PRNG

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also that the section entitled "Copying" and "GNU General Public License" are included exactly as in the original, and provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation.

Table of Contents

PRNG - Pseudo-Random Number Generator 1
Features 1
1 Installing PRNG 2
Documentation 2
Profiling and Verification 2
2 Usage of PRNG 3
2.1 Interface Description 3
2.2 PRNG Functions 4
2.3 Examples 5
3 The Theory behind PRNG 6
3.1 General Remarks 6
3.2 Generator Definitions and Parameters 6
3.2.1 EICG (explicit inversive congruential generator) 6
3.2.2 ICG (inversive congruential generator) 7
3.2.3 LCG (linear congruential generator) 7
3.2.4 QCG (quadratic congruential generator) 8
3.2.5 MT19937 (Mersenne Twister) 8
3.2.6 MEICG (modified explicit inversive congruential generator) 9
3.2.7 DICG (digital inversive congruential generator) 9
3.2.8 EXTERNAL (Interface to fixed-parameter generators) 9
3.2.9 COMPOUND 10
3.2.10 SUB 10
3.2.11 ANTI 10
3.2.12 CON 10
3.2.13 AFILE (ASCII file) 11
3.2.14 BFILE (Binary file) 11
3.3 Recommended Reading 11
Appendix A Tables of Parameters 12
A. 1 Parameters for LCG (linear congruential generators) 12
A. 2 Parameters for ICG (inversive congruential generator) 17

PRNG - Pseudo-Random Number Generator

PRNG is a collection of algorithms for generating pseudorandom numbers as a library of C functions, released under the GPL (http://www.gnu.org/copyleft/gpl.html). It has been written by Otmar Lendl (lendl@cosy.sbg.ac.at) and is now maintained by Josef Leydold (leydold@statistik.wu-wien.ac.at).

The current version of this package can always be found on the ARVAG (Automatic Random VAriate Generation) project group (http://statistik.wu-wien.ac.at/arvag/) in Vienna, or the pLab server (http://random.mat.sbg.ac.at/) in Salzburg.

In the case of any troubles, bug reports or need of assistance please contact the maintainer via prng@statistik.wu-wien.ac.at. Please let us also know about your experiencies with the library.

Features

- Portability. This library should compile on any computer with an ANSI C compiler. A verification program is included.
- General Implementations. This library does not implement certain fixed generators like RANDU or rand, but implements the general PRNG algorithms to which all parameters can be supplied by the user.
- Consistent and object-oriented interface. This interface simplifies the PRNG handling inside the main application.
- Possibility of independent copies of the same generator.
- Extensibility. New generators are easily integrated into the framework of this library.
- Fully supported Pseudorandom number generating methods: (free parametrization)
- LCG (linear congruential generator)
- ICG (inversive congruential generator)
- EICG (explicit inversive congruential generator)
- mEICG (modified explicit inversive congruential generator)
- DICG (digital inversive congruential generator)
- QCG (quadratic congruential generator)

Fixed parameter PRNG (external generators):

- MT19937 (Mersenne Twister by M. Matsumoto)
- TT800 (a large TSFR by M. Matsumoto)
- CTG (Combined Tausworthe Generator by P. L'Ecuyer)
- MRG (Multiple Recursive Generator by P. L'Ecuyer)
- CMRG (Combined (Multiple Recursive Generator by P. L'Ecuyer)
plus the following methods (meta-generators):
- C (Compound generator)
- SUB (Subsequences)
- ANTI (antithetic random variables)
- CON (Consecutive blocks)
- AFILE (Ascii file)
- BFILE (Binary file)

1 Installing PRNG

While the code is plain ANSI C and thus quite portable, the following adaptions might be neccessary for compile this library.

All configurations are done in the file 'src/prng.h'. Each option is extensively commented there. Here is a quick rundown on what to expect there:

- Definition of the basic numeric data-type prng_num. It is not recommended to change this. For 32 and 64 bit computers all neccessary auxiliary definitions will be made automatically. For other architectures, please edit 'prng.h' according to the comments.
- Various constants. See comments on the exact meanings.
- Definition of prng_inverse. In previous versions, there was no algorithm which was fastest on all architectures, thus is was necessary configure the library for the each platform. Now prng_inverse_own, which combines the speedups of all old algorithms is the fastest one on all tested architectures and thus no configuration is necessary any more.
The code is optimized for GNU CC (gcc). If your compiler supports the type (long long int), too, you can use this feature by defining HAVE_LONGLONG in 'prng.h'.

