the CPP in undirected graphs. In the latter
the postman will never have to walk along a road more than twice (can you
explain, why?). In a directed graph, however, it may be the case that the
postman has to traverse arcs (one-way roads) several times. On the other
hand, the matching problem is easier to solve. It boils down essentially to a
classical transportation or minimum cost flow problem.

Just to get an impression of the situation have a look at Figure 3.11. It displays
a small network with 13 vertices consisting entirely of one-way streets, distances
are given in units of 100 m. You can easily check that this directed graph is
not Eulerian, but again an augmentation can establish this property. The
augmentation process results in the Eulerian network shown in Figure 3.12.
The street connecting vertices 6 and 10 has to be traversed five times! The
optimal postman tour has total length 10 160 m and is found to be

C = [1, 2, 3, 6, 10, 11, 12, 13, 6, 10, 7, 9, 11, 12, 13, 6, 10, 7, 5,

4, 8, 9, 11, 12, 13, 6, 10, 7, 5, 2, 3, 6, 10, 7, 5, 4, 1],
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Figure 3.11: A network with one-way streets
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Figure 3.12: The Eulerian network

Can you verify my calculations?

Really poor guys: rural and the windy postmen

The classical CPP is a tractable problem, i.e., it can be solved in polynomial
time. But there are variants of considerable importance in practical applications
that are really hard. One such variant is the Rural Postman Problem (RPP).
Here the network consists of two types of roads: there are roads whose traveral
is mandatory (deliver mail) and other roads which may be traversed but need
not. A typical example is displayed in Figure 3.13 where the mandatory roads
are drawn in heavy lines. We may think of a postman who has to serve two
districts which are connected by roads belonging to a district served by some
other postman. Again an augmentation process is necessary, but the difficulty is
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Figure 3.13: A network for a rural postman

that for this process roads of both types (mandatory and non-mandatory) may
be used. The RPP is indeed an extremely difficult combinatorial optimization
problem.

Finally, there is the Windy Postman Problem. This poor guy has to serve a
network of roads which may be traversed in any direction (no orientation), but
the cost of traversal does depend on the direction, see Figure 3.14 Think of a

4 min→ ← 6 min

Figure 3.14: Direction dependent costs for the windy postman

postman delivering his mail by using a bicyle and edge weights are travel times.
If there is some headwind then these travel times certainly depend on direction.
Again, no efficient solution procedure is known. A thorough discussion of these
problems is found in the papers of Eiselt, Gendreau, and Laporte (1995a) and
(1995b).

3.3 An Annotated Bibliography

To prepare your thesis you will need certainly some acquaintance with basic ter-
minology and concepts from graph theory. Unfortunately, terminology in graph
theory is far from being standardized, see footnote 3 in Topic 2. Anyway, gentle
introductions to graph theory are the books by Chartrand (1975), Hartsfield
and Ringel (2003) and Gibbons (1991). Gibbons’s book is more technical in
that it puts strong emphasis on algorithms, still it is very readable. In chapter
6 you find a thorough discussion of Eulerian graphs (directed and undirected)
as well as postmen problems. Christofides (1975) is one of my favorite books.
It combines both, a clear exposition of concepts and a detailed discussion of
algorithms. Chapter 9 of this book is devoted to the Euler problem, chapter 12
to the matching problem. Another great book is Gondran and Minoux (1995),
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in particular chapter 8. This chapter has also some exercises presenting various
applications.

Regarding historical background, I recommend the fine textbook Biggs, Lloyd,
and R. J. Wilson (2006), which is a commented collection of milestone publi-
cation in graph theory over the period 1736–1936. It begins with an English
translation of Euler’s 1736 paper and translations of several other papers re-
lated to the Euler problem. Here you find also interesting facts about Euler
cycles and labyrinths! Grötschel and Yuan (2012) gives an account of the his-
tory of the Königsberg bridges puzzle, Euler’s work on it, Mei-Ko Kwan and
the Chinese Postman Problem.

The classical paper on the CPP is certainly Edmonds and Johnson (1973). At
the heart of this publications there is a thorough discussion of the matching
problem which has to be solved for the CPP.

If you want to read more from and about Leonhard Euler, consult The Euler
Archive (2011) hosted by the Mathematical Association of America. It contains
a small part of Euler’s enormous Opera Omnia, some of his papers come with
English translations.

The paper Hierholzer (1873) has a tragic history. He died in 1871 at an age of
only 31 years. The cited paper was published posthumously after it has been
prepared without written records by Hierholzer’s friends Christian Wiener and
Jacob Lüroth. An English translation is given in Biggs, Lloyd, and R. J. Wilson
(2006), a text already mentioned.

Janet Heine Barnett (2005) and R. J. Wilson (1986) are especially worth to be
studied because both of them contains a thoroughly commented translation of
Euler’s 1736 paper stating its findings in modern graph theoretic terms.

A detailed presentation of Eulerian graphs is the 2-volumne series Fleischner
(1990) and Fleischner (1991). In Chapter X. you will find various algorithms
for finding Euler cycles together with a careful discussion of their efficiency.

Finally, regarding the CPP: have a look at Eiselt, Gendreau, and Laporte
(1995a) and (1995b). Although these papers are rather technical, take your
time and read them, as these papers are consider standard reference texts to
the CPP and its hard variants, e.g., the rural postman.
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Topic 4

The Chains of Andrei Andreevich Markov - I

Finite Markov Chains and Their Applications

He was too young to have been blighted by the cold world’s corrupt finesse; his
soul still blossomed out, and lighted at a friends word, a girl’s caress.

Alexander Pushkin, Eugene Onegin1

Keywords: applied probability, stochastic processes, limiting behavior;
applications: weather prediction, credit risk, Google’s PageRank,
voter migration, simulation of Markov chains

4.1 An Invitation

4.1.1 The Law of Large Numbers and a Theological Debate

Andreii Andreevich Markov was born on June 14, 1856 in Rjasan, about 200 km
in the south-east of Moscow. After finishing classical gymnasium he

Andrei A. Markov

1856–1922

studied mechanics and mathematics at the Univer-
sity of St. Petersburg where he became a disciple
of P. L. Chebyshev, one of the most influential and
prolific Russian mathematicians of the 19th century.
Among the wide spread research interests of Cheby-
shev, ranging from analysis and probability to the
theory of numbers, there was the Law of Large Num-
bers (LLN) which finally attracted Markov’s atten-
tion. A first version of this fundamental law has been
formulated and proved by Jakob Bernoulli (1654–
1705). In his analysis of games of chance he has
shown that in a prolonged sequence of independent random trials, each hav-
ing only two possible outcomes, success or failure, the relative frequency of
observing success comes close to the theoretical success probability p. Stochas-
tic independence, however, is a crucial condition in Bernoulli’s derivation of

1Novel in verse published in 1833, cited from Hayes (2013). This was part of Markov’s
original experiments on the statistics of language.
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the law, and that didn’t change until Markov’s contributions to the theory of
the LLN. In the 19th century the concept of independence was not fully under-
stood. This lack of comprehension resulted in the remarkable effect that the
LLN got into the focus of a passionate theological debate about the existence
of free will versus predestination. The debate was initiated by Pavel Nekrasov
(1853–1924), a Russian mathematician with excellent relations to the Russian
orthodox church. In a paper published in 1902 Nekrasov argued that voluntary
acts are expressions of free will. And as such they are like independent events
in probability theory, there are no causal links between these events. The LLN
applies only to such events and this is, as he said, supported by data collected
in social sciences like crime statistics.

Markov strongly objected to this interpretation of the LLN and in 1906 he ad-
dressed the problem to derive and prove a LLN for dependent trials. For this
purpose he devised a simple stochastic process having two states only. Markov
was able to show that as the process evolves over time the average times the
system spends in either of these states approach a limit. As a sample applica-
tion he performed a statistical analysis of the first 20 000 letters of Alexander
Pushkin’s (1799–1837) poem Eugene Onegin. The two states of his process (he
used the term chain) were: a letter is a vowel (state 1), a letter is a consonant
(state 2). Then he counted how often a vowel is followed by a vowel, a conso-
nant, and similarly he counted transitions from consonant to vowel (consonant).
In this way he formed a matrix of transition probabilities which became basis
of subsequent analysis and the demonstration of a LLW for dependent trials.

So, this is quite remarkable, the first practical application of Markov chains was
statistical linguistics, and in this field of science they are used even today.

4.1.2 Let’s start with a definition

Let X0, X1, X2, . . . denote a sequence of random variables, each taking its values
in some finite set S. The sequence {Xn, n ≥ 0} is called a stochastic process and
S is its state space. The index n of Xn usually denotes time which we assume to
be discrete. Thus there is some sort of clock with ticks at times n = 1, 2, 3, . . .
and at these clock ticks the process may or may not change its state. Hence, if
an observer finds that the random event {Xn = k} occurred, we say the process
Xn is in state k ∈ S at time n.

The behavior of the random process {Xn, n ≥ 0} can be described in various
ways. One is to record values attained by Xn and determine the joint distribu-
tion, that is the probability:

P (X0 = k0, X1 = k1, . . . , Xn = kn).

Equivalently, we may be interested in the probability of finding Xn in a par-
ticular state kn, given the whole history of the process {Xn, n ≥ 0}. In other

74



Topic 4. The Chains of Andrei Andreevich Markov - I

words, we are interested in the conditional probability

P (Xn = kn|X0 = k0, X1 = k1, . . . , Xn−1 = kn−1︸ ︷︷ ︸
History Hn−1

). (4.1)

Generally, it is extremely difficult to determine probabilities like (4.1), because
the dependence of Xn on its history Hn−1 may be rather complicated. But
there are situations that can be handled easily.

One is independence in which case

P (Xn = k|Hn−1) = P (Xn = k).

An example is rolling a single dice where Xn denotes the value shown at the
n-the experiment. Here the state space is S = {1, 2, 3, 4, 5, 6}, and whatever
numbers have turned up in the first n−1 experiments, we always have (provided
the dice is a fair one):

P (Xn = k|Hn−1) = P (Xn = k) =
1

6
for all k ∈ {1, 2, 3, 4, 5, 6}.

The case of independence is very well understood and probability theory pro-
vides us we so marvelous tools like a Law of Large Numbers, a Central Limit
Theorem etc. for independent stochastic sequences. Since independence makes
everything much easier, it is not surprising that these fundamental laws have
been discovered quite early, they are known since the 18th century.

But what, if there is no independence? When in 1906 A. A. Markov addressed
the problem of proving a Law of Large Numbers for sequences of dependent
random trials, he did so by assuming a very specific and simple type of de-
pendence: he assumed that from the whole history Hn−1 of Xn only the state
occupied at time n− 1 counts. In other words:

P (Xn = j|Hn−1) = P (Xn = j|Xn−1 = i), for every pair i, j ∈ S. (4.2)

A typical example is the game Monopoly. Here Xn is the position of your
token on the board after the n-th move. No matter how you came into position
Xn−1 = i (say), rolling the dice determines how many steps your token moves
ahead on the board. Where your token lands at the end of that move in position
Xn = j (say), this depends only on the position before the move and the
outcome of throwing the dice 2.

Formula (4.2) is a formal statement of what is known as the Markov property,
the random process {Xn, n ≥ 0} is called a finite state Markov chain. The
basic structural parameters of a Markov chain (MC) are the one-step transition
probabilities:

pij = P (Xn = j|Xn−1 = i). (4.3)

2You can find a nice analysis of Monopoly as a Markov Chain in the paper of Ash and
Bishop (2003).
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In a rather general setting these probabilities may depend on time n, i.e. the pij
may vary with n as functions of time pij(n). However, in this invitation (and in
your thesis also), we shall assume that transition probabilities are independent
of time. A MC having this property is called time-homogeneous.

The double indexing of these probabilities pij suggests to combine them in a
square matrix P. If the state space S has size |S| = N , then P is a matrix of
order N ×N :

P =


p11 p12 . . . p1N
p21 p22 . . . p2N
...

...
...

pN1 pN2 . . . pNN

 .

P is called the transition matrix of the MC {Xn, n ≥ 0}. It has two rather
obvious properties:

• The components are nonnegative: pij ≥ 0 or all i, j ∈ S, because these
numbers are probabilities.
• The sum of each row equals 1, i.e., for each i we have

∑N
j=1 pij = 1. This

is because the chain {Xn, n ≥ 0} cannot leave its state space.

Any square matrix having these characteristics is called a stochastic matrix.
We will see soon that these properties have remarkable and far-reaching conse-
quences.

Besides the transition matrix P we need another ingredient, an initial distribu-
tion . This specifies the probability of X0 occupying a particular state at time
zero, viz. P (X0 = i) for all states i. It will be very convenient to arrange these
initial probabilities in a vector which we will almost exclusively use as a row
vector : 3

πt0 = [π01, π02, . . . , π0N ], where π0i = P (X0 = i) (4.4)

Because π0 represents a probability distribution, we have

N∑
i=1

π0i = 1. (4.5)

Any vector with nonnegative components which sum to one is called a probability
vector.

Since matrix algebra will play a prominent role in the sequel, why not restate
the basic properties of P and π0 in terms of matrix operations?

For this purpose we need to define a one-vector 1 of order N × 1 as a vector

3In this invitation we adhere to the convention that any vector a is always interpreted as
a column vector. If it happens (and it will happen) that we need a as a row vector, then we
simply transpose it to at.
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consisting entirely of ones:

1 =


1
1
...
1

 .
Furthermore, for any matrix A or vector a, we write A ≥ 0 and a ≥ 0, if
all components of this matrix (this vector) are nonnegative. The symbol 0
represents the zero matrix or the zero vector.

Then the basic properties of P and π described above can be written compactly
as:

P ≥ 0 nonnegativity

π ≥ 0

P · 1 = 1 row sums equal to 1 (4.6)

πt0 · 1 = 1 this is (4.5). (4.7)

Observe that the left hand side of (4.6) is the usual matrix product of the
transition matrix with the one-vector. Also, (4.7) is the matrix product of the
row vector πt0 and the one-vector (a column vector!). As these are of orders
1×N and N × 1, the result is a matrix of order 1× 1, i.e., the scalar value 1.

The specification of the initial distribution π0 and the transition matrix P
completely determines the stochastic evolution of the MC {Xn, n ≥ 0}. So,
quite naturally the question arises:

Given π0 and P, how can we calculate the distribution of the states Xn at some
time n?

Let us denote this distribution by the probability vector:

πtn = [πn1, πn2, . . . , πnN ], where πni = P (Xn = i). (4.8)

So, how to calculate πn?

It will turn out that πn can be obtained by solving a simple recurrence relation.
For the latter we can even find an explicit solution which, quite remarkably, is
a power law !

4.1.3 Example 1: Will We Have a White Christmas This Year?

Every year at the beginning of December the question “Will we have a White
Christmas this year?” pops up quite regularly in the weather shows of almost
all TV-channels. Markov chain analysis may help us to shed some light on this
really important question.

Rotondi (2010) approaches this forecasting problem by defining a two-state MC
with state space

S = {G = green day,W = white day}.
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A green day is defined as a day with observed snow depth < 50 mm, whereas
a white day must have snow depth ≥ 50 mm. Snow depth data are available
from the Global Historical Climatology Network (GHCN) which collects data
from weather stations all over the world. One such station is located in the
Central Park in New York. Over several years for the period from December
17th to December 31st transitions4 between the states W and G are counted and
the observed relative frequencies are taken as statistical estimates of transition
probabilities. This resulted in the transition matrix:

P =

G W[ ]
0.964 0.036 G

0.224 0.776 W

Thus the probability pGG that a green day is followed by a green day equals
0.964, so it’s very likely that a green day follows a green day. Also, a green
day is followed by a white day with probability pGW = 0.036. In an analogous
manner we interpret the second row of P.

It will be very convenient to draw a diagram of the possible transitions in this
chain:

G W0.964

0.036

0.224

0.776

Technically speaking, this is a directed graph with nodes corresponding to states
and arcs (links) corresponding to possible transitions of the chain. Each arc
i → j is assigned a weight which equals the transition probability pij . This
graph is called the transition graph of the chain {Xn, n ≥ 0}. No special
knowledge in graph theory is required for this topic, but if you want to know
more, you may consult the Invitation to Topic 2, Shortest Paths in Networks,
which provides you with a rudimentary overview of the basic terminology from
the theory of graphs.

Let us attack our weather forecasting problem experimentally. All we need is a
computer, actually a pocket calculator suffices. Hard-nosed guys amonmg you
can do the job with paper and pencil only.

Suppose that today is December 17th and this is a green day. This assumption
specifies the following initial distribution:

π0G = P (X0 = G) = 1, π0W = P (X0 = W ) = 0 =⇒ πt0 = [1, 0]

4This period was chosen in order to minimize bias due to seasonality of weather patterns.
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What is the probability that tomorrow, the day after tomorrow, etc. we will
have a green or white day?

To determine these probabilities we have to invoke the Law of Total Probability
: if there is an aribtrary event A and further events B1, B2, . . . , Bn which are
mutually disjoint and whose union equals the sample space Ω, i.e.,

Bi ∩Bj = ∅ for all i 6= j, and B1 ∪B2 ∪ . . . ∪Bn = Ω,

then the total probability of A is given by

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + . . .+ P (A|Bn)P (Bn). (4.9)

In our case with A = {X1 = G} and two conditions B1 = {X0 = G} and
B2 = {X0 = W} we get:

P (X1 = G) = P (X1 = G|X0 = G)P (X0 = G) + P (X1 = G|X0 = W )P (X0 = W )

= π0G · pGG + π0W · pWG

= 1 · 0.964 + 0 · 0.224 = 0.964 (A)

Similarly,

P (X1 = W ) = P (X1 = W |X0 = G)P (X0 = G) + P (X1 = W |X0 = W )P (X0 = W )

= π0G · pGW + π0W · pWW

= 1 · 0.036 + 0 · 0.776 = 0.036 (B)

Not very spectacular, but looking closer at (A) and (B) you will find that both
probabilities are sums of products, and whenever you encounter such a pattern,
be sure, there’s a matrix multiplication lurking behind. Indeed:

πt1 = [0.964, 0.036] = [1, 0]

[
0.964 0.036
0.224 0.776

]
In other words, we have found for our example:

πt1 = πt0 ·P (4.10)

So what about πt2, π
t
3, etc., the distribution of states in two, three days?

That’s easy, the Markov Property (4.2) comes to our help. The latter implies
that

πt2 = πt1 ·P,

but, by (4.10),

πt2 = (πt0P) ·P = πt0 ·P2

Continuing in this manner we obtain:

πt3 = πt2 · P = (πt0P
2) ·P = πt0P

3
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These easy-to-grasp steps when properly continued show us that there exists
a fundamental recurrence relation having a very simple resolution as a power
law :

πtn = πtn−1P =⇒ πtn = πt0P
n, n = 1, 2, . . . (4.11)

Moreover, at no place in our calculations we have made use of the fact that P
is only of order 2 × 2. Indeed, the law of total probability holds for any finite
number of conditioning events. Hence it follows that the basic recurrence (4.11)
holds generally for all finite state Markov chains.

Let’s use now (4.11) to calculate the state probabilities for our example chain.
Of course, normally we will not perform calculations by hand. It is much
more convenient to use some computing environment which supports matrix
calculations, e.g., matlab or its free clone octave. Alternatively, you may also
use R. The latter is somewhat special, I will have to say more about this tool
in Section 4 below.

Starting with a green day, our initial probability vector equals πt0 = [1, 0], we
obtain successively:

day n P (Xn = G) P (Xn = W )

December 17th 0 1.0000 0.0000

1 0.9640 0.0360

2 0.9374 0.0626

3 0.9176 0.0824

4 0.9031 0.0969

5 0.8923 0.1077

6 0.8843 0.1157

Christmas Eve 7 0.8784 0.1216

. . .
New Year’s Eve 14 0.8636 0.1364

. . .
January 16th 30 0.8615 0.1385

January 17th 31 0.8615 0.1385

. . .

Hm, that looks interesting.

Our calculations show: starting with a green day on December 17th, it is very
likely that we won’t have a White Christmas, in fact only with probability 12.2
% there will be snow on that day. Actually, the probability is about 88 %
that December 24th is a green day again. Note however that this is not the
probability of having 7 green days in a row. It just means that after 7 days we
are again in state G.

But, more can be seen: there is a remarkable pattern, it seems that the state
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probabilities approach a limit. Starting with a green day we expect in the long
run a green day with probability 86 % and a white day with probability 14 %.

Having become curious through these observations we continue our experiment:
this time we start with a white day, so πt0 = [0, 1]. Then repeating the
procedure we obtain:

day n P (Xn = G) P (Xn = W )

December 17th 0 0.0000 1.0000

1 0.2240 0.7760

2 0.3898 0.6102

. . .
Christmas Eve 7 0.7569 0.2431

. . .
New Year’s Eve 14 0.8488 0.1512

. . .
January 16th 30 0.8614 0.1386

. . .
January 26th 40 0.8615 0.1385

January 27th 41 0.8615 0.1385

. . .

Now the probability of a white Christmas is 24 %. And interestingly, the long
run distribution of green and white days is the same as before.

These are quite remarkable and unexpected observations. Let us summarize
what we have found so far experimentally :

• It seems that the state distribution πn approaches a limit as n→∞.
• Also, there is some indication that this limit is independent of the initial

state distribution π0. We have found the same limit for the two initial
distributions [1, 0] and [0, 1]. We could have started also with another
initial distribution of green and white days, for instance, we could have
taken

πt0 = [ 0.5, 0.5 ].

Running through the recurrence we will again find that the state distri-
bution settles in [ 0.8615, 0.1385 ].
• It is not implausible that these observations must be somehow related

to special properties of the transition matrix P. Indeed, if we let the
computer calculate some powers of P, we find another strange pattern:

P10 =

[
0.86836 0.13164
0.81912 0.18088

]
, P20 =

[
0.86187 0.13813
0.85945 0.14055

]

P40 =

[
0.86154 0.13846
0.86153 0.13847

]
, P80 =

[
0.86154 0.13846
0.86154 0.13846

]
. . .
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Thus, the powers Pn themselves approach a limit, their rows are getting
closer and closer to the conjectured limiting distribution of green and
white days.

The observations we have made are typical of regular chains, a term of great
importance in the theory of finite MCs. A MC is called regular, if from some n
onward in the powers Pn there are no zeros. More formally:

Pn > 0 for sufficiently large n.

A necessary (though not sufficient) condition for a chain to be regular can be
identified by its transition graph: it must be possible to find a path of whatever
length (= number of arcs comprising the path) between any pair of states. In
terms of graph theory: the transition graph is strongly connected.

For regular chains there holds the following fundamental theorem:

• The powers Pn of the transition matrix approach a limiting matrix A as
n→∞:

lim
n→∞

Pn = A (4.12)

• Each row of A is the same vector αt. This is the limiting distribution
of states which is independent of the initial distribution π0 of the chain.
In other words, whatever the initial distribution π0, the sequence πn
generated by the basic recurrence

πtn = πtn−1P, n = 1, 2, . . . (4.13)

has the limit

lim
n→∞

πtn = αt (4.14)

Since the probabilities must sum to one, the vector α must satisfy the
sum condition

αt · 1 = 1 (4.15)

• The limiting probability vector α is also a stationary distribution of the
chain {Xn, n ≥ 0} in the sense that

αtP = αt (4.16)

This follows directly from the existence of the limit (4.14) when applied to
the recurrence (4.13). The term stationary simply says that if the chain
starts with initial distribution α the distribution of states after one, two,
etc. steps will always be the same, it will never change. Indeed,

αtP2 = (αtP)P = αtP = αt,

and similarly for any n ≥ 1 we have αtPn = αt.
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Returning to our snowfall example: this chain is certainly regular ab initio as
P > 0 and

A = lim
n→∞

P =

[
0.8615 0.1385
0.8615 0.1385

]
, αt = [0.8615, 0.1385].

The way we have calculated the limiting distribution α is known as power
method because

πt1 = πt0P, πt2 = πt0P
2, πt3 = πt0P

3 . . .

which is just a more explicit way of writing the the recurrence (4.13).

At the outset it is by no means clear that the sequence generated by the power
method converges (and indeed, there are non-regular MCs where it does not!).
Also, it may be that convergence is very slow and as a result a substantial
amount of computational work may be necessary to come sufficiently close to
the limit.

There are several alternatives to the power method. A quite efficient and elegant
one is to start with the stationary equation (4.16) and the condition αt ·1 = 1.

A close look at (4.16) reveals that it is actually a system of linear equations in
the unknowns α1, α2, . . . , αN , the components of α. It can be rewritten as:

αt = αtP =⇒ αt(I−P) = 0, (4.17)

where I denotes the identity matrix. This system does not have a unique
solution but that can be enforced by adding the sum condition (4.15) to (4.17).

Let’s try this with our snowfall example. We have αt = [αG, αW ] and

I−P =

[
0.036 −0.036
−0.224 0.224

]
,

therefore the matrix equation (4.17) and (4.15) can be written more explicitly
as:

0.036 αG − 0.224 αW = 0 αt × 1st column of I−P
−0.036 αG + 0.224 αW = 0 αt × 2nd column of I−P

αG + αW = 1

The first equation can be removed as it is essentially identical with the second
equation. Solving the last two equations yields:

αG =
0.224

0.26
= 0.86154, αw =

0.036

0.26
= 0.13846,

which conforms nicely to our experimental results.

Although this approach looks more attractive than the power method there are
situations where the latter is really the method of choice. A remarkable example
is the MC used in Google’s PageRank algorithm which has several trillions of
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states. In this case it is practically impossible to solve they system of linear
equations (4.17) because it is too large.

So far some basic ideas to regular Markov chains. Much more can be said about
these, I’ll postpone this discussion to Section 2 were you will also find several
really interesting applications among them Google’s famous PageRank.

Not all MCs are regular, however. Absorbing chains are rather different, as our
next example shows.

4.1.4 Example 2: Losing Your Money - Delinquency Of Loans

Lending money is always a risky business, as everybody knows. In accounting
Markov chain models are often used as probability models for accounts receiv-
able. Rating models like those of Standard & Poor’s or Moody are well-known
examples. Here we shall analyze a rather simple model discussed in Grimshaw
and Alexander (2011). The basic idea of this model is: accounts receivable move
through different delinquency states each month. For instance, an account in
the state current (state C) this month will be in the state current next month,
if a payment has been made by due date, and it will move to the state delin-
quent (state D), if no payment has been received. It may also happen that the
account in state current is completely repaid, this is state R. An account in
the state delinquent (D) may become a loss L or default, if the borrower fails
to pay and there is no realistic hope that he will ever repay the loan.

A simple MC for this model thus has four states: C (current), D (delinquent),
L (loss or default) and R (repaid).

Suppose, following data for state transition probabilities are available:

P =

C D L R


0.95 0.04 0 0.01 C

0.15 0.75 0.07 0.03 D

0 0 1 0 L

0 0 0 1 R

Observe that the rows corresponding to the states L and R are special, all
components are zero except for pLL = pRR = 1. This means that whenever the
chain enters either of those states, it gets trapped there, these states can never
be left again. Accordingly, L and R are called absorbing states. Their special
character comes out clearly when we draw the transition graph of this chain,
as it is shown below. Observe that states R and L have only incoming arcs, no
outgoing ones. For the other states C and D we find that they communicate.
Between these states a joining path can be found in any direction. Thus our
state space S naturally decomposes into two disjoint subsets:

S = T ∪ A, with T = {C,D}, A = {L,R}

The set T is called transient because sooner or later any borrower will be in an
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C D L

R

0.95

0.75

0.04

0.15

0.01

0.07

0.03

absorbing state5.

In Example 1 we started our analysis by experimentation, this time we will rely
an matrix algebra. We will able to find out the form of Pn and much more by
exploiting the special structure of P. This structure is easy to see:

P =


0.95 0.04 0 0.01
0.15 0.75 0.07 0.03

0 0 1 0
0 0 0 1

 =

[
T R
0 I

]
. (4.18)

Thus P can be divided into four blocks: a square matrix T governing the
transition between transient states:

T =

[
0.95 0.04
0.15 0.75

]
,

Furthermore there’s a rectangular matrix R holding the probabilities of one-
step transitions from any transient state into one of the two absorbing states:

R =

[
0 0.01

0.07 0.03

]
.

In the bottom row of P we have a 2× 2 matrix of zeros 0 and a 2× 2 identity
matrix I.

The partition (4.18) is called a 2× 2 block matrix . The nice thing about such a
matrix is, it can be multiplied with itself in much the same way as we do this
with any 2× 2 matrix having scalar components. We only have to take care of
the fact that when multiplying sub-blocks the commutative law will not hold
in general because these blocks are matrices.

So let’s calculate P2. The standard multiplication scheme is:

T R
0 I

T R T ·T + R · 0 T ·R + R · I
0 I 0 ·T + I · 0 0 ·R + I · I

=⇒ P2 =

[
T2 TR + R
0 I

]

5In the long run we are all dead. (John Maynard Keynes, 1883-1946)
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Similarly, we calculate P3 = P2 ·P:

P3 =

[
T3 T2R + TR + R
0 I

]
=

[
T3 (I + T + T2)R
0 I

]
Can you see the pattern? Obviously Pn will look like

Pn =

[
Tn (I + T + T2 + . . .+ Tn−1)R
0 I

]
That’s a very simple structure, except of the upper right corner. But again
that expression reminds us on something. It’s essentially a geometric series!
We can find its sum in exactly the same way6 as ordinary geometric series are
summed, because the matrix T will commute with any of its powers Tk.

Recall the classical summation formula for scalar geometric series

1 + a+ a2 + . . .+ an−1 =
1− an

1− a
, provided a 6= 1,

and in the limit:

lim
n→∞

(1 + a+ a2 + . . .+ an−1) =
1

1− a
, provided |a| < 1,

These formulas hold verbatim also for matrix geometric series:

I + T + T2 + . . .+ Tn−1 = (I−Tn)(I−T)−1, (4.19)

provided I−T has an inverse. Fortunately, it can be shown that Tn converges to
a zero matrix component-wise, i.e. limn→∞Tn = 0 which implies the existence
of the inverse of I − T. This is the matrix analogue of the limiting relation
limn→∞ a

n = 0 when |a| < 1. It is important to keep in mind that all these
claims need a proof, see Section 2.

