

UNURAN for Windows

USER MANUAL

VERSION 0.6.0

UNURAN for Windows is a user-friendly implementation of
algorithms for generating uniform and non-uniform random numbers
wrapped around the following two distributions :

• PRNG = Pseudo-Random Number Generator

(version 3.0.2)
A portable, high-performance ANSI-C implementations of
pseudorandom number generators such as linear congruential,
inversive congruential, and explicit inversive congruential
random number generators (called LCG, ICG and EICG,
respectively) created by Otmar Lendl (versions >= 3 are being
developed and maintained by Josef Leydold)
http://statistik.wu-wien.ac.at/prng/index.html

• UNU.RAN = Universal Non-Uniform RANdom number generators

(version 0.6.0)
A collection of algorithms for generating non-uniform
pseudorandom variate as a library of C functions.
It provides an consistent and flexible interface to universal
algorithm as well as to generators for standard distribution. It is
applicable for continuous and discrete, univariate and
multivariate distributions and for (re)sampling from empirical
distributions.
UNU.RAN is developed and maintained by Josef Leydold,
Wolfgang Hörmann, Erich Janka, Günter Tirler and Roman
Karawatzki
http://statistik.wu-wien.ac.at/unuran/index.html

The currnent release of UNURAN for Windows includes mutually
independent parts :

• An ActiveX control (unuran-0.6.0.ocx)

• A dynamic link library (unuran-0.6.0.dll)
 + declaration module (unuran-0.6.0.bas)

providing a very flexible tool for random number generation in the
windows environment.
For remarks, problems, questions and/or suggestions please contact
unuran@statistik.wu-wien.ac.at

INTRODUCTION

Page 2

http://statistik.wu-wien.ac.at/prng/index.html
http://statistik.wu-wien.ac.at/unuran/index.html

Place an UNURAN ActiveX control onto your Form :

Assuming that the name of your ActiveX control is unuran1, add the
initialization call to your source-code :

 api_string = "normal(0,1)"
 return_init = unuran1.init(api_string)

The initialization routine return 0 upon successfull initialization, any
other value indicate an error in the api_string and or incopatible
settings of parameter values, sampling method etc — in this case
additional info on the error condition is written to the unuran.log
file.

Optional seeding of the generator may be performed using the call

 return_seed = unuran1.set_seed(seed_value)

To obtain a random variate x sampled from a distribution defined by
the api_string, we can now write

 x = unuran1.sample

Each succesive call to the sample-method will now yield another
random variate from the given distribution.

QUICKSTART (ACTIVEX)

Page 3

Add the following declaration block to your project (can be found in
the file unuran-0.6.0.bas) :

Public Declare Function unuran_init Lib "unuran-
0.6.0.dll" (ByVal s As String) As Long
Public Declare Function unuran_sample Lib
"unuran-0.6.0.dll" () As Double
Public Declare Function unuran_set_seed Lib
"unuran-0.6.0.dll" (ByVal seed As Long) As Long

Initialize your random number generator

 api_string = "normal(0,1)"
 return_init = unuran_init(api_string)

The initialization routine return 0 upon successfull initialization, any
other value indicate an error in the api_string and or incopatible
settings of parameter values, sampling method etc — in this case
additional info on the error condition is written to the unuran.log
file.

Optional seeding of the generator may be performed using the call

 return_seed = unuran_set_seed(seed_value)

To obtain a random variate x sampled from a distribution defined by
the api_string, we can now write

 x = unuran_sample()

Each succesive call to the sample-method will now yield another
random variate from the given distribution.

QUICKSTART (DLL)

Page 4

Following are some api_string examples. For a more detailed
description please consult the original UNU.RAN manual as well as
the documentation for the PRNG package ...

"uniform(0,1)"
 Standard uniform random number generator.

"uniform(0,1) & urng=mt19937(163)"
 Explicitly choosing the Mersenne-Twister with given seed.

"gamma(5)"
 Gamma-distribution with shape parameter.

"gamma(5,1,7)"
 Gamma-distribution with shape, scale and location parameter.

"normal(0,1) & method=arou"
 Choosing AROU as sampling method for the normal distribution

"normal(0,1); domain=(1,2)"
 Restricting the domain — sample only in the given interval.

"distr=discr; pv=(0.5,0.2,0.3)"
 Discrete distribution with given probability vector.

"distr=cont; pdf='1-x*x'; domain=(-1,1) & method=tdr"
 User-defined distribution.

EXAMPLES

Page 5

