
Chapter 2

Basic Manœvers: scheduling a single server

2.1 The model and its assumptions

It’s time to roll our sleeves up and do the first steps in scheduling beginning
our studies with the classical single-processor problem. The scenario is quite a
simple one and may be characterized by the following set of assumptions:

• There is a only one processor or server, may it be a machine, an employee,
or any facility which provides some well defined service to customers.
Traditionally, customers are also called jobs or tasks and the provision of
service is called processing of a job.

• The processor can handle only one job at a time.

• A number n of jobs is available for service at time t = 0. Each job requires
only one operation. Thus, initially there is a bulk of jobs forming a highly
unstructured waitingline and it is up to the scheduler to bring some order
into it.

• The processing times of the jobs are known predetermined integers and
denoted by p1, . . . , pn, each being non-negative.

• With each job we associate a non-negative integer-valued weight wi and
a due date di.

• The processor is continuously available, so in this simple model we exclude
the possibility of machine breakdowns or other random and non-random
events which restrict the availability of the processor.

At a first sight these assumptions seem to be very restrictive, so restrictive that
this model may hardly be of any practical significance. But this is not so. Let
us discuss these assumptions first.

The first two assumptions are statements about system architecture, we are
dealing with a single server system and this server is not capable of multitask-
ing. Typical examples of single processor systems are one-man businesses in
crafts and trade or personal services. But we may also think of more complex
production and service systems consisting of several single server units where
each may be analyzed separately for various reasons. One good reason for an

3



4 Chapter 2. Basic Manœvers: scheduling a single server

isolated analysis of a single-server unit may be that it acts as a bottleneck in
some system severely dominating other production units.

And last, but not least, the single processor system is an important training
ground to become acquainted with the basic ideas and methods of scheduling.
That’s why this chapter is entitled basic manœvers.

Our third assumption needs a little bit of explanation: in many real-world
service systems jobs arrive at the system one after the other, or in groups
of varying size. The time instant of an arrival of a job is called its release
date, usually denoted by ri. In this chapter we assume that all release dates
are zero. We do this for sake of simplicity. Indeed, systems where jobs have
different release dates are pretty difficult to analyze, therefore we postpone
their discussion to Chapter 7. Still, the assumption that all jobs are available
for service at time t = 0 holds good in many situations.

Think of a company where service or production orders are coming in over night
by email. In the morning a dispatcher makes a list of jobs to be done next for
each of the employees. Another example comes from emergency medicine: con-
sider a bus accident. The emergency physician arriving with the first ambulance
is confronted with several injured people at once. In this critical situation sev-
eral decisions have to be made within a very short time, notably, which casualty
should be treated first.

Another example is gated service: a stream of jobs is arriving at a service station
and stopped by a gate. From time to time the gate opens and gives access to,
say, n jobs. Then the gate closes and remains closed until these n jobs have been
served. In the mean time new jobs arrive and form a waitingline in front of the
gate. Such systems are not uncommon in communication systems or in traffic
control, e.g. when highways have tunnels and incoming traffic is separated into
blocks of cars for reasons of safety.

The job weights serve mainly two purposes in this chapter. They may represent
holding cost per job and unit of time. Alternatively, quite often these weights are
the result of a ranking or scoring reflecting the relative importance or priority
of a particular job compared to others. A typical example is the process of
triage in emergency medicine. When medical personnel arrives at the site of a
mass-casualty accident or a disaster like an earth quake, it may be necessary
to assign casualties priorities for further treatment.

Due dates are special: these are time instances at which jobs should be finished.
If we explicitly take into account due dates then weights are no longer inter-
preted as holding cost but as cost incurred by a job not finishing on time. Due
dates will be the major topic in sections 2.5 and following.

2.2 The schedule and its outcome

First, let us label our jobs by giving them numbers. It will be convenient to
denote the set of Jobs by J = {1, 2, . . . , n} with Ji denoting job number i.



2.2. The schedule and its outcome 5

A schedule is an assignment of a certain number of time slots or slices of pro-
cessor time Ai(1), Ai(2), . . . to each job Ji, such that

• the processor works exclusively during such a slot on that job to which
this slot has been assigned.

• These time slots do not overlap. Remember, the processor can handle
only one job at a time.

• The total length of all slots assigned to job Ji is as least as large than pi,
the processing time of Ji.

An assignment of slots which conforms to these assumptions is called a feasi-
ble schedule. Observe that there are infinitely many feasible schedules for our
problem.

Let us give an example.

t Example 2.1

Consider a single processor problem with three jobs having processing times
p1 = 9, p2 = 5 and p3 = 4. A possible feasible schedule may be this one:

Job 1: A1(1) = [6, 9], A1(2) = [13, 17], A1(3) = [18, 20]

Job 2: A2(1) = [11, 13], A2(2) = [22, 25]

Job 3: A3(1) = [0, 6]

The Gantt-chart of this schedule is quite informative, see Figure (2.1).

1 2 1 1 23

0 2 4 6 8 10 12 14 16 18 20 22 24 26

C2C1C3

Figure 2.1

s

This example leads us to some important definitions.

Completion Times. The completion time Ci of job Ji is defined as the time
instant when processing of job Ji is ultimately finished so that this job can
be delivered. In our example we have C1 = 20, C2 = 25 and C3 = 6. The
completion times of jobs are data generated by the schedule, indeed, the most
important ones. More precisely, completion times are functions of the schedule.

Makespan. This is denoted by Cmax and is defined as the time when the last
job finishes. In other words:

Cmax = max(C1, C2, . . . , Cn). (2.1)



6 Chapter 2. Basic Manœvers: scheduling a single server

In our example we have Cmax = 25. By its definition Cmax is a function of the
completion times produced by a schedule.

Inserted Idle Time. When looking at Figure 2.1 you will notice that there
are holes in the Gantt chart. Actually, we can identify three such holes, the
intervals (9, 11), (17, 18) and (20, 22). During these time intervals the processor
is doing nothing, it is idle and the corresponding intervals are called inserted
idle time (IIT). IIT may be a result of particular circumstances like a machine
breakdown, then it is called forced IIT. This temporal unavailability of the
processor due to technical conditions is excluded by our assumptions, since
we have assumed that the processor is permanently available. However, IIT
may also be unforced, which means that it has been decided deliberately by the
scheduler to keep the machine down for a while and therefore keep jobs waiting.
This raises immediately the question: Why should we do this? Does it make
any sense? These questions are legitimate, since normally we want our work
to be finished as soon as possible.

Preemption. Figure 2.1 shows another interesting feature of this schedule:
Even if we disregard IIT, the processing of jobs J1 and J2 appears to be discon-
tinuous in the sense that work on job J1 is interrupted, then the processor works
on job J2, then it returns to job J1 to finish it. Later it resumes processing of
job J2. Such interruptions of service are called preemption. There are several
ways preemption is implemented in production and service systems. The two
most important ones are:

• Preemptive-Resume. In this model the processing of a job can be contin-
ued at the point where it has been suspended, there is no loss of processing
time. A typical example is downloading a large file from a web server.
In order to avoid starvation of other concurrent client requests the server
will interrupt the download process from time to time and provide service
to other clients. Later it will return to a suspended job and continue
transmitting data.

• Preemptive-Repeat. Here once processing of a job has been interrupted it
has to be restarted from scratch. Thus this interruption leads to a total
loss of processing time and other resources so far used by a job. For
example in metallurgy it is often necessary to purify metals by melting
them at very high temperatures in electric ovens. If a breakdown of
electric power supply occurs before the metal has achieved the required
level of purity it will cool down very quickly and the whole process of
heating must be restarted once the problem has been fixed.

In Example 2.1 we used a preemptive-resume policy.

As with IIT, the question arises: Is it necessary to preempt jobs?

The answers to these questions depend on another very important question:
What is a good schedule?



2.3. Performance Measures 7

2.3 Performance Measures

To assess the quality of a schedule it is common to transform the the n-
dimensional vector of completion times onto a 1-dimensional utility scale by
a performance measure. The latter is a function f of the completion times
Ci, i = 1, 2, . . . , n:

z = f(C1, C2, . . . , Cn). (2.2)

f is called a regular performance measure, it

• f has to be minimized.
• f is an increasing function of each of the completion times Ci. More

formally:

f(C1, C2, . . . , Ci + δ, . . . , Cn) ≥ f(C1, C2, . . . , Cn),

for any δ > 0 and any i = 1, 2, . . . , n. In other words, if any or some
completion times increase, then f also increases or at least stays at the
same value.

Remark. In this book we use a less pedantic language as it is common in scheduling.
We say: a sequence of numbers ai is increasing, when

a1 ≤ a2 ≤ . . . ≤ an,

and we say, this sequence is strictly increasing, when

a1 < a2 < . . . < an,

Regular performance measures play a predominant role in scheduling theory.
Most performance measures discussed in this book are regular. Actually, we
have already seen one, the makespan Cmax. Indeed,

Cmax = max(C1, C2, . . . , Cn)

is an increasing function in each completion time Ci. And of course, from a
management point of view, it makes sense to find a schedule that minimizes
Cmax, because we want our work to be done as soon as possible. The smaller
Cmax, the earlier the processor will be free for the next bulk of jobs to be
processed. Thus by minimizing Cmax we maximize the throughput, the number
of jobs finished per unit of time and thereby we optimize the utilization of our
production facility.

There are also non-regular measures, we will learn about one of them in Section
2.4.4. A more detailed discussion of these measures will follow in Chapter 7.

Now we arrived at a position where it is possible to answer the question whether
it makes any sense to insert idle time or to preempt jobs. It turns out that in our
single processor model with all jobs available at time zero we need not consider
schedules with inserted idle time or preemption when assessing the quality by
a regular performance measure.



8 Chapter 2. Basic Manœvers: scheduling a single server

Removing inserted idle time will reduce at least one completion time and there-
fore the performance measure may be reduced in value, at least it cannot become
larger. See Figure 2.2 shows the schedule of Example 2.1 without inserted idle
time. In the new schedule the completion times of jobs J1 and J2 are reduced

1 2 1 23

0 2 4 6 8 10 12 14 16 18 20 22 24 26

C2C1C3

Figure 2.2

to C1 = 17 and C2 = 21 while still C3 = 6.