Then do:

$$
\begin{aligned}
& \text {./configure --prefix=<prefix_path> } \\
& \text { make }
\end{aligned}
$$

This should compile the library ('libprng.a') and example programs.
To install the library (see also GNU generic installation instructions in file 'INSTALL') type: make install
which installs '<prefix_path>/lib/libprng.a', '<prefix_path>/include/prng.h', and ' <prefix_path>/info/prng.info'. If --prefix is omitted, then /usr/local is used as default.

It is possible to remove these files by make uninstall
I could not test this code in many environments, thus it might be necessary to tweak the code to compile it. Please mail me any changes you made, so that I can include them in the next official release.

Documentation

A manual can be found in directory 'doc' in various formats, including PS, PDF, HTML, Info and plain text.

Profiling and Verification

Do

make check
to make and run the following executables:

- iter

This program counts the number of iterations in the euclid_table algorithm. It's NOT kept up to date. Use at own risk.

- validate

Using the supplied file tests.dat, this program tests the generator library for correct operation. On 32 -bit computers it will fail on generators requiring 64 -bit arithmetic.

2 Usage of PRNG

2.1 Interface Description

The interface has changed dramatically in version 2.0. As more and more generator types were added to this package, a new generic interface was needed. While still plain Ansi C, the architecture is now object-oriented.

All generators are identified by a textual description. This description is either of the form "type(parameter1, parameter2, ...)" or is a shortcut name for a common PRNG as defined in 'src/prng_def.h'.

Calling prng_new with such a description as the only argument will allocate a new generator object, initialize it, and return its handle (struct prng *).

All further calls need this handle as the first argument. They are best explained by example:

```
#include <prng.h> /* make sure that the compiler can find this file. */
main()
{
    struct prng *g;
    prng_num seed, n, M;
    double next, *array;
    int count;
    g = prng_new("eicg(2147483647,111,1,0)");
    if (g == NULL) /* always check whether prng_new has been successful */
    {
        fprintf(stderr,"Initialisation of generator failed.\n");
        exit (-1);
    }
    printf("Short name: %s\n",prng_short_name(g));
                            /* definition as in call to prng_new */
    printf("Expanded name: %s\n",prng_long_name(g));
                            /* Shortcuts expanded */
    next = prng_get_next(g); /* get next number 0 <= next < 1 */
    prng_get_array(g,array,count); /* fill array with count numbers */
    prng_reset(g); /* reset the generator */
    prng_free(g); /* deallocate the generator object */
}
```

These functions work with all generators. For certain generators, the following functions are available, too:

```
if (prng_is_congruential(g))
{
    n = prng_get_next_int(g); /* return next *unscaled* number */
    M = prng_get_modulus(g); /* return the modulus of the prng */
}
```

```
if (prng_can_seed(g))
    prng_seed(g,seed); /* reseed the generator */
if (prng_can_fast_sub(g))
    puts(prng_get_sub_def(g,20,0)); /* Get subsequence definition */
if (prng_can_fast_con(g))
    puts(prng_get_con_def (g,20,1)); /* Get block definition */
```


NOTE:

prng_new performs only a rudimentary check on the parameters. The user is responsible for enforcing all restrictions on the parameters, such as checking that the modulus of an [E]ICG is prime, or that LCG and ICG are maximum period generators.

Most of these functions are implemented as macros, so be careful with autoincrements (++) in parameters.

2.2 PRNG Functions

```
struct prng prng_new (char *str)
```

Library Function
Create a new generator object. If initialisation of the generator object fails then NULL is returned. Thus the pointer returned by this routine must be checked against NULL before using it. Otherwise the program aborts with a segmentation fault.
void prng_reset(struct prng *g) Library Function
Reset random number generator.
double prng_get_next (struct prng *g)
Library Function
Sample from generator (get next pseudo-random number from stream).
void prng_get_array (struct prng *g, double *array, int count) Library Function
Sample array of length count.
prng_num prng_get_next_int (struct prng $* g$) Library Function
Sample integer random number from generator.
void prng_free (struct prng *g) Library Function
Destroy generator object.
char* prng_short_name (struct prng $* g$)
Library Function
Get name of generator as in call to prng_new.
char* prng_long_name (struct prng *g) Library Function
Get name of generator with shortcuts expanded.
int prng_is_congruential (struct prng *g)
Library Function
TRUE if g is a congruential generator.

```
prng_num prng_get_modulus (struct prng *g)
    Return modulus of generator.
int prng_can_seed (struct prng *g)
    TRUE if generator g}\mathrm{ can be reseeded.
void prng_seed (struct prng *g, prng_num next) Library Function
    Reseed generator.
int prng_can_fast_sub (struct prng *g)
    TRUE if subsequences of the random stream can computed directly.
char* prng_get_sub_def (struct prng *g, int s, int i)
Library Function Get definition for the generator of the subsequence stream of \(g\) with starting point \(i\) and stepwidth s. It returns a character string that can be used a argument for prng_new. For generators where prng_can_fast_sub is TRUE. (see also Section 3.2.10 [SUB], page 10).
int prng_can_fast_con (struct prng *g)
Library Function
TRUE if blocks of the random stream can computed directly.
int prng_get_con_def (struct prng \(* g\), int \(l\), int \(i\) )
Library Function Get definition for the generator of the blocked stream of \(g\) with position \(i\) and block length 1. It returns a character string that can be used a argument for prng_new. For generators where prng_can_fast_con is TRUE. (see also Section 3.2.12 [CON], page 10).
```