It follows that (4.19) becomes in the limit:

lim
n→∞

(I + T + T2 + . . .+ Tn−1) = (I−T)−1 (4.20)

So putting things together we have found something really remarkable:

• The n-step transition matrix of an absorbing chain is given by:

Pn =

[
Tn (I−Tn)(I−T)−1R
0 I

]
(4.21)

• In the long run the behavior of an absorbing chain is governed by the
limiting matrix:

lim
n→∞

Pn =

[
0 (I−T)−1R
0 I

]
(4.22)

because Tn → 0.
6You may consult any textbook on elementary mathematics.
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In order to avoid our discussion becoming too academic, let’s use our example
data from above. In particular, we shall determine the one-year transition
matrix P12.

Using any computing device supporting matrix calculations, you will find:

P12 =


0.6751 0.1156 0.0777 0.1316
0.4335 0.0971 0.2994 0.1670

0 0 1 0
0 0 0 1


The result is interesting. From the first row it follows about 7.8 % of loans being
in state C initially have defaulted by the end of the year or even earlier. Among
those loans that were initially delinquent (row 2) the corresponding probability
is almost 30 %.

The long run behavior is determined by (4.22):

lim
n→∞

Pn =


0 0 0.4308 0.5692
0 0 0.5385 0.4615

0 0 1 0
0 0 0 1


This is remarkable again, the limiting matrix has different rows. In contrast
to regular chains, for an absorbing chain the limiting distribution depends on
the initial distribution. If we started with a good loan (state C), the initial
distribution and its limit are

πt0 = [1, 0, 0, 0], lim
n→∞

πt0P
n = [0, 0, 0.4308, 0.5692]

thus in the long run 43 % would be lost, 57 % repaid, whereas for delinquent
loans these rates are 54 % and 46 %, respectively. On the other hand, if we
start with a portfolio of 50 % good and 50 % delinquent loans,

πt0 = [0.5, 0.5, 0, 0], lim
n→∞

πt0P
n = [0, 0, 0.4846, 0.5154],

losses would be about 49 %. That raises an interesting question: as loans can
be traded, what is an optimal loan portfolio?

The inverse appearing in (4.22) is of special interest, we will denote it by

N = (I−T)−1.

The matrix N is commonly known as the fundamental matrix of an absorbing
chain because a lot of interesting quantities can be derived from it. In our
example:

N = (I−T)−1 =

[
38.4615 6.1538
23.0769 7.6923

]
.
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N is called fundamental because its entries nij are expectations! It can be shown
that for transient states i, j ∈ T :

nij = mean number of times the chain is in state j,

given it started in state i.

The row sums therefore equal the mean number of steps until absorption.

N · 1 =

[
38.4615 6.1538
23.0769 7.6923

]
·
[

1
1

]
=

[
44.6153
30.7692

]
For example, consider a delinquent loan. It takes on average 31 months until
this loan is either repaid or lost.

4.2 Where to go from here

The topic Finite Markov Chains is an extraordinary wide one, regarding the
theory behind it but also regarding its applications. The latter should be in the
focus of your thesis, but nevertheless, you should not forget about basic theory.

In principle, there are two routes (at least) you may pursue:

• Your thesis may become a well balanced mix of theory and application. If
you prefer this route, then watch out for one, may be two really interesting
real-world applications of MCs. Describe them in details, their pros and
cons, the data used, discuss extensions and generalizations, statistical
estimation of transition probabilities is also an issue. Develop the theory
of MCs (see below) as far as it is necessary for your application(s).
• Computer simulation of MCs is another fascinating topic, a suggestion

is presented below. But be warned: although this sounds easy, it is not.
And: keep your fingers off a class of methods which is known as Markov
Chain Monte Carlo as far as it is concerned with Bayesian statistics. This
is really beyond the scope of your thesis.

4.2.1 Make up your mind - absorbing or regular chains?

In the Invitation to this topic I have sketched some important theoretical con-
cepts, though exposition has been kept on a minimum theoretical level, simply
because my main intention was to raise your interest in this topic. But now its
time to expand on your knowledge about MCs and incorporate this into your
work.

If you want to discuss absorbing chains and some of their applications:

• Explain the concept of a fundamental matrix.
• Show (elementary!) that the matrix Tn → 0.
• Show that the entries in the fundamental matrix equal the expected du-

ration of stay in a transient state.
• Determine the expected time to absorption and also its variance.
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If you put your emphasis on applications of regular chains :

• There’s also a fundamental matrix for regular chains. Give a formula and
discuss its derivation.

• Give examples of various interesting quantities which can be derived from
the fundamental matrix, e.g. discuss first passage times, i.e., the number
of steps required to reach a given state for the first time.

• There is a Law of Large Numbers for the average number of visits to a
state and a Central Limit Theorem for the number of visits. You should
give an account of these most important results, though you should not
prove them. That’s too difficult.

Finally, if you decide to concentrate on simulation of MCs, then your thesis still
should not forget about theory. Thus basics of regular and absorbing chains
should be discussed, may be also of periodic chains.

For the theoretical part the famous book Kemeny and Snell (1983) will be very
helpful, in particular chapters 3 and 4. Please have a look at the Annotated
Bibliography, Section 3.

As I already remarked, examples are a most important part of your thesis.
Grabbing in the net you will find a tremendous number of applications. But
please have a look at Langville and Hilgers (2006), the title of this paper is a
program: the five greatest applications of Markov Chains. So make up your
mind and decide what you want to work on.

There are some applications which I found particularly interesting. You are
invited to have a look at them, may be you find these interesting too.

4.2.2 Google’s PageRank Algorithm

If you call Google’s main page and type: Markov chains applications you
get almost instantly (about 0.4 secs) 1 220 000 hits. The speed is impressing, of
course. But even more impressing is that the search results are ranked by im-
portance and it is this ranking which is to a greater part responsible of Google’s
economic success. PageRank’s philosophy is that a webpage is important if it
is pointed too by other important pages. The crucial step is to measure relative
importance of pages. Sergei Brin and Larry Page, in 1999 students at Stanford
University and later founders of Google, had the ingenious idea (Brin et al.,
1999) to accomplish this task by representing the hyperlink structure of the
world wide web as a gigantic transition graph. Each node in this graph repre-
sents a web page, and if a page has a link to another page then there is an arc
pointing to that page.

It is possible to construct a transition probability matrix of enormous size equal
to the number of web pages online, it has several trillions of rows and columns.
To bring order into the web Sergei Brin, Larry Page and coworkers suggested
to calculate the vector α of the limiting distribution of the corresponding MC.
Once α is known, pages are ranked according to the values in this vector. Pages
with high limiting probabilities get a high rank, those with small values get low
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ranks7.

There are several mathematical hurdles. For instance, it is by no means clear
that the resulting chain is regular. And indeed, it is not because there exist
dangling pages which have no outgoing links. But by some ingenious tricks it
can be made regular (as our snowfall example). So the limiting distribution
exists and can be computed, theoretically. In practice, however, this is highly
nontrivial because of size. For the calculation of α the power method is used
with a number of additional measures taken which are not disclosed to the
public. Still, the amount of computational work to be performed regularly
is gigantic. Actually Moler (2002) has called this the world’s largest matrix
computation. It should be remarked that Google’s PageRank method is not
the only approach to the information retrieval problem in the WWW. More
information on this and related applications of regular chains can be found in
Langville and Meyer (2005) and the textbook Langville and Meyer (2006).

4.2.3 Credit Ratings

In Example 2 above we have already touched the credit business, a simple ab-
sorbing chain was constructed to describe the changes in state of debt. On a
higher level, e.g. when dealing with government bonds various international
agencies collect data around the world and publish ratings. For instance, Stan-
dard and Poor’s has its RatingsDirect (Vazza and Kraemer, 2015) which is
published every year and contains a lot of interesting data. Most interesting
is rating data. S & P’s are using a scale of seven grades ranging from triple A
(AAA) over BBB, BB and B to CCC/C. Triple A is best, of course, CCC/C
is rather bad, but not the worst case that can happen. There are two more
ratings: Default (D) and Not Rated (NR). Default means that investors have
lost their money (very likely), and an asset in state NR is usually also not a
good thing. S & P’s publish tables with transition rates of assets or issuers
changing between various rating levels. These tables are in principle transition
matrices of MCs with nine states, two of them (Default and NR) are absorbing.
The tables also show different levels of aggregation: there are global one-year
transition matrices, matrices for USA, for Europe, for financial institutions and
insurance business. Also transition matrices over longer periods, 5 years and
10 years are published.

Moody has a similar system with 22 states (see e.g. Metz and Cantor (2007)),
two of them again absorbing: Default (D) and Withdrawn (WR).

I think that these reports are a rich source of data and valuable information.
So, that’s a perfect playing ground to apply absorbing Markov chain theory.

7Bad guys (pages) which try to betray Google’s search engine get zero rank!
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4.2.4 Generating Random Text, maybe Bullshit

Generating random text by simulating Markov chains is a fascinating and
sometimes also really funny business. Practically all so-called bullshit gen-
erators you can find in the web are based on this idea in one or another
way. For instance Donald Trump’s public speeches inspired some people fa-
miliar with basic Markov chain theory to create the speech generator located
at http://trump.frost.works/8.

The first publication I am aware of that discusses Markov chain text generation
is the seminal paper on the mathematical foundations of communication theory
by Claude Shannon (1948) who argued that any source transmitting data gives
rise to a Markov chain. He also gives nice demonstrations and examples of text
sequences generated by a MC.

Basically, we need three ingredients for MC text generation.

1. A sufficiently large text corpus to estimate the transition matrix of a
finite-state MC.

2. An algorithm to simulate the MC given its transition matrix.

As a text corpus one may take e.g. a collection of public speeches of a famous
politician, a novel like Tolstoi’s War And Peace, etc. The corpus has to be split
into tokens which may be single letters or groups of consecutive letters including
punctuation and white space, but more interesting are tokens which are whole
words from the text. Just to give you a very small example9: Suppose the text
corpus is the following tweet of D. Trump from 28 Jan 2014 (for simplicity all
characters lower case):

snowing in texas and louisiana, record setting freezing

temperatures throughout the country and beyond.

global warming is an expensive hoax!

As tokens we may define for instance all 2-groups (bigrams) of consecutive
letters. This may remind you on Markov’s analysis of Eugene Onegin. In our
sample corpus (· represents white space):

sn no ow wi in ng g· ·i in n· ·t te ex xa as ...

Take these as the states of the chain and perform now transition counts. For
instance in our sample there are 5 occurrences of the token in, the chain visits
five times this state. Four times this token changes to ng, and only once to n·.
From the counts you can easily construct a transition matrix.

8For the sake of fairness, there are also Hillary Clinton speech generators, see e.g.
http://www.themolecularuniverse.com/HillarySpeech/

9You may also have a look at Topic 11 - Elementary Methods of Cryptology to see it live
in a cryptanalytic context.
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Alternatively, you could also use trigrams, but note that then your transition
matrix becomes very large. Anyway, for a text generator to produce something
coming close to human language, it may be more fruitful the define words or
groups of consecutive words as tokens.

Having estimated a transition probability matrix P its really easy to simulate
chains. Fix an initial state and then generate a sequence u1, u2, . . . of pseudo
random numbers having a uniform distribution on the interval [0, 1]. For in-
stance, when the chain is in state k, take the k-th row of P. Its cumulative
sums split the unit interval [0, 1] into N contiguous subintervals, N being the
number of states. Just check into which interval uk falls. If it falls into the i-th
subinterval, the chain jumps into state i. Then repeat the procedure, this time
with row i of P.

You may implement this two-step process (estimation, simulation) in any pro-
gramming language you like, java, python, etc. But, fortunately there are
software packages making life easier, for instance R has the package markovchain.
I’ll have to say more about that package later.

Whatever way you do it, you should check the properties of the transition
matrix estimated. Strange things may happen. Maybe the chain is regular,
fine. Maybe it has absorbing states. Then sooner or later your simulated chain
will get trapped in one of these absorbing states and your text generator keeps
on producing something like .......

But it may also happen that the chain gets trapped in a subset of states which
results in a marked deprivation of the text generated. Also, it is possible that
the chain exhibits ultimately periodic behavior. This is very interesting from
a mathematical point of view, but not so really welcome for a text generator,
when from some time onward it keeps printing an endless string of sort bla

bla bla ....

4.2.5 Other Applications

Here are a few more interesting applications reviewed in telegraphic style:

• Brand Switching Models, also known as or related to so-called brand choice
models. The behavior of consumers having the choice between different
brands of some commodity can be modeled as a regular Markov chain.
An analysis of these chains allows interesting statements about consumer
loyalty and other aspects important from a marketing point of view. The
paper of Colombo and Morrison (1989) is an easily accessible starting
point.
• Voter migration. In western democracies there are strong tendencies that

voters no longer stick to a particular party but tend to change to alterna-
tive political competitors. Impressive amounts of data are available today.
It is not a new idea but pretty challenging to model voter migration as
a MC. See the interesting websites maintained by Baxter (n.d.) or the
SORA Institute for Social Research and Consulting, www.sora.at.
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• Production management. Another application of absorbing Markov chain
theory is modeling the flow of material through a production system. The
stochastic character of this type of models is usually uncertainty due to
possible reprocessing of parts because of insufficient quality as well as
scrapping. The paper of Pillai and Chandrasekharan (2008) is exemplary
in this context.

4.3 An Annotated Bibliography

A beautiful paper to begin with is Hayes (2013). The author presents a gentle
introduction into the basics of Markov chains, there’s also a weather example
and a discussion of Markov’s statistical analysis of Alexander Pushkin’s Eugene
Onegin. In addition it has a nice account of Markov’s life and his work on
Markov chains. Interesting details about Markov are revealed in the papers
Langville and Hilgers (2006) and Basharin, Langville, and Naumov (2004).
The former discusses also five great applications of MCs, among them Markov’s
original linguistic analyses and the PageRank algorithm of Google.

Markov chains are covered in practically all serious textbooks on probability,
random processes and stochastic modeling. Unfortunately many of these books
are not easily accessible to beginners and difficult to read. A major reason is the
emphasis on Markov chains with infinite state spaces. But the mathematical
theory for the latter is rather intricate. The standard textbook on finite chains
is certainly Kemeny and Snell (1983). It is very well suited for beginners and
elaborates clearly the matrix algebraic aspects of the subject. Unfortunately,
the book is rather old and the notation used is somewhat nonstandard today.
More demanding but still strongly recommended is Karlin and Pinsky (2011), in
particular chapters 3 and 4. There you can also a lot of interesting applications
carefully presented and worked out.

Caveat. In the process of preparing this topic I have read quite a number of
recent publications on Markov chains and I noticed that it becomes more and
more fashionable to construct transition probability matrices as column-sum
stochastic. Where we have defined pij as the probability of a jump from state
i to state j some authors do it the other way round, so pij now becomes the
probability of a jump from j to i. Obviously, this is done to achieve some
notational simplification. That’s not worth it. I consider this bad style because
it breaks with the tradition of all classical and serious texts on Markov chains.

4.4 A note on software

Applications of MCs including simulation is greatly facilitated by several soft-
ware tools. The R markovchain package developed by Spedicato et al. (2015)
is a rather comprehensive collection of software routines to handle finite MCs.
Among standards like the calculation of fundamental matrices, it offers diag-
nostics for a chain to be regular, etc. There is also the possibility to draw
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transition graphs, although you should not expect too much, unless the chain
has a sufficiently small state space. Quite interesting for you are routines for
statistical estimation of transition matrices and, last but not least, there is also
a routine to simulate chains.
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Finite Markov Chains and Matrix Theory

The theory of finite homogeneous Markov chains provides one of the most
beautiful and elegant applications of the theory of matrices.

Carl D. Meyer, 1975

Keywords: probability theory, stochastic processes, matrix algebra

5.1 An Inivitation

This topic is under development and has not been
finished yet.

Actually, when preparing Topic 4, Finite Markov Chains and Their Applica-
tions, I realized that it would be a good idea to make an own topic entirely
devoted to matrix theory and applications. There is nothing to add to Carl D.
Meyer’s quote above.

This topic will cover presumably the following points:

• Nonnegative matrices and the Perron-Frobenius Theorem.
• Structural properties of a Markov transition matrix, reducibility.
• Convergence of transition matrices, summability.
• Spectral decomposition and Sylvesters Formula.
• Convergence of the power method for regular chains.
• The fundamental matrix as a generalized inverse.
• Stochastic complements and uncoupling Markov chains.
• . . . and may be more to come.

5.2 An Annotated Bibliography

Here are two interesting papers due to C. D. Meyer which strongly motivate
me to work out this topic, Meyer (1975) and Meyer (1989).
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5.3 References

[1] Carl D. Meyer. “Stochastic Complementation, Uncoupling Markov Chains,
and the Theory of Nearly Reducible Systems”. In: SIAM Review 31.2
(1989), pp. 240–272.

[2] Carl D. Meyer. “The Role of the Group Generalized Inverse in the Theory
of Finite Markov Chains”. In: SIAM Review 17.3 (1975), pp. 443–464.

98



Topic 6

Benford’s Law

The Law of Anomalous Numbers is thus
a general probability law of widespread application.

Frank Benford, 1938

Keywords: Mathematical and statistical forensics,

experimental statistics, probabilistic number theory

6.1 An Invitation

6.1.1 Simon Newcomb and the First Digit Law

A distinguished applied mathematician was extremely successful in bets that
a number chosen at random in the Farmer’s Almanach, the US Census Report
or a similar compendium would have the first significant digit less than 5. It is
reported by Feller (1971) that this man won almost 70 % of his bets.

How is this possible? Normally the numbers we use in everyday live are ex-
pressed in decimal system so that the digits making up a number are integers

Simon Newcomb

(1835-1909)

in the range 0, 1, 2, . . . 9 except for the first or lead-
ing digit which by convention and convenience is
never zero. If we look at a collection of numbers like
a table of physical constants, atomic weights, pop-
ulations counts of cities, distances of galaxies from
the earth, numbers in annual reports of companies,
Farmers Almanach, etc., we intuitively expect that
all digits in these numbers should occur with equal
frequency. Thus the leading digit, say D1, should
be 1, 2, . . . , 9 with frequency close to 1/9, and the
second digit D2, the third D3, etc. should take their
values with equal frequencies 1/10.

Interestingly, very often this is not true, at least for
the examples I have just mentioned and for may
other examples as well. In 1881 the astronomer Simon Newcomb (1881) pub-
lished a short note in the American Journal of Mathematics which he opened
as follows:
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That the ten digits do not occur with equal frequency must be evident
to anyone making use of logarithm tables, and noticing how much
faster the first pages wear out than the last ones.

He argued that numbers whose first digit is small are more likely to be used
than numbers with first digit being greater than 4 or 5, say. In particular, he
stated:

The law of probability of the occurrence of numbers is such that all
mantissae of their logarithms are equally probable.

Newcomb’s discovery did not have much resonance and apparently was forgot-
ten until in 1938 Frank Benford, at that time physicist at General Electric,
rediscovered Newcomb’s result which since then is commonly known as Ben-
ford’s Law1 . Benford (1938) collected lots of data from various areas so diverse
as numbers of inhabitants of towns, physical measurements, the Farmer’s Al-
manac, atomic weights, voltages of X-ray tubes, results from sports leagues,
powers and square roots of natural numbers, etc. For most of these data he
found that the frequency (we are tempted to say, the probability) of the first
digit D1 is very close to the logarithmic law:

P (D1 = d) = log

(
1 +

1

d

)
, d = 1, 2, . . . , 9 (6.1)

Here log means (as always in this introduction) logarithm to base 10. Formula
(6.1) is commonly known as Benford’s First Digit Law. We shall call it also the
weak version of Benford’s Law.

By simple calculation we obtain:

d 1 2 3 4 5 6 7 8 9
P (D1 = d) 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

Table 6.1: Benford’s Law - first digit probabilities

A bar plot of these data is displayed in Figure 1 below. It explains why the
applied mathematician mentioned above had a chance of about 69.9 % to win
his bets. Not so bad.

Benford called numbers following the logarithmic law anomalous numbers and
observed that the fit to this law was even better when we combined data of
very different sources into a single large sample. That’s quite remarkable too
because these data have very different units of measurement!

Mark Nigrini (1992) finished his PhD thesis on Benford’s Law and suggested
to use it as an auditing and accounting tool to detect anomalies in company
data. Indeed, he found that most accounting data very closely follow Benford’s

1Benford’s article suffered a much better fate than Newcomb’s paper, possibly in part
because it immediately preceded a physics arcticle by Hans Bethe et al. on the multiple
scattering of electrons (Miller, 2015).
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1 2 3 4 5 6 7 8 9
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Figure 6.1: Benford’s Law - first digit probabilities

Law. However, in case of accounting fraud this is quite often not the case.
This significant deviation of overserved data from Benford’s Law may be an
indication that data have been manipulated, may be by fraudulent intent.

Nigrini’s work initiated a new discipline nowadays known as forensic statistics or
analytic forensics. Very quickly judicial authorities became aware of these new
ideas. The Wall Street Journal (July 10, 1995) reported that the chief financial
investigator for the district attorney’s office in Brooklyn, N. Y., Mr. R. Burton
used Nigrini’s program to analyze 784 checks issued by seven companies and
found that check amounts on 103 checks didn’t conform to expected patterns.
“Bingo, that means fraud,” says Mr. Burton. The district attorney has since
caught the culprits, some bookkeepers and payroll clerks and is charging them
with theft. In particular Mr. Burton obtained the frequencies of first digits
given in Table 2. Look how different these frequencies are from those predicted
by Benford’s Law. It seems that faking data in an intelligent way is not so easy
and, probably Mafia people should learn more mathematics!

d 1 2 3 4 5 6 7 8 9
f(d) 0.000 0.019 0.000 0.097 0.612 0.233 0.01 0.029 0.000

Table 6.2: First digit frequencies of fraudulent data (Theodore P. Hill, 1999)

You might have got the impression that all numeric data follow Benford’s Law,
but this is not true. Here are a few examples of data which are not Benford :
ZIP-codes, prices of products like ¤ 1.99 often used in supermarkets for psy-
chological reasons, telefone numbers, numbers drawn in lotteries, etc. Other
examples are data sampled from a normal distribution, data generated by a
random walk process, data having a narrow range of possible values like body-
height etc.

Why are many data sets Benford and others are not? It has been argued that
this may be a property inherent to our decimal number system but it turned
out that this argument does not hold. Benford’s Law can be observed also for
binary, octal, hexagesimal numbers.

It has also been argued that there may be some universal law behind our data,
probably comparable to one of the most fundamental laws in probability, the
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Central Limit Theorem. It was not before 1995 when the pioneering works of
Theodore Hill (see the annotated bibliography in Section 3 below) shed a bright
light on this mysterious law.

6.1.2 The significand function

We are going now to work out some basic mathematical ideas which not only
prove to be very useful but also allow us to state a much stronger version of
Benford’s Law.

In his 1938 paper Benford evaluated 20 229 data entries from various sources
and it must have been a rather fatiguing process to count the digits of so many
numbers. Of course, today we will do that not by hand but use the computer.
But how can we persuade the computer to return the first or second or third
digit of a given number? This requires some technique.

The significand function providing the basis of these techniques plays a funda-
mental role in the context of Benford’s Law. Let x > 0 be a real number, then
the significand function S(x) is defined as

S(x) = t, t ∈ [1, 10) (6.2)

where t is the unique number such that x = t · 10σ for some necessarily unique
σ ∈ Z. The exponent σ is called the scale of x. For convenience we define
S(x) = 0 when x = 0. Since we are interested in the digits of x, its sign will
never play a role.

For example, for x = 2356.88 = 2.35688 ·103 we have S(x) = 2.35688 with scale
σ = 3.

How do we get the scale? For this purpose we need a most important integer
function, the floor bxc, which is defined as the integer nearest to x when x is
rounded down. Thus

b4.81c = 4, b−2.4c = −3, etc.

The scale σ of a nonnegative number x is simply blog xc. Indeed, log 2356.88 =
3.3723, thus σ = b3.3723c = 3.

Note that σ is not very interesting for our purposes as we are primarily inter-
ested in the values of the digits and not in the position of the decimal point.
Thus it will be convenient to strip off the integer part of a number x, which
yields the fractional part of x, denoted by 〈x〉:

〈x〉 = x− bxc

The unique representation of x = S(x) · 10σ implies S(x) = x · 10−σ. But
for x > 0 it holds that x = 10log x therefore we get the following explicit
representation of the significand function valid for all x 6= 0:

S(x) = 10log |x|−blog |x|c = 10〈log |x|〉 (6.3)
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The function S(x) gives us direct access to the digits making up a number x.

Let Dm(x) := Dm,m ∈ N, be the m-th significant digit of x when counted from
left. Since we agree that a number will never have leading zeroes, clearly:

D1 ∈ {1, 2, . . . , 9}, Dm ∈ {0, 1, . . . , 9} for m > 1.

Also, let

S(x) = D1 +D2 · 10−1 +D3 · 10−2 + . . .

=
∑
m∈N

Dm · 101−m (6.4)

be the decimal expansion of the significand function.

For example, S(2356.88) = 2.35688, thus its significant digits are:

D1 = 2, D2 = 3, D3 = 5, D4 = 6, D5 = 8, D6 = 8,

and, of course by (6.4):

S(2356.88) = 2 + 3 · 10−1 + 5 · 10−2 + 5 · 10−3 + 6 · 10−4 + 8 · 10−5 + 8 · 10−6.

Cleverly using the floor function we get the digits Dm easily from the significand
function:

Dm = b10m−1S(x)c − 10b10m−2S(x)c, for all m ∈ N. (6.5)

In particular, the leading digit is given by

D1 = bS(x)c − 10b10−1S(x)c.

For instance, when x = 2356.88, then S(x) = 2.35688 and

D2 = b10 · 2.35688c − 10b100 · 2.35688c = b23.5688c − 10b2.35688c = 3, etc.

6.1.3 Benford’s Law and the uniform distribution

Now we put some randomness into the story: let X be a random variable and
S(X) its significand function. We define: X satisfies Benford’s Law (strong
version), if S(X) has a logarithmic distribution:

P (S(X) ≤ t) = log t, t ∈ [1, 10) (6.6)

Note that S(X) appears to be a continuous random variable. We shall see
shortly that (6.6) implies Benford’s First Digit Law but the converse is not
true. It is easy to see that the logarithmic law (6.6) holds if and only if the
logarithm of S(X) has a continuous uniform distribution on [0, 1]. Apply in the
equation above the substitition log t = s. Then t = 10s and:

P (S(X) ≤ 10s) = s s ∈ [0, 1).
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Using the explicit expression (6.3) for the significand we obtain

P (10〈log |x|〉 ≤ 10s) = s s ∈ [0, 1).

Upon taking logs we get

P (log〈|X|〉 ≤ s) = P (logS(X) ≤ s) = s, s ∈ [0, 1). (6.7)

Thus we realize that logS(x) ∼ U(0, 1), a continuous uniform distribution on
the interval [0, 1].

These observations tell us that we will observe Benford’s law, if the logs of the
significands of observed data are close to a uniform distribution et vice versa.

Note, that (6.7) gives us a simple way to generate pseudo random numbers that
follow Benford’s Law. Just generate a random number U ∼ U(0, 1) and form
Z = 10U , then Z must be Benford.

6.1.4 The general digit law

The logarithmic distribution (6.6) has lots of information to offer. For brevity
let S(X) := S and recall that the significand S has a decimal expansion

S = D1 +D2 · 10−1 +D3 · 10−2 + . . . ,

moreover, S is a continuous random variable, so P (S ≤ t) = P (S < t) because
P (S = t) = 0.

From (6.6) we can easily derive not only Benford’s First Digit Law, but also
the distribution of the second digit D2, of the third digit D3, etc.

Let’s begin with D1 and consider the event {D1 = d1}. Some reflection shows
that it is equivalent to the event

{D1 = 1} ≡ {d1 ≤ S < d1 + 1}

Thus

P (D1 = d1) = P (d1 ≤ S < d1 + 1) = P (S ≤ d1 + 1)− P (S ≤ d1)

= log(d1 + 1)− log(d1) = log

(
d1 + 1

d1

)
= log

(
1 +

1

d1

)
,

which is Benford Law for the first significant digit. But without any problems
we can get more. For the joint distribution of the first two digits D1 and D2

we obtain:

P (D1 = d1, D2 = d2) = P (d1 + d110−1 ≤ S < d1 + (d2 + 1) · 10−1)

= log

(
1 +

1

10d1 + d2

)
(6.8)
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You will have no difficulties to fill in the details. Of course, 1 ≤ D1 ≤ 9, 0 ≤
D2 ≤ 9.

Example. If a number is randomly selected from a data set following Benford’s
Law (strong version), then the probability that it starts with 50 . . . equals

P (D1 = 5, D2 = 0) = log

(
1 +

1

50

)
.
= 0.0086

To obtain the marginal distribution of D2 we have to sum (6.8) over all possible
values of d1:

P (D2 = d2) =
9∑

k=1

log

(
1 +

1

10k + d2

)
(6.9)

A trite caclculation yields:

d 0 1 2 3 4 5 6 7 8 9

P (D2 = d) 0.120 0.114 0.109 0.104 0.100 0.097 0.093 0.090 0.088 0.085

Table 6.3: Benford’s Law - second digit probabilities

A quite instructive barplot of the disgtributions of the first and second digits
is displayed in Figure 6.2. You can see, that the distribution of D2 is already
rather close to a discrete uniform distribution, and this pattern prevails when we
consider the marginal distributions of Dm for m > 2. Continuing the arguments

0 1 2 3 4 5 6 7 8 9

0.0

0.1

0.2

0.3

Figure 6.2: Benford’s Law - first and second digit probabilities

outlined above it is not difficult to find the joint distribution of the first k digits:

P (D1 = d1,D2 = d2, . . . , Dk = dk) =

= log

(
1 +

1

10k−1d1 + 10k−2d2 + . . .+ dk

)
(6.10)

Formula (6.10) is also known as Benford’s Law for the first k digits.
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6.1.5 Testing the Hypothesis

Benford or not Benford?