To remove preemption we interchange the first block of job J2 and the second
block of job J1, the result is shown in Figure 2.3. This new schedule reduces

1 23

0 2 4 6 8 10 12 14 16 18 20 22 24 26

C2C1C3

Figure 2.3

once more the completion time of J1 to C1 = 15.

At this point another interesting observation can be made. The original sched-
ule of Example 2.1 required in total the specification of six time slots. After
removal of inserted idle time and preemption the schedule in Figure 2.3 requires
only the specification of the order in which jobs are processed.

Thus we may specify this schedule as a simple list of job labels:

S = [3, 1, 2]

But this is just a permutation of the labels 1, 2 and 3.

Let us pause for a moment1 and review, what we have found out so far:

• If we allow for inserted idle time and preemption, then there is an infinite
number of possible schedules for any problem instant of our model.
• This set of schedules contains a finite subset determined by all possible

permutations of job labels. These schedules do not have preemption and
inserted idle time. They are called permutation schedules and there are
n! of them, as there are n! possibilities to arrange n distinguishable items
in different ways.

1So, let us insert some idle time!



2.3. Performance Measures 9

• The permutation schedules form a dominant set in the sense that with
respect to any regular performance measure there cannot exist a better
non-permutation schedule.

• So, whatever regular performance measure we consider, our search for an
optimal schedule may be restricted to the dominant set of permutation
schedules. Thus all that matters is the order in which jobs are processed.
Note that we have reduced an optimization problem with an infinite num-
ber of feasible solutions to one with only a finite number.

Remark: The reader may recall our bicycle-example from Chapter 1. There we men-

tioned two busy rules formulated by the company’s management. These rules simply

forbid inserted idle time and job preemption. In the single machine setting discussed

in this chapter those rules can be justified. But the bicycle example is a very different

scheduling problem: there is more than one processor and jobs are dependent. So we

may suspect that the bicycle problem could be solved easier when we allow for inserted

idle time and/or preemption.

When dealing with permutation schedules we shall always represent a particular
permutation as an ordered list. For example, when S = [3, 1, 5, 2, 4], then we
process job J3 followed by J1, etc. It will be also convenient to use the special
notation2

(i) = number of job in position i of S, (2.3)

Again, when S = [3, 1, 5, 2, 4], then

J(1) = J3, J(2) = J1, J(3) = J5, J(4) = J2, J(5) = J4

Unfortunately, the (·)-operator is somewhat clumsy, typographically as well as
for reading. Therefore, from time to time we will deliberately renumber jobs so
that (i) = i. The reader will be indicated when we do so, thus there will be no
danger of confusion.

As remarked earlier in this section, completion times are the most important
data generated by a schedule. Thus we need some way to calculate the Ci for
a given permutation schedule S. This is pretty easy. Because jobs are never
interrupted and there is no inserted idle time, the completion times can be
determined by a simple recurrence formula:

C(i) = C(i−1) + p(i), C(0) = 0 (2.4)

The reasoning behind this formula is that: the first job in the schedule starts
processing immediately, its processing time being p(1), so it finishes at

C(1) = p(1).

Once having completed job J(1) the processor continues without delay with the
second job in the schedule, J(2). It will be finished at time

C(2) = C(1) + p(2)

2Technically speaking, this notation refers to the inverse of a permutation.



10 Chapter 2. Basic Manœvers: scheduling a single server

Continuing this argument yields the recurrence (2.4) which can be solved ex-
plicitly:

C(1) = p(1)

C(2) = C(1) + p(2) = p(1) + p(2)

C(3) = C(2) + p(3) = p(1) + p(2) + p(3)

. . .

C(n) = C(n−1) + p(n)= p(1) + p(2) + . . .+ p(n).

Thus we have found that the completion times are simply the cumulative sums
of the processing times, added in the order determined by a schedule S:

C(k) = p(1) + p(2) + . . .+ p(k) =

k∑
`=1

p(`) (2.5)

t Example 2.2

Suppose there are 5 jobs to be processed, so that J = {1, 2, 3, 4, 5}. The pro-
cessing times (in minutes) are given by:

J 1 2 3 4 5

p 8 3 10 5 4

Let S = [3, 1, 5, 2, 4], then by (2.5) we obtain:

S 3 1 5 2 4

p 10 8 4 3 5
C 10 18 22 25 30

Correspondingly, we have found that

C1 = 18, C2 = 25, C3 = 10, C4 = 30, C5 = 22

Note also that this schedule S has makespan Cmax = 30.

s

Closely related to completion time is the waiting time Wj of a job. It is defined
as the time a job has actually to wait before its service can commence. Since
in our simple model all jobs are available at t = 0, we have

Wj = Cj − pj (2.6)

Thus there is also a very simple formula for the calculation of waiting times
which follows from (2.5):

W(k) = p(1) + p(2) + . . .+ p(k−1) =

k−1∑
`=1

p(`), for k > 1 (2.7)



2.3. Performance Measures 11

with W(1) = 0, obviously, since the first job in any schedule need not wait at
all.

Now the stage is prepared to study some important performance measures in
more detail. One measure, however, can be disposed off quickly, the makespan
Cmax. For any permutation schedule

Cmax = C(n) =
n∑
i=1

p(i) =
n∑
i=1

pi (2.8)

Thus Cmax is independent of any schedule S, since the value of a sum does not
depend on the order of summation. Cmax is also called the load of the processor
and, as remarked earlier, it is mostly used to measure the utilization of service
facilities in more complex systems. As we have only one processor, there is
no inserted idle time and all jobs are available at time zero the processor’s
utilization is always 100 %.

The maximum waiting time Wmax, however, depends on the schedule, in par-
ticular on the processing time of the job put onto the last position in S:

Wmax = Cmax − p(n). (2.9)

2.3.1 Exercises

1. Consider n = 10 jobs with processing times

J 1 2 3 4 5 6 7 8 9 10

p 12 2 8 16 12 15 14 13 15 16

Determine for the schedule S = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] completion times,
waiting times, makespan and maximum waiting time. Calculate arith-
metic mean, median and standard deviation of the completion times.

2. (continued) How do these statistics change, if you consider instead of S
the schedule S′ = [2, 3, 1, 5, 8, 7, 6, 9, 4, 10] ?

3. Given n jobs, find all schedules minimizing Wmax.

4. Define a performance measure

f(C1, . . . , Cn) =

n∑
i=1

wi(1− e−rCi),

where the wi are non-negative job weights and r denotes a discount rate.
Show that f is a regular measure of performance.

5. Let d > 0 be a constant. Is

f(C1, . . . , Cn) =

n∑
i=1

|Ci − d|

a regular performance measure?

Hint: Use the fact that the function g(x) = |x− a| is differentiable everywhere except

for x = a. Find its derivative g′(x).



12 Chapter 2. Basic Manœvers: scheduling a single server

2.4 Total completion time

2.4.1 The WSPT -Rule

When developing mathematical models to solve real-world problems, it is always
a good idea to talk to practitioners like dispatchers and production managers,
since those people are solving scheduling problems all the time. If not to op-
timum they have often available surprisingly easy to use rules. Two Golden
Rules of Scheduling are these:

• Rule 1: Avoid unnecessary waits of your customers.
• Rule 2: Keep your inventory low.

Our intuition says that these two rules must be somehow related, and indeed,
this is the case, we will find out later in this section.

Let us first deal with Rule 1, i.e., with waiting times. To keep them low we
could try to find a job ordering which minimizes Wmax. This is very easy, see
Exercise 2.3.1.3.

Much more interesting is to schedule jobs in such a way that average waiting
time is minimized. This is just the arithmetic mean of waiting times:

W =
1

n

n∑
i=1

W(i).

If weights wi are given and interpretable as cost of waiting per unit time, then
the average cost of waiting is defined as

Ww =
1

n

n∑
i=1

w(i)W(i)

Because of (2.6):

W =
1

n

n∑
i=1

[C(i) − p(i)] =
1

n

n∑
i=1

C(i) −
1

n

n∑
i=1

pi

Observe that the second sum on the right hand side equals the mean processing
time. It is independent of the ordering of jobs because processing times are
given data. This sum has always the same value Cmax for each schedule. That’s
why we could write pi instead of p(i). Therefore minimizing W is equivalent
to minimizing average completion time. And the same is true if we want to
minimize average cost of waiting Ww. In other words, we are seeking a schedule
such that

C =

n∑
i=1

C(i) → min or (2.10)

Cw =

n∑
i=1

w(i)C(i) → min (2.11)



2.4. Total completion time 13

These two objectives give rise to what is known as total (weighted) completion
time problem or briefly as C-problem and Cw-problem, in standard scheduling
notation denoted by

1| |
∑

Ci and 1| |
∑

wiCi. (2.12)

How to solve these optimization problems?

As a first step towards solution we define a very important function now:

N(S, t) := number of jobs in the system at time t

Note that N(S, t) is a function of the schedule. For given t different schedules
S will yield different values of N(S, t).

N(S, t) is a step function that starts at time t = 0 at height n and has jumps
of size −1 at times C(i), therefore the widths of the steps are p(i). At time
t = Cmax the graph of N(S, t) reaches zero.

t Example 2.2 (continued).

J 1 2 3 4 5

p 8 3 10 5 4

We have already determined completion times for the schedule S = [3, 1, 5, 2, 4]:

C(1) = C3 = 10, C2 = C1 = 18, C(3) = C5 = 22

C(4) = C2 = 25, C(5) = C4 = 30

The graph of N(S, t) corresponding to S is shown in Figure 2.4.

0 5 10 15 20 25 30

C(1) C(2) C(3) C(4) C(5)

Figure 2.4

s

Particularly interesting is the area under N(S, t):

N(S) =

∫ Cmax

0
N(S, t) dt (2.13)



14 Chapter 2. Basic Manœvers: scheduling a single server

As you can see from Figure 2.4, this area is composed by rectangles having
height one and width equal to completion times C(i). Thus we have the alter-
native representation:

N(S) =
n∑
i=1

C(i) = C. (2.14)

For Example 2.2 we find

C = 10 + 18 + 22 + 25 + 30 = 105.

