
Chapter 3

Elements of Graph Theory

3.1 A basic vocabulary

Graph theory is a beautiful and amazing mathematical theory whose colorful
and pictorial language allows us to elegantly formulate and efficiently solve
many problems of applied mathematics. Notably in scheduling graph theory
is an indispensable tool. It is the intention of this chapter to give you an
introduction into this important field. Being confined to the most basic concepts
our course will proceed in a pedestrian like manner. So practically no proofs
are presented in this chapter, as this is not a book on graph theory. We refer
the interested readers kindly to any of the many excellent textbooks available.
At the end of this chapter there is a section with bibliographic notes supporting
readers to get some orientation in literature.

3.1.1 Graphs as binary relations

Graph theory is a mathematical theory of relations. In mathematical terms, a
binary relation E on a finite set1 V is a subset of the set of all ordered pairs we
can form by the elements of V , i.e., E ⊂ V ×V , the cartesian product of V with
itself. The pairs comprising E will be denoted by (x, y) ∈ E, where x, y ∈ V
and we call them edges, the elements of V are called nodes or vertices. We agree
that edges (x, y) and (y, x) are considered different objects and if there is no
danger of confusion we abbreviate an edge (x, y) by simply writing xy. If there
exists an edge xy then we also say that x is adjacent to y and y is adjacent
from x. Adjacency is also considered a property of edges. Two edges a, b ∈ E
are called adjacent, if the have a common endpoint.

Thus a graph G is an ordered pair formed by the set of nodes V and the set of
edges E, symbolically, G = (V,E). If the number of elements in V equals n,
i.e. |V | = n, then we say that G is of order n. The number of elements in E,
m = |E| is called the size of G.

Graphs as we have defined them are often called directed graphs or digraphs
in literature. A word of caution here: although graph theory is nowadays a
mature field of mathematics, its language is highly nonstandard, unfortunately.
Richard Stanley once pointed out: “The number of systems of terminology
presently used in graph theory is equal, to a close approximation, to the number

1Also infinite sets may be considered, but we do not need this generalization.

49

50 Chapter 3. Elements of Graph Theory

of graph theorists.” (cited from Knuth (2011)). I have tried to avoid this
somewhat babylonian confusion by defining and using terms as this is done in
most classical textbooks on graph theory.

The concept of a binary relation is a very general one, thus we are often led to
restrict the relation E making up a graph G to relations which may or may not
have some of the following properties:

• Symmetric property : xy ∈ E =⇒ yx ∈ E for x, y ∈ V .

• Antisymmetric property : xy ∈ E =⇒ yx 6∈ E for x, y ∈ V .

• Reflexive property : xx ∈ E for x ∈ V .

• Irreflexive property : xx 6∈ E for x ∈ V .

• Transitivity : xy ∈ E, yz ∈ E =⇒ xz ∈ E, for x, y, z ∈ V .

If E happens to have the symmetric property, thus to each edge xy ∈ E there is
also yx ∈ E, then G is called an undirected graph. In this case it is convenient
to consider its edges as unordered pairs of nodes which we denote e.g. by {x, y},
etc.

Being directed or undirected, we shall always assume that E has the irreflexive
property, so G does not have loops. Loops are edges directing a node to itself.

It is often very helpful to draw a diagram of a graph. Indeed, the term graph
has been used 1878 for the first time in this sense by J. J. Sylvester.

Drawing a graph is done in the following way:

• Nodes are represented by circles or dots in the plane, with or without
labels.
• If there exists an edge xy ∈ E, then we draw an arrow from x to y.
• If G is an undirected graph, then it is customary instead of drawing two

arrows, viz. xy and yx, to draw a single line without arrow tips connecting
x and y.

3.1.2 Some examples

Flight connections

Consider 8 towns, any two of them, say u and v being related, if there exists a
direct flight connection either in direction u → v or in direction v → u. So we
arrive at some sort of traffic network representable by a graph G = (V,E) with
nodes V = {1, 2, 3, 4, 5, 6, 7, 8}, The direct connections (no changes required
when traveling from u to v) are given in the following table. In this table we
place a 1 in row u and column v if there is a direct flight from u → v and
otherwise we place a 0 there.

3.1. A basic vocabulary 51

from/to 1 2 3 4 5 6 7 8
1 0 1 0 0 0 1 0 0
2 0 0 0 0 0 1 0 0
3 0 1 0 0 0 1 0 0
4 0 0 1 0 0 0 0 0
5 0 0 0 1 0 0 0 0
6 0 0 0 0 1 0 1 0
7 0 0 0 0 0 0 0 0
8 1 0 0 0 0 0 1 0

The row and column indices pointing to ones in the above table give us the
edge set E:

E =

{
(1, 2) (1, 6) (2, 6) (3, 2) (3, 6)
(4, 3) (5, 4) (6, 7) (8, 1) (8, 7)

}
.

The sets V and E constitute a graph G = (V,E), the corresponding diagram is
displayed in Figure 3.1.

1 2 3

4

567

8

Figure 3.1: Flight connections

This graph is of order n = 8 and size m = 10.

Friendships

Suppose there are five persons P1, P2, P3, P4 and P5, each represented by its nu-
merical index. These identifying numbers form a set V = {1, 2, 3, 4, 5}. Suppose
further:

• 1 has two friends among V , namely 2 and 3.
• 2 is a friend of 1, 3 and 5.
• 3 is a friend of 1, 2 and 5.
• 4 has no friend at all among V .

Let us interpret the pair xy as

x is a friend of y.

Of course, friendship is a symmetric binary relation. If x is a friend of y then
y is also a friend of x. So, in our example we have five unordered friendship
pairs:

E = {{1, 2}, {1, 3}, {2, 3}, {2, 5}, {3, 5}} .

52 Chapter 3. Elements of Graph Theory

Now {x, y} denotes the undirected edge connecting nodes x and y and this is
just a useful abbreviation for effectively two directed edges xy and yx.

These edges together with V define an undirected graph G = (V,E). Its order
is n = |V | = 5 and its size equals m = 5 = |E|. The corresponding diagram is
shown in Figure 3.2.

1

2

3

45

Figure 3.2

Node 4 is not connected to any other node, because person 4 has no friends.
Such a node is called isolated.

Note that Figure 3.2 is just one of many different ways to draw this graph G.
A diagram equivalent to Figure 3.2 is, for instance:

1

2

3 4

5

One final remark on this example: it may be the case that in a randomly
selected group of people no one has a friend in his group. In this case the edge
set is empty, E = ∅. As a result the graph G = (V,∅) consists of n isolated
nodes, its size is zero. This graph G is also called null-graph and denoted by
K0.

Precedence relations

In many scheduling problems jobs to be scheduled are dependent in the sense
that a particular job can be processed only if certain other jobs have been
already completed2. Consider for instance the job of a male getting dressed in
the morning. This job may consist of the tasks of putting on:

2Recall the bicycle example in Chapter 1!

3.1. A basic vocabulary 53

task number task

1 underwear
2 socks
3 shirt
4 trousers
5 tie
6 jacket
7 cap
8 shoes

Clearly, it seems to by very strange and unpractical to put on trousers first and
then shoes, and many other weird combinations may come into your mind. A
reasonable structure of this process can be represented as a precedence graph like
that in Figure 3.3. Here nodes represent tasks and edges exhibit dependencies.
Of course, these dependencies are not symmetric.

1

2

3

4

5

6

7

8

Figure 3.3

From this figure we may read off that putting on shoes requires first to put on
trousers and socks. Putting on trousers in turn requires first to put on your
underwear. Observe that there is no edge from/to node 7, so node 7 is isolated.
This simply means that putting on your cap can be done at any time in the
process of dressing3.

Web pages and hyperlinks

An example of a very huge graph is the world wide web with nodes being web
pages and an edge between two pages u and v, if page u has a link pointing to
page v. Of course, this graph is much too big to be drawn, as there are billions
of pages online, indeed, about 5 billion as of April 20154.

3.1.3 A useful multivalued mapping

It turns out to be very useful to have a device which provides us with information
about the neighbors of a particular node x. Claude Berge (1966) seems to have

3Although this may give rise to rather funny configurations during the process of dressing.
By the way, topologically it is possible to put on first trousers and then underwear. But
nobody does this under normal circumstances since it very impractical.

4 Source: http://www.worldwidewebsize.com/

54 Chapter 3. Elements of Graph Theory

been the first to use a multivalued mapping Γ(x) which assigns to each node x
all nodes y for which an edge xy exists. Thus Γ(x) yields the set of all nodes
y which are adjacent from x. For instance in the example on flight connections
we find from Figure 3.1:

Γ(1) = {2, 6}, Γ(2) = {6}, Γ(7) = ∅, etc.

Γ may be extend easily to arguments which are subsets of nodes. Let U =
{u1, u2, . . . , uk ∈ V }, then we define

Γ(U) = Γ(u1) ∪ Γ(u2) ∪ · · · ∪ Γ(uk). (3.1)

In case of the graph given in Figure 3.1 we have, for instance:

Γ({1, 2, 3}) = Γ(1) ∪ Γ(2) ∪ Γ(3)

= {2, 6} ∪ {6} ∪ {2, 6} = {2, 6}.

The inverse mapping Γ−1(x) gives us the set of all nodes which are adjacent to
x, i.e., all nodes y for which there exists an edge yx ∈ E. For instance, from
Figure 3.1 we find:

Γ−1(7) = {6, 8}, Γ−1(8) = ∅.

Γ−1 may be extended to set arguments in the same way as we did with Γ. Also
Γ−1 may be iterated to Γ−2, etc. with an obvious meaning.

In case G[V,E] is an undirected graph for each node x we have necessarily
Γ(x) = Γ−1(x). For the undirected graph drawn in Figure 3.2 we verify

Γ(a) = {b, c}, Γ(b) = {a, c, e}, Γ(d) = ∅.

The outdegree d+x and the indegree d−x of a node x are defined as

d+x = |Γ(x)|, d−x = |Γ−1(x)|. (3.2)

This definition carries over to undirected graphs. The degree dx of a node x
equals

dx = |Γ(x)|. (3.3)

For the graph drawn in Figure 3.1:

d+1 = 2 d−1 = 1 d+2 = 1 d−2 = 2
d+3 = 2 d−3 = 1 d+4 = 1 d−4 = 1
d+5 = 1 d−5 = 1 d+6 = 2 d−6 = 3
d+7 = 0 d−7 = 2 d+8 = 2 d−8 = 0

,

and for the undirected graph in Figure 3.2 we have:

da = 2, db = 3, dc = 3, dd = 0, de = 2. (A)

3.2. Some important graphs 55

3.1.4 Exercises

1. The sequence of numbers [2, 3, 3, 0, 2] in (A) is also known as degree se-
quence of an undirected graph. Is it possible for an undirected graph to
have degree sequence [2, 3, 3, 1, 2]? If not, explain why. Otherwise, give
an example.