2.3 Examples

'examples/pairs.c' is an example how to generate overlapping pairs of PRN using this package.
'examples/tuples.c' is a more general version of pairs.

3 The Theory behind PRNG

This chapter lists the implemented generators plus a few recommendations on the parameters.

3.1 General Remarks

- On a b-bit computer, the size of the modulus is limited by 2^{b-1}, that is 2147483648 on a 32 bit machine or 9223372036854775808 on a 64 bit architecture. As of version 1.3 the library will reject larger moduli.
- The library relies on controlled overflow. If you feel uncomfortable with that, restrict your choice of moduli to numbers $<2^{b-2}$, and disable the check for power of two moduli in mult_mod_setup ('support.c'). Run the supplied validate program if you have doubts about this.
- The library does NOT test if the parameters are valid for the chosen generator. The user is responsible for ensuring that the modulus of an inversive generator is a prime, or that the choice of parameters will lead to an optimal period length.

IT IS THUS NOT A GOOD IDEA TO JUST USE ARBITRARY NUMBERS.

This chapter contains recommended values for all implemented generator types.

- Do not base your simulation on a single generator. Even if you picked a good one you should verify the results using a completely different generator. There is no generator whose output does not exhibit an intrinsic structure, so it is in theory possible that this structure correlates to the simulation problem and thus leads to a skewed result. Do not use just other parameters for the verification but use a different generator type.
- Small (< 32767) factors will be faster than larger ones.

3.2 Generator Definitions and Parameters

TeX notation is used.
Most generators operate in the group (or field) Z_p and generate a sequence y_n, $n>=0$ of numbers in Z_p. p is called modulus. In order to generate $\mathrm{U}([0,1[)$ distributed numbers, the y n are scaled: $\mathrm{x} \mathrm{_n}=\mathrm{y}$ _n $/ \mathrm{p}$.

Notice: If p is prime, one can define the inversion $\operatorname{inv}()$ so that

```
inv(a)*a mod p = 1 (a != 0)
inv(0) = 0
```


Generator types

3.2.1 EICG (explicit inversive congruential generator)

- Definition:

```
y_n = inv(a*(n_0 + n) + b) (mod p)
n >= 0
```

- Name (as given to prng_new): "eicg(p,a,b,n_0)"
- Properties:
- Period length $=\mathrm{p}$.
- Strong non-linear properties. (e.g. no lattice)
- Parameter selection not sensitive.
- prng_is_congruential is TRUE
- prng_can_seed is TRUE.

The parameter of prng_seed will be used as " n " in the next call to get_next.

- prng_can_fast_sub and prng_can_fast_con are TRUE.
- Parameter selection: Besides a $!=0$, no restrictions or even suggestions are known.
- Introduced in: Eichenauer-Hermann, J. "Statistical independence of a new class of inversive congruential pseudorandom numbers", Math. Comp. 60:375-384, 1993

3.2.2 ICG (inversive congruential generator)

- Definition:

$$
y_{-} \mathrm{n}=\mathrm{a} * \operatorname{inv}\left(\mathrm{y}_{-}\{\mathrm{n}-1\}\right)+\mathrm{b}(\bmod \mathrm{p}) \quad \mathrm{n}>0
$$

- Name (as given to prng_new): "icg(p,a,b,y_0)"
- Properties:
- Period length $=\mathrm{p}$. (for suitable parameters)
- Strong non-linear properties. (e.g. no lattice)
- Parameter selection not sensitive.
- prng_is_congruential is TRUE.
- prng_can_seed is TRUE.

The parameter of prng_seed will be used as y_\{n-1\} in the next call to get_next.