It is a question of utmost practical importance to find out whether a given data
set conforms to Benford’s Law. This question is a statistical decision problem
and I will discuss very briefly how this problem can be addressed methodologi-
cally. I decided to include this in our Invitation for two reasons:

• A majority of publications related somehow to Benford’s Law is empirical
in nature.
• Many of these papers are relatively poor methodologically.

At the very beginning it is important to announce some bad news: no finite data
set can be exactly Benford in the sense of (6.10). The reason is that the Benford
probabilities (6.10) of sets of k given significant digits become arbitrarily small
as k →∞, and no discrete probability distribution with finitely many points of
support can take arbitrarily small positive values.

Despite of this drop of bitterness it is still legitimate to ask: how do we mea-
sure close conformance to Benford’s law or a significant deviation from it? In
statistics, this question runs commonly under the headline goodness-of-fit. We
have a null hypothesis:

H0 : data conform to Benford’s Law

and the alternative hypothesis:

H1 : data do not conform to Benford’s Law

Given a significance level α, we want to decide whether for a given data set
hypothesis H0 has to be rejected or not. Or stated equivalently: do our data
show a statistically significant deviation from Benford’s Law?.

A rather traditional route of attack is this: use (6.10), usually for small values of
k, and compare the predicted probabilities with empirical frequencies observed
in sample data.

Virtually all empirical work on Benford’s Law pursues this way and solves a
discrete goodness-of-fit problem.

Separate testing of single digits

The idea is very simple and should be familiar to you from elementary statistics
courses: suppose we want to find out whether there is a significant deviation
between the observed frequency fd of the event {D1 = d} and the the corre-
sponding probability which should be pd = P (D1 = d) = log(1 + 1/d), as we
know from (6.1). Testing conformity to Benford’s First Digit Law is done for
each the nine possible values d of D1 separately:

H0 : pd = log(1 + 1/d),

H1 : pd 6= log(1 + 1/d)
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The test statistics are

Td =
|fd − pd|√
pd(1− pd)

√
n, d = 1, 2, . . . , 9

For large sample size n the statistics Td are approximately standard normal, the
corresponding p-values equal P (|Td| > |td|), where td is is the observed sample
value of Td.

The results of these tests have to be interpreted with care: Suppose that testing
the nine hypotheses leads to a rejection of only the hypothesis for d = 1. Is this
sufficient to conclude that our data are not Benford?

No, not at all. The point is, that performing these tests simultaneously affects
the chosen level of significance and in turn the probability of type-II error. So
this procedure should only be used in an explorative analysis of your data.

Distance-based tests

Separate testing of single digits is easy but because of lacking power this ap-
proach is not very reliable.

An alternative is testing based on the vectors

p = [p1, p2, . . . , p9] and f = [f1, f2, . . . , f9],

where the pd are calculated according to (6.1), of course.

We are tempted to say that the observed frequencies f are close to the proba-
bility distribution under H0 represented by p, if some appropriate measure of
deviation has a small value, otherwise we would reject H0. To be concrete, our
testinging problem is now more specifically:

H0 : D1 has distribution p and therefore is Benford

H1 : D1 has another distribution and therefore is not Benford

Several distance measure are in practical use, probably the oldest is the χ2-
statistic. It is just the sum of the squared and normalized deviations between
pd and fd:

χ2 = n

9∑
i=1

(pd − fd)2

pd
(6.11)

The χ2-test is one of the most often used tests in empirical studies about Ben-
ford’s Law. However, it has a major drawback: if n, the sample size, increases
then also χ2 will grow and as a result the power of the test becomes so large
that practically always H0 is rejected.

Alternatives are available, for instance instead of using the normalized squared
deviations we may use the so-called Chebyshev-Distance which just takes the
maximum distance between pd and fd:

µ? =
√
n max

1≤d≤9
|pd − fd| (6.12)
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It should be noted that in performing these types of goodness-of-fit tests we
are by no means restricted to the leading digit D1. The same procedures apply
when testing the distribution of the second digit D2. Its H0-distribution is
given by (6.9). And it is also possible to formulate as null-distribution P (D1 =
d1, D2 = d2), i.e., we test the joint distribution of the first two digits. This is
done very ofting in accounting studies. See Section 2, where we will have so say
more about this idea.

Tests based on the empirical distribution function

Given a sample (X1, X2, . . . , Xn) of identically and independently distributed
random variables with distribution function F (x) = P (X ≤ x), the empirical
distribution function (ecdf) Fn(t) of the sample is defined by

Fn(t) =
number of sample values ≤ t

n
=

n∑
i=1

1(Xi ≤ 1), (6.13)

where 1(A) is the indicator function of event A. The ecdf has many remarkable
properties, the most important of these being given in the Glivenko-Cantelli
Lemma:

Let Dn = sup
t
|Fn(t)− F (t)| then lim

n→∞
Dn = 0 with probability 1 (6.14)

Note that Dn is the maximum absolute deviation between the ecdf and the
true distribution function F (t) and the lemma states: this distance becomes
arbitrarily small and remains that small as sample size increases. M. Loéve has
called (6.14) the fundamental theorem of statistics. It implies that the whole
unknown probabilistic structure of the sequence Xi can be discovered from data
with certainty. Note also the formal similarity of Dn to the Chebyshev distance
(6.12) introduced above.

0−1−2−3 1 2 3

0.2

0.4

0.6

0.8

1.0

Dn

Figure 6.3: The maximum deviation Dn between the ecdf Fn(t) and F (t)

Example. In Figure 6.3 I have displayed the ecdf of a sample of size n = 10
taken from a standard normal distribution:

X = {−3.01,−1.09,−0.59,−0.55, 0.79, 1.17, 1.31, 1.42, 1.97, 2.17}
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For instance: Fn(0.5) = 0.4 because there are 4 sample values ≤ 0.5 and the
Fn(t) has jumps of height 1/n = 0.1 for all sample values are different. The
maximum absolute deviation has value Dn = 0.3852.

The fundamental result (6.14) gives rise to several classical goodness-of-fit tests.
Indeed, Dn is the test statistic of the famous Kolmogorov-Smirnov Test : it tests
the null hypothesis H0 : F (t) = F0(t) against H1 : F (t) 6= F0(t) in the two-sided
case and rejects H0 if the observed Dn is too large.

So, it is quite natural to use this test to find out whether observed data deviate
significantly from the Benford distribution. However, there is a problem: in the
classical setting of the Kolmogorov-Smirnov Test it is assumed that the sample
comes from a continuous distribution. Of course, the Benford First Digit Law
is not continuous, the null distribution is the step function given by:

F0(t) =


0 for t < 1

log(1 + d) for d ≤ t < d+ 1, d = 1, 2, . . . , 8

1 for t ≥ 9

(6.15)

To apply the Kolmogorov-Smirnov Test to a discrete distribution we need a
suitably adapted variant of this test to have reliable p-values. Such variants
are available, see Arnold and Emerson (2011), and are now part of standard
statistics packages like R. I will show you in the next section how to apply
these.

An interesting alternative to Kolmogorov-Smirnov ist the Cramér-von Mises
Test. Here the test statistic is essentially the sum of the squared deviations
between F0(t) and the ecdf Fn(t):

W 2 = n

∫ ∞
−∞

[Fn(t)− F0(t)]
2dF0(t) (6.16)

You should not worry about the integral occurring here, actually W 2 is a sum
because F0(t) is a step function. Observe the formal similarity between the
statistic W 2 and the χ2-statistics (6.11).

Before applying these statistical tests a decision has to be made which software
to use. I recommend R, which as I found does a good job regarding our prob-
lem. There are two packages which are particularly interesting for or purposes,
BenfordTests and dgof which implement the Kolmogorov-Smirnov and the
Cramér-von Mises Tests for discrete distribitions mentioned above and some
more. There is also a package benford.analysis which may be intersting
for your experiments, but it is not discussed here. The functions provided by
BenfordTests are very handy to use, whereas those of dgof are a bit more
complicated in use.

6.1.6 Remarkable Properties of Benford’s Law

In the sequel I will introduce to you some important and really remarkable
results, and I will do so in a rather informal way. The major motivation is
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that you should know about these properties of Benford’s Law without being
incommodated too much by heavy mathematics. Indeed, the derivations and
proofs are very technical and require quite sophisticated mathematical tools.
The main source is this section is Arno Berger and Theodore P. Hill (2015).

Scale-invariance

A law as universal as Benford’s should be scale-invariant in the sense that it
is independent of units of measurement. In his excellent paper Raimi (1976)
writes:

. . . that law must surely be independent of the system of units chosen,
since God is not known to favor either the metric system or the
English system. In other words: a universal first digit law, if it
exists, must be scale-invariant.

Just to give you an example: if accounting data of a big company are Benford
in US $, then they should be so too in EUR, British Pounds, etc. This what
we expect.

Given a random variable X, scale-invariance means that the distribution of the
digits D1, D2, . . . is the same for X and αX for any real scaling constant α > 0.
Or interpreted in the sense of Benford’s law (strong version): the significands
S(X) and S(αX) both follow the logarithmic distribution. It is important to
note (and source of a common misunderstanding) that scale-invariance refers
only to the digit distribution, not to the distribution of X itself. Indeed, no
non-null random variable can be scale-invariant.

The scale-invariance property is characterizing the law and therefore unique: if
for any α > 0 and any d ∈ {1, 2, . . . , 9}

P (D1(X) = d) = P (D1(αx) = d) = log

(
1 +

1

d

)
,

then X is Benford et vice versa, the same is true for (6.10). The Benford
distribution is the only distribution with this property.

Powers and products

The power theorem. The classical continuous distributions like normal, uni-
form, exponential, are not Benford, but something interesting happens if we
raise these to powers, Experiment 3 above has given us some indication. In-
deed, it can be proved that if X is any continuous random variable having
a probability density, then for the sequence Xn, n = 1, 2, . . . the significands
S(Xn) tend in distribution of the logarithmic law (6.6). This result is of con-
siderable value in application, e.g., in fraud detection, see Section 2.

The product theorem. Also, if X and Y are independent random variables
and X is Benford, then so is the product XY , provided P (XY = 0) = 0. This
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result has interesting implications. Consider for instance an inventory stock
In. Very often these stocks behave like a random walk process as goods are
added and withdrawn from the inventory in random amounts. We shall see in a
moment that random walks are usually not Benford, but prices of goods often
are. Thus if we want to determine the value Vn of an inventory stock at some
epoch n we calculate Vn = In · pn. So, even when In is not Benford but pn is,
then Vn will be Benford.

A limit theorem for products. The nice behavior of Benford’s Law with
regard to products is also reflected in the following very important result:

If X1, X2, . . . are independent and identically distributed continuous random
variables then the significands of their product

X1 ·X2 · · ·Xn =

n∏
i=1

Xi

tend in distribution to Benford’s Law.

Here is an example: Let C0 some initial capital not necessarily random and
suppose that we get interest on C0 with interest rates r1, r2, . . . , rn. Then by
compounding interest the value Cn of our capital at epoch n will be:

Cn = C0(1 + r1)(1 + r2) · · · (1 + rn).

If interest rates are continuous random variables then the product limit theorem
applies and Cn will be approximately Benford for large n.

Sums

Regarding sums the situation is not so nice as it is for products. Here is an
intuitive argument: Benford’s Law is a logarithmic distribution. Now log(xy) =
log x+ log y, but it is not possible to express log(x+ y) in simple terms of log x
and log y.

Indeed, if X and Y are both Benford then X+Y will not be Benford. Moreover
the following striking result holds:

If X1, X2, . . . , Xn are independent and identically distributed random variables
with finite variance, then

∑n
i=1Xi is not Bendord in the limit n→∞, not even

a subsequence will be Benford.

As a result, the classical random walk processes Sn =
∑n

i=1Xi with increments
being discrete with ±1 or having some other distribution with finite variance
are not Benford. An informal argument is this: the conditions stated above
are those of the classical Central Limit Theorem. Thus the standardized sum∑n

i=1Xi will tend in distrinution to a standard normal, but the latter can be
shown not to be Benford.

However, there is one more invariance property.

Sum-invariance. In his PhD-thesis Nigrini (1992) observed that in data sets
he considered the sum of significands of data points with D1 = 1 was very
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close to sums of items with D1 = 2 or any other possible value of the first
digit. More precisely, let {x1, x2, . . . , xn} be a data sample of size n and let
Sd1,d2,...,dm(xk) be the significand of sample point xk having the first m digits
equal to d1, d2, . . . , dm, otherwise set Sd1,d2,...,dm(xk) = 0. By the Law of Large
Numbers the arithmetic mean of these significands tends to the mathematical
expectation E[Sd1,d2,...,dm(X)], i.e.,

lim
n→∞

1

n

n∑
k=1

Sd1,d2,...,dm(xk) = E[Sd1,d2,...,dm(X)],

for all m ∈ N. So far, nothing special. However, if the data source X is
Benford, then this limit is independent of the digits d1, d2, . . . , dm, moreover this
invariance property is characterizing Benford’s Law. Indeed, if X is Benford,
then it can be shown:

E[Sd1,d2,...,dm(X)] =
101−m

ln 10
(6.17)

for all possible tuples d1, d2, . . . , dm. For m = 1 we have E[Sd(X)]
.
= 0.4343 for

all digit values d, for m = 2 E[Sd1,d2(X)]
.
= 0.0434, etc.

Hill’s Limit Theorem

Many of the properties discussed so far are characterizing Benford’s Law, but
none of them explains its astounding empirical ubiquity. Benford (1938) already
observed, many data sets do not conform the law closely, others did reasonably
well. But, as Raimi (1976) writes: what came closest of all, however, was the
union of all his tables. Stated differently: the best fit to the logarithmic law
Benford obtained when combining samples coming from so diverse sources like
sports results, numbers from newspapers, atomic weights, etc.

This seemingly harmless observation, unnoticed for many years, was the starting
point of Hill’s seminal work. Theodore P. Hill (1995) derived a new statistical
limit law which may be seen as some kind of Central Limit Theorem for signif-
icant digits. This limit theorem offers a natural explanation for the empirical
evidence of Benford’s Law.

Recall, the Central Limit Theorem tells us that under certain mild conditions
sums of independent random variables have a normal distribution when the
number of summands tends to infinity.

Similarly, Hill’s Theorem: if probability distributions are selected at random and
random samples are taken from each of these distributions in any way so that
the overall process is scale-unbiased, then the frequencies of significant digits
will tend to the logarithmic distribition (6.6) as the sample size n→∞.

Some explantions are in order now:

• What does it mean: a probability distribution is selected at random?

Easy (in principle): we perform a random experiment and its result will be
a probability distribution. For example, suppose our random experiment
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has as possible outcomes two probability distributions F1 and F2 forming
a sample space Ω = {F1, F2}. F1 may be, e.g., a uniform distribution on
[0, 1], F2 a standard normal distribution.

Suppose also that F1 is selected with probability 1/2 and this is also the
probability for selecting F2. Think of tossing an unbiased coin2: if the
coin shows head F1 is selected, otherwise F2. Once a distribution has been
determined a sample of m1 (say) independent observations is taken from
this distribution. The process is repeated, again a distribution is selected
at random and becoming this way the source for another sample of m2

observations. This new sample is combined with the first sample to give
a larger sample with m1 + m2 observations. The process continues and
stops if our combined sample has reached some required size n.

In our example Ω was a set containing only two points, the distribution
functions F1 and F2. But Ω may be a continuum as well. For instance:

Ω = {all normal densities with µ and σ2,

where µ has a uniform distribution on [−α, β]}

Here the base experiment is this: first select a random number u uniformly
from the interval [−α, β]. Then take a sample from a normal distribution
with µ = u. Repeat this process as long as required.

• What means the selection process is scale-unbiased?

This is not the same as scale-invariance discussed above. In fact, it is
a much weaker requirement: the sampling process on average does not
favor one scale over another. It is even possible that none of the distribu-
tions in Ω are Benford and therefore scale-invariant. The justification of
scale-unbiasedness is somewhat akin to the assumption of independence
in context of the Central Limit Theorem. Checking the assumption can
be done indirectly by a goodness-of-fit test for the logarithmic law.

6.2 Where to go from here

Having read the Invitation you may be now sufficiently motivated to go on
reading and see what I want from you.

Writing a nontrivial thesis about Benford’s Law is certainly a challenge. There
are at least two ways to go along.

6.2.1 Statistical Forensics

There is an enourmous amout of literature on the application of Benford’s Law
to detect data manipulations. Proven cases of such manipulations range from
the private sector (financial statements of big companies) over macroeconomic

2In technical terms: we are constructing a random probability measure.
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data reported by governments to EU-authorities to falsification of large sets of
clinical data.

Why not write a thrilling case study? You wont have difficulties to find attrac-
tive interesting examples of spectacular bankruptcies, of insider trading, you
might remember the Libor Scandal or diverse illegal manipulations of foreign
exchange markets. And, of course, this list is by no means complete.

It has been shown several times that Benford’s Law is applicable in diverse
auditing contexts including internal, external and governmental auditing. A
typical procedure is to test the Benford hypothesis on the first and/or the sec-
ond digit of data like revenues, canceled checks, inventory and disbursements.
Quite often these tests pointed auditors to telltale irregular patterns in various
financial transactions. The US Internal Revenue Service uses Benford’s Law
to sniff out tax cheats and Deutsche Bank crunched the numbers on Russell
3000 companies and found that a Benford distribution applies to almost every
balance sheet and income statement item, from annual sales to accounts receiv-
ables to net income. The vast majority of companies’ data adheres to Benford’s
Law, with about 5 per cent of Russell 3000 companies not conforming based
on Deutsche’s calculations. Similar data was found for global firms, see the
interesting article in the South China Morning Post, July 10, 2015.

Interesting studies have been performed for the public sector. In a series of
papers Rauch et al. (2011) studied among others European Union economic
data relevant to compliance with Stability and Growth Pact criteria. One of
their findings was a significant deviation of Greek official data from Benford’s
Law. The fact that Greek data manipulation was officially confirmed by EU
Commission can be seen as an evidence that Benford’s Law might be a valuable
forensic tool.

But even sciences and academia are not immune to dishonesty and deception.
A well-known case of data falsification from clinical experiments is reported by
J. Interlandi in the New York Times Magazine (October 2006), the Poelman
Affair. Lee, Tam Cho, and Judge (2015) have shown data manipulated by Eric
Poelman show a significant deviation from Benfords’s Law.

And finally, another interesting forensic application of Benford’s Law is to detect
manipulations of elections. Much discussed examples are the election in Turkey,
Nov. 1, 2015, and the presidential election in Iran 2009. Remarkably, it is often
the last digit of vote counts that gives indications to manipulation.

If you decide to pursue the forensic route in your thesis then there are a few
points to be taken care of:

• Collect a sufficient amount of data, at least a few hundred items. I know
that this is the really cumbersome part of your study. For instance ac-
counting data are often available only via annual reports of companies.
These in turn are usually published as pdf-documents. Thus you will
have to use appropriate software tools to extract data from those files.
Regarding macroeconomic data the situation is much better as the EU
offers free public access to most of these data.
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• Keep in mind that if your data or parts thereof show significant devia-
tions from Benford’s Law this does not automatically mean fraud or data
falsification. Indeed, examples are known where unmanipulated data are
far from Benford. So, if in such a case it is very likely that your null
hypothesis that data are Benford is rejected. Still, it may be possible to
use Benford’s Law as a forensic tool, if you transform your data. Such
a transformation is mentioned in Section 7, Remarkable Properties, see
also Morrow (2010).

• Formulate your hypotheses carefully and perform various statistical anal-
yses. Regarding tests, please read also the subsection on Experimental
Statistics below. In addtion to the methods outlined in Section 5, the
R-package benford.analysis will be very helpful in this context. Give
critical interpretations of your results.

6.2.2 Experimental Statistics

This a second interesting route to follow. What can be said about the discrim-
inative capabilities of the statistical tests presented in Section 5, about their
power? Recall, the power of a hypothesis test is defined as the probability to
reject the null hypothesis when the alternative is true. In other words, this is
the probability that the test correctly signals data are not Benford. So this is
a most important measure of quality of a test.

Determination of the power of a statistical test requires the specification of an
alternative. Normally, it is not enough to say: HA : data are not Benford. We
must be more specific.

A standard scenario

One possibility is to state as alternative: the distribution of digits is that of
uniform distribution (say), a normal distribution, or of an exponential distribu-
tion. All these are known to be non-Benford. So, it would be very interesting
to estimate the power of the tests described above by means of a systematic
simulation study.

• What is the effect of the sample size on the power?
• How does variance influence power? For instance, what is the effect,

if we widen the interval of support if a uniform, what if we increase the
standard deviation of a normal distribution? I expect that sandard tests of
the Benford hypothesis based on digits will show rather different behavior.

Faking data intelligently

Probably the most interesting alternative hypotheses arise, if we try to fake
data in an intelligent way. What does it mean?

It is no challenge to generate data sets where the first digit follows a Benford
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distribution very closely. This requires only a clever application of the properties
of the significand function outline in Section 2. For instance you may generate
a random sample of uniform variates, take the significands and replace the first
digit by digits from a sample following Benford.

What will happen? Data sets manipulated in this way will very likely pass
any of the first digit tests, may it be χ2, Kolmogorov-Smirnov, etc. But how
likely is it to reveal the manipulation when testing the first two digits? What
happens, if we fake the first two digits of the data? How can this be done?

An interesting idea is discussed in Jamain (2001, Section 4): data which are
basically Benford are contaminated by non-Benford data. How do tests perform
in dependence on the amount of contamination?

Now I want you to do something I never ask my students: please activate some
criminal energy in you! Develop ideas, scenarios, models to manipulate data in
such a way that the classical digit-based tests perform as badly as much.

Testing characterizing properties

Tests based on the first few significant digits are tests of the weak form of
Benford’s Law. But can we test also the strong version (6.6)?

This can be done in several ways and it would be very interesting to find out
how these approaches perform compared to digit-based tests. Here are some
ideas you may consider in your experiments:

• Since the significand function S(X) is a continuous random variable test-
ing (6.6) amount to a classical continuous goodness-of-fit test. Equiva-
lently you may test whether logS(X) has a uniform distribution on [0, 1].
• What about scale-invariance? We know that a random variable is scale-

invariant if and only if it is Benford. Smith (1997) has suggested a Ones-
Scaling Test. It checks the distribution of leading ones in rescaled data,
i.e., it examines the relative frequencies of

D1(X) = 1, D1(αX) = 1, D1(α
2X) = 1, . . .

where α > 1 is some constant such that logα is irrational. For instance
α = 2 may be a proper choice. How can we test not only leading ones
but all possible leading digits simultaneously? Devise such a procedure
generalizing Smith’s idea.
• What about sum-invariance? Only Benford can have this property. When

preparing this topic the following idea came into my mind: for a sample
{x1, x2, . . . , xn} define

Sd(xk) =

{
S(xk) if D1(xk) = d

0 else

By sum-invariance the arithmetic means µ̂d of the Sd(xk) should have
roughly the same values for all possible values of digit D1 = {1, 2, . . . , 9}.
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We know from (6.17) its theoretical value: if data are Benford, then

µd = E(S1(X)) = 1/ ln 10
.
= 0.4343.

Now by the Central Limit Theorem the standardized values

Td =
µ̂d − 1/ ln 10

sd

√
n

are approximately standard normal for large sample size n, where s2d de-
notes the sample variance of Sd(X). The sum of squares

∑9
d=1 T

2
d of the

statistics Td follows a χ2 distribution with 9 degrees of freedom. So we
can use this distribution to determine critical values and p-values and thus
have one more test of the Benford hypothesis. However, my argument has
a weakness: it requires independence of the Td. Suppose, we tacitly ignore
this point, how does this sum-invariance test perform?

6.3 An Annotated Bibliography

Searching the web with google using Benford’s Law as a search key I get at
the time of writing this more than 100 000 hits. There is an enormous amount
of publications dedicated to this law and it looks to me as if this number is
growing exponentially.

The papers and books on Benford’s Law fall roughly into two categories: (i)
theoretical (extensions of the law, conditions when it does hold, when it does
not, special topics from probability, number theory, computer science), (ii) ap-
plications (forensic statistics, auditing, social sciences, astronomy). There is an
extensive online bibliography created and maintained by A. Berger, T. P. Hill,
and E. Rogers (2016) covering all these categories.

Strongly recommended is the fine book edited by S. Miller (2015). This text-
book has six parts, the first two of them devoted to the mathematical theory of
Benford’s Law, the other parts cover many interesting applications from fraud
detection, diagnosis of elections, applications in economics, psychology, natural
sciences and computer science.

Regarding the mathematical theory the most comprehensive text and standard
reference is the book by Arno Berger and Theodore P. Hill (2015). Although
sometimes technically demanding it gives a very readable and excellent coverage
of the current state of the art. Also recommended regarding theory is the master
thesis by Jamain (2001).

If you plan to work on statistical forensics then there is no way around reading
Nigrini. After his PhD Thesis (Nigrini, 1992) he has published quite a number
of papers on applications of Benford’s Law to fraud detection, auditing and
accounting. He has authored also a very interesting book (Nigrini, 2012) on the
subject. Here you find several examples and demonstrations of statistical tests
partly developed by the author and implemented in a spread sheet calculator.
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The Invention of the Logarithm

A Success Story

For it would be without doubt an incredible stain in analysis, if the doctrine of
logarithms were so replete with contradictions that it were impossible to find a

reconciliation. So for a long time these difficulties tormented me, and I was
under several illusions concerning this matter, in order to satisfy myself in

some manner without being obliged to completely overturn the theory of
logarithms.

Leonhard Euler, 1749

Keywords: history of mathematics, logarithmic and exponential function
numerical mathematics

7.1 An Invitation

7.1.1 A personal remembrance

In the early 1970s I was attending secondary school in Vienna (Astgasse). The
mathematics courses there were pretty demanding and I clearly remember that
one of the most cumbersome affairs in these courses was to perform various
numerical calculations. We had to do these by hand, sometimes with the aid
of a slide rule. The use of the latter required a good deal of dexterity and skill
and getting correct results was not only a matter of meticulous preciseness but
also of good luck1.

This annoying situation changed in the sixth class. At the beginning of that year
every pupil was handed a small innocuous booklet, Vierstellige Logarithmen.
After having browsed through the book, my opinion was: I have never seen
such an boring book! There were tables after tables, practically no text, only
tables on each page. However, a few weeks later I had to modify my opinion.
After having been introduced to the concept of the exponential function and its
inverse, the logarithmic function, after having been taught how to solve simple

1At that time I didn’t know that slide rules use essentially logarithmic scales!
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exponential equations, our instructor gave us a brief course on how to use the
tables of logarithms. It turned out that only a few rules had to be obeyed:

log(a · b) = log(a) + log(b), log
a

b
= log(a)− log(b),

log(ab) = b log(a), log(1) = 0 (7.1)

It was a quantum leap! Multiplying two numbers? Easy, just determine their
logarithms by a table look up, add these and one more table look up gives the
result2. Division of numbers? What a nerve racking and tedious task when
done by hand! But with logarithms it is as easy as subtracting two numbers!
Calculating powers and roots? Also easy, it’s just a division! Needless to say,
that I was really enthusiastic about this new tool, and my enthusiasm was
shared by most of my class mates3.

In my last year at secondary school the first pocket calculators became available,
Texas Instruments was the leading company, offering the scientific calculator TI
SR 50. It was as large as a brick stone and almost as heavy as a brick stone. And
it was extraordinary expensive! The price of such a handy computer was higher
than the average monthly salary of a worker at that time. But the capabilities
of these small computers were really amazing. Now you could do all that hard
numerical stuff without resort to logarithm tables. Not surprisingly, at the
beginning of the 1980s tables of logarithms were completely replaced by pocket
calculators, since their prices have gone down drastically. An era ended at that
time, a truly remarkable success story which has lasted more than 350 years.

But how did it begin?

7.1.2 Tycho Brahe - the man with the silver nose

Tycho Brahe, born on 14 December 1546, originated from a famous Danish

Tycho Brahe

1546–1601

noble family. At an age of only 13 years he started
studying at the University Copenhagen. The solar
eclipse in 1560 which has been predicted with high
accuracy inspired him to concentrate his studies on
astronomy. He continued his studies in Leipzig and
Rostock. There, in 1566 he got involved into a heavy
dispute with another Danish noble man (rumors say
that the dispute was about a mathematical formula).
The dispute ended in a duel with sabers in which
Tycho’s nose was cut off. That accident disfigured
him for the rest of his life. In part this disfacement

2Actually, some intermediate scaling steps are necessary, but as our logarithms were to
base 10, these were also quite easy.

3A few years later at the university I was taught the basic principles of Laplace Transforms,
another key experience, which reminded me of logarithms. Using Laplace Transforms, differ-
entiation of a function becomes (essentially) a multiplication by a variable, a definite integral
is a simple division, etc.
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could be hidden by an artificial nose made of silver. For this reason Tycho
became known as the man with the silver nose.

Tycho’s studies and later his scientific work as an astronomer were characterized
by his efforts to collect astronomical data from very accurate measurements and
these in turn required high precision instruments.

In 1575, at an age of 21 years, he was already a renown and eminent scientist
and planned to leave Denmark for Basel. King Frederick did not want to lose
him and offered him the island Ven located in the Öresund between Sweden
and Denmark where he built Uraniborg Castle, a combination of residence,
alchemistic and technical laboratories and astronomical observatories. There
he lived together with his court jester, a dwarf named Jepp, and his moose4 and
pursued deep and comprehensive scientific studies. This work was interrupted
from time to time by fabulous festivities. Indeed, at Uraniborg opulent banquets
were held regularly for illustrious guests and Tycho proved to be a charming
and entertaining host.

It happened in the fall of 1590 that King Jacob VI of Scotland (later King
James I of England) sailed with a delegation to Denmark to meet his bride-to-
be, Anna of Denmark. Due to very bad weather the royal society was forced
to land on Ven, not far away from Uraniborg, where they found shelter for
a few days. Tycho showed himself from his best side as entertainer and host
and on that occasion he told Dr. John Craig (?–1620), personal physician of
King James, about a recent, truly marvelous invention, prostaphaersis. With
its help extremely complex and expensive astronomical calculations could now
be carried out with breathtaking ease.