(2.14) tells us that a schedule which minimizes C must also minimize the area
N(S). But the latter is easy! Let us add straight line segments to the graph
of N(S, t) joining the kinks, see Figure 2.5. This connecting curve gives us the

0 5 10 15 20 25 30

C(1) C(2) C(3) C(4) C(5)

Figure 2.5

clue: Order jobs in such a way that this curve is convex! Or, equivalently:
Order jobs by increasing values of their processing times. This will guarantee
that N has minimum value.

t Example 2.2 (continued).

Ordering jobs by increasing values of processing times gives

p2 ≤ p5 ≤ p4 ≤ p1 ≤ p3.

It follows that we should process jobs according to the schedule S∗ = [2, 5, 4, 1, 3].
This schedule produces completion times

S 2 5 4 1 3

p 3 4 5 8 10
C 3 7 12 20 30

Thus the area under N(S, t) equals N(S) = 3 + 7 + 12 + 20 + 30 = 72, and
this is also the minimum value of total completion time C, see Figure 2.6 for an
illustration.

s



2.4. Total completion time 15

0 5 10 15 20 25 30

C(1) C(2) C(3) C(4) C(5)

Figure 2.6

Of course this geometrical reasoning does not provide a rigorous proof, however,
it gave us an idea how to find an optimal schedule. A similar geometrical
argument may also be formulated for the Cw-problem, see Exercise 2.4.4.3. It
suggests to order jobs by increasing values of their ratios pi/wi.

In fact, this is one of the most famous results of scheduling theory, Smith’s
WSPT-Rule, (Smith, 1956), weighted shortest processing times first.

Theorem 2.4.1 (Smith’s WSPT -Rule). The schedule S∗ minimizing total
weighted completion time is determined by ordering jobs by increasing values
of the ratios pi/wi, i.e.

S∗ :
p(1)

w(1)
≤
p(2)

w(2)
. . . ≤

p(n)

w(n)
.

If weights are equal to one, then order jobs by increasing values of processing
times pi to obtain the schedule minimizing total completion time:

S∗ : p(1) ≤ p(2) . . . ≤ p(n).

This is called SPT-Rule. For both rules ties in the ordering may be broken
arbitrarily.

Proof. Our proof will be based on a classical and extremely useful argument,
the interchange of adjacent jobs in a schedule.

Let S = [A, i, j, B] be a schedule with the following properties:

• A and B are two, possibly empty, sets of jobs.
• There is a pair of jobs i and j such that j follows immediately job i, but

this pair is not in WSPT -order, i.e., pi/wi > pj/wj , or equivalently

piwj > pjwi. (2.15)

Form a new schedule S∗ in which i and j have been interchanged, i.e.,

S∗ = [A, j, i, B].



16 Chapter 2. Basic Manœvers: scheduling a single server

Suppose the last job in set A finishes at time t. If A is empty, then t = 0. The
completion times of jobs i and j under schedule S are:

Ci(S) = t+ pi

Cj(S) = t+ pi + pj ,

whereas under schedule S∗ these are:

Cj(S
∗) = t+ pj

Ci(S
∗) = t+ pi + pj .

The completion times of all other jobs will remain unchanged, Ck(S) = Ck(S
∗)

for all k 6= i, j. Next, we calculate the total weighted completion times under
S and S∗:

Cw(S) =
∑
k∈A

wkCk(S) + wiCi(S) + wjCj(S) +
∑
k∈B

wkCk(S), (2.16)

Cw(S∗) =
∑
k∈A

wkCk(S
∗) + wjCj(S

∗) + wiCi(S
∗) +

∑
k∈B

wkCk(S
∗). (2.17)

Now we claim that S∗ is strictly better that S in the sense that

Cw(S)− Cw(S∗) > 0.

To see this, we form the difference of (2.16) and (2.17) which yields:

Cw(S)− Cw(S∗) = wiCi(S) + wjCj(S)− wjCj(S∗)− wiCi(S∗)
= wi(t+ pi) + wj(t+ pi + pj)−

− wj(t+ pj)− wi(t+ pi + pj)

= piwj − pjwi > 0 because of (2.15) (2.18)

Thus, putting any pair of adjacent jobs which are not in WSPT -order into
WSPT -order strictly improves the total weighted completion time. Now, any
finite sequence of numbers can be put into ascending order by pair-wise inter-
changes of adjacent elements. Therefore, starting with an arbitrary schedule S
a sequence of pair-wise interchanges will improve the performance measure Cw
step by step until S is in WSPT -order. This proves Smith’s Rule.

Keep your inventory low! This was a second Golden Rule of scheduling. Intu-
itively we expect that this objective is somehow related to waiting times of jobs.
Indeed, while a job is waiting for service it is part of an in-process inventory
stock which incurs holding cost. Recall (2.13), the function N(S, t) gives us the
number of jobs in system at any time 0 ≤ t ≤ Cmax for a particular schedule S.
Now the First Mean Value Theorem of integral calculus states: the mean f̄ of
a continuous function f(t) over the interval (a, b) is just

f̄ =
1

b− a

∫ b

a
f(t) dt. (2.19)



2.4. Total completion time 17

It follows from the mean value theorem and (2.14) that the mean number of
jobs in the system is given by

N(S) =
1

Cmax

∫ Cmax

0
N(S, t) dt =

1

Cmax
C,

which may be rewritten as:

N(S) =
n

Cmax
· C, C =

1

n
C . (2.20)

But SPT minimizes C and hence it minimizes automatically N(S) thereby
guaranteeing a minimum mean level of in-process inventory. Equation (2.20)
therefore establishes the required relation between inventory stock and waiting
times of jobs. It simply tells us that the mean number of jobs in the sys-
tem is proportional to mean time a job spends in the system. The factor of
proportionality, let’s call it λ,

λ =
n

Cmax
,

has also an interesting interpretation as a mean: λ equals the mean number
of arrivals per unit time. This interpretation seems to be somewhat strange
in the context of our single machine model, because we assumed that all jobs
are available at time zero, there are no more arrivals during processing. But
this strangeness disappears if we think of our service system running over a
long period of time: whenever the last job is finished, the system is ready
to accept the next bulk of n customers and the whole process of service starts
from scratch, over and over again. This type of reasoning leads very naturally to
the concept of a steady state which becomes fundamentally important once we
introduce randomness into our scheduling models. Indeed, (2.20) is a special
variant of Little’s Formula (Little, 1961) which plays an prominent role in
stochastic scheduling and queueing theory.

t Example 2.3

There are n = 10 jobs with processing times and weights given by:

J 1 2 3 4 5 6 7 8 9 10

p 3 6 6 5 4 8 9 2 7 5
w 1 18 12 8 8 17 16 8 2 5

If jobs are processed in their original order, i.e. S = [1, 2, . . . , 9, 10], we obtain:

S 1 2 3 4 5 6 7 8 9 10

p 3 6 6 5 4 8 9 2 7 5
w 1 18 12 8 8 17 16 8 2 5

C 3 9 15 20 24 32 41 43 50 55



18 Chapter 2. Basic Manœvers: scheduling a single server

This gives a total weighted completion time of

Cw = 1 · 3 + 18 · 9 + . . .+ 5 · 55 = 2616.

In other words, the mean cost per job due to waiting in the system, processing
inclusive, is about 262 ¤.

How much can we reduce mean costs by scheduling jobs according the WSPT-
Rule?

First, calculate the ratios pi/wi (rounded to two decimal places):

pi/wi 3.00 0.33 0.50 0.63 0.50 0.47 0.56 0.25 3.50 1.00

i 1 2 3 4 5 6 7 8 9 10

Then we sort them by increasing values of the ratios, which gives:

pi/wi 0.25 0.33 0.47 0.50 0.50 0.56 0.63 1.00 3.00 3.50

i 8 2 6 3 5 7 4 10 1 9

The optimal schedule S∗ is given by the second line of the last table:

S∗ = [8, 2, 6, 3, 5, 7, 4, 10, 1, 9].

Now reorder jobs according to S∗ and calculate completion times:

S 8 2 6 3 5 7 4 10 1 9

p 2 6 8 6 4 9 5 5 3 7
w 8 18 17 12 8 16 8 5 1 2

C 2 8 16 22 26 35 40 45 48 55

The total weighted completion time evaluates to

Cw = 8 · 2 + 18 · 8 + . . .+ 2 · 55 = 2167,

this is a reduction of mean cost per job of about 17%. s

2.4.2 Complexity of the WSPT -rule, Ties

It is one of the most celebrated theorems of computer science that sorting a list
of length n by comparisons of list elements requires at least a number of about
O(n log n) comparisons. This is true especially for sorting algorithms which are
based on the idea of divide and conquer, like mergesort or quicksort. But not
any sorting algorithm is that fast. Sorting by pair-wise interchange is not very
efficient. A well-known algorithm based on this idea is bubblesort which does
exactly what we have done in the proof of 2.4.1. Its complexity is of order
O(n2) and therefore is considerably slower than quicksort or mergesort. Still,
we needed that only as argument in the proof. In practice, sorting is done by
any of the available fast algorithms for sorting. The important point, however,



2.4. Total completion time 19

is that the single server Cw-problem is well-behaved, its complexity is polynomial
in the number n of jobs to be scheduled.

It may happen that two or more jobs have the same pi/wi ratio. For instance
in Example 2.3 jobs 3 and 5 had the same ratio 1/2. Such ties do not disturb
the logic, they may be broken arbitrarily. If ties occur this simply means that
our scheduling problem has alternative optima and this in turn means that the
scheduler has a choice. In Example 2.2 we found the optimal schedule

S∗ = [8, 2, 6, 3, 5, 7, 4, 10, 1, 9],

but since jobs 3 and 5 had the same pi/wi-ratio, an alternative schedule with
the same total weighted completion time would be:

S∗ = [8, 2, 6, 5, 3, 7, 4, 10, 1, 9].

Alternative optima are interesting as they offer us strategic alternatives. These
may be important if we have secondary measures of performance like measures
based on lateness to be introduced in the next section.

2.4.3 Variability of Completion Times and Waiting Times

SPT 3 together with Little’s Formula allows us to kill two birds in one shot: keep
mean in-process inventory and mean waiting times of jobs at lowest possible
level. This is good for the company and it is good for customers also. But there
is also a downside: mean value-based measures favor short jobs and penalize
long ones which may not always be desirable. This is the point when variability
enters the scene.