2. Prove that for a graph G = (V,E) always:∑
x∈V

d+x =
∑
x∈V

d−x = |E|,

and for any undirected graph G:∑
x∈V

dx = 2|E|.

3. More on friendships. Suppose there is a group of 2n + 1 people, n =
1, 2, 3, Suppose further that every pair of persons in this group has
one friend in common. Then there must be one person in this group who
is friend of all other people. You may not try to prove this famous result
which is known as Friendship Theorem. Just find a representation of its
statement as an undirected graph. Draw this graph for n = 1, 2, 3, 4 and
verify this statement by experiment.

4. The eight-circles problem. Consider the graph displayed in Figure 3.4.

Figure 3.4

Find a way to label the nodes with the letters A, B, C, D, E, F, G and
H in such a way that no letter is adjacent to a letter that is next to it in
the alphabet.

3.2 Some important graphs

In this section we will present some directed and undirected graphs which play
a special role in graph theory. This list is by no means complete and will be
extended occasionally later when we proceed with our investigations.

56 Chapter 3. Elements of Graph Theory

3.2.1 Complete graphs

The complete graph of order n is an undirected graph denoted by Kn in which
every node is adjacent to every other node. The first few complete graphs are
presented in Figure 3.5.

Figure 3.5: Complete graphs K1,K2,K3,K4,K5

Assigning an orientation to each edge of Kn yields a directed graph called a
tournament.

Figure 3.6: A tournament of order n = 5

3.2.2 Bipartite graphs

An undirected graph G = (V,E) is called bipartite, if its node set can be
decomposed into two disjoint sets S and T :

V = S ∪ T, S ∩ T = ∅,

in such a way that each edge has one endpoint in S and the other in T , see
Figure 3.7 for some examples.

1

2

3

4

5

6

7

1

2

3

4

5

6

1

2

3

4

5

S T S T S T

Figure 3.7: Three examples of bipartite graphs

3.2. Some important graphs 57

It is customary to emphasize the decomposition of the node set in the special
triplet notation G = (S, T ;E). If |S| = m, |T | = n and each node in S is
connected to a node in T , then G is called complete bipartite graph Km,n. The
rightmost example in Figure 3.7 shows a K3,2.

Bipartite graphs arise quite naturally when dealing with assignment problems.
For instance S may denote a set of jobs and T a set of machines. An edge
{x, y}, x ∈ S, y ∈ T means that job x should run on machine y.

It is not at all a priori clear whether a given undirected graph is bipartite.
To decide that an algorithm is required, we shall discuss this issue in a few
moments. The reader is invited to check that the graph given in Figure 3.8 is
indeed bipartite.

1 2 3

4

5 6 7

Figure 3.8

3.2.3 Interval graphs

Consider the following course scheduling problem: During a particular semester
a university offers n courses to students. Let Ti = (si, ti) be the time interval
during which course number i should take place. The management of the uni-
versity wants to assign these courses to classrooms so that no two courses meet
in the same room at the same time. How many classrooms are needed?

This planning problem has a natural representation as an undirected graph
G = (V,E). The node set V = {1, 2,n} is the set of offered courses. Two
nodes u and v are connected by an edge, if their corresponding time slots
intersect, i.e.,

{u, v} ∈ E ⇔ Tu ∩ Tv 6= ∅.

The graph G is known as interval graph, a very important class of graphs with
some very special properties.

t Example 3.1

To make affairs more concrete, suppose there are in total 9 courses and due to
availability and preferences of teaching personnel the following time slots for
courses are requested:

58 Chapter 3. Elements of Graph Theory

8 9 10 11 12 13 14 15 16 17 18 time

1 2

3 4 5 6

7 8 9

Figure 3.9: Interval graph for classroom scheduling

The reader may remember that we have already met a very similar situation in
Example 2.7 on page 30.

The corresponding interval graph is:

1

2
3

4

5

6

7
8

9

Figure 3.10: An interval graph

s

3.2.4 Exercises

1. What is the number of edges of Kn, i.e. its size?

2. What is the size of Km,n?

3. An undirected graph is called k-regular, if each node has degree k. A
famous example is shown in Figure 3.11. Can you find all 3− and 4-

Figure 3.11: A 3-regular graph – the Petersen graph

3.3. Basic operations on graphs 59

regular graphs? If a graph of order n is k-regular, what is their size?

4. Preferences. The CEO of a company has ordered four proposals A,B,C
and D for a marketing campaign. After having studied these carefully
he ranks the proposals according to his personal preferences. The best
proposal seems to be B, it gets rank one, then follow D, A and C in this
order. Find a graph representation of this ranking. What is special about
the resulting graph?

5. Why does the following graph not represent a ranking of five items that
makes sense?

1

2

3

4

5

6. An identification problem. Define a node coloring of an undirected graph
G = (V,E) by the following process: from an unlimited set of available
colors assign a color to each node of G in such a way that no two adjacent
nodes get the same color. Let G be a graph. Show that it is bipartite if
and only if it can be colored always using two colors only.

7. Show that the graph in Figure 3.8 is a bipartite graph G = (S, T ;E).
Identify the node sets S and T .

8. Find the maximum size of a bipartite graph of order 10. More generally:
determine the maximum size of a bipartite graph of order n ≥ 2.

9. Develop an idea how the interval graph representation in Figure 3.10
may help to solve our scheduling problem in Example 3.1: so, what is
the minimum number of classrooms required so that courses are not in
conflict?

3.3 Basic operations on graphs

3.3.1 Deleting nodes and edges

Given a graph G = (V,E) deletion of a node u results in a graph H = (V ′, E′)
with

V ′ = V − {u}, E′ = E − {uv, vu ∈ E}

Symbolically:

H = G− {u}.

60 Chapter 3. Elements of Graph Theory

In other words, besides removing u from V we also remove all edges which are
adjacent to or adjacent from u.

Similarly, deleting an edge uv ∈ E results in a graph H = G−{uv} with nodes
V ′ = V and edges E′ = E − {uv}. Observe, that deleting an edge does not
remove any node.

See Figure 3.12 for an illustration.

1 2 3

4

567

8G =

1 2 3

4

57

8

G− {6}

1 2 3

4

567

8

G− {54}

Figure 3.12

Adding a node u to G = (V,E) gives rise to a new graph H = (V ′, E′). This
does not create any new edges, it only augments the node set to V ′ = V ∪ {u}.
On the other hand, if we want to add an edge uv then we write symbolically
H = G∪{uv}. H has node set V and edge set E′ = E ∪{uv}, so no new nodes
are created.

3.3.2 Union, difference and complement

Both operations, addition and deletion of nodes and edges can be extended to
sets of nodes and edges. More generally, if G = (V,E) and H = (W,F) with
V ∩W = ∅, then the union of G and H is the graph J = (X,Z) with

X = V ∪W, Z = E ∪ F.

The difference G−H is the graph J = (X,Z) with nodes and edges X = V −W .
The edges Z are obtained from E by removing all edges adjacent to or from a
node in W .

Another important concept is that of the complement of an undirected graph
G = (V,E). It is a graph G = (V,E) obtained from G by making each edge a
non-edge in G and each non-edge becomes an edge. Formally, the set of edges
in the complement is given by:

E = {xy ∈ V × V : x 6= y and xy 6∈ E}.

An example is presented in Figure 3.13.

3.4. Subgraphs, cliques and co 61

1

2

3 4

5

6

1

2

3 4

5

6

Figure 3.13: A graph G and its complement G

3.4 Subgraphs, cliques and co

3.4.1 Subgraphs

Let G = (V,E) be any graph. A partial subgraph of G is a graph H = (U,F)
with U ⊂ V and F ⊂ E. An example is shown in Figure 3.14. The reader will

1 2 3

4 5 6 7

1 2 3

6

Figure 3.14: A graph G and one of its subgraphs H

notice that H does not have the edge (6, 3), this is perfectly OK and conforms
with our definition of a partial subgraph. But it is not always what we want.
In several applications of graph theory discussed in this book subgraphs are
constructed by specifying a subset of nodes U . The resulting subgraph H,
however, should have all edges of G provided their endpoints lie in U . Its edge
set is

F = {xy ∈ E : x ∈ U and y ∈ U}

In this important case H is called the subgraph induced by U . It is denoted by
H = G|U . As its construction is based on first selecting a subset of nodes, H
is indeed a node induced subgraph, see Figure 3.15 for an illustration.

1 2 3

4 5 6 7

1 2 3

6

Figure 3.15: A graph G and its induced subgraph H = G|{1, 2, 3, 6}

62 Chapter 3. Elements of Graph Theory

3.4.2 Cliques

Let G = (V,E) be an undirected graph and H = G|U an induced subgraph of
G. H is called a clique, if H is complete. i.e. each node in H is connected to
each other node in H.

1 2

3 4 5 6

7

Figure 3.16: A graph G with a 4-clique

The order of the largest clique of an undirected graph G is called its clique
number and denoted by ω(G). The graph G in Figure 3.16 has ω(G) = 4.
Finding the clique number of a graph is known to be a very hard problem,
indeed, this problem is NP-hard.

3.4.3 Stable sets

The opposite of a clique is a stable set or independent set. It is a subset W ∈ V
of an undirected graph G = (V,E), such that no two nodes in W are adjacent.
In other words, there are no edges between the nodes in W . The number of
nodes in a stable set of maximum cardinality is called stability number α(G).

Figure 3.17: Stable sets of a graph G with α(G) = 4

For a bipartite graph G = (S, T ;E) S and T are stable sets, of course.

3.4.4 Matchings

Let G = (V,E) be an undirected graph. A matching M is a subset of E such
that no two edges in M have an endpoint in common. M is called a perfect

3.4. Subgraphs, cliques and co 63

matching, if each node in V is adjacent to an edge in M . See Figure 3.18 for
an example.

1

2 3

4

56

Figure 3.18: A graph an one of its matchings

Of particular importance due its applications in scheduling and other areas of
optimization are bipartite matchings. If G = (S, T ;E) is a bipartite graph and
M ∈ E is a matching in G, then any edge x ∈ E must connect a node in S
with a node in T .

1

2

3

1

2

3

S T

Figure 3.19: A perfect matching in a bipartite graph

Note that we have numbered nodes in S and T in the same way, as it is com-
monly done when dealing with dealing with bipartite matchings.