7.1.3 Prostaphaeresis

This tongue-twisting word is a composition of the two Greek words aphairein
and prostithenai which mean to subtract and to add, respectively. The basis
of this remarkable method is formed by classical addition theorems for trigono-
metric functions. For instance, it has been known since ancient times that

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β) (7.2)

cos(α− β) = cos(α) cos(β) + sin(α) sin(β). (7.3)

These formulas can be proved by elementary geometry or, more illuminating,
by using Euler’s Equation, see Section 2 below. If we add (7.2) and (7.3) we
obtain after simplification:

cos(α) cos(β) =
cos(α+ β) + cos(α− β)

2
. (7.4)

Looking closer at (7.4) you may realize a remarkable fact: the left hand side is
a multiplication of two numbers, namely the product of two cosines, whereas

4The moose, kept as a house pet, was allowed to move freely inside Uraniborg and had the
somewhat strange and not species-appropriate attitude to drink lots of Danish beer. One day
the moose being heavily drunk dropped down the staircase and broke its neck.
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on the right hand side we have essentially a summation (scaled down by two).
Johannes Werner (1468-1522), a German mathematician and astronomer was
one of the first to realize the potential of this formula to reduce the burdening
and cumbersome multiplication of numbers to much easier addition. All one
needed to exploit this potential was just a comprehensive collection of tables of
the sine and cosine functions. But such tabular material was already available
at that time, rather voluminous collections of tables giving the sine, cosine,
tangent and secant (1/ cos(α)) functions with an accuracy of 10 decimal places
and even more.

To see how the method works let me give you an example. However, we
will not use tables but rather a pocket calculator. The point is to see how
prostaphaeretic multiplication is done.

Suppose, we want to calculate the product 17 · 258. Since sine and cosine
functions take their values in the interval [−1, 1] we scale first:

17 · 258 = 100 · 0.17 · 1000 · 0.258 = 105 · 0.17 · 0.258

Then we find angles α and β such that

cos(α) = 0.17, cos(β) = 0.258

These angles were determined formerly by look up in the tables, today we find
them using the arccos-function of a pocket calculator:

α ' 80◦ 12′ 43′′, β = 75◦ 2′ 56′′

Of course, using radians instead of degrees would be a bit more comfortable,
but let us follow the way people worked at that time as closely as possible. Next
we apply Werner’s formula (7.4):

α+ β = 155◦ 15′ 39′′ cos(α+ β) = −0.90928
α− β = 5◦ 9′ 47′′ cos(α− β) = 0.99594

0.08766
×0.5 = 0.04386
×105 = 4386

which is indeed the correct result 17 · 258 = 4386.

Observe, that only addition and scaling (simply a shift of the decimal point)
are necessary.

Division is also easy. Suppose we want to calculate x/y. Rewrite this as x · 1/y
and put x = cos(α) and 1/y = cos(β). From the latter we have y = sec(β), the
secant-function, which was also extensively tabulated. Now use again Werner’s
formula (7.4).

Although nowadays prostaphaeresis appears to us as a rather laborious method,
at Tycho’s and Kepler’s time it was considered a major breakthrough in com-
putational mathematics because it reduces the hard work of multiplication and
division to the much simpler operations of addition and subtraction. There-
fore it is not surprising that it found broad dissemination in Europe because it
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simplified computational work so much, especially in astronomy and nautical
navigation.

John Craig was deeply impressed by Tycho’s explanation of the new method.
Incidentally he was not only physician but has also studied astronomy in Ger-
many and one of his teachers was Paul Wittich (1546-1586), in later years
assistant of Tycho. When Craig returned to Scotland he contacted his friend
John Napier and told him about this wonderful invention of prostaphaeresis,
the Artificium Tychonicum, as Johannes Kepler once called it.

7.1.4 John Napier and Henry Briggs

That John Craig was friend of John Napier is one of those remarkable in-
cidences in the history of science which often gave the impetus to new and
important developments. John Napier, Earl of Murchiston, was an affluent

John Napier

1550-1617

Scottish laird, mainly busy administering his estates.
Science was his leisure time activity. He concentrated
on various disciplines like theology and mathematics.
Thus he was not a professional mathematician but a
very talented amateur. Computational mathematics
was a topic he was most interested in. For instance,
he invented the Napier Rods, wooden tablets which
could be used to multiply numbers and even calculate
square roots. Indeed, in 1614 Napier wrote: I have
always endeavoured according to my strength and the
measure of my ability to do away with the difficulty
and tediousness of calculations, the irksomeness of
which is wont to deter very many from the study of
mathematics.

At the time when Craig informed him about the new method of prostaphaeresis
he was for some years already thinking about ways to reduce multiplication do
addition, division to subtraction. Craigs message prompted him to increase his
efforts.

Interestingly, he did not develop further prostapaeresis, as we might expect, in-
stead he based his approach on an idea which goes actually back to Archimedes
of Syracuse (287? - 212? BC). It is the idea of correspondence between arith-
metic and geometric progressions.

Let me give an example of such a correspondence: let n = 0, 1, 2, . . . denote
an arithmetic progression, it’s simply the sequence of non-negative integers.
To each term in this sequence define an = 2n, a geometric progression with
initial value 1 and common ratio 2. For n = 0, 1, 2, . . . , 10 the correspondence
is conveniently given in the following table:

n 0 1 2 3 4 5 6 7 8 9 10

an 1 2 4 8 16 32 64 128 256 512 1024

Now let us call n, the numbers in the first row, the logarithms of an, the numbers
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in the second row. We can easily check by example, that this overly simplistic
table is indeed a table of logarithms satisfying the basic log-rules (7.1). For
instance to multiply 8 by 128 we would use our table this way:

log(8 · 128) = log(8) + log(128) = 3 + 7 = 10,

but 10 = log(1024), thus 8 · 128 = 1024. Also division is easy with our table.
Suppose we want to calculate 512/64, then by applying the division rule (7.1)
and table look up:

log
512

64
= log(512)− log(64) = 9− 6 = 3,

but 3 = log(8), therefore 512/64 = 8. What about a square root,
√

256, say?
Easy again,

log(
√

256) = log(2561/2) =
1

2
log(256) =

1

2
· 8 = 4.

From our table we obtain 4 = log(16) which implies 16 =
√

256. Thus all
log-rules apply. That’s fine.

But now a problem appears. Suppose, we want to calculate
√

128 by means of
our table. Proceeding as before, we find log(

√
128) = 3.5, but our table has no

entry an for n = 3.5. Also, the table doesn’t have entries n, i.e. logs, for the
integers between 8 and 16, neither for those between 16 and 32, etc. There are
gaps in the table! And these gaps become progressively larger. Thus in this
simple layout, our log-table turns out to be not very useful, it is not sufficiently
dense.

Napier was certainly aware of this problem and constructed his tables using a
geometric progression in which the terms an are very close together, thus are
much denser. His solution was so simple that the world wondered why no one
had thought of it before, as Pierce (1977) remarks.

In modern notation the arithmetic and geometric progressions Napier used were:

n 0 1 2 . . . m . . .

an v v(1− 1/v) v(1− 1/v)2 . . . v(1− 1/v)m . . .

The number v was chosen by Napier to be v = 107. This choice was mainly
inspired by the major applications Napier had in mind, numerical calculations
with values of trigonometric functions. That’s also the reason why Napier called
the an sines. His choice of the ratio 1−1/v was a rather clever one as it results
in a very slowly decreasing sequence. Indeed, we find:

0.99999990 · 107 = 107

0.99999991 · 107 = 9 999 999
0.99999992 · 107 = 9 999 998.0000001
0.99999993 · 107 = 9 999 997.0000003

. . .
0.9999999α · 107 = A

. . .
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This is essentially Napier’s First Table. We call the exponent α in the last line
above the Napier Logarithm of A and denote it by LN(A) = α. Thus we define
(as Napier did) the logarithm of A by

(1− 1/v)αv = A⇔ α = LN(A), where v = 107. (7.5)

Napier himself introduced the term logarithm as a synthesis of the Greek words
logos and arithmos meaning ratio and number, respectively.

The calculation of the numbers in this table is greatly facilitated by the fact that
computation can be performed recursively and only subtractions are necessary.
To see this, observe that

an = (1− 1/v)nv = (1− 1/v)n−1v(1− 1/v) =

= an−1(1− 1/v) = an−1 − 10−7an−1,

but 10−7an−1 is merely a shift of the decimal point. Still, the amount of com-
putational work mastered by Napier was really impressing. Later Napier con-
structed two more tables based on the first table to cover a broader range of
values.

It is important to observe that the Napier logs do not satisfy the standard rules
(7.1). In particular, there is no basis β in this system (as e.g., the Eulerian
number e is basis of the natural logarithms). Moreover, LN(1) 6= 0. Indeed, it
is a huge number which can be shown to be (see Section 2):

LN(1)
.
= 161 180 948.53537 38070 (7.6)

Here and in the sequel the symbol doteq
.
= means that the right hand number

is given correctly in all displayed decimal places. In (7.6) therefore LN(1) is
correct to 10 decimal places.

As a result the all important multiplication rule actually is:

LN(A ·B) = LN(A) + LN(B)− LN(1), (7.7)

and similar adaptations are necessary to the division- and power rule. So
Napier’s system of logarithms is a system which one has to get used to. But
once one has acquired some fluency with the rules of Napier’s system practical
calculations using his tables could be performed rather routinely.

After almost twenty years of incredible hard work 1614 John Napier published
his tables in a book entitled Mirifici Logarithmorum Canonis Descriptio. In
1619 a second book, Mirifici Logarithmorum Canonis Constructio, was pub-
lished posthumously which gives a description of the method he had used to
calculate his tables.

Napier’s publications were almost immediately accepted and appreciated by
the scientific community of that time. It is only legitimate to say that Napier’s
logarithms represented a major break-through in computational mathematics.

Henry Briggs (1561–1630) came across Napier’s 1614 Canon almost imme-
diately after its publication. At that time he was professor of geometry at
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Gresham College, London. He began to read it with interest, but by the time
he has finished, his interest was changed into enthusiasm. The book was his
constant companion: he carried it with him when he went abroad; he conversed
about it with his friends; and he expounded it to his students who attended his
lectures, as Thompson and Pearson (1925) reported. Briggs decided to leave
London for Scotland to visit Napier. When he arrived at Napier’s house Briggs
addressed him full of deep admiration (Cajori, 1913a):

My Lord, I have undertaken this long journey purposely to see your person, and
to know by what engine of wit or ingenuity you came first to think of this most
excellent help in astronomy viz., the logarithms.

Briggs didn’t come empty-handed. Indeed, he had a lot of ideas and suggestions
to improve the wonderful invention. He remained there as Napier’s guest for
about a month and during that time in many fruitful discussions and conversa-
tions the concept of the common logarithm was born, i.e. the logarithms with
base 10. This idea improved on Napier’s own first construction substantially,
because now the system had a base, so that :

log10(1) = 0 and log10(10) = 1.

As a result, the somewhat clumsy rules for Naperian logs where simplified
considerably. For instance the essential multiplication property becomes

log10(α · β) = log10(α) + log10(β),

in contrast to (7.7), because now log10(1) = 0. In this new system of common
logarithms all our standard rules (7.1) hold.

Back to London Briggs immediately started calculating the new logarithms. He
presented his results to Napier in 1616 on occasion of a second visit to Scotland.
Soon after that meeting Napier died. In 1619 Briggs moved ahead in his career
and became first Savillian Professor of Geometry at the University of Oxford.
During the following five years he carried on his computational work, and in
1624 he published his famous book Arithmetica Logarithmica which contained
the common logarithms of 30 000 numbers, the values given with an accuracy
of 14 (!) decimal places. This book also has an excellent introduction into
new methods and techniques Briggs had to develop to perform his incredibly
messy computations. Soon afterwards, in 1628, based on Briggs’ work the
Dutchman Adriaan Vlaq (1600–1667)5 published tables of common logarithms
of the numbers 1 - 100 000 with an accuracy of 10 decimal places. By 1630, when
Briggs died, logarithms have been widely accepted and disseminated all over
Europe as a most marvelous tool for numerical computations in so diverse fields
like physics, engineering, astronomy and especially nautical navigation. The
great french astronomer and mathematician Pierre-Simon Laplace (1749–1827)
brought it to the point when asserting that Napier and Briggs by shortening
the labours (of calculation) doubled the life of the astronomer.

So it is not an exaggeration to say: The work of Napier, Briggs and their
successors on logarithms has given rise to an almost unparalleled success story!

5Vlaq had two professions, he was a surveyor and also a quite successful book publisher.
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7.2 Where to go from here

This very short introduction into the history of logarithms is meant to be a
starting point for a deeper study of this interesting subject.

If you have read other topics in this book you may remember that usually at
this place I present various suggestions divided into mandatory and optional,
i.e., suggestions which you should or may take care of in your thesis.

As this topic is a rather special one I have divided my suggestions into those
which emphasize the historical perspective and those which are of a more tech-
nical flavor.

In designing your thesis you may:

• Put your emphasis on history, or
• You may concentrate on some technical issues, e.g., how to calculate loga-

rithms numerically. Or, how to define logarithms for negative and complex
numbers.

• Or, as a third possibility, you may try to find a way to bring together
both aspects in a fine and interesting way.

So, make up your mind and read on. And, of course, bear in mind, your own
ideas are always welcome!

7.2.1 Historical Issues

1. Decimal fractions and mathematical notation

The time around the end of the 16th century and the beginning of the 17th
century was a transitional period in the history of mathematics. The foun-
dations of many wonderful discoveries notably the invention of the differential
and integral calculus were laid at that time. Two important innovations are
directly connected to the works of Napier and Briggs: (a) the development of
the modern exponential notation and (b) the propagation of decimal fractions.
Indeed, Napier seems to be the first to use the decimal point systematically.
You will find interesting material about these issues at various places in Boyer
and Merzbach (2011), also Cajori (1913b) is a valuable source.

2. Properties of Naperian Logarithms

Give a careful exposition of the mathematical properties of Napier’s logarithms.
I recommend that you start with the definition (7.5) and write LN(A) in terms
of natural logs. In this way you can readily determine the numerical value (7.6)
of LN(1) and formulate analogues to our common rules (7.1). You will find that
by a proper scaling the rules for multiplication, division and powers are not so
different from (7.1). Furthermore, it would be fine if you could elaborate on a
geometric device used by Napier to define his logs. The papers of Ayoub (1993)
and Panagiotou (2011) will be very helpful in this context.
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3. Other people working on logarithms at Napier’s time

Raymond Ayoub (1993) writes that the invention of the logarithms in 1614 is
one of those rare parthogenic events in the history of science–there seemed to
be no visible developments which foreshadowed its creation. But still, it is true
that several contemporaries of Napier and Briggs have been working on very
similar concepts, just to mention Jobst Bürgi and John Speidell. Others, like
Johannes Kepler worked at their own system of logarithms, being inspired by
the works of Napier and Briggs. Give a brief account of the approaches these
people pursued.

4. The natural logarithm

Recall the original idea of John Napier: construction of logarithms based on a
correspondence between a geometric and an arithmetic progression, where the
geometric progression should be sufficiently dense. In 1647 the Belgian Jesuit
Gregory of St. Vincent published a study about an interesting property of the
algebraic curve xy = 1, which is a hyperbola, see the figure given below.

O K L M N

A

B
C

D

y = 1/x

He observed and proved by geometric arguments:

If the line segments OK, OL, OM , ON form a geometric progression, thus if
|OK| = α > 1:

|OL| = α2, |OM | = α3, |ON | = α4, . . .

Then the areas

(ABLK), (BCML), (CDNM)

are all equal. But this in turn means that the areas

(ABLK), (ACMK), (ADNK)
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form an arithmetic progression! Thus we have again a correspondence between
an arithmetic and a geometric progression. However, such a correspondence is
the basic principle of any logarithmic system. But now, in this special case,
logarithms have a very natural meaning, as they represent areas of certain
geometric figures.

Still, the question remains: is this observation helpful at all? It converts a
difficult concept into another difficult concept, namely solving a quadrature
problem, i.e., finding the area below a hyperbolic curve. Today we know that
such quadratures can be solved by means of integral calculus.

In 1668 Nicolaus Mercator (1620–1687) developed an entirely new approach to
the aforementioned quadrature problem thereby finding a way to determine the
values of natural logarithms, as he called them.

He considered the algebraic curve (x + 1)y = 1, equivalent to y = 1
x+1 . By

long-division he obtained the non-terminating series

1

1 + x
= 1− x+ x2 − x3 + . . . (7.8)

At Mercator’s time it was already known that for integers n 6= −1∫
xn dx =

xn+1

n+ 1
+ C

Then he integrated (7.8) term by term to obtain:

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ . . . (7.9)

Using this series he evaluated ln(1.1) approximately by setting x = 0.1 in (7.9).
Truncating the series after a few terms he arrived at

ln(1.1) ' 0.1− 0.12

2
+

0.13

3
− 0.14

4
+

0.15

5
= 0.095310,

which is correct to 6 decimal places.

Of course, this interesting story does not end her, nor is it complete. You are
invited to fill the gaps in this short exposition and find out more. For instance:

• How could Mercator know that the antiderivative of xn equals xn+1/(n+
1)?
• Is it always possible (in the sense of allowed) to integrate an infinite series

term by term?
• Will the Mercator series work for all values of x?

And truly interesting from a historical point of view: This idea of series in-
tegration played a very important role when differential and integral calculus
have been invented, in particular it figured prominently in the Leibniz-Newton
calculus controversy, a most famous dispute over priority in the development of
calculus. I suggest that you consult the papers of Panagiotou (2011) and Burn
(2001), but see also Chapter 5 of Sonar (2016).
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7.2.2 Technical Issues

5. How did Briggs calculate his tables?

This is a really interesting question! You should bare in mind that at the
time of Napier and Briggs several important mathematical concepts have not
been known. The idea of a function was not yet available, not to talk about
exponential and logarithmic functions and their relation to each other. And
it took another fifty years until differential and integral calculus have been
invented.

So, Briggs had to perform his extensive calculations without the help of pow-
erful mathematical tools. This lack of mathematical machinery he filled with
extraordinary diligence and ingenuity. Regarding ingenuity, Briggs not only an-
ticipated Newton’s binomial theorem (discovered around 1664), he invented also
the calculus of finite differences, a class of powerful and fascinating methods to
deal with sequences of numbers. You will find the work of Denis Roegel (2010)
to be very helpful.

6. How are logarithms calculated today?

The development of high speed computers during the last decades has rendered
tables of logarithms essentially obsolete. So why to bother about methods to
calculate logarithms numerically?

Well, simply because logarithms are ubiquitous. There is a vast number of for-
mulas in practically all areas of mathematics and its applications which contain
logarithms. Or, think about the rather elementary task of solving an expo-
nential equation. Also, when dealing with very large numbers, so large that
computers run into trouble, logarithms come to our help. A striking example is
the factorial function n! = 1 · 2 · 3 · · ·n which grows extremely fast. But taking
logs numbers can be kept at a manageable size, since the logarithmic function
is growing rather slowly6. For instance, if n = 100, then ln(100!)

.
= 363.74, but

100! ≈ 10158, this makes a big difference.

But how do computers calculate logarithms?

One approach is to use power series expansions. Several useful series are known,
the oldest being the Mercator series (7.9). The latter, however, is convergent
only when −1 < x ≤ 1, and for values x which are close to 1 in absolute value,
(7.9) and other series of this type converge very slowly and become practically
useless in this case.

Find other power series which are suited for the calculation of logarithms! You
will find out that there are a lot of them. The Taylor-McLaurin Theorem will
be very helpful. So, you should be able to use this tool to find other series.

6Sometimes also iterated logs are used, e.g. in number theory or probability. These are
functions of the form ln ln(x) or even ln ln ln(x). The famous number theorist Carl Pomerance
(1944– ) once humorously remarked: ln ln ln(x) goes off to infinity with x but has never been
observed to do so.
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Discuss also convergence issues of the series you suggest. In this context, it is
good to know about the following trick : any real number x > 0 can be written
as x = 2my, where m is an integer and

1√
2
< y ≤

√
2.

So, ln(x) = m ln(2) + ln(y). Setting y = 1 + z, using the above bounding you
always have |z| < 1.

An alternative to series are rational approximations, i.e. fractions of polynomial
expressions. A striking example is this one which is also known as Shank’s
approximation:

ln

(
1 + x

1− x

)
' 2x(15− 4x2)

15− 9x2
(7.10)

To approximate ln(a) just put

1 + x

1− x
= a =⇒ x =

a− 1

a+ 1

For instance, to approximate ln(2) = 0.69314718 . . ., set x = 1/3 and obtain
ln(2) ' 0.6931216931217 which is correct to four decimal places.

Approximations like (7.10) often (though not always) have their origin in a
continued fraction. One well-known continued fraction for the natural logarithm
is

ln

(
1 + x

1− x

)
=

2x

1− x2

3− 4x2

5− 9x2

7− 16x2

9− 25x2

11− . . .

(7.11)

To make use of expressions like (7.11) we terminate the continued fraction early,
after the first, the second, etc. partial denominator, by dropping subsequent
terms. In this way we obtain a series of approximants which become successively
more accurate:

ln

(
1 + x

1− x

)
' 2x

1
= 2x 1. approximant

' 2x

1− x2

3

=
6x

3− x2
2. approximant

' 2x

1− x2

3− 4x2

5

=
2x(15− 4x2)

15− 9x2
3. approximant

etc.
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As you can see, the 3rd approximant already equals Shank’s approximation.
You are invited to give these approximations a try, just take your pocket cal-
culator and check various values, e.g., ln(2), ln(10), etc.

This was just one spectacular example, several other continued fractions for
logs are known.

The theory of continued fractions is a really fascinating area of mathematical
analysis, but frankly speaking, it is also rather difficult. If you want to learn
more about them you may consult Jones and Thron (1980). In chapter 6 of
this book you can find (7.11) as a special case of a more general result.

There are many other powerful approaches to calculate logs. An extremely
efficient algorithm is based on the concept of arithmetic-geometric mean, you
may have a look at the paper of Carlson (1972).

7. Logarithms of negative and imaginary numbers

This suggestion is interesting both historically and from a technical point of view. You

should have some basic knowledge of complex numbers, as it is presented in typical

textbooks for undergraduates.

By the end of the 17th century logarithms, common (base 10) or natural,
were well established as an invaluable tool for computational mathematics.
In an expression like ln(x) or log10(x), x was always considered a positive

Johann Bernoulli

1667–1748

number. It was also known that the logarithmic func-
tion and the exponential function are inverses to each
other. Since y = 10x > 0 for all x and because
x = log10 y, nobody felt the need to consider loga-
rithms of negative numbers.

Still, at the beginning of the 18th century a re-
markable debate started about the question, what
sense should be given to the expression log(−a) for a
positive real number a. Here log denotes the log-
arithm to any basis. In a remarkable correspon-
dence in the years 1712-1713 Gottfried W. Leibniz
and Johann Bernoulli discussed this problem. Unfor-
tunately these letters were not published before 1745.

But why this discussion? Cajori (1913b) gives an explanation. In the 18th
century there was the tendency to take rules derived only for a special case
of a mathematical concept and apply them to more general cases. This ten-
dency became more and more pronounced and was called the principle of the
permanence of formal laws. So by this principle or simply guided by scien-
tific curiosity the question of logs of negative numbers became more and more
interesting.

The controversy between Leibniz and Bernoulli did not result in a satisfac-
tory answer. On the contrary, quite disturbing contradictions were found when
extending the concept of a logarithm to negative numbers. Indeed, negative
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numbers themselves were not generally accepted at that time. For instance,
the renown french mathematician Blaise Pascal (1623–1662) regarded the sub-
traction of 4 from 0 as pure nonsense (Kline, 1980, pp 114-116)! It seemed to
many people simply inconceivable that there exist numbers less than nothing.

One of the disturbing arguments used by Bernoulli was: it must be true that
ln(x) = ln(−x) for all x 6= 0, because

f(x) = ln(x) =⇒ f ′(x) =
1

x
and

g(x) = ln(−x) =⇒ g′(x) =
(−1)

−x
=

1

x
(by the chain rule) (A)

Note that we immediately run into troubles at this point because by our stan-
dard rules (7.1) we should have:

ln(−x) = ln[(−1)x] = ln(−1) + ln(x),

but this would imply that ln(−1) = 0 which Bernoulli knew could not be true.

Leibniz objected that logarithms of negative numbers must be imaginary.

Leonhard Euler

1707–1783

When the correspondence between Leibniz and
Bernoulli became published this acted as a tremen-
dous stimulus on Leonhard Euler, who was
Bernoulli’s student. In two epoch-making papers
1747 and 1749 Euler carefully worked out this prob-
lem and found that its solution lies at an unexpected
place: all numbers except zero have an infinity of log-
arithms. His proof is based on one of the most re-
markable formulas in mathematical analysis, Euler’s
formula, as it is called today:

eix = cos(x) + i sin(x), (7.12)

where i denotes the imaginary unit, defined7 by i2 = −1. Since the sine and
cosine functions are periodic with period 2π, it follows that

ln(cos(x) + i sin(x)) = i(x± 2nπ), n ∈ N (7.13)

Setting x = π, we obtain cos(π) + i sin(π) = −1 and

ln(−1) = ±πi, ±3πi, . . . ,

and none of these values is zero. That ln(x) is multivalued causes the problem
that ln(x) is no longer a function in the strict sense, therefore some additional
restrictions are necessary. This leads to the concept of the principal value of
the logarithm which is defined such that the argument φ or angle of a complex
number z = |z|eφi is restricted to the interval −π < φ ≤ π. As a consequence
our standard rules (7.1) do not always hold. For instance, it is not generally

7 The symbol i was introduced by Euler himself, although in the aforementioned papers of
1747 and 1749 he mostly writes

√
−1 instead of i.
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true that ln(a · b) = ln(a) + ln(b). A counter example directly following from
(7.12) and (7.12) is this one:

ln(−i) = ln((−1) · i) = ln(−1) + ln(i) = πi+
πi

2
=

3πi

2
,

but

ln(−i) = −π
2
6= 3π

2
,

which follows from (7.13).

This is a dangerous trap when you are performing numerical calculations with
complex logarithms, as computer software generally uses principal values.

If you want to elaborate on these interesting aspects of logarithms then you
should definitely read the original papers of Euler (see the annotated bibli-
ography in Section 3 below). The historical controversy between Leibniz and
Bernoulli is discussed in Cajori (1913b) where you can find a synopsis of this
famous correspondence. Cajori (1913c) is devoted to Euler’s contributions and
includes a synopsis of the correspondence on this subject between Euler and
D’Alembert from April 15, 1747 to September 28, 1748.

7.3 An Annotated Bibliography

There is an enormous amount of literature on the history of logarithms. In
several books on the history of mathematics in general you will find detailed
accounts of John Napier, Henry Briggs and their time, including also develop-
ments like decimal fractions and the invention of modern mathematical nota-
tion. In the sequel I want to draw your attention to a few books which I found
very interesting.

Boyer and Merzbach (2011) is a very readable and rather complete textbook
on the history of mathematics. This is also true of Struik (2008), a book first
published in 1948. Also recommendable is Wussing (2008). Sonar (2016) is
devoted primarily to the famous Newton-Leibniz Controversy, but it sheds also
some light on other developments in mathematics during the 17th century. For
instance the discovery of the Mercator series is described in detail.

Papers on logarithms and their history continue to be published since the 19th
century, often when there is an anniversary. Florian Cajori is author of an
outstanding series of papers. In Cajori (1913a) you find an account of the work
of Napier and Briggs, Cajori (1913b) and Cajori (1913c) are devoted to the early
discussions of logarithms of negative and imaginary values. In Cajori (1913d)
you find an exposition of the developments up to 1800, which is interesting
insofar as Euler’s 1747 paper was not published before 1862. Logarithms viewed
as complex functions and the idea of a principal value are presented in Cajori
(1913e) and Cajori (1913f).

Also, you should read the fine overviews due to Panagiotou (2011) and Burn
(2001) which cover in detail the invention of hyperbolic or natural logarithms, a
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development which foreshadowed the revolutionary discoveries of the differential
and integral calculus. Also recommended is the profound study by Denis Roegel
(2010). It is quite voluminous as it contains a reconstruction of Briggs’ tables.
But on the first 34 pages you find a detailed elaboration of the techniques used
by Briggs to calculate common logarithms.

Raymond Ayoub’s (1993) paper is a rather complete and very readable exposi-
tion of the mathematics of Naperian logarithms.

And last but not least, please read the excellent papers by Leonhard Euler:
Euler (1747) and Euler (1749). For both papers English translations of the
original french text (thanks to Stacy Langton and Todd Doucet) are available
from the Euler Archive (http://eulerarchive.maa.org/).
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Topic 8

Exercise Number One

Partition Theory

Keywords: partitions of integers, the Money Changing Problem,
combinatorics, generating functions

This chapter has not been finished yet.
October 4, 2018

8.1 An Invitation

8.1.1 Exercise number one

This topic should introduce you into one of the most fascinating areas of discrete
mathematics: the theory of integer partitions.

To begin with, let us have a look at this famous problem:

1. Auf wieviel Arten läßt sich ein Franken in Kleingeld umwechseln? Als Kein-
geld kommen (in der Schweiz) in Betracht: 1-, 2-, 5-, 10- ,20- und 50 Rap-
penstücke (1 Franken = 100 Rappen).

Can you find the answer?

This is Exercise 1 in Aufgaben und Lehrsätze aus der Analysis I by George
Pólya and Gábor Szegő, one of the classical textbooks in mathematics, the first
edition published in 1925. It is also known as Money Changing Problem and
has been discussed and solved already by Leonhard Euler in the 18th century.

8.1.2 Partitions of integers

Technically speaking solving Exercise 1 requires to count a special class of
integer partitions.

A partition of a positive integer n is a sequence of integers λ = (λ1, λ2, . . . , λk),
such that

λ1 ≥ λ2 ≥ . . . ≥ λk > 0 (A)
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George Pólya (1887–1985) and Gábor Szegő (1895–1985)

and

λ1 + λ2 + . . .+ λk = n.

The numbers λi are called the parts of λ. Symbolically one writes n a λ or
λ ` n to express the fact that n is split into parts given by λ.