Variability becomes an interesting objective, if we want to provide all customers
the same treatment as far as possible in the sense that completion times and
waiting times should not vary too much among jobs. Low variability is thus
important for guaranteeing smooth service of jobs.

There are many ways to measure variability. The most prominent measure is
the mean squared deviation of completion times about their mean, the variance

var[C(S)] =
1

n

n∑
i=1

[C(i) − C(S)]2, (A)

where C(S) is the mean completion time under S. Note that var[C(S)] is
a function of the schedule. Thus it seems natural to look for a schedule S
which minimizes var[C(S)]. However, the problem is now more complicated
than just minimizing total completion time, because var[C(S)] is not a regular
performance measure. Thus increasing the completion time of a particular job
may decrease variance. Find an example (two jobs are sufficient)!

3In this section we consider only situations where job weights wi = 1 for all i.



20 Chapter 2. Basic Manœvers: scheduling a single server

In a similar vein we might want to minimize variance of waiting times:

var[W (S)] =
1

n

n∑
i=1

[W(i) −W (S)]2. (B)

Intuitively we expect that a schedule S which minimizes (A) should also min-
imize (B) because W(i) = C(i) − p(i), recall (2.6). But interestingly, this is not
the case, it is in a certain sense just the contrary, as we shall see in a moment.

From elementary statistics it is known that the variance can be written as

var[C(S)] =
1

n

n∑
i=1

C2
(i) − C

2
(S). (C)

It is not difficult to show that SPT minimizes not only total completion time
but more generally it minimizes also

∑n
i=1C

α
(i) for any real α > 0. Thus SPT

is capable of minimizing each term in (C) separately, but unfortunately it does
not minimize (C) as a whole. Indeed, it has been proved by Kubiak (1993)
that minimization of (A) is NP-hard. So, that are bad news, and these are also
surprising news in light of the apparent simplicity of the SPT -rule.

Although there is no known efficient way to minimize the variance of completion
times, some really remarkable properties of this measure have been discovered.
Some of these will be discussed now very briefly.

Let us define the antithesis S′ of a schedule S: the job assigned to position i in
S is assigned to position n− i+ 1 in S′. More formally, if

S = [i1, i2, . . . , in] =⇒ S′ = [in, in−1, . . . , i2, i1].

Thus S′ is obtained simply by reversing S. To fix notation, if (i) denotes the
position under S, then (i)′ = (n− i+ 1) is the position under S′. For instance

S = [3, 2, 4, 5, 1] =⇒ S′ = [1, 5, 4, 2, 3],

Indeed, (2)′ = 5 = (5− 2 + 1) = (4), as the reader may verify.

Merten and Muller (1962) having been the first to study the variance problem
proved the amazing relation

var[C(S)] = var[W (S′)]. (2.21)

From (2.21) it follows that if a schedule S minimizes the variance of comple-
tion times, then it is not difficult to prove that its antithesis S′ minimizes the
variance of waiting times et vice versa. This is really counter intuitive, because
if S is a SPT schedule and thus minimizes total completion time, then its an-
tithesis S′ which results from ordering processing times by decreasing values
maximizes total completion time. The antithesis of an SPT-schedule is also
called an LPT -schedule or longest processing times first-schedule.

Another remarkable property of the variance problem is the shape of an optimal
schedule: it is V -shaped, as has been shown by Eilon and Chowdhury (1977).
This means the following: if pm = min pi, then a V -shaped schedule S is of the
form S = [A,m,B], where



2.4. Total completion time 21

• A and B are possibly empty sets of jobs;
• the jobs in A are ordered by decreasing values of processing times;
• the jobs in B are ordered by increasing values of processing times;

Note that SPT and LPT are both special cases of V -shaped schedules. For
SPT set A is empty, for LPT set B is empty.

t Example 2.4

Consider 8 jobs with processing times:

J 1 2 3 4 5 6 7 8

p 8 10 7 6 9 4 3 5

One possible V -shaped schedule is S = [2, 3, 4, 8, 7, 6, 1, 5], see Figure 2.7. s

2 3 4 8 7 6 1 5
0

2

4

6

8

10

Figure 2.7: A V -shaped schedule

Given n jobs, the number of V -shaped schedules equals 2n which is considerably
less than n! . But the class of optimal schedules can be narrowed even further. It
has been proved by Schrage (1975): there exists an optimal schedule minimizing
var[C(S)] in which the longest job comes first.

Based on this observation and the fact that an optimal schedule must be V -
shaped we may devise a heuristic to obtain an approximate solution for the
variance problem. This heuristic is very similar to the Verified Spiral Algorithm
due to Ye et al. (2007), almost the same algorithm has been given earlier by
Kanet (1981). Its idea is really simple:

• Order jobs by increasing values of processing times, i. e. jobs are indexed
so that p1 ≤ p2 ≤ . . . ≤ pn.

• Form a partial schedule S = [n, 1].
• Select the last unscheduled job and insert it into S before or after job 1,

depending on whether the chosen position yields the smaller variance of
the partial schedule.

• Continue in this way until all jobs are scheduled.



22 Chapter 2. Basic Manœvers: scheduling a single server

Algorithm 2.1

VERIFIED SPIRAL ALGORITHM

Input: a set J of n jobs in SPT -order
Output: a schedule S and var[C(S)]

begin
S := [n, 1], U = J − {1, n}
k := n− 2

while k > 0 do
begin

j := U [k]
Form S1 by inserting j before 1 in S
Form S2 by inserting j after 1 in S

Calculate completion times Ci(S1), i = 1, . . . , n
Calculate completion times Ci(S2), i = 1, . . . , n
v1 := var[C(S1)]
v2 := var[C(S2)]

if v1 ≤ v2 then S := S1
else S := S2

k := k − 1
end

v = var[C(S)]

return [S, v]
end

The VS-Algorithm is very fast, its time complexity is only of order O(n log n).
But unfortunately, there are no known theoretical results about the accuracy
of this heuristic, though numerical experiments carried out by Ye et al. (2007)
suggest that it produces small relative errors on average.

t Example 2.5

We are given 6 jobs with processing times

J 1 2 3 4 5 6

p 1 2 2 3 3 20

We initialize first:

S = [6, 1], U = [2, 3, 4, 5], k = 4.



2.4. Total completion time 23

1. Iteration: j = U [4] = 5

S1 = [6, 5, 1] C(S1) = [20, 23, 24]

v1
.
= 2.89

S2 = [6, 1, 5] C(S2) = [20, 21, 24]

v2
.
= 2.89

Since v1 = v2 we may take either of S1 and S2 to become S in the next iteration.
Let choose S1, so that S = [6, 5, 1], and put k = 3.

2. Iteration: j = U [3] = 4

S1 = [6, 5, 4, 1] C(S1) = [20, 23, 26, 27]

v1
.
= 7.50

S2 = [6, 5, 1, 4] C(S2) = [20, 23, 24, 27]

v2
.
= 6.25

Thus S = S2 = [6, 5, 1, 4] and k = 2.

3. Iteration: j = U [2] = 3

S1 = [6, 5, 3, 1, 4] C(S1) = [20, 23, 25, 26, 29]

v1
.
= 9.04

S2 = [6, 5, 1, 3, 4] C(S2) = [20, 23, 24, 26, 29]

v2
.
= 9.04

Again v1 = v2, so take S = S1 = [6, 5, 3, 1, 4] and put k = 1.

4. Iteration: j = U [1] = 2

S1 = [6, 5, 3, 2, 1, 4] C(S1) = [20, 23, 25, 27, 28, 31]

v1
.
= 12.56

S2 = [6, 5, 3, 1, 2, 4] C(S2) = [20, 23, 25, 26, 28, 31]

v2
.
= 12.25

Now S = S2 and the algorithm stops here with S = [6, 5, 3, 1, 2, 4] and

C(S) = [20, 23, 25, 26, 28, 31], var[C(S)] = 12.25

which happens to be an optimal solution, as can be shown by complete enu-
meration of all 26 = 64 possible schedules.

Let us draw a picture to illustrate what we have accomplished, see Figure
2.8. We can see very clearly in the left part of the graphic that variation of
completion times is considerably smaller than for the SPT schedule. Indeed,
the the variance of the SPT -schedule equals 100.14 compared to v = 12.25. But
for that we have to pay a price. The VS-schedule produces total completion
time of 153, for SPT we have only 59.



24 Chapter 2. Basic Manœvers: scheduling a single server

6 5 3 1 2 4 1 2 3 4 5 6
0

10

20

30

0

10

20

30

Figure 2.8: The VS schedule compared with SPT

Let us also have a look at waiting times. The optimal schedule S results in
waiting times and corresponding variance:

W = [0, 20, 23, 25, 26, 28], var[W (S)]
.
= 88.89.

However, it is the antithesis S′ = [4, 2, 1, 3, 5, 6] which minimizes variance of
waiting times. In fact, our calculations yield C(S′) = [3, 5, 6, 8, 11, 31] and

W (S′) = [0, 3, 5, 6, 8, 11], var[W (S)]
.
= 12.25,

in accordance with (2.21). By the way, SPT yields a variance of waiting times
of 14.89. s

2.4.4 Exercises

1. Consider the problem 1| |
∑
Ci with data

J 1 2 3 4 5 6

p 2 2 1 1 4 4

Find all optimal schedules. How many are there?

2. Our company has six big customers, A,B,C,D,E and F . Last night
production orders came in:

Customer A B C D E F

Sales last year 125 000 108 000 46 000 270 000 83 000 75 000
number of parts ordered 600 450 1150 360 825 120

Machine time to produce a part is 0.5 minutes, parts are produced on a
single machine.

• Find a schedule minimizing average waiting time of customers.
• Do the same but assign privileges to customers with high sales. What

is a reasonable way to define privileges?
• Suppose that customer C orders 7500 parts instead of 1150. How

sensitive are your results with respect to this change?



2.4. Total completion time 25

3. Define a function Nw(S, t) analogous to N(S, t) defined on page 13 taking
care of job weights.

• How can this function be interpreted?
• Elaborate a geometric argument based on Nw(S, t) for the WSPT-

rule.

4. Show that SPT minimizes
∑n

i=1C
α
i for α > 0. What about the case

α < 0?

Hint: Use an interchange argument.