3.4.5 Modules

Let G = (V,E) be an undirected graph. A module is a set M of nodes of G such
that the elements of M have the same neighbors in G−H, where H = G|M is
the subgraph induced by M . Formally, for all nodes x, y ∈M

Γ(x)−M = Γ(y)−M.

1

2

3

4

5

6

7

Figure 3.20: A module in a graph

64 Chapter 3. Elements of Graph Theory

Thus nodes in a module M are all related to nodes outside M in the same way:
for each y 6∈ M either there is an edge xy for each x ∈ M , or there is no such
edge.

3.4.6 Exercises

1. The graph shown in Figure 3.16 has several 3-cliques. Find all of them.
What about 2-cliques and 1-cliques? How many are there?

2. Find the clique number ω of the interval graph shown in Figure 3.10. How
is it related to the minimum number of classrooms required?

3. What is the subgraph induced by {1, 2, 4, 7} of G given in Figure 3.16?

4. Determine a stable set of maximum size for the Petersen-graph given in
Figure 3.11. What is its size?

5. Does the graph in Figure 3.18 have a perfect matching? If so, find one.

6. Verify that the set M = {2, 3, 4} is a module of the graph in Figure 3.20.
Are there other modules in this graph? If so, find them all.

3.5 Chains, paths, cycles, connectivity

Let G = (V,E) be a graph. A chain is a sequence of nodes

[v1, v2, . . . , vr]

with (vi−1, vi) ∈ E or (vi, vi−1) ∈ E for i = 1, 2, . . . , r. A chain is called
elementary, if every node in the chain occurs only once.

1

2 3

4

5 C = [1, 5, 2, 3, 4]

Figure 3.21: A graph G and an elementary chain in G

A path is a sequence of nodes

[v1, v2, . . . , vr]

with (vi−1, vi) ∈ E for all i = 1, 2, . . . , r. A path is elementary if each node on
the path occurs only once.

3.5. Chains, paths, cycles, connectivity 65

1 2 3

4 5 6

P = [1, 2, 5, 6]

Figure 3.22: A graph G and an elementary path in G

The cardinality of a chain C and a path P will be denoted by |C| and |P |, it
is defined as the number of edges on the chain/path. Thus cardinality is some
sort of length. In Chapter 4 we will give a rather natural definition of the length
of a path or a chain in terms of weights assigned to nodes or edges.

The interested reader may ask now: What is the difference between chains and
paths? To see the difference it is best to give the graph a physical interpretation,
e. g., the graph may represent a water supply system, nodes are households,
edges are pipes and water can only flow in direction of edges. A chain from
a node v1 to vr is a physically existing connection, but it may not be possible
to send water from v1 to vr because edges are not coherent with regard to
orientation. On the other hand, a path from v1 to vr is a connection which is
orientation-consistent. So it is technically possible to send water along the path
from v1 to vr.

Of course, in case of an undirected graph there is no difference between paths
and chains.

Still note, both concepts represent some sort of connection between two nodes.

A graph G = (V,E) is connected, if there exists a chain between any pair of
nodes. G is strongly connected, if there exists a path between any pair of nodes.
A graph with only one node is always considered strongly connected.

A subgraph H of G is a connected component of G, if H is connected. H is
called a strong component, if it is strongly connected.

If G is undirected then G is connected if there exists a path between any pair
of nodes. Otherwise G is not connected or disconnected and has two or more
components.

t Example 3.2 Consider the graph G in Figure 3.23.

• It is connected, but not strongly connected.
• It has two strong components with node sets U1 = {1, 2, 3, 4} and U2 =
{5, 6, 7}.

66 Chapter 3. Elements of Graph Theory

1 2

3 4

5 6

7

Figure 3.23: A graph G with two strong components

The graph G in Figure 3.24 is disconnected, it has two weak components and
five strong components.

1 2

3 4 5

Figure 3.24

The undirected graph in Figure 3.25 is connected, indeed, it is an example of a
tree.

1

2

3

4

5

6 7

Figure 3.25

If we remove a single edge in this tree, it becomes disconnected. Such a critical
edge is called a bridge. s

A cycle is a sequence of nodes

[v0, v1, v2, . . . , vr, v0]

such that (vi−1, vi) ∈ E for i = 1, 2, . . . , r and (vr, v0) ∈ E. The cycle C is
called elementary, if each node except for v0 on the cycle occurs only once. A
cycle is odd, if it is made up by an odd number of edges, otherwise it is even.
A cycle is hamiltonian, if it passes through all nodes of a graph.

3.6. Acyclic graphs, trees 67

1 2 3

4 5 6

Figure 3.26: A graph with one hamiltonian and several other cycles

Absence or presence of cycles is a fundamental property of graphs. For instance,
it can be shown that an undirected graph is bipartite, if and only if it does not
contain cycles of odd length, see Exercise 3.6.1.3.

3.6 Acyclic graphs, trees

Being connected and/or being cyclic are the two most important properties a
graph can have.

Acyclic graphs have no cycles. It is an interesting and nontrivial problem to
find out whether a graph has this property. Directed acyclic graphs, in short
DAGs, play a most important role in scheduling when they arise very naturally
as precedence graphs. A typical example is shown in Figure 3.27.

1

2

3

4

5

6

7

8

9

10

11

Figure 3.27: A DAG

A node k of a DAG is called a source, if its indegree d−k = 0, it is called a sink,
it its outdegree d+k = 0. The DAG in Figure 3.27 has three sources, the nodes
1,2 and 3, and one sink, the node 10.

A tree is a connected undirected graph without cycles. A disconnected undi-
rected graph all whose components are trees is called a forest. For trees the
following statements are always true:

• There exists exactly one path between any pair of nodes.
• Each edge is a bridge: if a bridge is removed the resulting graph becomes

disconnected, the result is a forest.

Intrees and outtrees are the directed analogues of trees. They have a distin-
guished node v0, the root, and:

68 Chapter 3. Elements of Graph Theory

• For intrees the outdegree d+i of each node i is at most one.
• For outtrees the indegree d−i is at most one of all nodes.

Figure 3.28: A tree, an outtree and an intree

For intrees and outtrees the following statements are always true:

• There exists exactly one path from the root to any other node.
• Each edge is a bridge: if an edge is removed the resulting graph becomes

disconnected and is called a in-forest or out-forest.

Figure 3.29: A forest, an out-forest and an in-forest

3.6.1 Exercises

1. Euler Cycles (Leonhard Euler, 1735). Given an undirected connected
graph G = (V,E), a cycle C is called an Euler cycle, if each edge appears
exactly once on C. Prove that a graph G can have an Euler cycle only if
the degrees of all of its nodes are even numbers.

2. Does the following graph have an Euler cycle? If so, find one. Does it
have more than one Euler cycle? If so, determine their number.

1

2 3

4

56

3.7. Data structures for graphs 69

3. Show that for a (undirected) graph to be bipartite it must not have cycles
of even (≥ 4) length. That is to say: the absence of even cycles is a
necessary condition for a graph to be bipartite.

4. Show that every undirected graph which does not have even cycles is
bipartite. In other words, this condition is also sufficient. This exercise
is a little bit more difficult than the former one.

5. Prove that in a tree there is exactly one path between any pair of nodes.

6. Show that if a tree has n nodes then its number of edges is necessarily
n− 1.

7. Prove that in an intree there is always exactly one path from a given node
x to the root vo. Prove also the analogous statement for outtrees.

3.7 Data structures for graphs

3.7.1 Adjacency matrix and adjacency list

Human beings like pictures, computers do not, Eugen Lawler (1976, p. 20) one
pointed out. So far, when introducing various concepts of graph theory we were
able to visualize these by drawing diagrams. But this idea of Anschaulichkeit,
a major concern of Felix Klein (1849-1925), has certainly its limitations when
graphs become larger and large in order and size. Furthermore, important
problems like deciding whether a given graph is acyclic or connected require
an algorithm. It is impractical if not impossible to solve such problems by
merely inspecting a diagram. Thus at the latest now we recognize the need of
sophisticated data structures to represent graphs for computational purposes.

Recall, a graph G = (V,E) is a binary relation on a finite set V . The most
natural data structure to represent G is its adjacency matrix. This is a matrix
A of order n× n, n = |V |, with

A = (aij), aij =

{
1 if ij ∈ E
0 if ij 6∈ E .

1 2

3

4 5

A =


0 1 1 1 0
1 0 1 0 1
1 1 0 1 1
1 0 1 0 1
0 1 1 1 0



Figure 3.30: An undirected graph and its adjacency matrix

70 Chapter 3. Elements of Graph Theory

Figure 3.30 gives an example of an undirected graph G of order 5. Observe
that its adjacency matrix is symmetric, because the binary relation underlying
G has the symmetry property.

General graphs usually do not have this property. Figure 3.31 shows an exam-
ple.

1

2

3

4

A =


0 1 1 0
1 0 1 0
0 0 0 1
0 1 0 0



Figure 3.31: A directed graph and its adjacency matrix

A major advantage of using the adjacency matrix to represent a graph is its
simplicity: it is very easy to find out whether there exists an edge ij in G. Just
check if aij = 1, and this can be done in constant time.

But this concept has also a downside, this is storage requirement. The minimum
space requirement to store an adjacency matrix of order n × n is n2 bits. For
very large graphs this may be a problem. Think for example of the world wide
web, where web pages are nodes and two nodes x and y are connected by an
edge if page x has a hyperlink pointing to page y. The corresponding adjacency
matrix requires about 1018 bits, thus roughly 1000 terabytes. Moreover, most
of space allocated to store this matrix is wasted. While the order of this graph
is enormous, its size compared to its order is moderate. Most entries of the
adjacency matrix are zero. One also says that this graph is sparse.

A reasonable alternative is the adjacency list. Given a graph G = (V,E) of
order n, its adjacency list L is a list of length n. The list entry L(i) at position
i corresponds to node i and points itself to a list holding the elements Γ(i), the
nodes adjacent from i.

Consider for example the graph shown in Figure 3.32.

1

2

3 4

5 6

7

8

Figure 3.32

3.7. Data structures for graphs 71

For this graph we determine:

Γ(1) = {2, 3}, Γ(2) = {3, 4, 5}, Γ(3) = {4}, Γ(4) = {6, 7}
Γ(5) = {6}, Γ(6) = {8}, Γ(7) = {8}, Γ(8) = ∅.