The partition function p(n) counts the number of partitions of n. For instance,
λ = (2, 1, 1, 1) ` 5, because 5 = 2 + 1 + 1 + 1. This λ is only one out of seven
partitions of 5, indeed, we have

5 = 5

= 4 + 1

= 3 + 2

= 3 + 1 + 1

= 2 + 2 + 1

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1,

thus p(5) = 7. Note, that due to condition (A) the order of summands is not
taken into account, i.e. the partitions λ1 = (3, 2) and λ2 = (2, 3) are considered
to be the same object.

The partition function p(n) grows very fast. Indeed, it can be shown that

p(10) = 42, p(20) = 627, p(50) = 204226,

p(100) = 190569292, p(200) = 3972999029388, etc.

Is there a formula for p(n)? Yes, and this is one of the most exciting results of
20th-century mathemtics, the celebrated Hardy-Ramanujan-Rademacher For-
mula. Unfortunately, this formula is extremely complicated, but it yields a
simple approximation:

p(n) ∼ 1

4n
√

3
exp

[
π
√

2n/3
]

for n→∞
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In 1929 J. E. Littlewood has written a fascinating review of the Collected Papers
of Srinivasa Ramanujan which you should read in order to get an impression
of the ingenuity of S. Ramanujan, see the references below.

Are there other ways to calculate p(n) exactly? Find it out! Actually, there are
several alternatives to the Hardy-Ramanujan-Rademacher Formula.

8.1.3 Partitions with restricted parts

Very often one is interested in partitions of n such that the parts λi satisfy
certain conditions. For instance, we may consider partitions with all parts
being odd integers. Taking n = 5, then the partitions of 5 into odd parts are:

5 = 5

= 3 + 1 + 1

= 1 + 1 + 1 + 1 + 1,

and

p(n|all parts odd) = 3 (B)

We may also consider partitions such that all parts are different. For n = 5 we
find:

5 = 5

= 4 + 1

= 3 + 2,

and

p(n|all parts different) = 3 (C)

Interestingly, (B) and (C) yield the same value for n = 5. A mere coincidence,
or is there a general rule?

Indeed, Euler already discovered and proved that

p(n|all parts odd) = p(n|all parts different) (D)

for all n ≥ 0. This is one, presumably the most famous, of many known so-
called partition identities. How to prove (D)? This can be done in several ways.
You should discuss at least one of them.

A simple and very powerful device is a graphical representation of a partition
called Young diagram. It consists of rows of boxes, like
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which represents the partition 19 a (8, 6, 2, 2, 1). A very similar representation
are Ferrers graphs, which use circles instead of boxes.

Several partition identities are directly deducible from these graphical devices.
Here is an example of a partition identity which is easily proved using Young
diagrams:

The number of partitions of n with largest part equal to k equals the number of
partitions of n with exactly k parts.

Prove it!

The idea of partitions into odd parts can be generalized. Let A by a finite or
infinite subset of the set of positive integers N. For instance, A = {1, 3, 5, . . .},
the set of odd numbers. Then a very interesting problem is to find the number
of partitions λ ` n such that all parts are elements of A, in other words, what
is

p(n|all λi ∈ A) ? (E)

Observe, when

A = {1, 2, 5, 10, 20, 50},

then (E) is the answer to the Money Changing Problem of Exercise 1.

But beware!

Consider a country with only 9, 17, 31 and 1000 ¤ bills. How many ways are
there to change a 1000 ¤ bill?

It is not all clear that there is even one possiblity to give such a change! In
fact, the problem of determining if even one solution exists is known to by very
hard, indeed, it is NP-hard.

8.1.4 Generating functions

The most important tool in the study of partitions are generating functions.
They may be viewed as some sort of clotheslines on which we hang up numbers
we want to display, e.g. the partition numbers p(n). Technically, generating
functions are power series in some variable z, e.g. the generating function P (z)
of the partition numbers p(n) is

P (z) = p(0) + p(1)z + p(2)z + p(3)z + . . .

= 1 + z + 2z2 + 3z3 + 5z4 + 7z5 + 11z6 + . . .

It is remarkable that this function can be written as an infinite product:

P (z) =
1

1− z
1

1− z2
1

1− z3
· · · =

∞∏
i=1

1

1− zi
(F)

This is a really fundamental relation discovered by Leonhard Euler. Two of the
most important points about generating functions are:
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• If we have a function term P (z) for the generating function like (F),
then we may be able to extract the coefficient of zn in P (z) by various
techniques. Indeed, all information about the counting sequence p(n) is
contained in P (z)!
• Furthermore, having understood the genesis of (F), you will be able to

find generating functions for various restricted partition numbers. As an
example, the generating function of the number of partitions with all parts
different can be shown to be

P (z|all parts different) = (1 + z)(1 + z2)(1 + z3) · · · =
∞∏
i=1

(1 + zi)

There are many other examples. Particularly interesting is the generating
function of the number of partitions with parts taken from some finite or
infinite set A. Recall the Money Changing Problem!

8.2 Where to go from here

8.2.1 Issues of general interest

• Prepare a careful though interesting introduction into partition theory.
• Discuss some partition identities and prove them. There are two major

techniques of proof: the method of bijections and generating functions,
compare these methods.
• Solve the Money Changing Problem as presented in Exercise 1. of Pólya

and Szegő.
• Partition theory has many applications, e.g., in computer science but also

in statistics. A prominent application is the Wilcoxon rank sum test, or
equivalently Mann-Whitney’s U -statistic. Show how this famous 2-sample
test is related to partitions.

8.2.2 Some more suggestions

• Describe and implement an algorithm to generate systematically all par-
titions of n, of course n must not be too large. You may do this in R,
octave/matlab, whatever you want. How to handle restricted partitions?
It may be interesting also to experiment with some symbolic compution
software like Mathematica or Maple. As far as I know, Mathematica is
accesible to you via a WU-campus license.

8.3 An Annotated Bibliography

The literature on integer partitions is enormous. Here are a few important
resources.
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• You should start your reading with Andrews and Eriksson (2004). This
booklet, available as paperback, as an excellently written introductory
textbook.
• George Andrews is the grand seigneur of partition theory. Andrews (2003)

is a classical text written for professional mathematicians. This book it
is a reprint of the 1976 edition which has been published originally as
part of the Encyclopedia of Mathematics. However, chapters 1 and 2 are
easy to read and so it may be profitable for you to have a look at these.
Chapter 5 gives a thorough derivation and proof of the Hardy-Ramanujan-
Rademacher Formula. Chapter 14 is particularly useful, if you want to
develop algorithms for systematically counting various types of partitions.
• Sedgewick and Flajolet (2009) is a wonderful textbook. Partitions are

not treated systematically in this book, but there is a wealth of material
on partitions spread over the book. The first chapters introduce the so-
called symbolic method, an extremely powerful and elegant technique to
find generating functions.
• The famous book by Pólya and Szegő has also been translated into En-

glish. Exercises 1-27 are related to partition problems. You may wonder
why the Money Changing Problem, which is obviously of combinatorial
nature, has found its place in a book on analysis?
• Regarding Wilf (1990a): the title is program! A free pdf-version of this

book is available, see Wilf (1990b).

More is still missing . . .
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The Ubiquitious Binomialcoefficient

Keywords: discrete mathematics, binomial theorem,
binomial identities, summation of series

9.1 An Invitation

9.1.1 The classical binomialtheorem

From elementary mathematics you are certainly familiar with the classical bi-
nomial coefficient (

n

k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

k!
, (9.1)

where n and k are nonnegative integers and k! denotes the well-known factorial
function k! = k · (k − 1) · · · 2 · 1. The symbol

(
n
k

)
is usually read as n choose k,

n is called the upper index, k the lower index. It is very likely that you are also
aware of (

n

k

)
=

n!

k!(n− k)!
, (9.2)

a representation of binomial coefficients which is very common, though from a
computational point of view not the best we can have. Binomial coefficients
as we have defined them so far are always nonnegative integers. This is by no
means clear apriori if you look at (1) or (2).

The name binomial coefficient stems from the fact that these numbers occur as
coefficients in the expansion of the binomial (1 + z)n into ascending powers of
z, viz:

(1 + z)n =

(
n

0

)
+

(
n

1

)
z +

(
n

2

)
z2 + . . .+

(
n

n− 1

)
zn−1 +

(
n

n

)
zn (9.3)

This formula is known as the (classical) Binomial Theorem, and the binomial
function f(z) = (1 + z)n is also called the generating function of the binomial
coefficients, a very important concept in mathematics. You should check that(

n

k

)
= 0, for all k > n,
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and therefore the series (9.3) is always terminating, indeed, it is a polynomial
of degree n in z.

Using formula (1) which is due to Blaise Pascal (1623-1662), we find succes-
sively:

(1 + z) = 1 + z
(1 + z)2 = 1 + 2z + z2

(1 + z)3 = 1 + 3z + 3z2 + z3

(1 + z)4 = 1 + 4z + 6z2 + 4z3 + z4

. . . . . .

The first three expansions have been known already in ancient times, e.g. they
where known to Euklid (around 300 BC) and Diophantus (215–299?).

Pascal’s formula can easily be found using a simple combinatorial argument.
Just rewrite:

(1 + z)n = (1 + z)(1 + z) · · · (1 + z)︸ ︷︷ ︸
n factors

, (9.4)

and now find out how in this n-fold product the term xk is composed. You
should work out this argument in precise terms in your thesis and thereby show
that

(
n
k

)
equals the number of ways to form subsets of size k out of a groundset

having n elements.

9.1.2 Pascal’s triangle

The binomial coefficients can be arranged in a triangular array. The first lines
of this array read as:

n
(
n
0

) (
n
1

) (
n
2

) (
n
3

) (
n
4

) (
n
5

) (
n
6

) (
n
7

) (
n
8

) (
n
9

) (
n
10

)
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1

This array is commonly known as Pascal’s Triangle, but it was known long
before Pascal, e.g. it appears in papers of the chinese mathematician Chu-Shih-
Chieh around 1300. About Chu we will have to say more in a few moments.
By the way, you can find a lot of interesting historical information about the
binomial theorem in Coolidge (1949).

Pascal’s Triangle has many remarkable properties. Here are a few observations:
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• The rows of the triangle are unimodal, this means that the numbers in any
row first increase up to a maximum value located in the middle and then
they decrease again. Unimodality of binomial coefficients is the result of
an important symmetry property :(

n

k

)
=

(
n

n− k

)
.

• The rows are recognized as sequence number A007318 in Sloane’ On-Line
Encyclopedia of Integer Sequences (https://oeis.org/), a fascinating
and very useful web-site.
• The central term in row n increases very fast as n increases.
• Several recurrence relations between entries in different rows can be iden-

tified.

Blaise Pascal

(1623-1662)

Let us now comment briefly on the last two obser-
vations. For the first one, assume that n is an even
number, so n = 2m. Then there is a unique central
term in row n = 2m,

(
2m
m

)
. It can be shown that(

2m

m

)
∼ 22m√

mπ
, m→∞ (9.5)

In this formula the symbol ∼ means that the ratio
of the left and the right side of (9.5) tends to 1 as
m→∞.

This important asymptotic formula tells us that
(
2m
m

)
grows roughly as fast as 22m only slowed down slightly
by the factor 1/

√
mπ 1. In other words, we have almost exponential growth.

Formula (9.5) can be proved using the celebrated Stirling Formula. You should
discuss this approximation formula in your thesis and also provide a proof. That
can be done by more or less elementary methods.

Regarding recurrence relations between various entries of the triangle: here
is the most famous one, it is indeed on place four of the Top ten binomial
coefficient identities, see (Graham, Knuth, and Patashnik, 2003, p.171):(

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
. (9.6)

Let’s give it a try: for n = 10 and k = 4 formula (6) states that(
10

4

)
=

(
9

4

)
+

(
9

3

)
.

Using the table above, we have indeed: 210 = 126 + 84.

How can we prove (6)?

There are several ways to prove (6). The easiest way is to use mathematical
induction. In your thesis you should explain the induction principle and show

1The occurrence of π in this formula is somewhat a miracle.
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by example how it works. One such example must be (6), another one formula
(1).

Many interesting number theoretic properties of binomial coefficients are bur-
ried in Pascal’s Triangle.

Here is one: if n and k are relatively prime, which means that their greatest
common divisor equals 1, then

(
n
k

)
is divisible by n. For instance, the greatest

common divisor of n = 8 and k = 3 equals 1, and
(
8
3

)
= 56 is indeed divisible

by 8. As a special case of this statement we have: for any prime number p and
any k such that 0 < k < p the binomial coefficient

(
p
k

)
is divisible by p. Can

you prove these statements?

And one more exciting property: let us rewrite Pascal’s Triangle in the following
more or less standard form and draw odd entries in red, even entries in blue:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

The pattern showing up resembles a Sierpinski Triangle, a famous fractal struc-
ture:

9.1.3 Newton’s binomial theorem

Let us now return to the classical binomial theorem (3). Arround 1664 or 1665
Newton considered the question: what happens, if the exponent n is not a
nonnegative integer?

This question leads us to consider the expansion of (1+z)α, where the exponent
α may be any real number. Newton used the idea of analogy, one of his favorite
principles:

(1 + z)α =

(
α

0

)
+

(
α

1

)
z +

(
α

2

)
z2 +

(
α

3

)
z3 + . . . (9.7)
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But what meaning should we give to
(
α
k

)
? Newton argued that the definition

(1) of binomial coefficients continues to hold. Indeed, in (1) we do not really
require that n is a nonnegative integer. If we rewrite (1) with n replaced by α,
then we have: (

α

k

)
=
α(α− 1)(α− 2) · · · (α− k + 1)

k!
. (9.8)

A closer look at (8) reveals that
(
α
k

)
is a polynomial of degree k in α. So, α

may be any real number ! But
(
α
k

)
no longer becomes zero when k > α unless

α is a nonnegative integer. This observation has an important consequence:
the expansion (9.7) is no longer a polynomial in z, it is, in general, an infinite
series. At this point convergence becomes an issue. It can be shown that (9.7)
converges if and only if z is sufficiently small, more precisely we require |z| < 1.

Let’s give it a try and put α = −1. Then by (9.8):(
−1

k

)
=

(−1)(−2)(−3) · · · (−k)

k!
=

(−1)kk!

k!
= (−1)k,

so

(1 + z)−1 =
1

1 + z
= 1− z + z2 − z3 + z4 − . . . ,

a well-known variant of the infinite geometric series. Putting z → −z above
yields:

(1− z)−1 =
1

1− z
= 1 + z + z2 + z3 + z4 + . . . .

More generally we may consider expansions like

(1 + z)−n =

(
−n
0

)
+

(
−n
0

)
z +

(
−n
2

)
z2 + . . . ,

where n is a nonnegative integer.

Let us negate the upper index in each of these binomial coefficients, which is
done as follows:(

−n
k

)
=

(−n)(−n− 1) · · · (−n− k + 1)

k!

= (−1)k
n(n+ 1)(n+ 2) · · · (n+ k − 1)

k!
= (−1)k

(
n+ k − 1

k

)
,

by (1). Here we see one more remarkable and important relation. As a conse-
quence we have the alternative expansion:

(1 + z)−n =

(
n− 1

0

)
−
(
n

1

)
z −

(
n+ 1

2

)
z2 − . . . =

∑
k≥0

(−1)k
(
n+ k − 1

k

)
zk
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For instance, if we set n = 3, then we get (verify please!):

(1 + z)−3 =
1

(1 + z)3
= 1− 3z + 6z2 − 10z3 + 15z4 − . . .

Now a more exciting case: consider α = 1/2, then

(1 + z)1/2 =
√

1 + z =

(
1/2

0

)
+

(
1/2

1

)
z +

(
1/2

2

)
z2 + . . . (9.9)

Again, let us rewrite the binomial coefficients occuring in this expansion using
(9.8). You will find (please verify):(

1/2

k

)
=

(−1)k−1

22k−1
· 1

k

(
2k − 2

k − 1

)
, for k > 0. (9.10)

This results in an entirely different series expansion for the square root:

√
1 + z = 1− 1

2

∑
k≥1

1

k

(
2k − 2

k − 1

)(
−z

4

)k
The transformation sketched above is also known as going halves. There are
many other such transformations.

Isaac Newton

(1642-1727)

Some historical remarks are in order: (9.7) is com-
monly referred to as Newton’s Binomial Theorem.
Newton communicated his ideas in two letters writ-
ten 1676 to Henry Oldenburg, secretary of the Royal
Society. Actually, the first of these letters has been
addressed originally to G. Leibniz, but by incidence
got delivered to Oldenburg. Interestingly, Newton
did not elaborate (9.7) in full generality, he only con-
sidered some special cases and he did not discuss
the problem of convergence, see Boyer and Merzbach
(2011). A complete proof of Newton’s binomial theo-
rem was not given before Abel (1826). A scan of this
paper is available in the web (see the references be-
low). The cited issue of Crelle’s Journal contains six
(!) papers of Abel, among them his nowadays clas-

sical proof of the impossibility of solving polynomial equations of order higher
than four by radicals. This is quite remarkable, as Abel was at that time only
24 years old. Unfortunately, he died three years later.

9.1.4 Binomial sums

And now we are coming to the really thrilling part of the story, binomial sums.
These sums involve one or more binomial coefficients, they appear in practically
all areas of mathematics and have been subject to thorough investigation over
centuries.
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Let us begin with two harmless examples (n is in both a nonnegative integer).(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ . . .+

(
n

n

)
= 2n(

n

0

)
−
(
n

1

)
+

(
n

2

)
− . . .+ (−1)n

(
n

n

)
= 0

What do you think about these binomial sums? How can we prove them? One
way is to use the principle of induction. But there is a much easier way. Just
put z = 1 in (9.3) to get the first of these sums, then put z = −1 in (9.3) to
obtain the second sum. Note that we need not worry about convergence, as n
is assumed to be nonnegative integral, so (9.3) is always terminating. We could
not have used this trick in (9.7). Thus it not true that

√
2 =

(
1/2

0

)
+

(
1/2

1

)
+

(
1/2

2

)
+ . . .

which would result when we put z = 1 in (9.9).

Here is another famous sum:∑
k≥0

(
n

k

)(
m

a− k

)
=

(
n+m

a

)
. (9.11)

(9.11) is known as Chu - Vandermonde Formula. It has an enormous number
of applications. You should derive and prove it in your thesis.

Many ideas and methods have been developed to evaluate binomial sums. Quite
for a long time much of this work had the character of a case-by-case analysis,
a typical compendium is the book of Riordan (1968). Things have changed,
however, since the publication of a famous paper by George George E. Andrews
(1974, Section 5).

Today, we have a wonderful and deep theory of such sums, so that many of
them (though by no means all) can be evaluated in a rather routine manner.
When preparing your thesis you should learn to handle at least in part some of
these methods, so that you will be able to evaluate for instance this miraculous
sum: ∑

k≥0

(
n+ k

2k

)(
2k

k

)
(−1)k

k + 1

You will be surprised!

9.2 Where to go from here

• Give an interesting and readable overview of binomial coefficients.
• Your thesis should contain a discussion of the binomial theorem, the clas-

sical one and Newton’s theorem. Regarding the latter, you will also have
to use Taylor’s Formula which you can find in any textbook on elementary
differential calculus.
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• Discuss important properties of binomial coefficients, these may also in-
clude some remarkable number theoretic properties.
• Present a collection of identities between binomial coefficients and provide

proofs. In this context you should explain the Principle of Induction.
• Discuss various transformations like going halves, negating the upper in-

dex, etc. Show how these can be used to simplify binomial sums. Give
some examples of summations.

Note. Your own ideas and creativity are always welcome!

9.3 An Annotated Bibliography

The book Graham, Knuth, and Patashnik (2003) is certainly the most impor-
tant and helpful one, in particular Chapter 5 (about 100 pages) contains a lot
of material presented in really excellent form.

Regarding number theoretic properties of binomial coefficients the book of G. E.
Andrews (1994) is an easy-to-read introduction to the theory of numbers which
is very helpful e.g. if you want to learn about congruences. This book is also
available for free download.

Abel’s original paper is available e.g. at Göttinger Digitalisierungszentrum
(http://gdz.sub.uni-goettingen.de/gdz/).
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Prime Time for a Prime Number

Keywords: elementary number theory, computational number theory,
prime numbers, modular arithmetic, public key encryption,
internet data security

10.1 An Invitation

10.1.1 A new world record

On 20 January 2016, BBC News headlined: Largest known prime number dis-
covered in Missouri ! Immediately many other TV-stations and newspapers
followed and posted similar messages. For instance, the New York Times on 21
January: New Biggest Prime Number = 2 to the 74 Mil ... Uh, It’s Big !

What is this beast, let us call it bigP, that received such a wide media response?
Well, here it is:

bigP = 224 207 281 − 1

In decimal notation this number has 22 338 618 digits. It has been found on
January 7 by a team of the Great Internet Mersenne Prime Search Project
(GIMPS).

10.1.2 Why primes are interesting

Ok, people tell us that bigP is a prime number. But what is a prime?

May be, you recall the definition of a prime number. For definiteness here it
is: A natural number p is prime, if it has exactly two distinct divisors, 1 and p.
The list of primes starts with

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, . . .

A number1 that is not prime is called composite.

1In the sequel when the term number occurs, it always means a natural number.
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Note that 1 is not considered a prime. There are very good reasons for excluding
1 from the set of primes. Stated in simple terms, if we let 1 be a prime, most
non-trivial theorems about primes would be rendered false. So, 1 is not a prime.

Probably you also know that there a infinitely many primes, and you may
have heard that primes are in a certain sense the building blocks of all natural
numbers because any number can be factored into primes. This is the statement
of the Fundamental Theorem of Arithmetic. E.g.,

15624 = 23 · 32 · 7 · 31

So, primes are very special numbers.

You may have already guessed it: this thesis should be about prime numbers.
More precisely, it should be about the elementary theory of prime numbers
and it should also be a coverage of interesting computational issues related to
primes.

At this point you may stop reading further this description and argue:

1. I have never learned anything about primes except for some really basic
facts, neither at high school nor during my university studies at WU.

2. So, to master this thesis, I will have to learn quite a lot about number
theory.

3. Frankly speaking, number theory is quite an esoteric part of mathematics,
only real nerds are working in this field. And most importantly, as I am
studying economics at WU, when I take a thesis topic with a mathemat-
ical flavor, then it must be useful mathematics. But number theory and
especially prime numbers seem to be pretty useless stuff!

Let me briefly comment on these objections:

Ad (1): True.

Ad (2): Very true, but see below.

Ad (3): Completely wrong! Give me a chance to explain why.

10.1.3 Primes and RSA-encryption

Very likely you are customer of one or the other internet trading site, e.g.
Amazon. After having made your choice and put some stuff into your virtual
shopping basket you will have to pay. Usually you will have to enter your credit
card number or other sensible information about your bank account. And if
you do so, don’t you worry that this information may be stolen, may fall into
the wrong hands? After all, sending a message over the internet is no more
secure then sending a postcard. In principle, everybody can read it.

Of course, the solution is to encrypt sensible information. For this purpose
modern web browsers communicate with web servers using a special protocol
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called Secure Socket Layer. Whenever SSL is used you can see this in the
command line of your browser. The web address you are communicating with
is preceded by the word https. Data sent over SSL is encrypted by some
encryption system and the receiver of the secret message deciphers it. But
there is a problem. Deciphering an encoded messages requires a key. Until the
1970s it was necessary to exchange a key, e.g. during a secret meeting. But
did you ever meet an agent of Amazon at a clandestine location and fix a key
word, say yellowsubmarine ?

No, you won’t do that, because:

• This procedure is potentially unsafe for several reasons. Exchanging the
key may be intercepted, but more importantly, using the same key word
for a longer time makes it very likely that your code will be broken.
• After all, this procedure is totally impractical! No system of e-commerce

or e-banking with many thousands of customers would be possible on this
basis.

But in the early 1970s public-key cryptography has been invented and now prime
numbers come into play!

This goes as follows (basically the so-called RSA cryptosystem):

• The security server at Amazon generates two large primes p and q. Here
large means some several hundred decimal digits.
• The server then multiplies p and q to give a large composite number
m = p · q.
• The number m is sent to the web client, e.g. your browser. This uses m

to encrypt sensible information and sends this back to the security server.
• Amazon’s server decrypts the secret message and now knows about your

account information, credit card number, etc.

How does this methods work? Why is it considered secure? The crucial point
is:

Given a large composite number m, finding its prime factors is an extremely
difficult task. Until now no algorithms are known which can do that job in
reasonable time on computer hardware currently available for civil purposes.

Thus Amazon can send the number m to your server, your client browser sends
back an encrpyted message using m as key, say t(m), and although the unau-
thorized eavesdropper can read m and the encrypted message t(m) he will not
be able to decipher t(m) in reasonable time because finding factors of large
numbers is so difficult.

But how can Amazon decipher t(m)? This is possible because number the-
ory provides so marvelous tools like modular arithmetic and Fermat’s Little
Theorem for us. We shall have to say more about these in a few minutes.

Let us pause for a moment here. If you have read the introduction up to this
point and your are still uninterested, then ok! I don’t worry.

If you are still in two minds about this thesis topic, then please read on. I
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am going now to discuss some interesting points regarding bigP in special and
primes in general.

10.1.4 Really big numbers

It seems that bigP is a really big number, isn’t it?

Well, this depends. Clearly, compared to numbers we are usually dealing with
in economic applications, bigP appears to be really big. After all, it has about
22 mill. decimal digits! So, let us have a look at physics, that science which con-
nects the micro cosmos of quantum world to the macro cosmos of our universe.
In 1938 Arthur Stanley Eddington argued that the total number of protons
in the whole universe is about 1080, plus/minus a few percent. Note that one
percent of 1080 is 1078! Still quite a big number, but nevertheless ridiculously
small compared to bigP.

Coming back to number theory, in a very real sense, there are no big numbers:
any explicit number can be said to be small. Indeed, no matter how many digits
or towers of exponents you write down there are only finitely many numbers
smaller than your candidate and infinitely many that are larger (Crandall et al.,
2005, p. 2). This is a rather general reservation. But even if we leave it aside,
bigP is not really a record holder regarding size.

Very impressive in size is the Skews Number 1010
1034

which in the 1950s played
some role in prime number theory. This number is so big that if we could
manage to somehow materialize each of its decimal digits to a subatomic particle
our whole universe would be too small to hold it. The strange numbers googol =
10100 and googolplex = 10googol are both smaller than the Skews number - but:

googol < bigP < googolplex

10.1.5 Mersenne numbers

The number bigP is a Mersenne number

And this is no exception: among the largest known primes the first 12 are all
Mersenne numbers. So, what are these special numbers?

For any number n ≥ 0 the n-th Mersenne number is defined by

Mn = 2n − 1, n = 0, 1, 2, . . .

These numbers are named after the french monk Marin Mersenne who studied
them in the 17th century. Mn can be prime only if n is prime. For, if n = ab is
composite, then 2ab − 1 is divisible my 2a − 1 and 2b − 1. It is easy to see that:
just use the well known formula for the sum of a finite geometric progression.
Let us have a look at a few Mersenne numbers with prime exponent:

n 2 3 5 7 11 13 17 19 23

Mn = 2n − 1 3 7 31 127 2047 8191 131071 524287 8388607
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This table shows us that primality of n does not guarantee primality of Mn.
Indeed, in the second row of this table there are two composite numbers:

M11 = 2047 = 23 · 90, M23 = 8388607 = 47 · 178481,

as you can check easily with your pocket calculator.

But the fact that among the record holders only with a few exceptions all primes
have been Mersenne numbers may give rise to the suspicion that Mersenne
numbers have some strong affinity to being prime.

Is this really so? No! Indeed, it is not even known whether there are infinitely
many Mersenne primes. But it is known that these special primes are rare
among all primes. To give you an impression: the two today largest known
primes are:

bigP = M74 207 281 =274 207 281 − 1, found in 2016

M57 885 161 =257 885 161 − 1, found in 2013

We can estimate the fraction of primes that lie betweenM57 885 161 andM74 207 281.
This fraction is about 1−10−5 000 000 ≈ 1. So practically all primes ≤M74 207 281

lie in this interval. But officially2 none of these enormous number of primes is
known. I will show you in a moment how we can arrive at this estimate.

One reason why Mersenne primes figure so prominently in prime number search
is that there are quite efficient methods to check primality of these numbers.
This brings us to the next point.

10.1.6 Primality testing

How can we know that bigP is indeed a prime number?

Let us state this question in more general form:

Given a number n, how can be find out that n is prime?

In computational number theory this problem is known a prime number testing
or primality testing. Many algorithms are known to solve this problem and,
after all, today we know that this task is tractable in the sense that there are
efficient methods for primality testing.

A very simple approach is trial division. It runs as follows:

• Scan a list of all primes ≤
√
n. Note, that if n is composite, i.e. n = a · b,

then one of its factors must be ≤
√
n.

• If a prime pi in this list divides n, then we know for sure that n is composite
and therefore no prime number.

Although easy to understand and easy to implement this algorithm can be used
only as long as n is of moderate size, say n < 106. We can estimate the amount
of computational work required in the worst case, i.e. when n proves to be

2NSA may know more than we do!
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prime. To obtain this estimate we use a really marvelous result from number
theory, the celebrated Prime Number Theorem (PNT). Let π(n) denote the
number of primes ≤ n, then for large n:

π(n) ∼ n

lnn
(PNT)

The ∼ -sign tells us that the ratio of right hand side and π(n) tends to 1 as
n→∞. In other words, the relative error of this approximation goes to zero.

Lets give it a try: is 1000003 prime? We have
√

1000003 ≈ 1000 and PNT tells
us that the worst case number of trial divisions is about 145 (exact value: 168).
So, this is tractable.

But for bigP? We estimate the worst case number of trial divisions by PNT as

π
(√

bigP
)
∼ 1010

7

No chance to test bigP by trial division!

Note that when we use trial division to test primality of some number n and
it turns out that n is composite, then we get even more: we get also a prime
factor of n!

Interestingly, we can test compositeness of n without knowing any of its prime
factors. Basic to most approaches of this type is another celebrated result from
number theory, Fermat’s Little Theorem.