5. The strategy Longest Processing Times First (LPT -Rule) schedules jobs
by putting them into descending order of processing times. Show that
LPT-sequencing maximizes total completion time.

6. The total discounted weighted completion time is defined by

f(C1, C2, . . . , Cn) =

n∑
i=1

wi(1− e−rCi).

Here r denotes a discount rate, usually close to zero. Prove the WDSPT -
rule: schedule jobs in increasing order of

1− e−rpj
wje−rpj

.

Hint: Use an interchange argument.

7. The stretch of a job Ji is defined by si = Ci/pi. It is used to measure
the quality of service a customer gets. The ratio behind this measure
is: customers estimate the speed of service by 1/si. If si is high then
customers get the impression of being served by a slow processor. Find a
scheduling rule which minimizes total stretch

∑n
i=1 si.

8. Let S′ be the antithesis to a schedule S. Show that

n∑
i=1

C(i) +
n∑
i=1

C(i)′ = (n+ 1)
n∑
i=1

pi.

Recall the meaning of the notations (i) and (i)′, see page 20.

9. Let S′ be the antithesis to a schedule S. Show that

n∑
i=1

W(i) +
n∑
i=1

W(i)′ = (n− 1)
n∑
i=1

pi.

10. Let S′ be the antithesis to a schedule S. Show that

var[C(S)] = var[W (S′)].



26 Chapter 2. Basic Manœvers: scheduling a single server

11. Consider the scheduling problem 1|pj = 1|
∑
Ci. The β-field pj = 1

means that all jobs have the same processing time pj = 1. What is the
optimal value of

∑n
i=1Ci? What is the optimal value of var[C]?

12. Consider a single processor problem with objective to minimize variance
of total completion time. Show that there exists an optimal schedule in
which the longest job comes first. Is this condition necessary for optimal-
ity?

13. Construct a numerical example showing that var[C(S)] is not a regular
performance measure.

2.5 Lateness

2.5.1 Due dates and delivery times

In this section we introduce one more job parameter, due dates. To each job
i we assign an integer-valued due date di which equals the time when job i
should be finished. Due dates are not the same as deadlines, the latter meaning
that when a job cannot be finished before its deadline d̃i then the corresponding
order becomes obsolete, the customer is no longer interested in this service. Due
dates, however, may be missed without rendering an order obsolete, although
this incurs some cost.

In realistic production environments due dates are set be the customers or
are the result of negotiations between customer and producer. But due dates
may also be determined by technical considerations. For instance, in complex
multistage production processes it is important that jobs do not complete too
late, because other jobs of a subsequent stage would otherwise have to wait,
they are blocked and this blocking deteriorates the system, in extreme cases it
may even may lead to a deadlock of the whole system. However, there are also
situations where it makes sense to consider due dates as decision variables, thus
becoming part of the optimization process, as we shall see in Chapter 7.

The lateness Li of job i is defined as

Li = Ci − di, (2.22)

and measures the deviation of the actual completion time of a job from a
planned point in time. Job weights wi no longer reflect holding costs as in
the last section but costs which are incurred whenever a job misses its due
date. Therefore it is quite natural to organize production in such a way that
these costs are as small as possible.

We shall also allow negative due dates, these may be interpreted as delivery
times. Suppose that di < 0, then we put qi = −di and (2.22) becomes

Li = Ci + qi. (2.23)



2.5. Lateness 27

Hence Li equals the total time Ci it takes to produce a certain part plus the
transportation time qi required to convey the finished part to the customer. It
is customary to call Li in this case completion-delivery time.

Including delivery times in our model has an important effect on model struc-
ture. Now we have a two-stage process: the first stage is production of parts on
one machine, the second stage handles deliveries. In contrast to the production
stage there are no resource constraints in the delivery state. For every finished
part there is an employee or some appropriate facility which takes care of de-
livery. It is perfectly OK, that deliveries are done in parallel. Thus technically
speaking: the delivery process is carried out by several parallel processors whose
number is sufficiently large so that no part has to wait for its delivery.

From (2.22) and (2.23) we can see that Li is a linear function of Ci, see Figure
2.9 for an illustration. In the sequel we will concentrate mainly on the case of

Ci

di

Li

Figure 2.9

non-negative due dates, thus on the lateness Li of job.

Obviously, Li may be positive, zero or negative. The following terminology is
common:

• If Li = 0, job i is on time.
• If Li > 0, job i finishes too late, it is tardy.
• If Li < 0, job i is completed before it is due, it is called early.

Accordingly we define

earliness of job i: Ei = max[0, di − Ci]
tardiness of job i: Ti = max[0, Ci − di].

Observe that Ei ≥ 0 and Ti ≥ 0. If one of these quantities is positive, the
other must be zero, so always Ei ·Ti = 0. Therefore, lateness may be expressed
alternatively as

Li = Ti − Ei. (2.24)



28 Chapter 2. Basic Manœvers: scheduling a single server

2.5.2 Total weighted lateness

This performance measure reflects the total cost resulting from jobs missing
their due dates. Total weighted lateness Lw is defined by

Lw =
n∑
i=1

wiLi. (2.25)

Lw is a regular performance measure, i.e., increasing in the completion times
Ci, as can be seen from (2.22) or Figure 2.9. The corresponding scheduling
model is 1 | |

∑
wiLi.

Finding a schedule that minimizes Lw is easy, just use the WSPT -rule.

Theorem 2.5.1. A schedule S which minimizes total weighted lateness Lw is
found by ordering jobs by increasing values of the ratios pi/wi.

Proof. By definition (2.22),

Lw =

n∑
i=1

wiLi =

n∑
i=1

wi(Ci − di)

=

n∑
i=1

wiCi −
n∑
i=1

widi. (2.26)

But WSPT minimizes the first sum in (2.26). The second sum, however, is con-
stant under any job ordering because the di and wi are given data. Therefore,
a schedule minimizing

∑
wiCi automatically minimizes Lw.

Remarks.

• This result is quite remarkable insofar as WSPT does not take care of the
due dates at all.
• Nothing changes when we consider delivery times. The performance mea-

sure analogue to (2.25) is total weighted completion-delivery time:

Dw =
n∑
i=1

wi(Ci + qi), (2.27)

which is also minimized by ordering jobs according to the WSPT -rule.

t Example 2.6

Consider n = 10 jobs with data given by:

J 1 2 3 4 5 6 7 8 9 10
p 5 4 7 10 12 9 6 3 9 4
w 4 1 8 2 3 2 3 1 5 4
d 20 45 15 11 34 25 40 62 62 50



2.5. Lateness 29

Ordering jobs by WSPT results in an optimal schedule S:

S 3 10 1 9 7 8 2 5 6 4

p 7 4 5 9 6 3 4 12 9 10
w 8 4 4 5 3 1 1 3 2 2
d 15 50 20 62 40 62 45 34 25 11

C 7 11 16 25 31 34 38 50 59 69
L -8 -39 -4 -37 -9 -28 -7 16 34 58

with Lw = −251. In other words, the mean cost due to lateness of this schedule
equals:

L̄w =
1

10

10∑
i=1

wiLi = −25.1 .

Observe that this schedule produces 7 early and 3 tardy jobs. Moreover, job 4
has maximum lateness of 58, so it is pretty late!

s

t Example 2.7 Processing times and delivery times of n = 5 jobs are as
follows:

J 1 2 3 4 5

p 8 12 4 10 3
q 10 10 28 12 14

We assume that once an employee has delivered a job she is immediately avail-
able for handling the next delivery, if any. In this scenario the delivery times
also include the time the employee requires to travel back from the customer.

Applying WSPT yields an optimal schedule with evaluation:

S 5 3 1 4 2

p 3 4 8 10 12
q 14 7 28 12 10

C 3 7 15 25 37
C + q 17 14 43 37 47

Thus we find that total completion-delivery time equals

D =
5∑
i=1

(Ci + qi) = 158.

What is the minimum number of employees needed to deliver each job without
any delay? This question is intimately connected with a fascinating coloring
problem in graph theory. We shall hear more about it in the next chapter. For
the moment it is sufficient to use a seemingly unsophisticated ad hoc approach.
Let’s just make a picture, see Figure 2.10. By simple inspection we find that
the minimum number of employees needed equals two. Of course, for a larger
number of jobs, an algorithm is required, of course.



30 Chapter 2. Basic Manœvers: scheduling a single server

5

3

1

4

2

10 20 30 40 50

Figure 2.10

2.5.3 Maximum lateness

Example 2.6 suggests another interesting performance measure, maximum late-
ness which is defined as

maximum lateness: Lmax = max
i
Li = max

i
(Ci − di) (2.28)

Note that Lmax is a regular performance measure, since it will never decrease
when any of the completion times is increased. Therefore it seems quite natural
to look for a schedule S which yields the smallest possible value for Lmax:

find an S, such that: Lmax → min (2.29)

A schedule minimizing maximum lateness can be found very easily (Jackson,
1955).

Theorem 2.5.2 (Jackson’s earliest due date rule). To find an optimal schedule
S for (2.29) order jobs according to increasing values of their due dates:

S : d(1) ≤ d(2) ≤ · · · ≤ d(n) EDD-Rule (2.30)

Before we prove this classical result let us consider an example.

t Example 2.8

The job data are the same as in Example 2.6, but without weights:

J 1 2 3 4 5 6 7 8 9 10
p 5 4 7 10 12 9 6 3 9 4
d 20 45 15 11 34 25 40 62 62 50

Sorting jobs by increasing values of their due dates, calculating completion
times and lateness values of the resulting EDD-schedule S yields:

S 4 3 1 6 5 7 2 10 8 9
p 10 7 5 9 12 6 4 4 3 9
d 11 15 20 25 34 40 45 50 62 62

C 10 17 22 31 43 49 53 57 60 69
L -1 2 2 6 9 9 8 7 -2 7



2.5. Lateness 31

We find that the EDD-schedule yields a maximum lateness of Lmax = 9 attained
by jobs 5 and 7.