Using this information it is easy to form the adjacency list of G:

1 2 3

2 3 4 5

3 4

4 6 7

5 6

6 8

7 8

8 ∅

The entries pointed to by L(i) are typically organized as linked lists which
makes it easy to traverse them quickly. But, observe, normally there is no
special order among the elements L(i) points to, which is okay, since Γ(i) is a
set. So in the example above both would be valid:

2 3 4 5 or 2 5 3 4

Sometimes we may want to avoid this ambiguity, then we would sort the list
entries in a particular way, e. g., by increasing values.

The major advantages of adjacency lists are:

• Compactness: The storage requirements of an adjacency list is propor-
tional to |V |+ |E|.

• Adding an edge can be done in constant time.
• When iterating through the neighbors of a node x this requires time pro-

portional to the (out) degree of x. We shall see soon that systematically
visiting all neighbors of a node is a very useful and important operation
in graph algorithms

3.7.2 Numerical attributes

Assigning numerical attributes to nodes and/or edges of a graph greatly en-
hances their usefulness. Such attributes are also called weights.

Let us talk about attributes of edges first. Suppose that a graph models a
network of roads with nodes representing cities. Typical attributes of its edges
may be physical distances between cities connected by a road.

72 Chapter 3. Elements of Graph Theory

1

2

3

4

5

6

5
8
8

29
4

405

516

445

501

670

277

143

318

580

1
6
7

49
5

61
5

1. Vienna

2. Venice

3. Salzburg

4. Munich

5. Nuremberg

6. Milan

Figure 3.33: Distances between six European cities in km

Other weights of edges may be probabilities, e.g., pxy may be the probability
that the connection represented by edge xy is available. If the graph models a
network of pipelines then a reasonable edge weight is transportation capacity
of a pipe between two transmitter nodes.

Now the length of a path or a cycle becomes a somewhat different meaning.
So far we have defined length as the number of edges on a path (cycle). Now
length of a path may be:

• The sum of the weights of edges on a path or cycle, if weights represent
distances.
• The product of the weights in case of probabilities.
• The minimum of the weights of edges on a path, e.g., when weights are

transportation capacities.

For example in Figure 3.33, a path from Vienna to Milan may pass through
Salzburg. Its length is obviously 874 km.

The most natural data structure to store this type of information is that of
a distance matrix D. Its entry in row i and column j is just the distance,
capacity, probability of availability of an edge. In a sense the concept of distance
matrix is very similar to that of an adjacency matrix. The 1’s on the adjacency
matrix tell us that there exists an edge between two nodes. In the distance
matrix we have in place of theses 1’s some distance measure. But there is an
important difference: if there is no edge between two nodes then the value of
the corresponding entry in the distance matrix depends on the type of problem
we want to solve.

t Example 3.3

Consider the following scheduling problem: there are 4 jobs to be run on 4
machines. Each job must be assigned to exactly one machine, each machine

3.7. Data structures for graphs 73

must be used, all jobs start at time zero and no preemption is allowed. The
execution time of job i on machine j varies from machine to machine and is
denoted by tij . In particular, we have the processing time data:

Machine
Job 1 2 3 4

1 7 9 8 9
2 2 8 5 7
3 1 6 6 9
4 3 6 2 2

Thus job 1 requires 9 minutes time on machine 2, and job 4 only 2 minutes on
machine 3 or 4.

We are looking for an assignment jobs ↔ machine which guarantees minimum
total processing time. This scheduling problem is known as Linear Sum Assign-
ment Problem (LSAP). It can be formulated and solved as a minimum weight
perfect matching on a complete bipartite graph K4,4 with node sets S = jobs
and T = machines. Any perfect matching M has a value which is the sum
of weights of those edges which become part of M . A feasible solution of the
LSAP is shown in Figure 3.34. It is indeed an optimal solution.

1

2

3

4

1

2

3

4

Assignments:

1→ 2, 2→ 3, 3→ 1, 4→ 4

Total processing time:

T = t12 + t23 + t31 + t44 = 17

Figure 3.34: A solution of the assignment problem

Later, in Chapter 4, we will outline algorithms for solving the LSAP.

s

We may assign numerical attributes also to nodes of a graph. For example, if
the graph models a transportation network, nodes represent facility locations
and weights may be demands, supplies or production capacities. In a scheduling
context we will often use graphs to represent precedence relations. In this case
nodes are jobs to be processed and an edge uv means that job v cannot be
started unless job u has been completed. The numerical weights assigned to
nodes then are typically processing times.

74 Chapter 3. Elements of Graph Theory

1 2 3

4

5

6

7

8

9
5 3 8

5 4 3

7 2 1

Figure 3.35: Precedence relations with processing times

The length of a path is now defined as the sum of the weights of all nodes lying
on the path. Much more has to be said about precedence relations in sections
3.9 and 3.10. In Chapter 4 we will make the somewhat surprising observation
that paths of maximum length are of particular importance in scheduling.

3.7.3 Exercises

1. Suppose we want to find a shortest route between two cities in a network of
streets. If there is no road between cities x and y, what is an appropriate
entry dxy of the distance matrix?

2. Suppose we want to find a connection of maximum capacity between two
transmitters in a network of pipelines for natural gas. If there is no link
between transmitters x and y, what is an appropriate entry dxy of the
distance matrix?

3. Consider once more the precedence graph shown in Figure 3.35. Find a
path from node 1 → 9 with maximum length. How would you interpret
this number in a scheduling context?

3.8 Exploring a graph

Now, after having presented so many concepts its time to go one step further.
So far our approach was a descriptive one. But now we will ask: when does
some graph have a particular property?

Such questions are very important and to answer them will typically require
an algorithm. Here are a few questions yet to be answered: Given a graph
G = (V,E),

• Does there exist a path between two nodes x and y?
• Is G acyclic?
• Is G bipartite?
• Is G connected, strongly connected?
• How can we identify its components, its strong components?
• What parts G are reachable from a given node?

3.8. Exploring a graph 75

All these questions are somehow related to paths in a graph. Therefore we
need algorithms that allow us to systematically walk through a graph along a
particular path and thereby visiting a subset or eventually all of its nodes.

One of the most effective ways to explore a graph is depth-first search. It has
its origin in the work of Charles Pierre Trémaux (1859-1882) and his studies on
mazes.

3.8.1 Depth-first Search

You will eventually have heard the ancient saga of Theseus and Ariadne. So
you will know that two things are required to find a way out of a maze without
getting trapped in an endless cycle: a chalk and a string. With the chalk we
mark junctions when we are visiting them for the first time. The string helps
us to find back to an already visited junction, if we got stuck at a dead end or
return to a junction visited earlier. So the procedure of traversing a maze is
essentially this:

• Take an unmarked passage unrolling the string behind you while walking
along.
• Mark all intersections at the first time you are visiting them.
• Retrace steps if you arrive either at an already visited junction or a dead

end.

The string guarantees that you will always find a way back, and the chalk marks
help you to avoid visiting a passage twice.

These ideas carry over in a natural way to graphs, as there is a close correspon-
dence between graphs and mazes, see Figure 3.36.

Both, chalk and string can be easily simulated in an algorithm. The chalk is
just a variable whose value indicates that a certain node has been visited earlier.
The string used for backtracking is implemented by recursion.

1 2

3

4

5

6 7

8

9 10

Figure 3.36: A very simple maze and its translation into a graph

76 Chapter 3. Elements of Graph Theory

Algorithm 3.1 to be presented below works an any graph G may it be directed
or undirected. It starts at any node u and recursively explores all adjacent
nodes until no more unexplored nodes can be found.

The chalk to mark a newly discovered node is a vector of dimension n, let us
call it visited, where

visited[i] =

{
1 if node i has been discovered during search
0 otherwise

Furthermore we will use a clock time to record the time when a new node is
discovered and the time when exploration of a node is finished, i.e. it has no
more unvisited nodes. Also we will keep track of the immediate predecessor of
each newly discovered node. The reason for this overhead will become clear
soon.

Algorithm 3.1

DFS

Input: a graph G = (V,E)
Output: three vectors

visited = vector indicating discovery of nodes
d = vector of discovery times
f = vector of finishing times
π = vector of predecessors

for u ∈ V do
begin

π[u] := 0
visited[u] := 0

end

time := 0

for u ∈ V do
if visited[u] = 0 then explore(u)

procedure explore

Input: a graph G = (V,E) and a node u ∈ V

begin
visited[u] := 1
time := time + 1
d[u] := time

for v ∈ Γ(u) do
begin

3.8. Exploring a graph 77

if visited[v] = 0 then
begin

π[v] := u
explore(v)

end
end

time := time + 1
f [u] := time

end

t Example 3.4

Our first example will be a demonstration of Algorithm 3.1 when run on an
undirected graph, as it is shown in Figure 3.37.

1 2

3

11

4

5 6

7

8

9 10

Figure 3.37

Starting in node 1 the first sequence of recursions results in the situation de-
picted in Figure 3.38. Visited nodes are shown in color gray, in the lower half
of each visited node v we see the pair d[v]/f [v].

1
1/8

2
2/7

3
3/6

11
4/5

4

5 6

7

8

9 10

Figure 3.38

78 Chapter 3. Elements of Graph Theory

At this stage the predecessor vector π contains:

π = [0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3]

Continuing with node 4 the exploration results in the graph shown in Figure
3.39.

1
1/8

2
2/7

3
3/6

11
4/5

4
9/22

5
10/21

6
11/20

7
12/13

8
14/19

9
16/17

10
15/18

Figure 3.39

s

The data generated by the DFS -search in Example 3.4 yield a lot of important
information about the graph. Lets us look first hat the predecessor vector π
which we display in this way:

π[u] 0 1 2 0 4 5 6 6 10 8 3

u 1 2 3 4 5 6 7 8 9 10 11

Each column in this table except for u = 1 and u = 4 represents an edge in a
graph T with node set V . It is a subgraph of G and displayed in Figure 3.40.

1
1/8

2
2/7

3
3/6

11
4/5

4
9/22

5
10/21

6
11/20

7
12/13

8
14/19

9
16/17

10
15/18

Figure 3.40

This figure shows the subgraph generated by the edges (π(u), u) which are
drawn in bold blue. The subgraph is a forest, thus a collection of trees, it

3.8. Exploring a graph 79

is known as DFS-forest. Each tree corresponds to a connected component
of G. Once we start exploration in a node of a component, e.g. in node 1,
DFS explores all nodes of this component. Then it is restarted in a node so
far undiscovered, in the example node 4, and explores all nodes which can be
reached by a path.

Note that it is a easy exercise to adapt Algorithm 3.1 in such a way that it
enumerates and marks all connected components of an undirected graph.

But much more has been found out.