First, let us state this theorem in rather informal terms:

If p is prime, then for any number a with 1 < a < p, ap−1 − 1 is divisible by p.

Let’s give it a try and put p = 11 and a = 3. Then the theorem says that
310 − 1 must be divisible by 11. Indeed,

310 = 59049, and 310 − 1 = 59048 = 11 · 5368

It is time now to introduce an extremely elegant and useful formalism invented
by C. F. Gauss, modular arithmetic. At its heart there is the idea of congruence.
Given three integers3 a, b and m, we write

a ≡ b (mod m) (10.1)

This has to be read as: a is congruent to b modulo m and that means: the
difference a− b is divisible my m. For instance

16 ≡ 2 (mod 7),

because 16− 2 = 14 is divisible by 7. Similarly 42 ≡ −3 (mod 9), etc. Congru-
ences behave almost like equations, they can be added, subtracted and multi-
plied. Even, if a ≡ b (mod m), then

an ≡ bn (mod m), for n > 0. (10.2)

3so not necessarily positive
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Congruences may also be divided, but division is special.

The mod in (10.1) should not be mixed with the arithmetic operator mod. This
is a very handy tool, a binary operator, defined as:

a mod b = remainder left when a is divided by b (10.3)

For instance, 7 mod 5 = 2, because 7 = 5 · 1 + 2. In some computing environ-
ments and programming languages, e.g., in C, there is the special symbol %, the
percentage-sign, for the mod-operator.

Let us now restate Fermat’s Little Theorem using a congruence:

Fermat’s Little Theorem: If n is prime, then for any 1 < a < n

an−1 ≡ 1 (mod n) (10.4)

(10.4) is also known as Fermat Test.

However, there is a problem when using (10.4) as a primality test. If n is
composite, then the test will fail ((10.4) is not satisfied) and signal that n is
not prime. For instance, let’s try n = 81 with base a = 2. Then we find

280 = (216)5 ≡ 75 = 16807 ≡ 40 6≡ 1 (mod 81).

So we can be safe that n = 81 is not prime. Note that applying the Fer-
mat Test requires to compute very high powers modulo some big number n.

Pierre de Fermat

(1607-1665)

You may wonder how to do this. But it’s easy once
you know how to work with congruences and the mod-
operator, and once you know, how to compute high
powers such like 21008 using the method of repeated
squaring.

What about the other way round? If a number n
passes the Fermat Test with a given base a, can we
be sure that n is prime?

Unfortunately, no! For instance, n = 15 is clearly a
composite number, but, with a = 11 we find:

1114 = (112)7 = 1217.

Now by the rules of modular arithmetic

121 ≡ 1 (mod 15),

so

1217 ≡ 17 ≡ 1 (mod 15).

Thus with base a = 11 n = 15 passes the Fermat Test. Composite numbers
passing (10.4) are called Fermat pseudo primes with respect to base a. Using
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another base may yield another result. If we use a = 2 instead of 11 as base,
we obtain

214 ≡ 4 (mod 15), (please verify!)

and n = 15 is correctly identified as composite. However, it may happen that
even if we try all possible bases a, the number n may pass the Fermat Test
for each choice of a and may still be composite. Indeed, there are infinitely
many numbers having this property, the Carmichael numbers. The smallest
Carmichael number is 561 = 3 · 11 · 17 and it will pass the Fermat Test with
each base 1 < a < 560. Thus, Fermat’s Test is not really conclusive. If a
number n passes the test, all we can say: n is probable prime.

That’s an idea! Randomness may help. Indeed, there is a simple work-around
to remedy the fuzziness of Fermat’s Test which can be crafted into a proba-
bilistic algorithm to test primality. This is the famous Miller-Rabin Test. It is
a Monte Carlo Algorithm, thus an probabilistic algorithm yielding in reason-
able time an answer which is correct with high probability4. There do exist
deterministic algorithms, e.g. the AKS-test, but interestingly, these procedures
are not competitive at the current state of the art. However, for our bigP the
situation is different as it is a very special prime, a Mersenne number, and for
such special numbers there is a very efficient test, the Lucas-Lehmer Test which
is surprisingly easy to carry out.

10.1.7 Generating prime numbers

Let’s return to the security server of Amazon, say. When initiating a new
session with a registered customer the server requires two big primes p and
q to calculate n = p · q, the public key. Typically these primes are of order
22048 (more than 600 decimal digits). But where do p and q come from? One
possibility is to generate a reasonably large list of secret primes and store them
in a file so that p and q are readily available on request.

This is not a good idea: (a) firstly, it is potentially unsafe. Image the data file
being hacked? Secondly, the Prime Number Theorem tells us that there are
simply too many primes to be stored.

Thus in practice the primes required by RSA are generated on-line. But how
is this done?

To approach this issue let us for the moment bake smaller buns. Actually
there is an algorithm which is already in use for about 2500 years, the sieve of
Eratosthenes. Given a number n it creates a list of all primes p ≤ n. Although
easy to apply, it is not very efficient and in practice it is only used up to
106, sometimes even up to n = 1012. These numbers are certainly too small
to guarantee security of RSA. The solution is to adapt the Miller-Rabin Test
mentioned above to generate industrial grade primes, strictly speaking numbers
which are prime with sufficiently high probability.

4In contrast, a Las Vegas algorithm is also probabilistic and always yields the correct
answer, but it may run for a very long time to find this answer.
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10.1.8 Factoring of integers

The Fundamental Theorem of Arithmetic says that every number > 1 has a
factorization into prime factors which is unique up to the ordering of factors.
E.g.,

n = 12345654321 = 32 · 72 · 112 · 132 · 372. (F)

You may notice that this palindromic number n turns out to be a perfect square!

But how do we arrive at a representation (F)? Now the story is becoming really
thrilling!

As long as the composite n is not too big, say < 106, maybe n < 1012, a simple
adaptation of the sieve of Eratosthenes does the job. But for large composites,
composites of industrial size?

The state of the art is this: factoring a composite number is believed to be very
a hard problem. This is, of course not true for all composites – those having
small factors are easy to factor. But in general, the problem seems to be very
difficult. Remarkably though, the only evidence that this statement is true is
our apparent inability to find fast algorithms5. So it is quite surprising that an
entire industry is based on the belief that factoring of integers is hard, indeed.
The current record is a number known as RSA-768, a number with 232 decimal
digits. It has been factored in 2009 using a CPU time of about 2 years!

In your thesis you should not discuss factorization methods for numbers that
large, of course. It is sufficient to consider numbers n such that 232 < n < 264.

Once again we come across the name Fermat. He has devised a general purpose
algorithm, known as Fermat’s Method, which is applicable when n has two
prime factors being not too far apart. I.e., n = p1 · p2, p1 < p2, both odd
numbers and p2 − p1 = 2d, where d is a relatively small number. In this case
we can write

n = (x− y)(x+ y) = x2 − y2, where x = p1 + d, y = d.

The proper x can be found by successively trying

x = b
√
nc, b

√
n+ 1c, b

√
n+ 2c, . . . (Q)

Here bxc denotes the floor-function which rounds down x the the next smallest
integer.

We continue (Q) until we find that x2 − n is a perfect square. In that case
y2 = x2 − n.

Here is an example: let n = 8537529. Then

x = b
√

8537529c+ 1 = 2922,

5Well, there is Shor’s Algorithm, a Monte Carlo methods not unsimilar to the Miller-Rabin
Test. But Shor’s Algorithm needs a quantum computer to run on. May be your are aware of
the comedy series The Big Bang Theory? In season 1, episode 13, The Bat Jar Conjecture,
there is a competition, the Physics Bowl. One of the questions posed by Dr. Gablehauser was
about Shor’s Algorithm. Incidentally, Leslie Winkle knew the answer.
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and successively:

x = 2922 x2 − n = 555

x = 2923 x2 − n = 6400 = 802

Here we stop as we have found a perfect square y2 = 802. Thus a nontrivial
factorization of n is found to be:

8537529 = (x− y)(x+ y) = (2923− 80)(2923 + 80) = 2843 · 3003

In this example Fermat’s Method worked very fine. But this is not always the
case. Indeed, we can find easily examples where Fermat’s Method is outper-
formed drastically be simple trial division. However, Fermat’s Method may
be taken as starting point to develop considerably more efficient algorithms,
among these the Quadratic Sieve due to Carl Pomerance. By the way, like in
prime testing algorithms randomness is an option and comes to our help. A
nice example is Pollard’s ρ− 1 Method is a Monte Carlo Algorithm being quite
effective, if the factors of n are not too large. There is also a p− 1 Method due
to Pollard which makes again use of Fermat’s Little Theorem.

So far a short introduction to the topic.

If you’ve read up to this point and you are still interested in this topic, then
welcome on board!

10.2 Where to go from here

Write an interesting thesis in nice style so that people not specialized on this
topic keep on reading simply because you could raise their interest in this area.
Also, your thesis should be a fine mixture of theory and application. It wouldn’t
be a good idea to separate the material you want to present in two major blocks,
one devoted to elementary theory, and one devoted to computational problems.

Of course, a major portion of your work should be devoted to computational
number theory. This means that you should implement various algorithms and
present examples showing how they work.

10.2.1 Computational issues

I am certainly aware of the fact that this point is by no means a trivial one.
General purpose computing environments like R, Matlab or its free clone octave
are not suitable, because integers when they undergo changes resulting from
diverse calculations are usually casted into floating point numbers. So they
are no longer integers internally. This in turn means that you inevitably run
into serious problems with round off errors which hardly can be controlled.
Therefore it will be necessary to use a computing environment which knows
about the integer data type, e.g. C, C++, Phyton have this. Thus it is possible
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to handle numbers up to 264 − 1 = 9223372036854775807. I will be perfectly
satisfied when you can manage this.

Indeed, there is also GMP, Gnu’s Multiprecision Library which can be linked
to C, C++, Python and Java. Using GMP you can work with integers of
practically arbitrary size, the only limit is imposed by the availability of main
memory. It is also possible to call GMP from within R.

There is a second route you can pursue for numerical calculations. You may
use directly a computer algebra system like Mathematica, Maple or SAGE. The
first two in this list are commercial products, however, student’s licenses are
available. For Mathematica there is a WU campus license, as far as I know.

SAGE is special in two respects: it is a freely available CAS-project with a
strong flavor of computational number theory, and William Stein, initiator of
SAGE is working intensively in number theory. Here you can learn more about
SAGE:

http://www.sagemath.org/

The CAS just mentioned work with infinite precision numbers as a built-in data
type. And of course, they supply lots of functions on computational number
theory. BUT, and this is considered a BIG BUT: when using Mathmetica,
Maple or SAGE, you must implement your algorithms using the programming
facilities offered by these CAS. This is for pedagogical reasons, as I want you
to learn how things really work.

10.2.2 Issues of general interest

These points should be take care of in your thesis, theoretically and computa-
tionally:

• Euclid’s Theorem that there are infinitely many primes.
• The Fundamental Theorem of Artithmetic, i.e., each number has a unique

prime factorization.
• The greatest common divisor of two numbers. Finding the greatest com-

mon divisor of two numbers can be performed very efficiently by one of
the oldest algorithms still in use today. Euklid’s Algorithm is most often
used in an extended form. You should take care of this and mention also
Bézout’s Lemma, as this turns out to be very important in number theory.

• Give a careful exposition to modular arithmetic. You will find out that
this is not only easy to grasp but also extremely useful, if not to say
indispensable.

• State and prove Fermat’s Little Theorem. You will find that there are
many proofs, even combinatorial ones.

• Discuss and implement the algorithm for repeated squaring which is the
most efficient way to calculate high powers of integers modulo some given
number (mostly a prime).

163



Topic 10. Prime Time for a Prime Number

• You should also discuss how to determine whether a number is a perfect
square by an adaptation of Newton’s Method.

10.2.3 Some more suggestions

Here you can make your personal choice on what topics you will put your
emphasis. This may be prime testing, generation of primes or even the fac-
torization problem. Of course you may also discuss RSA. But, you should not
make cryptology to the major topic of your thesis, as this is a very different
story and would lead you to far afield.

10.2.4 What to be avoided

These are some points which you should not cover in your theses unless you
know what you are doing. The reason for avoiding these points is simply, the
theory behind them is much too difficult.

• Do not go into too much detail about quadratic residues.
• Avoid methods based on elliptic curves. These methods belong to the

most powerful in computational number theory but also to the most com-
plicated.
• You may state and use the Prime Number Theorem, but do not try to

give a proof. Standard proofs of this fundamental result make heavy use
of complex function theory, although there are also proofs not relying on
complex analysis, but these are very messy.

10.3 An Annotated Bibliography

Nice and very readable introductions to number theory are the books of An-
drews (1994) (chapters 1, 2, 4 and 8) and Hardy and Wright (2008). The latter
book is the classical text book on number theory. The mandatory material
mentioned above is covered in chapters 1, 2, 5 and 6. In these texts you will
also find smooth introductions to modular arithmetic. Another introductory
text on modular arithmetic is a paper by Kak (2016).

The most important text book for your thesis is Crandall et al. (2005). This
text gives very good introduction to computational aspects of prime numbers.
You will find there algorithms for prime testing, prime number generation and
factoring. Indeed, most of the introduction to this thesis has been inspired by
this book. There is also a free download version available.

The booklet by Rempe-Gillen and Waldecker (2014) contains a lot of interest-
ing material on basic concepts of number theory and on primality testing. In
particular you will find there also a discussion of the AKS-Algorithm.

From its appearance Wagstaff (2013) looks like a book with fairy tales for
children. But beware! It is a very serious and up-to-date textbook on the
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integer factoring problem. However, the author presupposes from his readers
some basic knowledge on basic number theory, so the text is not so easy to read
and to comprehend. Having read some introductory texts mentioned above
will be helpful. Still it is an extremely valuable text. Particularly interesting
are chapters 2, 4 and 5. May be you find also chapter 10 worth reading as it
discusses some dirty tricks in factoring.

A very nice survey paper on the factoring problem is Pomerance (1996). The
author is inventor of the Quadratic Sieve, one of the most powerful algorithms
for integer factoring. Also, if you want to put emphasis on integer factoring,
then strongly recommended is the paper by Lenstra (2000).

Finally, some interesting texts on number theory and cryptography. The classi-
cal paper on public key encryption and related problems like digital signatures
is, of course, Diffie and Hellman (2006). A fine text book is Buchmann (2001),
interesting material on this topic is presented also in Wagstaff (2013). And I
should also mention The Codebreakers by David Kahn (1996). This great book
is a comprehensive history of cryptology, exciting like a detective novel.
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Elementary Methods of Cryptology

No matter how resistent the cryptogram, all that is really needed is an entry,
the identification of one word, or of three or four letters.

Helen Fouché Gains, 1939

Keywords: cryptography, cryptanalysis, substitution ciphers,
transposition ciphers, Monte Carlo Markov Chains,
simulated annealing

11.1 An Invitation

One of may favorite books is Mathematical Recreations and Essays by Rouse
Ball and Coxeter (1987). Mathematical recreations? Seems to be a contradic-
tion in terms. But believe me, this is not so. The very last chapter of this book
deals with cryptology and it begins with these remarkable sentences:

The art of writing secret messages – intelligible to those who are
in possession of the key and unintelligible to all others - has been
studied for centuries. The usefulness of such messages, especially
in the time of war, is obvious; on the other hand, their solution
may be a matter of great importance to those from whom the key
is concealed. But the romance connected with the subject, the not
uncommon desire to discover the secret, and the implied challenge
to the ingenuity of all from whom it is hidden have attracted to
the subject the attention of many to whom its utility is a matter of
indifference1.

Cryptology, the art and science of secret writing should be the topic of your
thesis.

1These words are apparently due to Abraham Sinkov (1907-1998), an american mathe-
matician with important contributions to cryptology.
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11.1.1 Some basic terms

Let us start fixing some important terms. Cryptography is that field of cryptol-
ogy which deals the understanding and implementation of techniques to obfus-
cate information. These techniques are usually called cryptographic algorithms,
cryptographic systems, in short cryptosystems or ciphers.

The text whose meaning should be concealed is called the plaintext. When the
rules of a cipher are applied to the plaintext, one says also, the plaintext is
encrypted, the result is called the ciphertext. Decryption is the reverse process
of recovering the plaintext from the known ciphertext. In many cases ciphers
have to rely on an external piece of information, the key.

Cryptanalysis on the other side, is the art of breaking a cipher. Given a piece
of ciphertext we want to recover the underlying plaintext usually without ad-
ditional information. This is also called a ciphertext only attack.

Steganography is a related field. It provides methods with the definite aim to
hide the existence of a secrete message at all. Examples are invisible inks, micro
dots, changes of the color values of pixels in a digital image, etc.

In this thesis you should consider only ciphers which work an a letter-by-letter
basis using a particular plaintext alphabet. For our purposes we shall consider
only the 27-letter alphabet in the standard lexicographic ordering:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
a b c d e f g h i j k l m n o p q r s t u v w x y z

Table 11.1: Our standard alphabet

where denotes the space-character. Let us call this our standard alphabet.

At first the plaintext to be enciphered has to be prepared: all letters are turned
to lowercase, all punctuation is removed, special characters like diereses are
expanded, e.g. ä becomes ae, numbers are translated into appropriate numerals,
e.g. 12 becomes twelve, etc. Furthermore, multiple spaces are condensed into
single spaces and specials characters like newlines and tab-stops are removed.
Note that we retain , the space character. In general this is not a good idea
as this may become a severe weakness of a cipher, but we shall keep spaces
because of readability, and also because it makes more fun.

The ciphertext resulting from applying a particular cipher and a key to a given
plaintext should be assumed to use the same alphabet as plaintext but all letters
written in uppercase. Examples follow.

According to the way plaintexts are transformed to ciphertext general crypto-
graphic systems are divided into two classes.

• Substitution ciphers. In these systems letters change their values. For
instance, an a at some position in plaintext may be changed to W, at
another position a may be changed to M, etc.
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Example 1.

plaintext send me more money

ciphertext KABVDSNSUGNTRQUWXF

There are two points to observe in this example: (1) look at the letter e in
plaintext. The first e is mapped to a A, the second occurrence of e maps
to N, etc. (2) ciphertext and plaintext have the same length, however, this
need not be so.

Monoalphabetic substitution ciphers use one alphabet only, this means,
that a particular plaintext letter is always mapped to the same cipher-
text letter. Polyalphabetic substitution ciphers use several alphabets and
switch between them according to some rule. Example 1, for instance, is
polyalphabetic.

• Transposition ciphers. Letters retain their value but change position.

Example 2.

plaintext send me more money

ciphertext YENOM EROM EM DNES

Whereas this cipher is easily decrypted (just be inspection) the cipher in
Example 1 is much more difficult.

In practice, many modern cryptographic systems make heavy use of both sub-
stitution and transposition. A typical example is the AES system. However, in
this thesis we should stay at rather elementary systems. Some of them will be
now presented.

Lets start with substitution ciphers.

11.1.2 Caesar’s Cipher

Encryption and decryption

This is the simplest case of a monoalphabetic substitution cipher. The roman
historian Suetonius reports that Caius Iulius Caesar used this extraordinarily
simple system to encrypt messages about battle orders, movements of military
forces, etc.

Encryption is performed using a translation table in which the ciphertext alpha-
bet results from the plaintext alphabet by a simple circular shift of d positions
to the left. This number d is the key of the system. Caesar mostly used the
key d = 3. The corresponding translation table is then:
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a b c d e f g h i j k l m n o p q r s t u v w x y z

C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

Table 11.2: The translation table of a Caesar’s cipher

Example 3. Here’s some plaintext message and the corresponding ciphertext
with unknown key d:

come home again all is forgiven

MYWOJRYWOJKQKSXJKVVJSBJPYAQSEOX

It’s interesting to observe that Caesar’s cipher is even used in our days! You
may have seen the science fiction movie 2001: A Space Odyssey. The name of
the rogue computer HAL is just a Caesar-cryptogram of IBM !

Decryption of a Caesar’s cipher is very easy. Given the key d perform a circular
shift by d letters to the right.

As we will need this later, we show now that encryption and decryption can be
expressed very conveniently in algebraic form. For this purpose we use the mod
binary operator:

a mod b = remainder of dividing a by b

For instance:

12 mod 7 = 5, 4 mod 13 = 4, 27000 mod 7001 = 1, etc.

Some care is needed when dealing with negative numbers. The correct definition
of the mod operator is found in Graham, Knuth, and Patashnik (2003, p. 82):

a mod b = a− bba/bc, (11.1)

where the floor function bxc gives x rounded down to the next smallest integer.
Thus

(−3) mod 27 = −3− 27b(−3)/27c = −3− 27 · (−1) = 24 (11.2)

Note in passing. Programming languages like C, Python or Java have a mod-operator

denoted by %. Only Python’s version behaves for negative values correctly like (11.1).

C and Java return −3 in (11.2). When implementing ciphers in C or Java you should

take care of this feature.

To encrypt a message using Caesar’s Cipher with key d we do simply the fol-
lowing:

• By Table 1, map each plaintext letter ai to an integer 0 ≤ ai ≤ 26.
• Calculate the ciphertext letter ci corresponding to ai by

ci = (ai + d) mod 27

Translate the numbers ci back to letters by Table 1 to get the ciphertext.
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Example 3 (continued) With key d = 10:

Plaintext c o m e h o m e a g a i n a l l ...

3 15 13 5 0 8 15 13 5 0 1 7 1 9 14 0 1 12 12 0 ...

13 25 23 15 10 18 25 23 15 10 11 17 11 19 24 10 11 22 22 10 ...

Ciphertext M Y W O J R Y W O J K Q K S X J K V V J

Decryption is the inverse, just subtract the key d and take care of negative
numbers using (1):

ai = (ci − d) mod 27

Cryptanalysis of Caesar’s cipher

Is Caesar’s cipher a secure one? It is customary to assess this important point
by looking at the key space K. This is the set of all possible keys the system
accepts. The number of keys |K| is a measure of computational work which is
necessary in the following worst case scenario: if we have only the ciphertext
and want to break the system by brute force, then in the worst case |K| = 26
keys have to tested. This is a very small number, so Caesar’s system cannot be
considered secure.

Brute force is actually the method of choice for this cipher, we just start width
d = 1, 2, . . . and try all keys, rotating each time the standard alphabet to the
right by d places.

But two important issues come immediately into our mind:

• How can we know that a particular ciphertext was created by a particular
cryptographic system, in our cases Caesar’s system?

• Even if we know, how can we find out the language of plaintext so that
we are able so recognize the unknown key?

There do exist important cryptanalytic tools that allow us to find reasonable
answers to these questions, provided the available ciphertext is not too short.
See Section 2 for more about that.

Let’s continue Example 3 and perform a brute force attack by systematically
trying keys d = 1, 2, . . . to decrypt the ciphertext. We obtain:

d = 1: LXVNIQXVNIJPJRWIJUUIRAIOX PRDNW

d = 2: KWUMHPWUMHIOIQVHITTHQ HNWZOQCMV

d = 3: JVTLGOVTLGHNHPUGHSSGPZGMVYNPBLU

...

d = 10 COME HOME AGAIN ALL IS FORGIVEN

Of course, this wasn’t a challenge. But still we may ask: Is there a way to find
the key d without brute force?
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11.1.3 Frequency analysis

This is one of the most important concepts in cryptanalysis and you should
take care of it in your thesis by a thorough discussion.

Human languages, may it be English, German, but also artificial languages like
Esperanto or even Klingon, follow certain rules. Words are not merely random
combinations of letters. Indeed, human languages exhibit certain statistical
regularities which can be identified by appropriate methods. The simplest and
oldest method is to calculate the frequency distribution of letters in a text. This
idea is to Al Kindi (801 - 873 AD) an Arab mathematician and philosopher.

To apply frequency analysis we first need a learning sample to obtain the refer-
ence distribution of letters. Usually we look for a sufficiently large text corpus
and count the occurrences of various letters. Of course, this requires also that
we have some idea about the language of the unknown plaintext.

For the purpose of this introduction I selected Tolstoj’s War and Peace. The
text (more than 3 million letters) has been prepared in the sense described
above. Then I counted letters in War and Peace and in the cryptogram of
Example 3. The results are shown in Table 3 below. It may be more informative
to make a line plot of these frequency distributions (See Figure 1).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Figure 11.1: The frequency distributions of Table 3

Here we can see very clearly:

• The letter with highest frequency in War and Peace is the space character
with about 18 %. In the cryptogram the letter with highest frequency is
J. This strongly suggests a shift of d = 10 between these distribution.
Thus we may try as a first guess the key d = 10.
• The same pattern can be seen if we compare the letters with second

highest frequency: e in the text corpus, O in the cryptogram, again a
distance of 10.
• Also quite remarkable: the cryptogram has only 31 letters, still it seems

that the frequency comparisons are conclusive.

Observe that our analysis above is based on a simple visual inspection of the
frequency plots, just look at the peaks!
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War And Peace ciphertext
n character abs. freq. rel. freq. abs. freq. rel. freq.
0 space 565 454 0.1834 0 0.0000
1 a 204 128 0.0664 1 0.0323
2 b 34 419 0.0112 1 0.0323
3 c 60 448 0.0197 0 0.0000
4 d 117 752 0.0383 0 0.0000
5 e 312 716 0.1017 1 0.0323
6 f 54 491 0.0177 0 0.0000
7 g 50 906 0.0166 0 0.0000
8 h 166 293 0.0541 0 0.0000
9 i 172 223 0.0560 0 0.0000

10 j 2 485 0.0008 5 0.1613
11 k 20 322 0.0066 3 0.0968
12 l 96 030 0.0312 0 0.0000
13 m 61 286 0.0199 1 0.0323
14 n 183 114 0.0595 0 0.0000
15 o 191 440 0.0622 3 0.0968
16 p 44 456 0.0145 1 0.0323
17 q 2 319 0.0008 2 0.0645
18 r 146 594 0.0477 1 0.0323
19 s 162 126 0.0527 3 0.0968
20 t 224 202 0.0729 0 0.0000
21 u 64 911 0.0211 0 0.0000
22 v 26 641 0.0087 2 0.0645
23 w 58 925 0.0192 2 0.0645
24 x 3 758 0.0012 2 0.0645
25 y 45 931 0.0149 3 0.0968
26 z 2 387 0.0008 0 0.0000

Total 3 075 757 1.0000 31 1.0000

Table 11.3: Frequency Counts

Is there a better way to compare two discrete distributions?

There are quite a number of ways we can do better. A very simple idea is to
calculate the total variation distance between two distributions.

Consider two frequency distributions fi and gi defined on the same set X . In
our case

X = {0, 1, 2, . . . , 26}

We say that fi and gi are close if the total variation distance is small. The
latter is defined by

‖f − g‖TV =
1

2

∑
i∈X
|fi − gi|

I’ve calculated ‖f − g‖TV and plotted for all shifts d = 0, 1, . . . , 26. You can
see the striking down-peak at d = 10 in Figure 2. Again we measure a strong
signal indicating that the key is d = 10. Note that this can be found out by
the computer in a more or less automatic fashion and does not need human
intervention.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Figure 11.2: TV of distributions in Table 2 for shifts d = 0, 1, . . . , 26

11.1.4 Monoalphabetic substitution

Encryption and decryption

Caesar’s Cipher is a special case of a monoalphabetic substitution cipher. The
latter is defined by a translation table for the standard alphabet (Table 1) where
in the second row we have a permutation P of first row. In case of Caesar’s
Cipher this permutation is cyclic, as it is obtained by a cyclic shift of letters.
But now we no longer require this permutation to be cyclic. As a result the
classical monoalphabetic substitution is much stronger than Caesar’s cipher.

Example 4. Given is the following translation table where the second row is
a random permutation of the standard alphabet.

plaintext alphabet: a b c d e f g h i j k l m n o p q r s t u v w x y z

ciphertext alphabet = key: Y C S O E X P Q Z B W L H V M D G U J K A T I F R N

Table 11.4: A translation table for a monoalphabetic substitution cipher

Enciphering is easy. For example assume that we want to conceal the somewhat
desperate message need reinforcements at once:

plaintext: need reinforcements at once

ciphertext: MXXEYJXBMPDJOXVXMAKYCAYDMOX

Observe that the encryption key is just the second row of the translation table.

Since our standard alphabet has 27 letters, the key space K consists of all
permutations of 27 elements which is quite a lot:

|K| = 27! = 10888869450418352160768000000 ≈ 1028

Applying a brute force attack would require to test so many keys in the worst
case. But even if we have the best high-speed computers at our disposal, it will
simply take too much time to break such a cipher by brute force.

Thus, if we accept the size of the key space as an indicator of secureness of
a cryptographic system, then monoalphabetic substitution seems to be pretty
safe. Later we will find out that this system is a rather weak one and crypt-
analysis poses no real challenge for an experienced cryptanalyst.
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But before we turn to these aspects: How can be decrypt a secret message when
we possess the key?

This is easy. Just form the inverse permutation P−1 for the key P : sort the
translation table along the second row and then interchange row 1 and row 2:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

w t i a o d x p l v r c k u z c f g y b u q m j e h

Table 11.5: The translation table for deciphering Example 4

Using this table decryption is straightforward.

Cryptanalysis of a monoalphabetic substitution cipher

Due to the size of the key space a brute force attack using the ciphertext only
is certainly not feasible.

What about frequency analysis?

Why not? A monoalphabetic substitution always maps a plaintext letter to
the same ciphertext letter. Thus letter frequencies are preserved, but they are
distributed very differently according to the key permutation P . Thus if e.g.,
the space character is mapped to the ciphertext letter W, then in a sufficiently
long ciphertext W will be the letter with roughly the same frequency as the space
character in plaintext. Normally, cryptanalysts just start this way and try to
get a clue about the unknown plaintext by replacing the ciphertext letters with
highest frequency by those letters which in a learning sample (e.g., War and
Peace) have highest frequency.