The reader may check that scheduling jobs by the SPT -rule which minimizes
average lateness will give a value of Lmax = 46, more than five times of optimal
value!

s

Proof of Theorem 2.5.2. We use an interchange argument as we did in the
proof of the WSPT -Rule (Theorem 2.4.1). Let S be a schedule which does not
conform to the EDD-rule, i.e.,

S = [A, i, j, B],

where A and B are two possibly empty sets of jobs, job j is scheduled immedi-
ately after i, but di > dj . Furthermore, let

p(A) =
∑
i∈A

pi, LA = max
i∈A

Li, LB = max
i∈B

Li,

i.e., p(A) denotes the sum of the process times in set A and therefore the time
when job i will be started, since we need not consider inserted idle time. Now

S i jjobs in A jobs in B

p(A) dj di

Li < 0

Lj > 0

Figure 2.11: Jobs i and j not EDD-conforming

form a new schedule S∗ by interchanging jobs i and j and calculate the lateness
of i and j under S and S∗, see Figure 2.11 and Figure 2.12 for illustration. For
schedule S we can read off:

Li(S) = p(A) + pi − di (A)

Lj(S) = p(A) + pi + pj − dj , (B)

wherease for S∗:

Li(S
∗) = p(A) + pj + pi − di (C)

Lj(S
∗) = p(A) + pj − dj . (D)

A comparison of (A) and (B) shows that Lj(S) > Li(S). Indeed,

p(A) + pi + pj − dj > p(A) + pi − di
=⇒ pj > dj − di.



32 Chapter 2. Basic Manœvers: scheduling a single server

S∗ j ijobs in A jobs in B

p(A) dj di

Li < 0

Lj < 0

Figure 2.12: Jobs i and j EDD-conforming

But dj − di < 0 by assumption and pj ≥ 0, so the last inequality follows.

Similarly, by (B), (C) and (D):

Lj(S) > Li(S
∗), and Lj(S) > Lj(S

∗). (E)

Hence

Lj(S) > max[Li(S), Li(S
∗), Lj(S

∗)].

Now, observe that LA and LB have the same values for S and S∗. Therefore

Lmax(S) = max[LA, LB, Li(S), Lj(S)]

= max[LA, LB, Lj(S)] (because Lj(S) > Li(S))

≥ max[LA, LB, Li(S
∗), Lj(S

∗)] (by (E))

= Lmax(S∗).

Hence

Lmax(S) ≥ Lmax(S∗). (2.31)

Remarks.

• Inequality (2.31) is not strict. This means that even when di > dj it may
happen that after interchanging i and j we have Lmax(S) = Lmax(S∗).
All we can say is, the new schedule S∗ will be no worse than S. This is
in contrast to the WSPT -rule. There we have been able to show that a
pair-wise exchange always improved the objective function.
• Ordering jobs according to EDD is therefore a sufficient condition for

minimal Lmax. It may be that there are other non-EDD schedules (indeed,
there may be many of them), yielding the same minimum for Lmax.

Here is an example:

J 1 2 3 4 5

p 5 4 8 2 5
d 8 9 10 9 11

C 5 9 17 19 25
L −3 0 7 10 14



2.5. Lateness 33

Jobs 3 and 4 are not in EDD-order, Lmax = 14. Interchanging jobs 3 and
4 and thereby establishing EDD-order yields:

S 1 2 4 3 5

p 5 4 2 8 5
d 8 9 9 10 11

C 5 9 11 19 25
L −3 0 2 9 14

As you can see, this schedule has the same Lmax.
• Nothing changes if we consider delivery times, again the EDD-rule yields

an optimal schedule minimizing maximum completion-delivery time

Dmax = max
i

[Ci + qi]

• EDD requires sorting of n due dates, thus the time complexity of EDD is
O(n log n), the same we as for WSPT.

2.5.4 Lawler’s Algorithm

The EDD-rule presented in the last section follows also as a very special case
from an algorithm due to Lawler (1973) which is capable of solving much more
complicated scheduling problems. It is based on the powerful idea of construct-
ing a schedule in a greedy manner from right to left.

Let J denote to set of all n jobs and I ⊂ J denotes the subset of jobs still to be
scheduled, i.e., those jobs which have not been assigned a position in the final
schedule. Define the total processing time of set I:

T =
∑
i∈I

pi = p(I)

With each job we associate a monotone and increasing cost function gi(t), i.e.,

gi(s) ≤ gi(t), if s ≤ t,

The function gi(t) equals the cost incurred by job i, if i completes at time t.
Then the following holds:

Lemma 2.5.1. Let gk(T ) = mini∈I gi(T ). Then there exists a schedule S which
minimizes the maximum of incurred cost and in which job k is the last in S.

Proof. Let S∗ be a job ordering in which job ` 6= k is last, A and B denote
possibly empty sets of jobs other than ` and k so that

S∗ = [A, k,B, `].

Move k to the last position thereby getting a new schedule S:

S = [A,B, `, k]

Now observe the following by comparing S and S∗:



34 Chapter 2. Basic Manœvers: scheduling a single server

• No job in S will be completed later than in S∗, except job k.
• Since by assumption the cost functions gi(t) are monotone increasing in
t, no incurred cost can be greater in S than in S∗, except possibly the
cost due to job k.
• But job k has been chosen in such a way that gk(T ) ≤ g`(T ).

It follows that the maximum cost of S∗ is no greater than that of S.

This lemma suggests the following Algorithm 2.2 for constructing an optimal
schedule: simply find a job k which can be placed last. Remove this job from
the set of jobs and apply the same rule to the remaining n − 1 jobs, etc. It
solves the scheduling problem 1 | | gmax, where

gmax = max(g1(C1), g2(C2), . . . , gn(Cn)).

Algorithm 2.2

LAWLER’s ALGORITHM

Input: a set J of n jobs
a set of cost functions gi(t), i = 1, 2. . . . , n

Output: an optimal schedule S and optimal gmax.

begin
S := [ ]
I := J

begin
begin
LOOP: T =

∑
i∈I pi

Find k such that gk(T ) = mini∈I gi(T )
S := [k, S]
I := I − {k}
if I 6= ∅ then go to LOOP

end

Calculate Ci(S), i = 1, 2, . . . , n
Calculate gi(Ci(S)), i = 1, 2, . . . , n
gmax = maxi(gi(Ci))

return [S, gmax]
end

end



2.5. Lateness 35

Remarks.

• Lawler’s algorithm allows us to consider problems even with nonlinear
cost functions, like gi(t) = αt2 or something of that kind, provided, these
functions are monotone increasing. The cost functions may be different
for each job.
• The EDD-rule simply follows by using the cost functions gi(t) = t − di.

This is easy to see. In the first iteration the algorithm selects a job k
for which gk(T ) = T − dk is minimal. This will be the case, if dk has
maximum value. Thus the job with largest due date is put on the last
position of S, and so on.
• The time complexity of Lawler’s Algorithm can be shown to be O(n2).

t Example 2.9

Consider once again the data of Example 2.8, but this time we want to find
a schedule which minimizes maximum weighted lateness defined by Lwmax =
maxi[wi(Ci − di)]:

J 1 2 3 4 5 6 7 8 9 10
p 5 4 7 10 12 9 6 3 9 4
w 4 1 8 2 3 2 3 1 5 4
d 20 45 15 11 34 25 40 62 62 50

We apply Lawler’s algorithm with cost functions gi(t) = wi(t− di).
In the first iteration we have I = [1, 2, . . . , 10], T =

∑
i∈I pi = 69 and

i 1 2 3 4 5 6 7 8 9 10

gi(T ) 196 24 432 116 105 88 87 7 35 76

The minimum is found for i = 8, thus

S = [ 8 ], I = [ 1, 2, 3, 4, 5, 6, 7, 9, 10 ], T = 66

Recalculation of cost functions for T = 66 yields

i 1 2 3 4 5 6 7 9 10

gi(T ) 184 21 408 110 96 82 78 20 64

The minimum is now obtained for job i = 9, it follows that

S = [ 9, 8 ], I = [ 1, 2, 3, 4, 5, 6, 7, 10 ], T = 57,

and so on. The table with complete calculations is given below.



36 Chapter 2. Basic Manœvers: scheduling a single server

Iter. g1 g3 g3 g4 g5 g6 g7 g8 g9 g10 T S

1 196 24 432 116 105 88 87 7 35 76 69 8
2 184 21 408 110 96 82 78 20 64 66 9,8
3 148 12 336 92 69 64 51 28 57 2,9,8
4 132 304 84 57 56 39 12 53 10,2,9,8
5 116 272 76 45 48 27 49 7,10,2,9,8
6 92 224 64 27 36 43 5,7,10,2,9,8
7 44 128 40 12 31 6,5,7,10,2,9,8
8 8 56 22 22 1,6,5,7,10,2,9,8
9 16 12 17 4,1,6,5,7,10,2,9,8

10 -64 7 3,4,1,6,5,7,10,2,9,8

Thus the optimal schedule is S = [3, 4, 1, 6, 5, 7, 10, 2, 9, 8] with Lwmax = 27 = g7
in iteration 5.

As remarked above, the complexity of Lawler’s Algorithm is in general O(n2)
except for situations where the application of the algorithm essentially results in
sorting jobs, e.g., EDD is an example which minimizes Lmax and has complexity
O(n log n), thus EDD is considerably faster. So the question arises whether
there is an algorithm minimizing maximum weighted lateness Lwmax that is faster
than O(n2). Actually, such an algorithm has been found by Hochbaum and
Shamir (1989). This algorithm makes clever use of special data structures and
thereby decreases complexity to O(n log2 n), thus being roughly as fast as EDD.

s

2.5.5 Exercises

1. Devise a rule yielding an optimal schedule to minimize weighted maximum
lateness.

2. Using Lawler’s algorithm find a simple rule to minimize weighted maxi-
mum lateness when all jobs have the same due date.

2.6 Tardiness - a first glimpse

When a job is not on time, it may be early or it may be tardy. Tardiness is
positive lateness, and very often in practical applications this is what really
hurts, because when a jobs needs too much time be be finished high costs may
be the result.

Tardiness of a job i is defined as:

Ti = max(0, Ci − di), (2.32)

and unlike lateness this is not a linear function of the completion time Ci
(see Figure 2.13). Working with nonlinear functions is generally more difficult
than working with linear functions, and indeed, most scheduling problems with
tardiness related objective functions are NP-hard.

But there are exceptions to this somewhat disillusioning perspective.