Discovery times di and finishing times fi returned by Algorithm 3.1 yield addi-
tional valuable information. In our example graph:

di 1 2 3 9 10 11 12 14 15 16 4

fi 8 7 6 22 21 20 13 19 17 18 5

Of particular interest are edges (u, v) such that

dv < du < fu < fv (3.4)

These nesting inequalities hold for instance for edges (3, 1) and (11, 1) in the
first component of our example graph. Such edges of G are not part of the
DFS -forest. They are called back edges. Recall, when we add an edge to a tree
this always results in a cycle. Thus whenever we encounter a back edge in an
undirected graph then it will be cyclic.

In Figure 3.40 back edges are drawn in red dotted lines. Indeed, they create
(several) cycles.

DFS -search is very fast, it is indeed linear in size and order of a graph, its
complexity is O(|V |+|E|) when using adjacency lists to representG numerically.

Algorithm 3.1 works without any changes also on directed graphs.

t Example 3.5

Let us consider the graph G = (V,E) displayed in Figure 3.41.

1 2 3

4

567

8

Figure 3.41

When we start DFS in node 1 it explores nodes 2, 6, 5, 4 and 3 in this order.

80 Chapter 3. Elements of Graph Theory

1
1/

2
2/

3
6/7

4
5/

5
4/

6
3/

7

8

Node 3 has no undiscovered neighbors thus DFS tracks back to node 6 and
discovers node 7.

1
1/14

2
2/13

3
6/7

4
5/8

5
4/9

6
3/12

7
10/11

8
15/16

As there are no undiscovered nodes adjacent to 7, DFS tracks back to node 1
and starts exploration of the last undiscovered node 8. Here DFS stops since
node 8 has no undiscovered neighbors.

s

Again it is instructive to have a look at the data generated by DFS. The pre-
decessor vector π in Example 3.5 has been found to be

π(u) 0 1 4 5 6 2 6 0

u 1 2 3 4 5 6 7 8

The pairs F = {(π(u), u), u ∈ V } form the edge set of a subgraph H = (V, F) of
G. As for undirected graphs this is a forest, more precisely the DFS out-forest
of G.

3.8. Exploring a graph 81

1
1/14

2
2/13

3
6/7

4
5/8

5
4/9

6
3/12

7
10/11

8
15/16

Figure 3.42: The DFS -outforest of Example 3.2

As was the case with undirected graphs there may be edges of G = (V,E)
which are not part of any DFS -outtree. Their classification is quite informative
and based again on discovery and finishing times du and fu. Consider an edge
uv ∈ E and let us represent the discovery time of node u by a left bracket [

u
,

its finishing time by a right bracket]
u
. Based on the ordering of discovery and

finishing times of two nodes u and v we have:

• If the ordering is

[
u

[
v

]
v

]
u
,

then uv is either a tree edge or a forward edge. The latter lead from a
node to a non-child descendant in the same a DFS -tree. In our example
there is one forward edge (drawn as green dotted arrow) from node 1 to
node 6.
• If the graph has an edge uv with ordering

[
v

[
u

]
u

]
v
,

then uv is called a back edge. In Figure 3.42 there are two back edges,
(3, 2) and (3, 6).
• If there is an edge with

[
v

]
v

[
u

]
u
,

it is called a cross edge. Such edges lead neither to a descendant nor to a
predecessor. They lead from a node whose exploration as been finished to
another finished node. In our running example there are two cross edges,
(8, 1) and (8, 7).

82 Chapter 3. Elements of Graph Theory

These relations are known as Parenthesis Theorem.

Back edges are the most interesting: whenever DFS identifies a back edge in a
graph G, then it must have a cycle. In other words, a graph is acyclic if and
only if it has no back edges.

Another important application of DFS is to study connectivity properties of a
graph. In case of an undirected graph this is very easy:

• If procedure DFS calls explore with a node u, explore calls itself recur-
sively until all nodes which can be reached from u have been discovered.
Since these nodes are all connected to u by a path they form a connected
component of G, that component which contains u.
• DFS then starts explore with a new yet undiscovered node provided there

is one and discovers the next connected component of G, and so on.

Determining the strong components of a directed graph is more difficult, still
it can be done very elegantly by means DFS. Here DFS is part of the famous
Kosaraju-Sharir algorithm. The interested reader is referred to Sedgewick and
Wayne (2011, pp. 590).

Remark: one final comment on depth-first search is in order. The DFS -
forest is usually not uniquely defined. Observe that for a given node u explore
processes the neighbors in Γ(u) in some order. Normally this order is given by
the way the entries in the adjacency list are organized, or it is the way nodes
have been numbered, when we work with the adjacency matrix of a graph.
Depending on the way the nodes in Γ(u) are processed we obtain different DFS -
forests. Sometimes it may be necessary to avoid this ambiguity and impose some
ordering on the sets Γ(u).

3.9 Precedence Graphs

3.9.1 Partial Orders

Probably the most important applications of graph theory in scheduling deal
in one or the other way with dependent jobs. In many production and service
environments jobs cannot be processed in arbitrary order. Then, when forming
a schedule certain restrictions on order have to be obeyed. Typically such
restriction are due to:

• technological impossibilities,
• practicability,
• availability of resources,
• constraints imposed by transportation and facility location, etc.

On a formal level precedence relations define a partial order P on a set of jobs
J . P is defined as a pair P = (J,→) where → defines an order relation in the
following way: for a, b ∈ J : a → b means, job b cannot be started unless job a
has been completed.

The relation → satisfies:

3.9. Precedence Graphs 83

• Irreflexivity : for all a ∈ J : a 6→ a.
• Antisymmetry : a → b implies b 6→ a for all pairs of jobs for which → is

specified.
• Transitivity : if a→ b and b→ c, then a→ c.

We say that two jobs are comparable, if either a→ b or b→ a, otherwise a and
b are incomparable, symbolically: a‖b.
A set of pairwise comparable jobs is called a chain, and a set of pairwise incom-
parable jobs an antichain. The empty set ∅ and sets {a} consisting of a single
job are by definition both, chain and antichain.

The alert reader may recall that we have defined a graph G = (V,E) as an
irreflexive binary relation E on some finite set V . Augmenting E by asymmetry
and transitivity makes it a partial order P = (J,→) and therefore creates a
special type of graph, the precedence graph G(P) = (J,E) corresponding to P .
It is constructed as follows:

• The nodes of G(P) are the elements of P , in our case jobs to be scheduled.
• G(P) has an edge ab job if a precedes b in P , i.e. a→ b.

For notational convenience we will mostly write G instead of G(P) when dealing
with precedence graphs.

The precedence graph G is a always a directed acyclic graph. Such DAGs have
been already introduced in Section 3.6. That G is a directed graph follows from
the ordering relation →, That it is acyclic is a consequence of transitivity. To
see this, assume that G has a cycle

a1 → a2 → a3 → . . .→ ak−1 → ak → a1

Then by transitivity a1 → a2 → a3 =⇒ a1 → a3 and therefore successively:

a1 → a3 → . . .→ ak−1 → ak → a1

a1 → a4 → . . .→ ak−1 → ak → a1
...

a1 → ak → a1

a1 → a1.

The last statement violates the postulate of irreflexivity. So G must be acyclic.
If we would drop the transitivity requirement, then we would run into series
logical troubles. Suppose we have a partial order P on three jobs with:

1→ 2, 2→ 3, 3→ 1,

Job 2 cannot start unless job 1 has been completed, job 3 requires finishing job
2 first, but job 1 requires completion of 3? Of course, this logical inconsistency
is due to the fact that the graph G(P) displayed in Figure 3.45 is a directed 3-
cycle. While it is an easy matter to detect such inconsistencies in small partial
orders, the situation is different, if we deal with several hundred or thousands of

84 Chapter 3. Elements of Graph Theory

dependent jobs. But we know how to detect cycles: just perform a DFS -search
and watch out for back edges.

1

2

3

Figure 3.43: Precedence graphs must be acyclic

t Example 3.6

Suppose we have four jobs 1, 2, 3 and 4 and it is known that production requires:

1→ 3, 1→ 4, 2→ 3, 3→ 4

These precedence constraints define four edges in the precedence graph:

1

2 3

4

Figure 3.44: A precedence graph G

A closer look at this graph reveals that the edge (1, 4) is redundant, it is implied
by transitivity, because

1→ 3→ 4 =⇒ 1→ 4

Thus the precedence graph without edge (1, 4)

1

2 3

4

Figure 3.45: Transitive reduction of G

represents exactly the same precedence relations as the graph in Figure 3.44.
Indeed, there are many ways to define a precedence graph given a partial order
P = (J,→). However, among these there are two which are of particular
importance.

3.9. Precedence Graphs 85

The transitive reduction G0 contains as edges only those which are not implied
by transitivity, this is the minimal precedence graph resulting from a partial
order P .

The transitive closure Gc of a precedence graph G has an edge a→ b whenever
there is a path from a to b in G.

1

2 3

4

Figure 3.46: Transitive closure Gc of G

These observations lead us to two important definitions:

• If there is an edge (a, b) in the transitive reduction of a precedence graph,
then a is an immediate predecessor of b and b an immediate successor of
a. In this case there is no job c such that

a→ c→ b

We may also write b ∈ Γ(a) and a ∈ Γ−1(b), using the mapping Γ defined
earlier in this chapter.
• If there is an edge (a, b) in the transitive closure then there exists a path

from a to b in G and, of course also in the transitive reduction. In this
case a is called a predecessor of b and b a successor of a.

So two questions arise now:

• When should we use the transitive closure of a precedence graph, when
its transitive reduction?
• How can we determine these given a precedence graph?

For the first question, this is a matter of efficiency. Many scheduling algorithms
are iterative and contain statements like this one:

for all successors k of job a ∈ J do something

This requires to determine whether there is a path from a to k over and over
again which may be very time consuming. But having calculated the transitive
closure of a precedence graph we can find out very quickly whether there is such
a path: just look if there is an edge (a, k).

On the other hand, transitive closures are very dense graphs, thus the appro-
priate data structure to represent such a graph is its adjacency matrix which is
typically dense and may require a lot of storage space, see Figure 3.47 for an
example.

86 Chapter 3. Elements of Graph Theory

1

2

3 4

5

6

1

2

3 4

5

6

Figure 3.47: A precedence graph G and its transitive closure of Gc

The graph G in Figure 3.47 is the transitive reduction of graph shown in the
right half.

Algorithm 3.2 given below determines the transitive closure of a precedence
graph by the Floyd-Warshall Algorithm due to Floyd (1962) and Warshall
(1981). Its idea is a very simple one: all pairs of edges are checked, and when
a pair implies an edge by transitivity this edge is added to E.