Example 5. For the next example I have chosen a somewhat longer plaintext,
let us call it T , with 714 letters. Upon enciphering I obtained the ciphertext2:

FNDEYQUUDXTDTHDGTDGYNDNHBDFNDEYQUUDOJXYGDJHDOLQHINDFNDEYQUUDOJXYGDTHDGYNDEN

QEDQHBDTINQHEDFNDEYQUUDOJXYGDFJGYDXLTFJHXDITHOJBNHINDQHBDXLTFJHXDEGLNHXGYDJ

HDGYNDQJLDFNDEYQUUDBNONHBDTSLDJEUQHBDFYQGNMNLDGYNDITEGDZQVDWNDFNDEYQUUDOJXY

GDTHDGYNDWNQIYNEDFNDEYQUUDOJXYGDTHDGYNDUQHBJHXDXLTSHBEDFNDEYQUUDOJXYGDJHDGY

NDOJNUBEDQHBDJHDGYNDEGLNNGEDFNDEYQUUDOJXYGDJHDGYNDYJUUEDFNDEYQUUDHNMNLDESLL

NHBNLDQHBDNMNHDJODFYJIYDJDBTDHTGDOTLDQDZTZNHGDWNUJNMNDGYJEDJEUQHBDTLDQDUQLX

NDRQLGDTODJGDFNLNDESWCSXQGNBDQHBDEGQLMJHXDGYNHDTSLDNZRJLNDWNVTHBDGYNDENQEDQ

LZNBDQHBDXSQLBNBDWVDGYNDWLJGJEYDOUNNGDFTSUBDIQLLVDTHDGYNDEGLSXXUNDSHGJUDJHD

XTBEDXTTBDGJZNDGYNDHNFDFTLUBDFJGYDQUUDJGEDRTFNLDQHBDZJXYGDEGNREDOTLGYDGTDGY

NDLNEISNDQHBDGYNDUJWNLQGJTHDTODGYNDTUB

Let us compare the three highest letter frequencies in the ciphertext with those
in the text corpus (see Table 3):

War and Peace e t Ciphertext D N G

Frequency 0.1834 0.1017 0.0729 0.1966 0.1039 0.0716

2I shall keep the key secret!
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So, it makes sense to try the substitutions

D→ , N→ e , G→ t

The result is interesting (to save space I have displayed only the first few lines):

Fe EYQUU XT TH tT tYe eHB Fe EYQUU OJXYt JH OLQHIe Fe EYQUU OJXYt TH tYe EeQE QHB

TIeQHE Fe EYQUU OJXYt FJtY XLTFJHX ITHOJBeHIe QHB XLTFJHX EtLeHXtY JH tYe QJL Fe

EYQUU BeOeHB TSL JEUQHB FYQteMeL tYe ITEt ZQV

• Suddenly we can see probable word boundaries!
• Other conjectures come into our mind: the word tYe is likely to mean

plaintext the, which is the most common three-letter word in English. So
we may try Y → h.

Fe EhQUU XT TH tT the eHB Fe EhQUU OJXht JH OLQHIe Fe EhQUU OJXht TH the EeQE QHB

TIeQHE Fe EhQUU OJXht FJth XLTFJHX ITHOJBeHIe QHB XLTFJHX EtLeHXth JH the QJL Fe

EhQUU BeOeHB TSL JEUQHB FhQteMeL the ITEt ZQV

What about the word EhQUU which appears three times in the first line? May
be, it means shall? Give it a try:

E→ s , Q→ a , U→ l :

Fe shall XT TH tT the eHB Fe shall OJXht JH OLaHIe Fe shall OJXht TH the seas aHB

TIeaHs Fe shall OJXht FJth XLTFJHX ITHOJBeHIe aHB XLTFJHX stLeHXth JH the aJL Fe

shall BeOeHB TSL JslaHB FhateMeL the ITst ZaV

Hm, looks interesting . . .

However, from now on the work of the cryptanalyst becomes truly hard and
messy. She has to try several conjectures about text snippets so that the text
becomes closer and closer to English text, that the text becomes more plausible.

What cryptanalysts often do at this point is to form contact tables, meaning
they gather statistics about the occurrence of bigrams in the ciphertext and
compare these with statistics collected from a text corpus.

A bigram is just a 2-letter sequence in text. E.g., our original ciphertext begins
with bigrams

FN–ND–DE–EY . . .

What is lurking behind is a remarkable theory about human language. Early as
1906 A. Markov performed frequency counts of bigrams in Alexander Pushkin’s
Eugene Onegin. He used these to demonstrate and later prove an important
extension of the Law of Large Numbers to dependent trials. That was the
origin of one of the most important classes of stochastic processes, Markov
Chains. This idea has been continued and extended by Claude Shannon in
his foundation of a mathematical theory of communication (see the annotated
bibliography at the end).

In War and Peace the most frequently occurring bigrams are:
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Bigram Frequency Count

e 0.0361 111116
t 0.0285 87587
d 0.0247 75995
he 0.0244 75022
th 0.0239 73400
a 0.0226 69556
s 0.0204 62865
t 0.0189 58198
h 0.0162 49954
in 0.0157 48180

You can see from these statistics that the letter e is most likely to occur at the
end of a word, whereas t very often appears at the beginning of a word.

However, a by intuition guided process of trial and error as we applied when
consulting frequencies of simple letters is very hard to carry out.

Is it possible to run the cryptanalytic process somehow automatically so that
permanent human interventions can be avoided?

Yes! Here is a solution.

11.1.5 Combinatorial Optimization

Combinatorial optimization is a class of methods that deal typically with prob-
lems of very high dimension (= number of variables). In most cases of in-
terest the variables are discrete and the space of possible solutions is finite-
dimensional. Hence, in principle, it is possible to find the optimal solution by
brute force, i. e., by complete enumeration of all solutions. But only in a few
cases this strategy is viable, the number of admissible solutions is usually ex-
orbitantly large, too large for such an unsophisticated approach. Indeed, most
combinatorial optimization problems are very hard in a well defined mathemat-
ical sense.

The classic in combinatorial optimization is the Traveling Salesman Problem
(TSP): a salesman has to visit customers in n different cities. If the distances
between each pair of cities is known, we have to find a tour such that

• each city is visited exactly once;
• the salesman returns to the city where his tour started;
• the tour has minimum length.

Technically, the problem reduces to finding a permutation of the numbers
1, 2, . . . , n such that an objective function is minimized. Here the objective
function assigns each permutation the total length of the corresponding tour.

Can you see parallels to the problem of breaking a monoalphabetic substitution
cipher? It’s the unknown key which is also a permutation of the standard
alphabet! So, may be we can learn something from combinatorial optimization?

However, to find the optimum of a combinatorial optimization problem such as
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the TSP one has usually resort to iterative search procedures. For this purpose
several heuristic and meta heuristic algorithms have been developed. Among
them one of the most successful is simulated annealing. A special adaptation
of this meta heuristic is the Metropolis Algorithm which is very well suited for
some cryptanalytic purposes.

First we need an objective function. In our case this will be a plausibility
measure f(p) defined on the set S27 of all permutations (= keys) p of the
standard alphabet. For this function f(p) we require that it should preferably
assume high values if the text deciphered with p is close to English text. We
want to measure this by using bigram statistics in such a way that f(p) takes
on high values when the bigram frequencies in the decrypted text most closely
match those of some reference text like War and Peace. Examples of plausibility
measures may be found in Diaconis (2008) and Chen and Rosenthal (2010).

The Metropolis Algorithm runs roughly as follows:

• Fix a scale parameter α > 0.

• Create an initial permutation p0, e.g. a random permutation on S27 and
calculate the plausibility measure f(p0).

• Repeat the following steps for a sufficient number of iterations.

– Given p0 create a new permutation p1 in a uniform way (to be ex-
plained shortly) and calculate the plausibility f(p1).

– Sample a pseudo random number u having a uniform distribution on
the interval [0, 1].

– if u <
(
f(p1)
f(p0)

)α
then accept the new key p1 : p0 ← p1. Otherwise

reject p1 and leave p0 unchanged.

A few remarks are in order:

• If the new key p1 yields higher plausibility than p0, then
(
f(p1)
f(p0)

)α
> 1

and since u ≤ 1, the better solution p1 is always accepted.
• If the new key p1 results in smaller plausibility than p0, then p1 may be

still accepted with probability
(
f(p1)
f(p0)

)α
. This idea lies at the heart of sim-

ulated annealing: it allows us to escape a local maximum by temporarily
accepting a worse solution.
• The scale parameter α, typically chosen close to 1, influences the proba-

bility of accepting a worse solution. It is closely related to the concept of
temperature in simulated annealing.
• The new key p1 can be created in many ways uniformly out of p0. The

most common technique is to select two different entries of p0 at random
and exchange them so to from the new key p1. This is also called a
transposition.

So, it’s time to try that. I crafted in a more or less quick and dirty fashion
an implementation of this algorithm in the C programming language and used
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the plausibility measure proposed by Chen and Rosenthal (2010). Here are the
results:

200 HTEL ASSENUEUREYUEY TETRIEHTEL ASSEPON YEOREPMARVTEHTEL ASSEPON YEUREY TELTAL

400 HA REISS DU UN MU MEA ANT HA REISS CODEM ON CLINVA HA REISS CODEM UN MEA RAIR

600 HA REISS FU UN DU DEA ANT HA REISS COFED ON CLINPA HA REISS COFED UN DEA RAIR

800 HA REISS FU UN TU TEA AND HA REISS COFET ON CLINGA HA REISS COFET UN TEA RAIR

1000 OE SHILL FU UN TU THE END OE SHILL CAFHT AN CRINGE OE SHILL CAFHT UN THE SEIS

1200 ME SHILL GO ON TO THE END ME SHILL PAGHT AN PRINCE ME SHILL PAGHT ON THE SEIS

1400 ME SHALL GO ON TO THE END ME SHALL WIGHT IN WRANCE ME SHALL WIGHT ON THE SEAS

1600 ME SHALL GO ON TO THE END ME SHALL WIGHT IN WRANCE ME SHALL WIGHT ON THE SEAS

1800 WE SHALL GO ON TO THE END WE SHALL PIGHT IN PRANCE WE SHALL PIGHT ON THE SEAS

2000 WE SHALL GO ON TO THE END WE SHALL FIGHT IN FRANCE WE SHALL FIGHT ON THE SEAS

Actually after 2000 iterations we have got the plaintext (with correct interpunc-
tuation):

We shall go on to the end, we shall fight in France, we shall fight
on the seas and oceans, we shall fight with growing confidence and
growing strength in the air, we shall defend our Island, whatever
the cost may be, we shall fight on the beaches, we shall fight on the
landing grounds, we shall fight in the fields and in the streets, we
shall fight in the hills; we shall never surrender, and even if, which
I do not for a moment believe, this Island or a large part of it were
subjugated and starving, then our Empire beyond the seas, armed
and guarded by the British Fleet, would carry on the struggle, until,
in God’s good time, the New World, with all its power and might,
steps forth to the rescue and the liberation of the old.

Winston S. Churchill, House of Commons, June 20, 1940

It is quite amazing how quickly and automatically the text was deciphered.

Many important question arise now, but we shall defer these to section 2.

11.1.6 The Vigenère Cipher, le chiffre indéchiffrable

To summarize our findings: monoalphabetic substitution ciphers can be broken
routinely by frequency analysis of letters or bigrams. The major reason for
this weakness is that a particular letter in plaintext is always mapped to the
same latter in ciphertext. Thus there are always revealing footprints in the
frequencies of letters in ciphertext. Provided the ciphertext is sufficiently long
frequency counts give us statistically significant signals which can be used to
break a cipher. So these systems cannot be considered secure.

This all was certainly known in the 15th century. Leon Battista Alberti (1404-
1472), a remarkable Renaissance scholar working as poet, architect, painter
and also as cryptographer was apparently the first to propose a cipher which
(seemingly) rules out frequency analysis. His idea was to use more than one
alphabet for encryption. By doing so, one and the same letter will have several
equivalents in ciphertext. E.g., a plaintext a may be mapped into W on its first
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occurrence. The next a may be mapped to B, etc. It is this idea which forms
the basis of what is known as polyalphabetic substitution. Observe the intended
effect of polyalphabeticity: it is to flatten the distribution of letter frequencies
fi as far as possible. There will be still peaks in the distribution but they are
merely the result of the random variation of the statistical estimates fi.

But, what ciphertext alphabets should be used?

How do we determine which alphabet has to be used in a particular step of the
encryption process?

Several solutions have been proposed among these the classical Vigenère cipher
by Blaise Vigenère in 15863.

Encryption and decryption

The Vigenère cipher uses a table of alphabets, called tabula recta, see Table
6. It is has 27 lines, the line d being our standard alphabet shifted left by
d = 0, 1, . . . , 26. Thus these are all Caesar’s codes!

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Table 11.6: The Vigenère table for our standard alphabet

Encryption is best explained by an example. In the sequel we assume a secret
key k is used for communication and that the length of k is < 27, the size of

3Actually this cipher has been invented earlier by Giovanni Battista Bellaso in 1553.
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the standard alphabet4.

Example 6. Suppose we want to encipher the plaintext meet you on sunday
at nine with key PLAYFAIR. First we form the key string by perpetuating the
key until the key string has the length of the plaintext:

Key PLAYFAIRPLAYFAIRPLAYFAIRPL

Plaintext meet you on sunday at nine

Ciphertext BQFRFZXLP OYYVWVQJAZZAW CQ

Then process each letter of the plaintext in turn:

• The first plaintext letter m has to be enciphered with the first letter of the
key string P.

• For this purpose we use the alphabet in line P in the tabula recta.
• Using this alphabet the letter m is enciphered as B, etc.

Of course, using the Vigenère cipher this way is really awkward. As a result
the application of the cipher for instance in the battle field was practically too
difficult and cumbersome. But may be that people were not aware of molular
arithmetic? Indeed, there is a very simple algebraic implementation close to
that we used for Caesar’s Cipher.

Let k denote the key string. For instance, in Example 6 we had

k = PLAYFAIRPLAYFAIRPLAYFAIRPL,

and ki the integer representation i-th letter of k which we obtain by applying
Table 1. So k1 = 16, k2 = 12, etc. Furthermore, let ai and ci denote the
integer representation of the i letter of the plaintext and the ciphertext. Then
enciphering is most easily done by:

ci = (ai + ki) mod 27, i = 1, 2, . . . , n (11.3)

where n is the length of the plaintext.

So:

plain ai key ki ai + ki ci cipher

m 13 P 16 29 2 B

e 5 L 12 17 17 Q

e 5 A 1 6 6 F

t 20 Y 25 45 18 R

Decryption is done in the inverse way:

ai = (ci − ki) mod 27, i = 1, 2, . . . , n (11.4)

Thus, knowing the key decryption is also very easy. But what, if we do not
know the key?

4This assumption can be weakened considerably.
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Cryptanalysis

We have already remarked that the secureness of a system is measured by the
size of its key space K|. Let d denote the length of the key. E. g., for PLAYFAIR
we have d = 8. Then (allowing repeated letters in the key):

|K| = 27d, in our example: |K| = 278
.
= 2.82 · 1011

This is much less than for the monoalphabetic substitution cipher. But we
know, simple frequency analysis is now out of business. This is why Vigenère
was also called le chiffre indéchiffrable.

Still, statistical methods can be used for a very effective attack. There are two
severe weaknesses of Vigenère which can be used to break it:

• The key string is formed by repeating the key. This generates a periodicity
which may leave its footprints in ciphertext.
• The alphabets are simple cyclic permutations of the standard alphabet.

Thus once an alphabet is chosen the corresponding plaintext letter is
enciphered using a simple Caesar’s Cipher which we know is very easy to
break.

By these observations it should be clear that finding the length of the key is
the crucial point. Once known the rest of the business is done by frequency
analysis as we have it outlined in Section 1.3.

There are various approaches to find the key length d. One is based on the use
of the index of coincidence Φ(T ) invented by William F. Friedman5.

Let T be a text over some alphabet. Assume that the length of T is |T | = n and
the alphabet consists of N letters. Then Φ(T ) is an estimate of the probability
that two randomly chosen letters in T are the same:

Φ(T ) =
1

N(N − 1)

n∑
i=1

Fi(Fi − 1),

where Fi denotes the absolute frequency of the i-th letter of the alphabet in the
text T . For English text the value of Φ(T ) is around 0.07, whereas for random
text Φ(T ) = 1/27 = 0.037, all letters being equally probable.

Now let T = C, C being the cipher text and suppose the key has length d.
Then we split C into d blocks:

C0 = [c0, cd, c2d, . . .]

C1 = [c1, cd+1, c2d+1, . . .]

C2 = [c2, cd+2, c2d+2, . . .]

. . .

Cd−1 = [cd−1, c2d−1, . . .]

5William Frederick Friedman (1891 - 1969) was one of the greatest cryptologist of all time.
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If the key length is indeed d, then these blocks should look like English text for
Φ(Ci). So we calculate the indices of coincidence for each group Ci and take
the average:

Φ(C) =
1

d
[Φ(C0) + Φ(C1) + . . .+ Φ(Cd−1] .

The value of Φ(C) should be around 0.07 if the key length is indeed d, otherwise
Φ(C) will be much smaller.

Let’s try this.

Example 7. Suppose we have intercepted the following message which we
know (from some source) is enciphered using the Vigenère system and plaintext
language is English.

GWGMRUVTMZSSATENRIBDRUFGNHUZRKODNHWTSOTIMFEBZZEUNHAUSEXI

ENRKODNHWTSONGWSWRNHRSS NN PAGMVEENHAUGSSGRLMFNP YRQECZI

KFNHUZRQSPPZRPTOFBWACPPCXJQOFBIPHVUUUPBDRLSUWC UNJGWMNZF

NPZZIJQP UYPITDHDFAHMBSTNUVHSMZMMWWFAOYIJUNHUZRKODNHWTSO

TIMFEBZZEUNFRAIFGGMNFAVPHZRUBO IKJTMMBWSSQKUKISONGWSWRNH

RHBJRLENSBFUKIOHMCEAIXRQRPTOFBWAOHFCKVRTMIXAGWRUSNSFVXSO

NVAPWSAARHKAWHMXSOACFUTVGOPIETWSRLRUVPFU UNXEU NCCEM CZT

MNFAETNXZAOBMVYSSTZZEUNHULFVUWM LSGWRLROSVAN BGXAHJ

For this text C I have calculated Φ(C) for conjectured key lengths d = 1, 2, . . . , 25.
The results are given in Figure 3. You can see the striking peaks at 6, 12, 18, 24.
This is a strong indication that the unknown key has length d = 6.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0.02

0.04

0.06

0.08

Figure 11.3: The index of coincidence for the cryptogram in Example 7

Once we have a good guess of the key length d the rest is easy. Since all al-
phabets of the Vigenère table are shifted Caesar’s alphabets, just apply the
technique outlined in Section 1.3 to determine the shift by means of total vari-
ation distance.

Having done so, we find that the secret key is NOMURA and the plaintext of the
cipher is (with correct interpunctuation):

Thus, the earnest hope of the Japanese Government to adjust

Japanese-American relations and to preserve and promote the peace
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of the Pacific through cooperation with the American government

has finally been lost.

The Japanese Government regrets to have to notify hereby the

American Government that in view of the attitude of the American

Government it cannot but consider that it is impossible to reach

an agreement through further negotiations.

This is indeed a famous document dating from December 7, 1941. It is the last
page of the Japanese note handed to Secretary of State Cordell Hull while Pearl
Harbor was being attacked by Japanese forces. Nomura was the name of the
Japanese ambassador at Washington. The thrilling story about this cryptogram
is told in Chapter 1: A Day of Magic of David Kahn’s book (Kahn, 1996).

11.1.7 Transposition Ciphers

Encryption and decryption

We already talked briefly about transposition ciphers. These come in an im-
pressing number of variants. The basic feature of these systems is that letters
retain their value but change place in text.

Here I will describe only the simplest system.

The correspondents agree upon a secret key p which is a permutation of the
numbers 1, 2, . . . , d for some d > 1. The plaintext is divided into blocks of
length d and letters within each block are permuted according to p.

Example 8. The plaintext is troops gathering attack from north and
this should be enciphered with key p = [4 1 5 3 2]. Thus d = 5. Encryption goes
this way (for reasons of readability the space character is printed as underscore
letter):

key p 41532 41532 41532 41532 41532 41532 41532

plaintext troop s gat herin g att ack f rom n orth

ciphertext OTPOR ASTG IHNRE TGTA AFKC RNMO HO TR

Decryption is also easy, just take the inverse permutation p−1 and recover the
plaintext from the ciphertext.

Example 8. (continued) The inverse permutation is found easily by writing p
as 2-rowed array, sorting the second row and exchanging rows:

p =

(
1 2 3 4 5
4 1 5 3 2

)
=⇒

(
1 2 3 4 5
2 5 4 1 3

)
= p−1

Hence:

inverse p−1 25413 25413 25413 25413 25413 25413 25413

ciphertext OTPOR ASTG IHNRE TGTA AFKC RNMO HO TR

plaintext troop s gat herin g att ack f rom n orth
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Cryptanalysis

Transposition ciphers are just what cryptanalysts are waiting for, as was re-
ported e.g. about the German Abwehr during World War II. The key space has
size d! which is quite small unless d is large. In Example 8 we have 5! = 120,
thus a brute-force attack doesn’t result in serious computational trouble. Fre-
quency analysis, however, seems to be out of business now. Though . . . , see
Section 2 for more about this and related questions.

11.1.8 Perfect Secrecy

After having been introduced to some classical ciphers and after you have seen
that these can be broken rather routinely you may wonder whether there exists
a cipher system that cannot be broken, a system guaranteeing perfect secrecy.

Here is a naive argument which tells us: No, there can’t be perfect secrecy,
because

• All messages we send and receive have finite length, they consist of a finite
number of symbols, thus require finite time for transmission.
• Therefore it is always possible to find the plaintext of a ciphertext by

brute force. It’s just a matter of time and computing power. But, of
course, it make take quite some time.

All right, but still there is a fatal flaw in this argument which I will demonstrate
drastically in Example 9 below.

Actually, there are cipher systems giving us perfect secrecy. In informal terms:
a cipher system has perfect secrecy, if the unauthorized eavesdropper learns
nothing about the plaintext from the ciphertext.

This informal statement can be made strict by means of conditional probability.
Perfect secrecy has been defined and thoroughly discussed by Claude Shannon
(1948) and (1949) in his seminal papers.

An example of a system having this remarkable property is Vernam’s Cipher.
It is breathtakingly simple!

We will apply an algebraic representation as we have used it with Caesar’s and
Vigenère’s cipher. The basic ingredient of Vernam’s cipher is the key:

• it must have length equal to the length of the plaintext;
• it must be absolutely random.

By Table 1, there is a one-to-one correspondence between letters of the standard
alphabet and the integers 0, 1, . . . , 26. Again, let ai denote the numerical value
of the plaintext letter at position i, ki the value of the key letter and ci that of
the ciphertext letter. Assume that the plaintext has length n. Then we have:

encryption: ci=(ai + ki) mod 27, i = 1, 2, . . . , n

decryption: ai=(ci − ki) mod 27
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Example 9. In the following table a plaintext and a key of equal length are
given and enciphered:

plaintext enemy will surrender tomorrow

key TQPLNFDZYADMNQS SP RUSJYDTOFP

ciphertext YDUYLF HJMDEHHJEFTEIULYKSKFUL

For the first two letters:

a1 = e l 5, k1 = T l 20, c1 = (5 + 20) mod 27 = 25 l Y

a2 = n l 14, k2 = Q l 17, c2 = (14 + 17) mod 27 = 4 l D

What about cryptanalysis? Let us assume that the cryptanalyst knows that
this is a Vernam cipher but he does not know the key.

Indeed, the cryptanalyst is in a very weak position now. The plaintext has
length n = 29 which means that there are 2729 keys to be considered in the
worst case if a brute-force attack is run. But:

2729 = 323257909929174534292273980721360271853387 ' 3 · 1041

Of course, only a relatively small percentage of keys will yields sensible En-
glish text. Eventually the cryptanalyst may find the correct key. But during
key search with some positive probability he may also come across the key
LCHXLJRWYMTWWWJPEDDIAZLGATRBL, which (alas!) yields:

ciphertext YDUYLF HJMDEHHJEFTEIUNYVSKFYL

key LCHXLJRWYMTWWWJPEDDIAZLGATRBL

plaintext mama will kill papa tomorrow

In other words, an exhaustive key search will yield all sensible English6 text
of a given length. Thus the cryptanalyst runs into a difficult decision problem
which can hardly be resolved! That’s why Vernam’s cipher is perfect. Yet it is
not foolproof!

11.2 Where to go from here

After having read this Invitation so far (about 20 pages!) you may wonder
whether there is anything left to do for you?

There remains quite a lot of work to be done.

Write an interesting and exciting thesis about elementary methods of cryptol-
ogy. Your paper should be a nice mix of theoretical considerations, historical
notes and, of course, it should also have a computational flavor. Your thesis
should also contain several examples to demonstrate your findings.

6of course also German, French, Russian,. . .
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11.2.1 Issues of general interest

• At the outset you should make up your mind what programming language
you will use. For instance, all examples in this introduction are written
in C. But you are free to use any other language like Java, R, etc. It may
also be helpful to use some scripting language like perl.

• Next organize an appropriate text corpus to have a learning sample. The
texts may be in English or German and should be in total sufficiently long
(about 3 mega bytes, or so). Based on this learning sample:

– Perform a careful statistical analysis of these texts.
– Determine frequencies of letters, bigrams, may be also of trigrams

(sequences of three contiguous letters).

Regarding the text corpus: you may use English or German texts, but
take care of copyright protections.

• Implement an automatic decryption routine for Caesar’s cipher. You may
or may not use total variation distance. There is also a quadratic measure
which will remind you in the χ2-statistic.

• Give a careful discussion of the Metropolis algorithm. It is actually a
special case of a meta heuristic known as Simulated Annealing. SA is
capable of more, the driving master process of SA is able to intensify and
diversify search.

• Implement the Metropolis algorithm to break a monoalphabetic cipher.
Try to be as general as possible so that your implementation can be easily
reused to solve other, harder problems.

• Give a thorough discussion of the classical Vigenère cipher and implement
a routine which can break this system.

• Discuss in detail Friedman’s index of coincidence Φ(T ) and related mea-
sures.

• Implement a routine to solve the simple transposition cipher introduced
in Section 1.7.

• I have remarked that the Vernam cipher is not foolproof. It can be broken
if not used properly. Give a careful discussion of the conditions for proper
use of this cipher.

11.2.2 Some more suggestions

• When playing and experimenting with the Metropolis algorithm, for in-
stance, you will find out, that to break a cipher you will need a minimum
amount of ciphertext available, the more, the better. Indeed, there is a
minimum length of ciphertext needed to guarantee a unique decryption.
This length is known as unicity distance U and it is closely related to the
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concepts of entropy and redundancy. For simple substitution ciphers U
is surprisingly small, about U = 30 for English text. However, for the
Vernam cipher, U =∞. Discuss U .

• Recall that the fatal weakness of Vigenère’s cipher is periodicity generated
by the key, and this can hardly be hidden. We have already discussed
finding the key length by means of the index of coincidence. But there is
another famous method: Kasiski’s Test7, which tries to identify recurrent
patterns in the ciphertext and deduce thereby the length of the secret key.
Discuss and implement Kasiski’s test.

• Once the length of the key is known the classical Vigenère cipher is rather
straightforward to break because the alphabets used are simple shifted
Caesar’s alphabets. But the strength of Vigenère can be boosted con-
siderably when the Vigenère table consists of (in our cases 27) different
random permutations. The size of the key space is thereby increased from
27d to (27!)d where d is the length of the key. Devise an algorithm to
break this general Vigenère cipher. Metropolis may be helpful in this
context.

• Actually, using more general alphabets in the Vigenère table is an old idea
already suggested by Porta8. Vigenère actually invented another system
to generate the secret key, the autokey cipher. This method uses the
plaintext to become part of the key. Discuss the idea of autokey and, if
possible, implement a method to break the resulting cipher.

• So far we have only seen simple transposition ciphers, but there is an
incredible number of variants. You may also discuss one or the other
example of more exotic transposition systems.

• An interesting questions is: how can the cryptanalyst find out what cipher
is used? Are there methods to identify the cipher system?

11.2.3 What to be avoided

Your thesis should cover basic cryptology up to 1918, the end of World War
I. THis is a key date, as early in 1918 Arthur Scherbius patented the first
electromechanical cipher machine based an rotors, the Enigma Machine and
this initiated a new era in cryptology.

I would appreciate if you avoid discussing ciphers like Enigma and its various
descendants, the Data Encryption Standard (DES) or the Advanced Encryption
Standard (AES) which is widely used today. Also ciphers based on number
theory like RSA should not be topic in your thesis. All these are very advanced
systems requiring special mathematical methods that I cannot afford from you.

7Friedrich Wilhelm Kasiski (1805 - 1881) was a prussian infantry officer. In 1863 he pub-
lished a small booklet on cryptology which became on of the most influential and important
works in this field.

8Giambattista della Porta, 1535-1615, Renaissance scholar.
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Please do not be disappointed about this restriction.

Now, after having worked out the major issues there remains on final job for
me to be done: Enjoy writing this thesis! Have fun!

11.3 An Annotated Bibliography

The book Kahn (1996) is the classical text about the history of cryptology.
This is really an exciting book covering the field from ancient times up to the
end of the 20th century. Chapter 1, One Day of Magic is the thrilling story
of American codebreakers around William Friedman and the Japanese attack
on Pearl Harbor in 1941. The crucial Japanese diplomatic notes (we have seen
the last one in Section 1.6.2) were, of course, not encrypted in Vigenère. Japan
used several much stronger systems, practically all broken by the United States
Signal Intelligence Service to which William Friedman belonged.

Bauer (2007) is an excellent introduction to cryptography and cryptanalysis.
The book has two parts. In the first part standard methods of cryptography
are introduced. The second part is devoted to cryptanalysis. The book is
full of interesting examples. Part II gives a fairly complete coverage of the
most important statistical methods for cryptanalysis. No special mathematical
knowledge is required to read and understand this book except for some basic
terms like relations and functions and the corresponding mathematical notation.
There is also a German edition.

Modern cryptanalysis by Swenson, 2008 is another remarkable textbook on the
subject, however, only Chapter 1 will be relevant for your thesis.

You will also enjoy the booklet by Gains (1956). Chapters 1-7 are devoted to
transposition ciphers, chapters 8-23 to substitution ciphers. It contains many
solved examples and you will find here also a thorough discussion of polyalpha-
beticity, in particular of the Kasiski Test.