2.6. Tardiness - a first glimpse 37

Cidi

Ti

Figure 2.13: Tardiness as nonlinear function of completion time

2.6.1 Maximum Tardiness

Let us define the regular performance measure maximum tardiness of a schedule
by

Tmax = max
1≤i≤n

Ti. (2.33)

How to find a schedule that minimizes Tmax?

Again, Lawler’s algorithm provides the answer. As you can see from the defi-
nition (2.32) as well as from Figure 2.13, tardiness is an continuous monotone
increasing function of the completion times. Thus for a given set J of jobs with
total processing time T = p(J) in each iteration of Lawler’s algorithm we have
to find a job k which minimizes

gk(T ) = max
i∈J

(0, T − di).

Obviously this is the job in J which has maximum due date. As a result, the
algorithm will always order jobs according to increasing values of the due dates.
But this is the EDD-rule!

Theorem 2.6.1 (Maximum tardiness). To find an optimal schedule S which
minimizes maximum tardiness order jobs according to increasing values of their
due dates, thus apply the EDD-rule.

t Example 2.10 Consider n = 10 jobs with data:

J 1 2 3 4 5 6 7 8 9 10
p 3 4 8 19 20 11 11 9 15 3
d 81 55 57 61 79 53 34 34 38 46

Ordering jobs by increasing values of due dates di yields an optimal schedule S
which evaluates to:

S 7 8 9 10 6 2 3 4 5 1

p 11 9 15 3 11 4 8 19 20 3
d 34 34 38 46 53 55 57 61 79 81

C 11 20 35 38 49 53 61 80 100 103
T 0 0 0 0 0 0 4 19 21 22



38 Chapter 2. Basic Manœvers: scheduling a single server

Hence, Tmax = 22. s

Lawler’s algorithm is applicable also when we are interested in maximum weighted
tardiness, see the exercises below.

But what about the performance measures total tardiness T and total weighted
tardiness Tw,

T =
n∑
i=1

Ti, Tw =
n∑
i=1

wiTi ?

These are very important performance measures since, e.g., Tw yields the av-
erage cost of jobs finishing too late. Unfortunately, finding a schedule that
minimizes T or Tw is NP-hard. Therefore we will postpone a discussion of the
total tardiness problem to chapter 6.

2.6.2 The number of tardy jobs

The quality of work done by production managers is often assessed by the
number of tardy jobs they are responsible for. To count the number of tardy
jobs it is convenient to introduce the Heavyside function:

Ui(Ci) := Ui =

{
1 if Ci ≥ di
0 otherwise

This is a step function defined for each job i and it has a single jump of size +1,
if the completion time of i exceeds its due date (see Figure 2.7). The number

Cidi

Ui

1

Figure 2.14: The Heaviside function for job i

of tardy jobs produced by a particular schedule is simply U =
∑n

i=1 Ui and its
mean value Ū equals the relative frequency of tardy jobs. The corresponding
scheduling problem of minimizing U has signature 1||

∑
Ui.

We expect that EDD-ordering should have an influence on this measure of
performance. Indeed, if EDD produces no tardy job then it is optimal with
respect to U . The same is true when EDD results in exactly one tardy job,
since EDD minimizes also Tmax. But in all other cases EDD need not be
optimal, as the following example shows.



2.6. Tardiness - a first glimpse 39

t Example 2.11

Consider n = 5 jobs with data given by:

J 1 2 3 4 5

p 1 7 6 4 3
d 2 8 9 10 12

C 1 8 14 18 21
T 0 0 5 8 9
U 0 0 1 1 1

Jobs are indexed in EDD-order and as you can see,
∑
Ui = 3, so there are three

tardy jobs. This is not optimal, as the alternative schedule S∗ = [1, 4, 5, 2, 3]
produces two tardy jobs only. Please verify!

s

To get an idea of how this problem can be solved we will apply a rather simple
graphical device, a d/C-diagram. This is a very useful tool as we shall see also
in Chapter 6. The diagram consists of a coordinate system, the horizontal axis
for due dates di, the vertical axis for completion times Ci of the EDD-schedule.
In this coordinate system we draw the points (di, Ci), i ∈ J and connect them
by line segments so that we get a step function. Let us also draw the line d = C,
see Figure 2.15.

2 4 6 8 10 12

5

10

15

20

J 1 2 3 4 5

p 1 7 6 4 3
d 2 8 9 10 12

C 1 8 14 18 21

d

C

Figure 2.15: The d/C-diagram for J = {1, 2, 3, 4, 5}

Ideally, the step function should not cross the line d = C, but it does in our
example, as you can see. This simply means that there are points with Ci > di,
in other words there are tardy jobs. Only jobs 1 and 2 are on time. Now time
has come to be a little bit greedy : let us remove the longest job among the
on time jobs and put it aside. The longest job is 2, as it has processing time
p2 = 7.

What will happen? All jobs in the EDD-schedule following job 2 will now
complete earlier by 7 time units. As a result their tardiness is reduced and it



40 Chapter 2. Basic Manœvers: scheduling a single server

may happen that jobs which have been tardy before are now no longer tardy
after this change. Graphically, this means that we cut out one step of the step
function and as a result its tail segment moves down. This situation is shown
in Figure 2.16.

2 4 6 8 10 12

5

10

15

20

J 1 3 4 5

p 1 6 4 3
d 2 9 10 12

C 1 7 11 14

A = {2}

d

C

Figure 2.16: The d/C-diagram for J = {1, 3, 4, 5}

Still the step function crosses the line d = C, but the situation looks much
better now. Why shouldn’t we apply the same trick again? The longest job
among the on time jobs is job 3. We remove it from J and put it aside, i. e.,
store it in a list A. And again all jobs after 3 will complete earlier and thereby
become non-tardy.

2 4 6 8 10 12

5

10

15

20

J 1 4 5

p 1 4 3
d 2 10 12

C 1 5 8

A = {2, 3}

d

C

Figure 2.17: The d/C-diagram for J = {1, 4, 5}

Now the step function runs completely below the line d = C, there are no more
tardy jobs.

This simple graphical procedure gives us the clue how the Moore-Hodgson Al-
gorithm works. It is not a proof of the correctness of that algorithm, just a way
to intuitive understanding.



2.6. Tardiness - a first glimpse 41

Algorithm 2.3 given below does exactly what we have done above. It constructs
the optimal schedule in a left-to-right fashion, as follows:

• Jobs to be scheduled are given in EDD-order.
• The algorithm maintains two lists S and A and a variable t, the completion

time of the last job added to S.
• At the beginning both lists are empty and t = 0.
• Jobs are added one at a time to S. The completion time variable t is

updated and it is checked whether the last job added is tardy. If so, the
longest job in S, say job k, is determined. It is removed from S, added to
A, and t is reduced by pk.
• This process continues until all jobs have been considered.

The algorithm returns the lists S and A: S contains the non-tardy jobs in
EDD-order, A is the list of tardy jobs.

The optimal rule is therefore:

• Schedule jobs in S in that order.
• Then process jobs in A in any order.
• The optimal value of the performance measure is min

∑
Ui = |A|, the

number of jobs in set A.

The time complexity of the Moore-Hodgson Algorithm is O(n log n) because
the hardest part is to order jobs by increasing values of due dates.

Here is a formal statement of the Algorithm.

Algorithm 2.3

MOORE-HODGSON ALGORITHM

Input: n jobs with processing times pi
and due dates di, jobs in EDD-order.

Output: a list S of non-tardy jobs and a list A of tardy jobs.

begin
S := [ ]
A := [ ]
t := 0

for j := 1 to n do
begin

S := [S, j]
t := t+ pj
if t > dj then do

begin
find job k with maximum processing time in S
A := [A, k]
S := S − {k}
t := t− pk

end



42 Chapter 2. Basic Manœvers: scheduling a single server

end

return [S,A]
end

t Example 2.11 (continued).

Applying Algorithm 2.3 yields after initialization step by step:

j = 1 : S = [1], A = [ ], t = 1
j = 2 : S = [1, 2], A = [ ], t = 8
j = 3 : S = [1, 2, 3], A = [ ], t = 14

t = 14 > d3 = 9
k = 2, since p2 = 7 is maximal, therefore remove job 2
=⇒ S = [1, 3], A = [2], t = 7

j = 4 : S = [1, 3, 4], A = [2], t = 11

t = 12 > d4 = 10
k = 3, since p3 = 6 is maximal, therefore remove job 3
=⇒ S = [1, 4], A = [2, 3], t = 7

j = 5 : S = [1, 4, 5] A = [2, 3], t = 10

STOP

Thus we have found:

• It is optimal to process first jobs S = [1, 4, 5] in that order.
• Set A = [2, 3] has |A| = 2 elements, therefore the optimal value of the

performance measure equals U = 2
• Jobs in A can be processed in any order.
• Therefore we have two optimal schedules:

S∗1 = [1, 4, 5, 2, 3] and S∗2 = [1, 4, 5, 3, 2]

s

Remark. It is not at all clear that Algorithm 2.3 yields an optimal schedule.
This claim requires a proof, of course. We shall not give a proof here and
refer the interested reader to the literature because all known proofs though
not being difficult are very messy, see for instance (Moore, 1968) and (Sturm,
1970).

What about job weights?

Consider the following scheduling problem: at 0 am (say) due to bad weather
conditions there are n aircrafts circling in turning loops near an airport. Aircraft
i will run out of fuel in di minutes (from now on). It is also known to flight
control that this aircraft has wi passengers on board. Under guidance of the
flight controller it will take pi minutes to bring down aircraft i safely. The bad
thing is: it has to be expected that an aircraft waiting too long for landing
permission may run out of fuel and crash.



2.7. Secondary Measures of Performance 43

So, what to do? From a scheduling point of view, one alternative would be to
minimize U , thus schedule aircrafts so that the number of crashes is minimum.
This can be done by the Moore-Hodgson Algorithm. A much better and much
more reasonable alternative is to take into account the expected number of
casualties. This number is

Uw =
n∑
i=1

wiUi

Thus the appropriate performance measure is now the weighted number of tardy
jobs Uw =

∑
wiUi. Unfortunately, the problem 1||

∑
wiUi is a hard one, but it

can be solved by means of a clever enumeration method, dynamic programming,
which we will explore in detail in chapter 4.