Algorithm 3.2

TClose

Input: a DAG G = (V,E)
Output: the transitive closure Gc

V (Gc) := V (G)
E(Gc) := E(G)

for x ∈ V do
for y ∈ V do

for z ∈ V do
if xy ∈ E and yz ∈ E then

E := E ∪ {xz}

Algorithm 3.3 does the reverse of Algorithm 3.2. It successively deletes edges
which are transitively redundant.

Algorithm 3.3

TReduce

Input: a DAG G = (V,E)
Output: the transitive reduction G0

V (G0) := V (G)
E(G0) := E(G)

for x ∈ V do
for y ∈ V do

3.9. Precedence Graphs 87

for z ∈ V do
if xy ∈ E and yz ∈ E then

E := E − {xz}

3.9.2 Linear extension and topological ordering

Consider a set of four jobs J = {1, 2, 3, 4} to be processed on a single server
and assume that technology affords:

1→ 3, 2→ 3, 2→ 4, (A)

Thus (A) defines a partial order on J with precedence graph:

1

2

3

4

How can we find some schedule for these data? Note that we are not talking
about finding an optimal schedule at this point.

Finding a schedule for a single-server problem without inserted idle time and
preemption means finding a job ordering, as we have found out in Chapter 2.
However, among the 24 = 4! schedules of 4 jobs, in the present situation we only
accept permutations of {1, 2, 3, 4} which are not in conflict with the precedence
constraints (A). Such schedules are called feasible.

In our problem we find that there are incomparable jobs, in particular, 1‖2 and
3‖4. Thus we have a choice regarding the order in which 1 and 2 appear in the
schedule and we have also a choice regarding the pair 3 and 4. But we have no
choice when scheduling, for instance, 1 and 3. For a schedule to be feasible, 1
must always come before 3.

Now, it is easily verified that the only permutations of {1, 2, 3, 4} that are not
in conflict with (A) are:

[1, 2, 3, 4], [1, 2, 4, 3], [2, 1, 3, 4], [2, 1, 4, 3], [2, 4, 1, 3]

Thus our problem has only five feasible schedules.

Once we have chosen a particular schedule, say for instance S = [2, 1, 3, 4] we
have to decided to process jobs in this order:

2→ 1→ 3→ 4 (B)

But, (B) is also a partial order on J , indeed, it a partial order which has no
incomparable pairs of jobs. Thus S is a chain!

Given a partial order P = (J,→) on n elements of J , a partial order S is called
a linear order, if it has no incomparable elements. S is called a linear extension

88 Chapter 3. Elements of Graph Theory

of P , if it is linear and not in conflict with P . A fundamental theorem in
the theory of partial orders, the order-extension principle by Edward Szpilrajn
(1930) postulates that for any partial order a linear extension can be found.
But in general, a linear extension is not uniquely defined.

Two questions come up immediately:

• How can we find a linear extension of a given partial order P? In other
words: given a precedence graph G, how can we find a feasible schedule
conforming to P?
• How many linear extensions does a given partial order P have?

Let’s deal with the second question first: unfortunately there is no easy answer,
there is no formula finding the number of linear extensions of a partial order
P . Actually, it can be shown that counting the number of linear extensions is
a very hard problem except when P has some very simple special structure.

Now to the first question: one way of finding a linear extension is to renumber
nodes in such a way that if xy ∈ E then necessarily x < y. In other words,
an edge always leads from a node with lower number to a node with higher
number. This renumbering, also known as topological sorting, not only yields
a feasible schedule, it is also the first step of many algorithms, which rely on
a preordering of nodes. This is very helpful if we have to enumerate cleverly
all feasible schedules. Some of these algorithms will be discussed in the next
chapter.

And now to the good news: topological sorting can be done easily and efficiently
by depth-first search. Once we have determined the finishing times of the nodes,
renumbering goes as follows: just sort the finishing times by decreasing values
and renumber nodes accordingly. This is best explained by an example.

t Example 3.7

The reader may recall the Bicycle Problem discussed in Chapter 1. Produc-
tion of a bicycle involves 10 jobs, their dependencies are represented by the
precedence graph shown

5

8

6

4

1

9

2

10

7

3

Figure 3.48: The precedence graph of Graham’s Bicycle Problem

3.9. Precedence Graphs 89

We want to sort this precedence graph topologically. Using Algorithm 3.1, DFS
yields finishing times:

i 1 2 3 4 5 6 7 8 9 10

f 8 5 4 7 20 15 12 19 18 14

Sorting the fi by decreasing values yields:

i 5 8 9 6 10 7 1 4 2 3

f 20 19 18 15 14 12 8 7 5 4

Thus one of a many of feasible schedules5 is

S = [5, 8, 9, 6, 10, 7, 1, 4, 2, 3]

The reader may verify that this sequence is not in conflict with the precedence
relation shown in Figure 3.48. Renumbering nodes according to S yields the
topological ordering of the precedence graph:

1

2

4

8

7

3

9

5

6

10

Figure 3.49: A topological ordering

s

3.9.3 Exercises

1. Algorithms 3.2 and 3.3 are independent of the representation of the graph
G. G may be represented by its adjacency matrix or by its adjacency list.
Work out the details.

2. Determine the time complexity of algorithms 3.2 and 3.3. Is it better to
use the adjacency list representation or the adjacency matrix of G?

3. Algorithms 3.2 and 3.3 both require the input graph to be acyclic. What
would happen if this condition is not satisfied?

5Recall the remark on ambiguity of DFS on page 82.

90 Chapter 3. Elements of Graph Theory

4. Devise an adaptation of DFS by introducing appropriate variables to
count the number of linear extensions of a partial order. Use this to show
that for the precedence graph of Figure 3.48 there are 1490 feasible sched-
ules. This is quite a small number compared to n! = 3628800 schedules if
jobs were independent.

3.10 SP-graphs

3.10.1 Series and parallel composition

There is an important class of precedence graphs which have a very simple
structure, simple enough so that some notoriously hard scheduling problems
become tractable. This is the class of series-parallel graphs or sp-graphs. Before
we give a formal definition of sp-graphs let us discuss first an example.

t Example 3.8

A home center offers a book case for do-it-yourself construction. It is cheap,
just perfectly suited for student apartments. After unpacking you find a lot of
screws and bolts and these pieces:

E

D

C

A B

G

H F

There is also a folder with assembly instructions, it tells you how to assemble
pieces to get a wonderful bookcase in no more than 8 steps:

Job Action

1 fix base board E to left side plate A
2 fix base board E to right side plate B
3 fix bottom board C to left side plate A
4 fix bottom board C to right side plate B
5 fix top board D to left and right side plates
6 fix back board F
7 install case board G
8 install case board H

These instructions will also contain a picture showing you how the book case
should look like finally6:

6if things work out smoothly, of course. . .

3.10. SP-graphs 91

So, how to assemble the book case? In the instructions you will find a lot of
pictures telling you essentially this:

• You may first fix the base board E to the left side plate A followed by
fixing the bottom board C to A. Thus: 1→ 3.

• Alternatively, you may start fixing E to the right side plate B followed
by the bottom board C. Thus 2→ 4.
• Now put together left and right side plates with E and C already mounted

and fix the top board D. This is job 5.
• Next fix back board F , job 6.
• Either install first case board G and then H or do it the other way round.

At this point the bookcase should be finished, hopefully.

Now having learned a lot about precedence relations you know that these assem-
bly instructions define a partial order on the set of jobs J = {1, 2, 3, 4, 5, 6, 7, 8}.
What is the corresponding precedence graph, more precisely, its transitive re-
duction? Here it is:

1

2

3

4

5 6

7

8

Figure 3.50: The precedence graph for the bookcase

This is a typical example of a series-parallel graph.

s

Series-parallel graphs are constructed recursively following these rules:

• If V contains only a single node and E is empty, then G = (V,E) is
series-parallel.

• Parallel composition: given two sp-graphs G1 = (V1, E1) and G2 =
(V2, E2) with no common nodes, i.e. V1 ∩ V2 = ∅, the parallel com-
position is a sp-graph G = G1 + G2 with nodes V and edges E defined

92 Chapter 3. Elements of Graph Theory

by:

V = V1 ∪ V2, E = E1 ∪ E2

• Series composition: given two sp-graphs G1 = (V1, E1) and G2 = (V2, E2)
with V1 ∩ V2 = ∅, the series composition is an sp-graph G = G1 ·G2 with
nodes V and edges E defined by:

V = V1 ∪ V2, E = E1 ∪ E2 ∪ {xy : x ∈ V1, y ∈ V2}

This needs some explanation. Parallel composition is easy: just put two differ-
ent sp-graphs G1 and G2 together to get a new sp-graph G which is disconnected
and has (at least) components G1 and G2.

1

2

3

4

5

G1 G2

→

1

2

3

4

5

G = G1 +G2

Note that parallel composition is commutative: G1 +G2 = G2 +G1.

In case of a series composition G = G1 · G2 each node x of G1 is joined with
each node y of G2 by a directed edge xy.

1

2

3

4

5

G1 G2

→

1

2

3

4

5

G = G1 ·G2

Series composition is not commutative, i.e. G1 ·G1 6= G2 ·G1.

t Example 3.8 (continued)

At the beginning we have 8 graphs G1, G2, . . . , G8 each having only one node,
namely the jobs 1, 2, . . . , 8. These singletons are sp-graphs by definition.

3.10. SP-graphs 93

1

3

G1

G3

2

4

G2

G4

5

6

G5

G6

7

8

G7

G8

Next we model the dependency of jobs 1 and 3 and 2 and 4. These are two
series-compositions which are put in parallel:

G1 ·G3 1 3

G2 ·G4 2 4

= G1 ·G3 +G2 ·G4

G5 is joined by a series composition:

(G1 ·G3 +G2 ·G4) ·G5

1 3

2 4

5

Next we join job G6 and the parallel composition G7+G8 by series composition
(for clearness only the transitive reduction is drawn below):

1

2

3

4

5 6

7

8

(G1 ·G3 +G2 ·G4) ·G5 ·G6 · (G7 +G8)

s

3.10.2 The decomposition tree

One of the messages of Example 3.8 was that a series-parallel precedence graph
can be expressed as an algebraic expression. In the example:

G = (G1 ·G3 +G2 ·G4) ·G5 ·G6 · (G7 +G8) (3.5)

94 Chapter 3. Elements of Graph Theory

This expression is made up by constants and operators: the operators are a
commutative addition + and a non commutative multiplication ·, with multi-
plication having precedence over addition.