The paper Diaconis (2008) discusses the Metropolis algorithm for breaking
monoalphabetic ciphers. Only the first few pages will be interesting for you
because there you find a description of the Metropolis algorithm and a plausi-
bility measure. The major part of this article deals with convergence problems
and representation theory of finite groups. Chen and Rosenthal (2010) is a
technical report, you will find very interesting. It introduces the Metropolis al-
gorithm with an alternative plausibility measure and discusses applications to
various ciphers including simple transposition. Also, the authors report some
statistics recorded in their experiments with different text corpora and different
choices of parameters. An abridged version having been published (Chen and
Rosenthal, 2012) in Statistics and Computing.
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Topic 12

Parrondo’s Paradox

The Gambler’s Perpetuum Mobile

Keywords: probability theory, fair games, Markov chains

12.1 An Invitation

12.1.1 Favorable and unfavorable games

Gambling lies at the roots of probability theory. From its very beginning as
a mathematical discipline in the 16th and 17th century problems arising from
studies of various games have been impetus to many important and fruitful
developments. Just to mention the classical gambler’s ruin problem, the Central
Limit Theorem or even martingale theory. Important contributors at these early
days have been Fermat, Huygens, Pascal, De Moivre and J. Bernoulli. Various
paradoxes ever and ever turned up and initiated lively disputes, e.g. De Méré’s
Paradox, which is trivial to resolve, or the St. Petersburg Paradox, which is
not so trivial.

Parrondo’s Paradox is a relatively new one, its first version has been published
1997. It is this paradox which your thesis should be about.

Consider a two-person game, player X plays against player Y . The game con-
sists of an arbitrary number of rounds or single plays in which the event that X
or Y wins is determined by the outcome of a random experiment. This could
be e.g., tossing a coin, throwing a dice, spinning a roulette wheel, etc. Let p
denote the probability that X wins a single game. If p > 1/2, we say that the
game is favorable for X. On the other hand, if p < 1/2 the game is unfavorable
for X.

If p = 1/2, we are tempted to say that the game is fair. However, one should be
rather cautious with the term fair. The random experiments constituting the
game need not be independent. And even if they were, it is possible to construct
games with success probability p = 1/2, where in a prolonged sequence of games
a player will be on the losing side. This may be the case, for instance, if the
payoff of a single game is a random variable with infinite variance.

Despite of this warning don’t let us be overly pedantic and call a game fair,
if p = 1/2. It is a quite remarkable fact that there exists no winning strategy
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in a sequence of independent games with success probability p = 1/2. This is
by no means trivial and you should also elobarate on this point in your thesis.
Chapter X.3 of reference [2] will be a good source.

12.1.2 Combining strategies

So, no winning strategy in case p = 1/2, certainly no one necessarly if p > 1/2.
Can be hope that there is one for p < 1/2? Surely no, you may think. But now
Parrondo’s Paradox enters the scene!

Consider the following game, let’s call it game A: it is played on a roulette
table, the wheel has slots for 0 and the numbers 1 . . . 36. The zero is colored
green, among the other numbers half is colored black, the other half colored
red. All numbers are equally likely. When zero turns up the casino always wins.
The gambler’s capital consists of a number of chips, each one ¤ worth. The
somewhat strange rules of game A are these:

Game A If your capital is a multiple of 3 and one of the numbers 1,2 or
3 turns up, you win one ¤. This happens with probability 3/37.
Otherwise, if your capital is not a multiple of 3, you win one ¤,
if the outcome is a number in the range 1, 2, . . . , 28, which will
happen with probability 28/37.

In all other cases you lose.

Is this a favorable game for you?

A naive argument leads to the conclusion that it is. Here is the argument: in any
round your capital is a multiple of 3 with probability 1/3 and with probability
2/3 is not a multiple of 3. Hence the probability of winning should be

p =
1

3
· 3

37
+

2

3
· 28

37
=

59

111

.
= 0.532 >

1

2

So, that looks fine! But beware, there is something seriously wrong with this
argument, indeed, game A favors the casino, as actually the winning probability
equals p = 0.494 < 1/2!

Why that? Find it out! You will have to learn a little bit about finite Markov
chains to answer this question, see reference [3].

So far, so bad. So, let’s consider another game, say game B. Its rules are very
simple:

Game B You bet on red or black and win one ¤, if that color turns up.
This happens with probability 18/37.

Again this game is favorable for the casino.
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But now, Parrondo’s Paradox: suppose that any time a new round starts, you
have the choice to play game A or game B. Your decision which game to play
is completely free. It may depend on the outcomes of previous games, you may
play the games in a purely deterministic pattern, like AABAABAAB . . . or
BABABAB . . .. You may even toss a coin and play A, if head turns up and
play game B, if tail comes. It’s a remarkable and really stunning fact that the
combination to two unfavorable games is thereby turned into a favorable game!
Even if you play A and B in random order your winning probability will be
p = 0.502 > 1/2! How is this possible? Find it out.

So it seems that there is money for free! That’s why the subtitle of your thesis
is the gambler’s perpetuum mobile. But there is another reason for this subtitle.
Juan Parrondo invented this game for pedagogical reasons to propagate his idea
of a Brownian Motor, a very strange effect in thermodynamics.

12.2 Where to go from here

12.2.1 Issues of general interest

• Discuss the notion of a fair game and the nonexistence of gambling systems
in independent sequences of identical games.
• Simulate with a computer, e.g. in R, various patterns of games A and B,

like

ABABABABA . . . , AABAABAAB . . . , BBBABBBAB . . .

and determine empirically the winning probabilities for these patterns.
Can you find a pattern which maximizes this probability?
• Discuss potential applications of Parrondo games.

12.2.2 Some more suggestions

• Calculate the exact values of the winning probabilities for various pat-
terns.
• In references [1] and [4] you will find a canoncical formulation of Parrondo

games which contains an unfairness parameter ε. Perform numerical ex-
periments to explore the effect of this parameter.

Note. Your own ideas and creativity are always welcome!

Feller (1970)

12.3 An Annotated Bibliography

Still missing . . .
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Runs in Random Sequences

Keywords: run statistics, nonparametric statistics,
extreme value distribution, elementary renewal theory,
generating functions

This chapter is has not been finished yet.
October 4, 2018

13.1 An Invitation

13.1.1 Some remarkable examples

Instead of beginning this description with rather technical definitions let me
present three examples which should give you an idea of what this thesis should
be about.

Example 1. In the evening of August 18, 1913, in the famous casino of Monte
Carlo the color black turned up 12 times in a row on a roulette table. After
the 12th occurrence of black more and more people gathered around that table
and began to set their stakes on red, as most of them believed that this color
was heavily overdue. But black continued to turn up a 13th time, a 14th time.
Stakes were increased, but all those betting on red lost. Indeed this run of black
had finally a length of 26! Many people lost a lot of money and rumors said
that never before the Casino made such nice profits during one evening only.

Example 2. The world chess championships in the 1970s and 1980s were played
in an atmosphere of almost paranoic suspicion. A paramount example of this
paranoia was the championship 1985, Kasparov versus Karpov. Bobby Fisher,
world champion 1972, claimed that the matches between Kasparov and Karpov
were rigged and prearranged move by move. Fisher asserted 1996 that in a
particular match starting with move 21 White makes no less that 18 consecutive
moves on the light squares! Is this run an evidence for Fisher’s claim?

Example 3. This example is usually attributed to P. Révész (former professor
at TU Vienna), but Révész once told me that actually Prof. Tamas Varga was
the first to perform the following experiment. When a professor of probability
entered his class for the first lecture he asked his students to form two groups
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of equal size. In the first group each member should toss a coin and write down
a zero if head comes and a one if tail occurs until a sequence of length 100
is complete. The students of the second group should simulate a sequence of
zeroes and ones of length 100, i.e. they should write down what they believed
a random sequence should look like. The professor then left the class and
return 15 minutes later. The sheets with the sequences have been collected and
shuffled. He accepted bets that he could distinguish simulated from true random
sequences with high probability. Actually, he almost always won, indeed, his
success rate was more than 90 %.

Here are two typical sequences:

Sequence 1:

011110000111101111111100011001111100000011010010001

110110000101110111001111000000111001100010000011110

Sequence 2:

101011101111101001110110001001010111100110011000101

000110001110001100001110191000001110001001011100010

Can you see which of the two is random and which is simulated?

These examples have something very interesting in common:

• We have a sample of dichotomous observations, red and black, light and
dark squares, zeroes and ones.
• The samples contain runs of various lengths. A run being an unbroken

sequence of the same data point.
• In examples 1 and 2 we are observing very long runs. In these cases there

is reasonable suspicion that the observed sequences show some systematic
pattern, i.e., they are non-random.
• In example 3, T. Varga performs a statistical test on randomness, his test

statistic being the length of the longest run observed in the sample. And
it seems that this test statistic is a very good one, because otherwise he
would not risk his money.

These examples give rise to several interesting questions, in particular this one:

Given a sequence of observations, is this sequence purely random or
does it show systematic patterns?

This question is of considerable importance, e.g.,

• Checking the quality of random number generators which are an essential
part of simulation studies;
• In data encryption to check the security of a cipher;
• In nonparametric statistics: the test of Wald and Wolfowitz is based

on runs to test the hypothesis that two samples come from the same
population.
• In computer science this is just a special case of the more general pattern

matching problem.
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13.1.2 Important random variables related to runs

Let us now be a little bit more specific: consider a 2-letter alphabet A = {0, 1}.
Let Sn be a string of length n formed over the alphabet A. Here are some
examples of strings of lengths n = 20:

S1 = 00111100111000001011 S2 = 11111111110000000000

S3 = 01010101010101010101 S4 = 11101100000010111011

A 1-run is defined as an unbroken sequence of 1s of particular length, similarly
one may define a 0-run. For instance, S1 has 1-runs of lengths 1, 2, 3 and 4. S2
has one 0-run of length 10 and one 1-run of length 10.

Let us now assume that the sequences are generated by independent Bernoulli-
experiments, i.e. experiments which have exactly two outcomes 1 and 0 with
probabilities p and q = 1− p.
The following random variables are of interest for random sequences of length
n:

Nn(k) = the number of 1-runs of length k

Tn(k) = the position of first occurrence of a 1-run of length k

Rn = the length of the longest 1-run

Un,i(k) = the indicator of 1-run of length k

The indicator Un(k) is defined as

Un,i(k) =

{
1 if a 1-run of length k occurs at position i
0 otherwise

Here is an important point regarding these random variables: whenever a 1-run
of length k is completed, the recording starts from scratch. Thus we assume
that runs are non-overlapping. This makes the analysis easier, but of course,
more general definitions are possible and indeed in use.

Just to give you an example, let

S30 = 01011111010001110111111101100

and consider 1-runs of length k = 4.

Here, T30(4) = 7, because the first 1-runs of length 4 completes at the 7-th
trial. Then recording starts anew, so that the next run of length 4 completes
at position 21 and not in position 8!

Observe also that in this example U30,7(4) = 1, but U30,8(4) = 0, furthermore
R30 = 7.

There are several important connections between these random variables, you
should find out which they are!

The most interesting of these random variables is Rn, the length of the longest
run. It can be shown that for large n

Rn ≈
ln(nq)

ln(1/p)
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Here ≈ means is close to. This is the famous Erdös-Renyi-Law. For instance,
if n = 100, and p = 1/2, then

R100 ≈
ln 50

ln 2

.
= 5.64

But much more can be said, in particular, and this is really amazing, the vari-
ance of Rn is practically independent of n. Thus it is possible to predict Rn
with high accuracy!

13.1.3 Methodological Issues

There are several ways to attack these problems:

• Elementary renewal theory is the easiest way and therefore strongly rec-
ommended. A good introduction may be found in reference [1], chapter
XIII.
• An alternative is the use of finite Markov chains, see reference [4]. For

an elementary exposition of finite Markov chains reference [5] is recom-
mended.
• The most powerful approach is through symbolic methods and generat-

ing functions, as is mostly done in computer science. This is technically
considerably more demanding but also much more flexible, you will find
a lot of interesting material in reference [3].

13.2 Where to go from here

13.2.1 Issues of general interest

• Give a careful analysis of the random variables defined above and show
how they are connected.
• Give examples and discuss interesting applications of run statistics. The

test of Wald and Wolfowitz would be such an application. It is often used
as a statistical test on randomness, but it is also used for the classical
two sample problem: there are two samples X and Y with sample sizes
m and n, and continuous distributions F (x) and G(x), respectively. The
null hypothesis is: the samples come from the same population, i.e., H0 :
F = G. An alternative might be: HA : F 6= G. Reference [8] may be
helpful, in particular chapter 11 and chapter 12.6 of this book.
• Perform numerical experiments, e.g. using R, to estimate the probability

distributions of these random variables. What do you observe when n
becomes large? What happens to the distribution of Nn(k), to the distri-
bution of Rn when n becomes large? You will find, that there is a marked
difference!
• Find out how the test Prof Varga used works, calculate exact p-values

and test which of the two sequences given in example 3 is random.
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13.2.2 Some more suggestions

The distribution of the longest runs Rn is a typical extreme value distribution.
Discuss this important class of distributions and their applications in statistics,
insurance, material testing, etc.

This chapter needs a lot of more work from my side . . .

Note. Your own ideas and creativity are always welcome!
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The Myriad Ways of Sorting

Keywords: Computer science, analysis of algorithms,
divide and conquer algorithms

14.1 An Invitation

14.1.1 Some basic terminology

In this thesis you should study a topic that arises very frequently in everyday
life, in combinatorial mathematics and notably in computer science: the rear-
rangement of items into ascending or descending order. Imagine how hard it
would be to use a dictionary if its words were not alphabetized. Or, if entries
in the phone directory of your smart phone are not in alphabetic order.

Besides convenience sorting has many important applications: one is the match-
ing problem. Suppose we have two long lists of names, say, and we want to pick
out those names which occur in both lists. An efficient way so solve this problem
is to sort both lists into some order. Then only one sequential pass is needed
to identify the matching entries.

Another application is searching items in lists. Sorting makes the search pro-
cess much easier. Indeed, many algorithms in computer science can be made
considerably more efficient if input data are sorted.

And last, but not least: sorting techniques provide excellent illustrations of the
general ideas involved in the analysis of algorithms, one of the most interesting
areas in computer science.

Let us fix some terminology first. The items to be sorted are usually called
records R1, R2, . . . , Rn. The entire collection of records is a file. With each
record Ri we associate a key Kj which governs the sorting process. For example,
consider a phone directory. A typical key could be the surname of a person and
with this key we associate satellite information, like phone number(s), address,
and so on.

An ordering relation “<” on the set of keys must specified so that for each pair
of keys a, b only one of the following can be true:

a < b or a > b or a = b.
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Furthermore this ordering relation must be transitive. For any triple a, b, c of
keys:

a < b and b < c =⇒ a < c.

In your thesis you should assume that keys are stored in an array in main
memory of the computer, so that random access is possible. In other words,
there is an array a = [a1, a2, . . . , an] whose elements can be addressed by simple
indexing. Thus for given i, 1 ≤ i ≤ n we can access the key ai in constant time.
Sorting algorithms for this type of data are called internal. If data files are
so huge that not all records fit into main memory, then sorting must be done
externally. However, external sorting should not be in the focus of your thesis.

One more point: the process of sorting should be based on comparisons of keys.
This means that there is a function, say compare(a,b), with:

compare(a,b) =


1 if a > b
0 if a = b
−1 if a < b

There are other sorting methods which are based on the representation of keys
in a particular number system, e.g., the binary system. These are known as
radix methods and should not be a major topic in your thesis.

It’s time for an example to see how sorting can be accomplished. Suppose, we
have n = 10 keys whose values are integers ai:

i 1 2 3 4 5 6 7 8 9 10

ai 2 9 6 8 10 1 7 4 3 5

Suppose also that we want to put the keys into ascending order.

14.1.2 An example: selection sort

One of the simplest sorting algorithms is selection sort. It works as follows:
First, find the smallest item and exchange it with the first entry of the array.
Then, look for the second smallest item and exchange it with a2. Continue in
this way until all keys are sorted. In Figur 14.1 the process of selection sort is
illustrated. Thus in a few steps we finally find the key ordering:

[a6, a1, a9, a8, a10, a3, a7, a4, a2, a5] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Is selection sort a good algorithm?

A primary criterion to qualify a sorting algorithm as good is efficiency. The
latter is usually measured by the number of comparisons Cn and the number
exchanges En. For selection sort it is particularly easy to determine Cn and
En. To find the smallest item n − 1 comparisons are necessary. We also need
one exchange to move the smallest item to the first position. For the second
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1 2 3 4 5 6 7 8 9 10 6 2 3 4 5 1 7 8 9 10 6 1 3 4 5 2 7 8 9 10 6 1 9 4 5 2 7 8 3 10

6 1 9 8 5 2 7 4 3 10 6 1 9 8 10 2 7 4 3 5 6 1 9 8 10 3 7 4 2 5

Figure 14.1: Selection Sort

smallest item we use n− 2 comparisons and one more exchange, so

Cn = (n− 1) + (n− 2) + . . .+ 2 + 1 =
n(n− 1)

2
=
n2

2
− n

2
En = 1 + 1 + . . .+ 1 = n

This is an interesting result, as it tells us: the number of comparisons Cn grows
quadratically in n, the number of keys to be sorted. Thus doubling the number
of keys increases the amount of computational work by a factor 4. One also
says that selection sort has quadratic time complexity.

Selection sort is just one example of sorting algorithms with quadratic com-
plexity, you should discuss other prominent algorithms in this class.

Algorithms with quadratic complexity are usually very simple, so it is easy to
implement them in some programming language. They work perfectly well as
long as the number of keys n does not become too large, say, n < 1000.

But what, if we have to sort a file with several hundred thousand of keys? This
is by no means an exotic task, think of data files of social insurance institutions,
for instance. For such large data files simple quadratic methods are no longer
a viable alternative. Other ideas are needed.

14.1.3 Merging

Consider the problem of two-way merging. Given two already sorted arrays x
and y we want to construct a new array z by merging x and y in such a way
that z is also sorted. This is easy. We just compare to the smallest item, i.e.
the first item in x with the first item in y and output the smaller one, remove
it from x or y and repeat the same process until we are finished. For instance,

203



Topic 14. The Myriad Ways of Sorting

starting with {
x : 503 703 765
y : 87 512 677

we obtain

z : 87

{
x : 503 703 765
y : 512 677

Then

z : 87 503

{
x : 703 765
y : 512 677

and

z : 87 503 512

{
x : 703 765
y : 677

Next,

z : 87 503 512 677

{
x : 703 765
y :

Since y is exhausted now, we simply append the rest of x to z. So, finally:

z = [87, 503, 512, 677, 703, 765]

If x has n items and y m items, then the number of comparisons needed for
a two-way merge is essentially proportional to m+ n, so obviously, merging is
simpler than sorting.

14.1.4 Divide and Conquer

But what does merging help to solve the more complicated task of sorting?
The idea is the old roman principle divide et impera, divide and conquer. We
may split a long file into two parts of more or less equal size, sort each part
separately and then merge the sorted subfiles. But each subfile may again be
split into two parts, sorted and then parts are merged. This splitting process
can be continued until we arrive at subfiles having at most 2 items. But sorting
these is trivial, at most one comparison is needed. The result will be a binary
tree structure.

Here is an example: let a = [3, 5, 8, 4, 7, 1, 6, 2]. Recursive splitting yields the
tree structure:

3 5 8 4 | 7 1 6 2

3 5 | 8 4 7 1 | 6 2

3 5 8 4 7 1 6 2
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Next sort the leaves of the tree, each leave requires one comparison and one
exchange:

3 5 8 4 | 7 1 6 2

3 5 | 8 4 7 1 | 6 2

3 5 4 8 1 7 2 6

Now merge the leaves:

3 5 8 4 | 7 1 6 2

3 4 5 8 1 2 6 7

One more merge yields the sorted array:

1 2 3 4 5 6 7 8

Easy, isn’t it? This sorting algorithm, commonly known as mergesort, is one of
the very first methods proposed for sorting by John von Neumann as early as
1945.

And merge sort is very effective! It can be shown (see the bonus problem below)
that the number of comparisons required by mergesort equals:

Cn = nblg nc+ 2n− 2blgnc+1, (14.1)

where lg is the logarithm to base 2: lg x = lnx/ ln 2 and bxc is the so-called
floor function, i.e., round x to the next lower integer. For instance b5.8c = 5.

Formula (1) is quite remarkable in many respects:

• It is an exact formula, it is the solution of a special type of the so-called
master equation:

Cn = Cbn/2c + Cdn/2e + n, (14.2)

here dxe denote the ceiling function, i.e. round x the the next largest in-
teger. Equation (2) and its various companions occurring in other types
of divide-and-conquer algorithms like searching items in files, fast multi-
plication of integers, etc., have many interesting properties, see also the
bonus problem below.
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• A closer look at (1) reveals, that the number of comparison is dominated
by the first term

nblg nc ≤ n lg n
.
= 1.4427 · n lnn

What you can see here is indeed a very strong statement, the Fundamental
Theorem of Sorting. It says that no comparison based sorting algorithm
can guarantee to sort n items with fewer than lg(n!) ∼ n lg n comparisons.
This is a theoretical lower bound, and no sorting algorithm exists which
can be better, provided, (a) it is based on comparisons and (b) does not
utilize additional information, e.g. about the distribution of keys (see
below).

Let us compare selection sort and mergesort when applied to a file with n =
100000 keys. The exact number of comparisons needed by selection sort is

Css =
n(n− 1)

2
= 4999950000,

For mergesort we have by (1):

Cms = 1668928,

this is a reduction of the number of comparisons by 99.967 %! Thus mergesort
outperforms selection sort dramatically.

The n lg n bound is the best possible and it is attained by mergesort. But there
are also other sorting algorithms with are roughly as efficient as mergesort.

A serious competitor is quicksort. This is the most famous and most frequently
used algorithm and it relies also on the idea of divide and conquer. The file is
recursively (and very cleverly) partitioned into subfiles and these are sorted in
place, so there is no merging process and no extra storage space is required.

14.2 Where to go from here

14.2.1 Issues of general interest

• Give an overview of comparison based sorting, in particular describe sim-
ple algorithms like selection sort, insertion sort, bubble sort and Shell sort.
There are also some rather weird algorithms like bogosort, also known as
stupid sort.
• Compare these algorithms and discuss their behavior when applied on

almost sorted data.
• Discuss mergesort and quicksort in detail. Explain also the algorithm

heapsort, an interesting alternative which is not based on the paradigm
of divide and conquer.
• Give a derivation of the Fundamental Theorem of Sorting, Cormen et al.

(2001, chapter 9) will be helpful, but also Sedgewick and Wayne (2011,
chapter 2)
• Which sorting algorithms are used by popular programming languages

like C, java, python, etc?
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14.2.2 Some more suggestions

• Under certain circumstances it is possible to sort n keys in linear time by
a number of comparisons Cn ≤ Mn, where M is a constant independent
of n. Note that Mn ≤ n lg n for sufficiently large n. Describe such an
algorithm. Under what conditions is such a fast sort possible?

• Give a general discussion of divide and conquer algorithms. Formulate the
master equation and discuss the (asymptotic) properties of its solutions.
In particular solve the master equation for mergesort, i.e., derive formula
(1). Dasgupta, Papadimitriou, and Vazirani (2008, chapter 2) may be
helpful, and very helpful is certainly Sedgewick and Flajolet (2013, chap-
ter 2).

Note. Your own ideas and creativity are always welcome!

14.3 An Annotated Bibliography

The textbook by Cormen et al. (2001) has a very easy-to-read introduction the
the mathematical foundations of sorting and other algorithms. Part II of this
book (4 chapters) is exclusively devoted to sorting.

Dasgupta, Papadimitriou, and Vazirani (2008, chapter 2) gives a simple intro-
duction to the idea of divide and conquer. A very detailed coverage of this im-
portant principle is given in the wonderful book Sedgewick and Flajolet (2013).
Here you find also a careful exposition of standard mathematical techniques to
solve divide and conquer recurrences and for their asymptotic analysis.

The classical textbook is certainly Knuth (1998). It contains an incredible
wealth of material, though this text is not so easy to read.
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Remark. The book Knuth (1998) is the classical text on the subject!
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Women in Mathematics

From Hypatia to Emmy Noether and beyond

Justifably proud, for you were a great woman mathematician - I have no
reservations in calling you the greatest that history has known.

Hermann Weyl, 1935

Keywords: history of mathematics, female mathematicians

15.1 An Invitation

15.1.1 Headline news

On August 12, 2014 The New York Times headlined: Top Math Prize Has Its
First Female Winner, and one day later The Guardian followed with: Fields
Medal mathematics prize won by woman for first time in its history!

Indeed, these were exciting news. Maryam Mirzakhani, who was born and
raised in Iran, has been awarded the highest honor a mathematician can

Maryam Mirzakhani

(1977–2017)

attain, the Fields Medal. It is the world’s most pres-
tigious mathematics prize and for the first time since
the award was established nearly 80 years ago it was
awarded to a woman.

The New York Times commented on this occasion:
While women have reached parity in many academic
fields, mathematics is still dominated by men, who
earn about 70 percent of the doctoral degrees. The
disparity is even more striking at the highest echelons.
Since 2003, the Norwegian Academy of Science and
Letters has awarded the Abel Prize, recognizing outstanding mathematicians
with a monetary award of about $ 1 million; all 14 recipients so far are men.
No woman has won the Wolf Prize in Mathematics, another prestigious award.
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15.1.2 Emmy Noether

Emmy Noether (1882-1935) is an impressing example of the problems women
were facing when they pursued a career as academic mathematicians. Noether

Emmy Noether

(1882-1935)

was invited by Felix Klein and David Hilbert to the
University of Göttingen. But although being an out-
standing and extremely prolific mathematical talent,
she was not allowed to get the venia docendi, i.e.,
become a docent with the right to hold lectures at
a university. Members of the faculty argued against
Noether, that being a docent she will also give ex-
aminations and it may happen, that male students
may fail such an exam. Incredible, a man failing an
exam held by a woman! It is reported that David
Hilbert replied angrily: Aber meine Herren, eine Uni-
versität ist doch keine Badeanstalt! As a result Emmy
Noether had to announce and hold her lectures under
the name of David Hilbert. In April 1933 she was ex-
pelled from Göttingen University by Nazi authorities,

emigrated to the United States and got a poorly paid teaching position at Bryn
Mawr College. Only two years later she died at an age of 53 years.

15.1.3 Other remarkable women

There are many other impressing examples of female mathematicians, just to
mention a few: Hilda Geiringer (1893-1973), the first woman getting a doctor’s
degree at University of Vienna in 1917. Her biography would be perfect ma-
terial for a novel or a film. By the way, Hilda Geiringer spent also some time
at Bryn Mawr College. Or, Olga Taussky-Todd (1906-1995), who became a
torchbearer for matrix theory. And there are many other extraordinary female
mathematicians. We find them though sporadically in all epochs, from ancient
times to our days. An ancient example is Hypatia of Alexandria (around 350 -
415 AD), an example from 18th century is Maria Gaetana Agnesi (1718 - 1799),
and a really remarkable women is certainly Sofia (Sonya) Kovalevskaya (1850 -
1891).

The lives of these and other women were often tragic, her achievements remark-
able and outstanding even more when we recognize the difficulties and social
and academic opposition they had to overcome. But, fortunately, times are
changing and today more and more female mathematicians are fully respected
in academic and non-academic society.
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15.2 Where to go from here

15.2.1 What to be avoided

Let me first tell you what I do not want : I will not accept an unsophisticated
collage of biographical sketches composed by cut and paste from various internet
resources.

15.2.2 What you should do

Although the topic of this thesis is certainly located in the field of history of
mathematics, it lies at the frontier to other disciplines, in particular to sociology
of science. This is an important point regarding methodology.

So, what I want is this:

• A serious discussion of the role of women in mathematics. You should
work out clearly how the social perception of this question changed over
time, in particular since World War II.

• Find out important facts about the social backgrounds of female math-
ematicians. What about their families, their parents? Who discovered
their mathematical talents, who were their mentors? Find similarities
and explain them.

• Reputation of a professional mathematician is usually strongly connected
to academic positions. A good indicator are renown professorships held by
women. For example Alice Chang is Eugene Higgins Professor of Math-
ematics at Princeton University since 1998. Another indicator are prizes
and awards like the Fields Medal ot the Abel Prize.

• And what about a very common problem women are facing when pursuing
careers (not only in mathematics): how do they manage to combine her
carreer with family, with motherhood?

• Are there areas of mathematics preferred by women, like the theory of
numbers, differential geometry, statistics?

• Elaborate on the New York Times-comment above about disparity be-
tween male and female mathematicians.

• Your argumentation should also be supported by empirical analysis. Thus
you will have to collect data and analyze them.

15.2.3 A final remark on style

This topic is in a certain sense non-mathematical which does not mean that it
is trivial from a methodological point of view. Indeed, this thesis does require
a clear and elaborate methodological approach. So, suppose you are a young
journalist and this is your first chance at a reknown scientific magazine. The
editor-in-chief tells you: this is your topic, write a good story about women in
mathematics!
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15.3 An Annotated Bibliography

Boyer and Merzbach (2011) is the classical textbook about history of math-
ematics. You may fnd interesting also Osen (1975). However, this book is
somewhat outdated, though still a very interesting and easy-to-read text. A
wonderful paper about Emmy Noether and Hermann Weyl is Roquette (2008).
It contains also Weyl’s poignant funeral speech for Emmy Noether on April 18,
1935.

There are many interesting places in the internet, here are a few which I found
interesting:

• Biographies of Women Mathematicians is a webpage maintained at Agnes
Scott College, Atlanta, Georgia.
• The IAS School of Mathematics at Princeton University has a very good

page entitled Women in Mathematics.
• Smith College in Northampton, Massachusetts, is one of the biggest and

most reknown women’s collages all over the world. It has a Center for
Women in Mathematics which is part of the Department of Mathematics
and Statistics.
• The Canadian Mathematical Society has a very well organized page Re-

sources for Women in Mathematics.
• Last but not least: the MacTutor History of Mathematics Archive at the

University of St. Andrews.
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