2.7 Secondary Measures of Performance

Example 2.11 resulted in two optimal schedules, optimal in the sense that they
minimize the number of tardy jobs. Thus our optimization problem has multiple
optima, a situation not untypical of combinatorial optimization.

Multiple optima provide us with strategic alternatives. We can figure out easily
what these alternatives are in the Example 2.11. For this purpose let us cal-
culate total completion time C and maximum tardiness Tmax for S∗1 and S∗2 . A
trite calculation gives:

S∗1 1 4 5 2 3

p 1 4 3 7 6
d 2 10 12 8 9

C 1 5 8 15 21
T 0 0 0 7 12

S∗2 1 4 5 3 2

p 1 4 3 6 7
d 2 10 12 9 8

C 1 5 8 14 21
T 0 0 0 5 13

S∗1 has maximum tardiness Tmax = 12, whereas for S∗2 we have Tmax = 13. Also,
total completion time for S∗1 equals C(S∗1) = 1 + 5 + 8 + 15 + 21 = 50, for S∗2
we have C(S∗2) = 49.

That S∗1 produces a smaller Tmax is clear: the tardy jobs 2 and 3 are in EDD-
order in S∗1 , not so in S∗2 . But S∗1 can be improved with respect to completion
time without increasing the number of tardy jobs nor maximum tardiness. Just
exchange jobs 4 and 5. You will find that now total completion time reduces
to C = 49. That is pretty close to the minimum value that results from SPT-
ordering.

But why did we take job 4 in S∗1? There is a simple reason for that: this job
has the largest processing time among the non-tardy jobs, thus with respect to
total completion time it is profitable to move this job to the end of the list of
non-tardy jobs. Moreover, its due date is sufficiently large so that this shift will
not produce more tardy jobs.



44 Chapter 2. Basic Manœvers: scheduling a single server

This idea can be crafted into an algorithm due to Smith4. Suppose that our
primary objective is somehow tardiness related and we could find in some way a
schedule which produces zero tardy jobs. This schedule is certainly optimal with
respect to Tmax,

∑
wiUi and even total weighted tardiness

∑
wiTi. Suppose also

that our secondary objective is to minimize total weighted completion time.
Step by step we identify jobs which when moved to the end of the schedule
will not produce any tardiness. Among these jobs we always select the one
with maximum processing time since moving this job to the end reduces total
completion time as much as possible.

Algorithm 2.4

SMITH’s SECOND RULE

Input: n jobs with processing times pi and due dates di
a set J of jobs already indexed so that there are no tardy jobs.

Output: a schedule S minimizing total completion time.

begin
S := [ ]

while J 6= ∅ do
begin

T :=
∑

i∈J pi
Find job k ∈ J such that dk ≥ T and
pk ≥ p` among all jobs ` ∈ J with d` ≥ T (∗)
S := [k, S]
J := J − {k}

end
return S

end

t Example 2.12

The following set of jobs is already in EDD-order which results in zero tardy
jobs and total completion time C = 614:

J 1 2 3 4 5 6 7 8 9 10

p 6 18 7 3 18 12 18 13 16 4
d 47 53 65 67 69 92 94 120 133 138

C 6 24 31 34 52 64 82 95 111 115

In the first iteration we have T = 115 and there are three candidates to be
moved, jobs 8, 9 and 10. Job 9 has maximum processing time, so it is put at
the end of the schedule and removed from the list of jobs yet to be scheduled.

4Unfortunately also known as Smith’s Rule.



2.8. Deadline Scheduling 45

In the next round T = 99 and candidates for move are jobs 8 and 9. Job 8 is
moved because it has larger processing time, etc. The optimal schedule finally
found is:

S = [4, 10, 1, 3, 6, 2, 5, 7, 8, 9],

with total completion time to C(S) = 493 and still all jobs non-tardy. s

2.8 Deadline Scheduling

Algorithm 2.4 is capable of solving another interesting problem, scheduling with
deadlines. Deadlines are very different from due dates. If in a bulk of n jobs
a job is tardy, thus completes after its due date, then costs are incurred which
may be high, sometimes prohibitively high. But still it may be reasonable to
accept this order.

In contrast, suppose we are to produce n parts with processing times pi and
deadlines d̃i. If even one job misses its deadline then the whole order becomes
obsolete. The corresponding scheduling models with and without job weights
are denoted by

C(d̃) : 1|d̃i|
∑

Ci and Cw(d̃) : 1|d̃i|
∑

wiCi.

Let us consider first problem C(d̃i). Indeed, it is two problems in one! At the
top-level there is feasibility problem. Is it even possible to find a job ordering
such that each job meets its deadline?

We already know the answer.

Lemma 2.8.1. If the EDD-ordering results in at least one tardy job then neither
for C(d̃) nor for Cw(d̃) a feasible schedule exists in which all jobs are on time.

Proof. EDD is a sufficient condition for a schedule to have minimal maximum
tardiness Tmax. There cannot be any schedule with a smaller Tmax. But, if
Tmax > 0 then there must be at least one tardy job, so no feasible schedule
exists for C(d̃), and the same is true for Cw(d̃).

Once the existence of a feasible schedule has been established we are faced with
the second problem: find a feasible schedule S which minimizes either C or Cw.

This is easy for the problem C(d̃): Algorithm 2.4 solves the problem. The
situation is, however, quite different, as it is known that Cw(d̃) is NP-hard
(Lenstra, Rinnooy Kan, and Brucker, 1977). Finding an exact solution of the
Cw(d̃) problem requires special techniques which we will discuss in Chapter 4.
For the moment, however, we note that a minor modification of Algorithm 2.4
yields good approximations. This modification is: in Algorithm 2.4 replace the
line marked by (∗) by

pk/wk ≥ p`/p` among all jobs ` ∈ J with d` ≥ T



46 Chapter 2. Basic Manœvers: scheduling a single server

t Example 2.13

Given are n = 10 jobs with processing times and deadlines:

J 1 2 3 4 5 6 7 8 9 10

p 6 8 1 2 4 5 7 8 5 4

d̃ 40 40 42 43 47 47 47 47 51 52

Smith’s 2nd Rule yields very quickly the optimal schedule∑
Ci = 221, S = [3, 4, 10, 5, 6, 1, 7, 2, 8, 9].

Suppose now, that addition we are given also job weights

w = [8, 3, 4, 5, 3, 1, 8, 5, 2, 7].

Algorithm 2.4 suitably adapted, as described above, now yields as an approxi-
mation for the model 1|d̃i|

∑
wiCi :∑

Ci = 829, S = [3, 4, 10, 1, 7, 5, 8, 2, 6, 9].

s

2.9 Bibliographic Notes

Most of the material in this introductory chapter is covered in one or another
way in standard textbooks on scheduling. My favorite book is Baker and Tri-
etsch (2009). The classical textbook although somewhat outdated is certainly
Conway, Maxwell, and Miller (2003). Parker (1995) gives a thorough coverage
which emphasizes complexity of scheduling algorithms. A rather up to date
book is Pinedo (2008).

2.10 References

[1] Kenneth R. Baker and Dan Trietsch. Principles of Sequencing and Schedul-
ing. Wiley Publishing, 2009.

[2] R. W. Conway, W. L. Maxwell, and L. W. Miller. Theory of Scheduling.
Dover, 2003.

[3] S. Eilon and I. E. Chowdhury. “Minimising Waiting Time Variance in the
Single Machine Problem”. In: Management Science 23.6 (1977), pp. 567–
575.

[4] D. S. Hochbaum and R. Shamir. “An O(n log2 n) algorithm for the maxi-
mum weighted tardiness problem”. In: Information Processing Letters 31
(1989), pp. 215–219.



2.10. References 47

[5] J. R. Jackson. “Scheduling a production line to minimize maximum tardi-
ness”. In: Research Report, Management Science Research Project, Uni-
versity of California, Los Angeles 43 (1955).

[6] J. J. Kanet. “Minimizing Variation of Flow Time in Single Machine Sys-
tems”. In: Management Science 27.12 (1981), pp. 1453–1459.

[7] W. Kubiak. “Completion time variance minimization on a single machine
is difficult”. In: Operations Research Letters 14.1 (1993), pp. 49–59.

[8] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. “Complexity of Ma-
chine Scheduling Problems”. In: Ann. Discrete Math. 1 (1977), pp. 343–
362.

[9] J. D. C. Little. “A Proof for the Queuing Formula: L = λW”. In: Opera-
tions Research 9.3 (1961), pp. 383–387.

[10] A. G. Merten and M. E. Muller. “Variance minimization in sigle machine
sequencing problems”. In: Management Science 18.9 (1962), pp. 513–528.

[11] J. M. Moore. “An n Job, One Machine Sequencing Algorithm for Mini-
mizing the Number of Late Jobs”. In: Management Science 15.1 (1968),
pp. 102–109.

[12] R. G. Parker. Deterministic Scheduling Theory. Chapman & Hall, 1995.

[13] Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. 3rd.
Springer Publishing Company, Incorporated, 2008.

[14] L. Schrage. “Minimizing the time-in-system variance for a finite jobset”.
In: Management Science 21.5 (1975), pp. 540–543.

[15] Wayne E. Smith. “Various optimizers for single-stage production”. In:
Naval Research Logistics Quarterly 3.1-2 (1956), pp. 59–66. issn: 1931-
9193.

[16] L. B. J. M. Sturm. “A Simple Optimality Proof of Moore’s Sequencing
Algorithm”. In: Management Science 17.1 (1970), pp. 116–118.

[17] N. Ye et al. “Job scheduling methods for reducing waiting time variance”.
In: Computers & Operations Research 34 (2007), pp. 3069–3083.



48 Chapter 2. Basic Manœvers: scheduling a single server


	Basic Manœvers: scheduling a single server
	The model and its assumptions
	The schedule and its outcome
	Performance Measures
	Exercises

	Total completion time
	The WSPT-Rule
	Complexity of the WSPT-rule, Ties
	Variability of Completion Times and Waiting Times
	Exercises

	Lateness
	Due dates and delivery times
	Total weighted lateness
	Maximum lateness
	Lawler's Algorithm
	Exercises

	Tardiness - a first glimpse
	Maximum Tardiness
	The number of tardy jobs

	Secondary Measures of Performance
	Deadline Scheduling
	Bibliographic Notes
	References