To gain a little bit more insight into (3.5) let us assume for the moment that
the constants are natural numbers and addition and multiplication have now
their usual meaning, so that multiplication is commutative: for instance (3.5)
may now look like:

(3 · 4 + 2 · 5) · 8 · (1 + 7) (3.6)

This expression in numbers is structurally fully equivalent to (3.5). But, how
is it evaluated?

Computers, even simple pocket calculators, evaluate (3.6) by constructing a
parse tree:

� (3 · 4 + 2 · 5) · 8 · (1 + 7)

⊕ 3 · 4 + 2 · 5 8 ⊕ 1 + 7

� 3 · 4 � 2 · 5 1 7

3 4 2 5

Observe that each inner node has a label indicating the way its children are to
be composed, either by ⊕ = addition or by � =multiplication.

Evaluation is done by working through the tree in a bottom-up manner. First
leaves are combined according to the label of their common father7:

� (3 · 4 + 2 · 5) · 8 · (1 + 7)

⊕ 3 · 4 + 2 · 5 8 8

12 10

In the next step the tree reduces to

7I have to apologize for this somewhat patriarchic nomenclature, obviously it is of biblic
origin but still standard in graph theory. This apology is copywrited by Martin Golumbic.

3.10. SP-graphs 95

� (3 · 4 + 2 · 5) · 8 · (1 + 7)

22 8 8

A final reduction yields:

(3 · 4 + 2 · 5) · 8 · (1 + 7) = 22 · 8 · 8 = 1408

The nice thing about sp-graphs is: it is always possible to represent them by
an algebraic expression and to expand this into a parse tree T . This tree is
called a decomposition tree. Once T has been determined we can evaluate the
tree in a bottom-up fashion, though the process of evaluation now depends on
the scheduling problem to be solved. This evaluation process will be discussed
in greater detail in Chapter 5.

Here we will confine ourselves to the problem of finding the decomposition tree
T . And in passing we will answer also another important question which we
have not touched so far:

Are all precedence graphs series-parallel? If not, how can we find out?

Here is a quick answer to the first question: no, not all precedence graphs are
series-parallel. The following is a counter example.

1

2

3

4

Figure 3.51: A non sp-precedence graph

It is impossible to construct this precedence graph by series and parallel com-
positions only. In fact, this graph is known as N-structure, and any precedence
graph having this N-structure as subgraph cannot be series-parallel therefore
N is also called a forbidden substructure.

The vehicle to detect such forbidden subgraphs and to find the decomposition
tree of a given precedence graph is the concept of a comparability graph.

Given a precedence graph G(J,E) its comparability graph G̃(J,E) is constructed
as follows:

• Form the transitive closure Gc of G.
• Delete orientation of edges in Gc.

Let us illustrate this concept by two examples. The transitive closure of G
shown in 3.52 is just G, deleting orientation of edges we obtain an interesting
structure:

96 Chapter 3. Elements of Graph Theory

1

2

3

4

1 3 2 4−→
stretch

= P4

Figure 3.52: The comparability graph of G given in Figure

P4 is a path consisting of four nodes. Whenever it occurs in a comparability
graph, then the underlying precedence graph is not series-parallel.

The comparability graph of the precedence graph in Example 3.8 (Figure 3.50)
is a bit more complicated, it is displayed in Figure 3.53.

1

2

3

4

5 6

7

8

Figure 3.53: Comparability graph of Example 3.4

Comparability graphs have many interesting properties, among these for our
purposes one of the most important ones is this: they preserve structural prop-
erties of the underlying precedence graph (Buer and Möhring, 1983). Thus if
a precedence graph G is series-parallel, then this property is also present in a
certain sense in the corresponding comparability graph G̃.

The following Algorithm 3.4 is based on ideas due to (Gallai, 1967), but see also
(Möhring, 1989). It produces the decomposition tree T of the comparability
graph of a partial order or stops with the message that the partial order is not
series-parallel.

Let C := C(G) be the comparability graph of a precedence graph G. Basically,
the algorithm does the following:

• Initially T consists of a single root node which is has a data field holding
all nodes of C.
• If C is disconnected then it must be a parallel construction and the con-

nected components are its parts. In this case the root node is marked by
a ⊕ to indicate that its children are part of a parallel composition. These
parts are attached as children to the root and each child has an own data
field holding the nodes of each part.
• Otherwise: if C is connected, we form its complement C. Recall, that

3.10. SP-graphs 97

now each edge becomes a non-edge and each non-edge an edge. If C is
disconnected, then the root node is marked by a �, thus showing us that
its children are combined by a series-composition. For each part a new
child is attached to the root node with corresponding data field.

• If both, C and C are connected, then G cannot be series-parallel. The
algorithm stops at this point and outputs an appropriate message.

• Otherwise the algorithm is called recursively in a depth-first manner on
the subgraphs of C induced by the nodes in the data field of children of the
root, making each one to the root of a subtree until a child is encountered
which contains a single node.

Algorithm 3.4

procedure SPTree

Input: the comparability graph C of a precedence graph G = (V,E)
Output: the decomposition tree T of G or

a message that G is not series-parallel

begin
N := V [comment: the root of the tree to be constructed]
T := {N}
Loop:

Compute the connected components of the induced subgraph C|N
if C|N is disconnected then

begin
Label N with ⊕ as parallel
Assign the node sets of the connected components
of C|N as children to N
go to Stop

end

Compute the connected components of the complement C|N of C|N

if C|N is disconnected then
begin

Label N with � as series
Assign the node sets of the connected components
of C|N as children to N
go to Stop

end

if C|N and C|N are both connected then
begin

Output message that C is not series-parallel
return

end

Stop:
if there is an unlabeled node N ′ with ≥ 2 nodes in its data field then

98 Chapter 3. Elements of Graph Theory

begin
N := N ′

go to Loop
end

else
return T

t Example 3.4 (continued)

We start with the comparability graph C(G) shown in Figure 3.53. Initially
the tree T has a single node N containing all nodes of C, so N = {1, 2, . . . , 8}.

{1, 2, 3, 4, 5, 6, 7, 8}

Figure 3.54: The root of the decomposition tree in Example 3.4

As C is connected, we construct the complement C:

1

2

3

4

5 6

7

8

C has 4 connected components, with node sets

V1 = {1, 2, 3, 4}, V2 = {5}, V3 = {6}, V4 = {7, 8}

We mark the root of the tree with � and attach as children in this order new
nodes containing the sets V1, V2, V3 and V4 as data fields:

� {1, 2, 3, 4, 5, 6, 7, 8}

{1, 2, 3, 4} 5 6 {7, 8}

Figure 3.55: The tree after the first decomposition step

Now let us work on the children of T . The leaves 5 and 6 are single nodes and
cannot be decomposed further. The first leave contains four nodes, so we set
N = {1, 2, 3, 4} and look at the induced subgraph C|N . From Figure 3.53 we
find that this subgraph is:

3.10. SP-graphs 99

1

2

3

4

This subgraph has two connected components, thus we have a parallel compo-
sitions with parts having node sets V1 = {1, 3} and V2 = {2, 4}. We add these
to N and mark N by ⊕ as parallel:

� {1, 2, 3, 4, 5, 6, 7, 8}

⊕ {1, 2, 3, 4} 5 6 {7, 8}

{1, 3} {2, 4}

Figure 3.56: The tree after the second decomposition step

Next comes the node with N = {7, 8}. The subgraph C|N induced by N is
(look once more at Figure 3.53) is:

8

7

It is disconnected, therefore we mark this tree node with ⊕ as parallel compo-
sition and attach children consisting of single nodes 7 and 8:

� {1, 2, 3, 4, 5, 6, 7, 8}

⊕ {1, 2, 3, 4} 5 6 ⊕ {7, 8}

{1, 3} {2, 4} 7 8

Figure 3.57: The tree after the third decomposition step

Two nodes are left in the tree containing more than one node of the original
comparability graph C. Both are connected, so we form their complements:

100 Chapter 3. Elements of Graph Theory

1 3

2 4

C|{1, 3} :

C|{2, 4} :

1 3

2 4

C|{1, 3} :

C|{2, 4} :

The complements are disconnected, hence we mark the corresponding nodes of
T as series composition and append the single nodes 1, 3 and 2, 4 are leaves.
This yields the final decomposition tree T , because all leaves of T consist of a
single node of the original comparability graph C:

� {1, 2, 3, 4, 5, 6, 7, 8}

⊕ {1, 2, 3, 4} 5 6 ⊕ {7, 8}

� {1, 3} � {2, 4} 7 8

1 3 2 4

Figure 3.58: The tree after the last decomposition step

t Example 3.9

Let us see how the algorithm behaves when fed with a comparability graph
which is not series-parallel. Take the forbidden N-structure from Figure 3.52.
Figure 3.59 shows that both, C(G) and its complement C(G) are connected:

1

2

3

4

1

2

3

4

Figure 3.59: The comparability graph of a N-structure and its complement

Therefore Algorithm 3.4 outputs the message that the N-structure is not series-
parallel.

s

3.10.3 Exercises

1. Show by an example that series composition is not commutative.

3.11. Vertex coloring 101

2. Let A and B denote two sp-graphs and let L(A) and L(B) denote the
number of linear extensions of A and B, respectively. By an elementary
combinatorial argument show that

L(A ·B) = L(A)L(B), L(A+B) =

(
|A|+ |B|
|A|

)
L(A)L(B),

where
(
n
k

)
denotes the usual binomial coefficient and |A| and |B| denote

the orders of A and B. Extend these formulas to cover also the cases:

L(A1 ·A2 · · ·Ak) and L(A1 +A2 + . . .+Ak)

3. What is the number of linear extensions of the bookcase graph shown in
Figure 3.50?

4. The following picture shows you the precedence graph of a scheduling
problem with 12 jobs.

1 2 3

4 5

6

7 8

9

10

11 12

Figure 3.60: A precedence graph for 12 jobs

Is this graph series-parallel? If so, find its decomposition tree and deter-
mine the number of linear extensions.

5. Verify by inspection that the following precedence graph is not series
parallel.

1 2 3

4

5

6

7

8

9

Figure 3.61

3.11 Vertex coloring

We conclude this chapter with another interesting and important concept: the
assignment of colors to nodes of a graph.

102 Chapter 3. Elements of Graph Theory

Let G = (V,E) be an undirected graph. By a proper vertex coloring we mean
the assignment of one color to each node such that no two adjacent nodes
are assigned the same color. If exactly k colors are used this assignment is
called a k-coloring. The smallest number of colors needed is the chromatic
number χ(G). A coloring using only χ(G) colors is considered optimal as uses
a minimum number of colors.

1 2 3

4

5 6 7

Figure 3.62: A graph G with χ(G) = 2

The graph shown in Figure 3.62 is 2-colorable, moreover it is also bipartite
(please verify!). This is no incidence: every bipartite graph can be colored
using two colors only. Indeed, this property may be used to define bipartite
graphs: a graph is bipartite if and only if it is 2-colorable.

Another observation from Figure 3.62: the coloring partitions V into two sub-
sets, the white nodes Vw = {2, 4, 5, 7} and the blue nodes Vb = {1, 3, 6}. By
definition of a proper coloring no two nodes in Vb are adjacent, the same is true
of Vw. It follows that Vb and Vw are stable sets.

More generally, any k-coloring of a graph partitions V into k stable sets, the
color classes of a graph.

Unfortunately, finding a proper coloring with a minimum number of colors and
thus finding the chromatic number of a graph is known to be NP-hard. However,
for several special classes of graphs polynomial time algorithms for coloring are
known.

No algorithm is required for complete graphs Kn of order n. Since in Kn every
node is adjacent to every other node, we always need n colors, thus χ(Kn) = n.

This is an important observation as it gives us a lower bound for the chromatic
number of a graph. Let ω(G) be the clique number of G, i.e., the size of
the largest clique being a subgraph of G (see section 3.3.2), then obviously
χ(G) ≥ ω(G). On the other hand, it can be shown that χ(G) ≤ 1+maxi∈V (di),
so there always holds the bounding

ω(G) ≤ χ(G) ≤ 1 + max
i∈V

di (3.7)

The upper bound above is not sharp in general, as the graph in Figure 3.63
shows. The upper bound equals 1 + max di = 5, but this Figure displays a
4-coloring, which is not optimal. Indeed, this graph is 3-colorable.

3.11. Vertex coloring 103

1

2

3

4

5

6 7 Can you find a 3-coloring?

Figure 3.63: A graph G with a 4-coloring

Algorithm 3.5 below produces a coloring of a given graph G. It takes as input
a linear ordering of the nodes and a list of colors. It outputs a coloring.

Algorithm 3.5

Coloring

Input: an undirected graph G = (V,E)
a linear node ordering I = [v1, v2, . . . , vn]
a list of n colors c := [c1, c2, . . . , cn]

Output: a coloring C of nodes

for vi ∈ I do
begin

c` := smallest color not assigned to lower indexed neighbors of vi
C(vi) := c`

end

In general the coloring obtained by Algorithm 3.5 is not optimal, it depends on
the linear ordering I. Different orderings will in general yield different colorings
which may be far from being optimal. An extreme example are bipartite graphs,
see Exercise 3.11.1.1.

However, for special families of graphs Algorithm 3.5 produces an optimal col-
oring. A particularly interesting family is the set of interval graphs.

Recall Section 3.2.3: Let Ti = (si, ti), i = 1, 2, . . . , n be a set of n intervals on
the real line. With each interval Ti we associate a node i. Any two nodes i and
j are adjacent, if Ti ∩ Tj 6= ∅.

The linear order yielding an optimal coloring is obtained by sorting the inter-
vals Ti by increasing values of starting times si. The chromatic number χ(G)
obtained by Algorithm 3.5 equals the minimum number of classrooms required
for a conflict-free schedule of the courses.

Example 3.1 (continued)

Sorting intervals by increasing values of starting times yields the linear ordering:

I = [3, 1, 7, 4, 5, 8, 2, 6, 9]

104 Chapter 3. Elements of Graph Theory

For the interval graph displayed in Figure 3.9 Algorithm 3.5 produces the col-
oring displayed below.

1

2
3

4

5

6

7
8

9

Figure 3.64: An interval graph

Here the first few steps of the algorithm:

I(1) = 3, this node has no lower indexed adjacent nodes, so it is assigned color
c1 = blue.

I(2) = 1. Γ(1) = {3, 4, 5, 7, 8}, but among these there is only node 3 which has
lower index. Because this node already has color c1, node 1 gets color c2 =
yellow.

I(3) = 7. Γ(7) = {1, 3, 4}, only nodes 3 and 1 have lower index than node 7,
They use colors c1 and c2, thus node 7 gets color c3 =green.

I(4) = 4. γ(4) = {1, 7}. These nodes both have lower index than node 4 and
use colors c2 and c3. The smallest free color is c1 which is assigned to node 4.

Continuing in this manner we finally obtain the coloring

node 1 2 3 4 5 6 7 8 9

color 2 1 1 1 1 2 3 3 3

c1 = blue
c2 = yellow
c3 = green

It follows that the chromatic number of this interval graph G equals 3 which in
turn means that we need only 3 classrooms for a conflict-free schedule of the
courses.

3.11.1 Exercises

1. As remarked earlier, Algorithm 3.5 is quite sensitive with respect to the
ordering of nodes. The following Figure presents two bipartite graphs,
they differ only in the numbering of nodes.

3.12. Bibliographic Notes 105

1 2

3 4

5 6

7 8

1 5

2 6

3 7

4 8

How many colors are used by Algorithm 3.5 for the left graph, how many
for the right graph?

2. Nine courses have to be scheduled in time slots as shown below.

2 4 6 8

1 3 5 7

9

Find the corresponding interval graph. It has a very special shape known
as windmill graph and is indeed a special case of a friendship graph men-
tioned in Exercise 3.1.4.3. How many classrooms are needed for a conflict-
free schedule?

3.12 Bibliographic Notes

There are many excellent introductory textbooks on graph theory, probably
one of the best is certainly Chartrand (1977). It gives a smooth introduction
to basic concepts without assuming any preknowledge of readers about graphs.
The focus of this book lies on modeling with graphs. Many interesting examples,
sometimes famous puzzles are presented. Chartrand has coauthored another
great book on graph theory, Chartrand and Ping (2012). This book goes much
more into depth but it is still an easily accessible introduction and covers also
newer developments of the theory. It offers also a lot of information to readers
interested in the history of the subject. For beginners I also strongly recommend
the nice textbook Hartsfield and Ringel (1994).

Christofides (1975) is one of the classical textbooks. Its emphasis is on algo-
rithms and its provides are wide coverage of combinatorial optimization prob-
lems including routing problems, facility location and matching. A more recent
textbook is Gibbons (1991). A thorough and fine exposition on depth-first
search is found in Dasgupta, Papadimitriou, and Vazirani (2008).

One of the finest books on graph theory is Berge (1966). Although no more
really up to date it introduces readers to most of the topics we have dealt with

106 Chapter 3. Elements of Graph Theory

in this chapter. Somewhat more theoretically in exposition is Harary (1994). In
this book you will find carefully worked out proofs but no graph algorithms. it
is also one of the classical textbooks. Algorithms are the strength of Gondran
and Minoux (1995), which has also a chapter on algebraic methods, a topic
covered only in few books. The books of Cormen et al. (2001) and Sedgewick
and Wayne (2011) are written for computer scientists. But these people are
also using intensively methods from graph theory. In both books readers find a
thorough coverage of various algorithms including, of course, depth-first search
and an analysis of their complexity.

Comparability graphs and interval graphs belong to the class of perfect graphs.
These are those graphs for which the chromatic number χ of each induced
subgraph equals its clique number ω. An excellent book on this subject is
Golumbic (2004).

3.13 References

[1] C. Berge. The Theory of Graphs and its Applications. Methuen, 1966.

[2] Hermann Buer and Rolf H. Möhring. “A Fast Algorithm for the Decom-
position of Graphs and Posets”. In: Mathematics of Operations Research
8.2 (1983), pp. 170–184.

[3] Gary Chartrand. Introductory Graph Theory. New York: Dover Publica-
tions, 1977.

[4] Gary Chartrand and Zhang Ping. A First Course in Graph Theory. New
York: Dover Publications, 2012.

[5] Nicos Christofides. Graph Theory: An Algorithmic Approach (Computer
Science and Applied Mathematics). Orlando, FL, USA: Academic Press,
Inc., 1975.

[6] Thomas H. Cormen et al. Introduction to Algorithms. 2nd. McGraw-Hill
Higher Education, 2001.

[7] Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh Vazirani. Algo-
rithms. 1st ed. New York, NY, USA: McGraw-Hill, Inc., 2008.

[8] Robert W. Floyd. “Algorithm 97 (SHORTEST PATH)”. In: Communi-
cations of the ACM 5.6 (1962), p. 345.

[9] Tibor Gallai. “Transitiv orientierbare Graphen”. In: Acta Mathematica
Academiae Scientiarum Hungarica 18.1-2 (1967), pp. 25–66.

[10] Allan Gibbons. Algorithmic Graph Theory. Cambridge: Cambridge Uni-
versity Press, 1991.

[11] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Amster-
dam: Elsevier, 2004.

[12] Michel Gondran and Michel Minoux. Graphs and Algorithms. New York,
NY, USA: John Wiley & Sons, Inc., 1995.

[13] Frank Harary. Graph Theory. Perseus Books, 1994.

3.13. References 107

[14] Nora Hartsfield and Gerhard Ringel. Pearls in Graph Theory. New York:
Dover Publications, 1994.

[15] Eugene L. Lawler. Combinatorial Optimization: Networks and Matroids.
New York, NY, USA: Holt, Rinehart and Winston, 1976.

[16] Rolf H. Möhring. “Computationally Tractable Classes of Ordered Sets”.
In: Algorithms and Order. Ed. by Ivan Rival. Vol. 255. NATO ASI Series.
Springer Netherlands, 1989, pp. 105–193.

[17] Robert Sedgewick and Kevin Wayne. Algorithms, 4th Edition. Addison-
Wesley, 2011.

[18] Stephen Warshall. “A Theorem on Boolean Matrices”. In: Journal of the
ACM 9.1 (1981), pp. 11–12.

	Elements of Graph Theory
	A basic vocabulary
	Graphs as binary relations
	Some examples
	A useful multivalued mapping
	Exercises

	Some important graphs
	Complete graphs
	Bipartite graphs
	Interval graphs
	Exercises

	Basic operations on graphs
	Deleting nodes and edges
	Union, difference and complement

	Subgraphs, cliques and co
	Subgraphs
	Cliques
	Stable sets
	Matchings
	Modules
	Exercises

	Chains, paths, cycles, connectivity
	Acyclic graphs, trees
	Exercises

	Data structures for graphs
	Adjacency matrix and adjacency list
	Numerical attributes
	Exercises

	Exploring a graph
	Depth-first Search

	Precedence Graphs
	Partial Orders
	Linear extension and topological ordering
	Exercises

	SP-graphs
	Series and parallel composition
	The decomposition tree
	Exercises

	Vertex coloring
	Exercises

	Bibliographic Notes