- prng_can_fast_sub and prng_can_fast_con are FALSE.
- Parameter selection: To ensure that the period length is p , a and b must be chosen in a way that $\mathrm{x}^{\wedge} 2-\mathrm{bx}-\mathrm{a}\left(\right.$ in $\left.^{\mathrm{F}} \mathrm{p}[\mathrm{x}]\right)$ is a primitive polynomial over F_p.
If $\operatorname{ICG}(\mathrm{p}, \mathrm{a}, 1)$ has period length p , then $\operatorname{ICG}\left(\mathrm{p}, \mathrm{a}^{*} \mathrm{c}^{\wedge} 2, \mathrm{c}\right)$ will have period length p , too. For recommended parameters see Section A. 2 [Table_ICG], page 17.
- Introduced in: Eichenauer, J. and J. Lehn. "A non-linear congruential pseudo random number generator", Stat. Papers 27:315-326, 1986

3.2.3 LCG (linear congruential generator)

- Definition:

```
y_n = a * y_{n-1} + b (mod p) n > 0
```

- Name (as given to prng_new): "lcg(p,a,b,y_0)".
- Properties:
- Period lengths up to p are possible.
- Strong linear properties.
- The quality of the PRN depends very strongly on the choice of the parameters.
- prng_is_congruential is TRUE.
- prng_can_seed is TRUE. The parameter of prng_seed will be used as y_\{n-1\} in the next call to get_next.
- prng_can_fast_sub and prng_can_fast_con are TRUE.

Requesting these subsequence may be slow if large skips are involved and b is not 0 .

- Parameter selection: If p is a power of 2 , then a $\bmod 4=1$ and b odd will guarantee period length $=\mathrm{p}$.
If p is prime and $\mathrm{b}=0$ then any prime-root modulo p as a will guarantee period length p-1. (y_0 != 0)
For recommended parameters see Section A. 1 [Table_LCG], page 12.
See also the file 'src/prng_def.h' for a list of frequently used LCGs.

Hint: A rule of thumb suggests not to use more than sqrt(p) random numbers from an LCG.

References:

Fishman, G.S. "Multiplicative congruential random number generators ..." Math. Comp. 54:331-344 (1990);
L'Ecuyer, P., "Efficient and portable combined random number generators" Comm. ACM 31:742-749, 774 (1988)
L'Ecuyer, P., Blouin, F. and Couture R. "A search for good multiple recursive random number generators" ACM Trans. Modelling and Computer Simulation 3:87-98 (1993)

- Introduced by D. H. Lehmer in 1948.

The LCG is the classical method. I refer to: Knuth, D. E. "The Art of Computer Programming, Vol. 2 Seminumerical Algorithms", Addison-Wesley, second edition, 1981

3.2.4 QCG (quadratic congruential generator)

- Definition:

$$
\mathrm{y}_{-} \mathrm{n}=\mathrm{a} * \mathrm{y}_{-}\{\mathrm{n}-1\}^{\wedge} 2+\mathrm{b} * \mathrm{y}_{-}\{\mathrm{n}-1\}+\mathrm{c}(\bmod \mathrm{p}) \quad \mathrm{n}>0
$$

- Name (as given to prng_new): "qcg(p,a,b,c,y0)".
- Properties:
- Period lengths up to p are possible.
- Weaker linear properties (tuples fall into union of lattices)
- Reasonable distribution in dimension 2, but not that good in dimension 3.
- prng_is_congruential is TRUE.
- prng_can_seed is TRUE.

The parameter of prng_seed will be used as $y_{-}\{n-1\}$ in the next call to get_next.

- prng_can_fast_sub and prng_can_fast_con are FALSE.
- Parameter selection:

If p is a power of 2 , then a even, $\mathrm{b}==\mathrm{a}+1 \bmod 4$, and c odd will guarantee period length $=\mathrm{p}$.
No table of good parameters has been published.

- Introduced in:

Knuth, D. E. "The Art of Computer Programming, Vol. 2 Seminumerical Algorithms", Addison-Wesley, second edition, 1981

3.2.5 MT19937 (Mersenne Twister)

- Name (as given to prng_new): "mt19937 (seed)".
- Properties:
- Period lengths is 2^19937-1.
- prng_is_congruential is TRUE.
- prng_can_seed is TRUE.

The parameter of prng_seed will be used to seed the array of coefficients.

- prng_can_fast_sub and prng_can_fast_con are FALSE.
- Introduced in:

Matsumoto, M. and Nishimura, T., "Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.

3.2.6 MEICG (modified explicit inversive congruential generator)

- Definition:

```
y_n = n * inv(a*(n_0 + n) + b) (mod p) n >= 0
```

- Name (as given to prng_new): "meicg(p,a,b,n_0)".
- Properties:
- Period length $=\mathrm{p}$.
- prng_is_congruential is TRUE.
- prng_can_seed is TRUE. The parameter of prng_seed will be used as " n " in the next call to get_next.
- prng_can_fast_sub and prng_can_fast_con are FALSE.

Experimental generator: USE AT OWN RISK

- Parameter selection:
- For prime moduli, a $!=0$ suffices.
- It's possible to use a powe of 2 as modulus, which requires $\mathrm{a}=2(\bmod 4)$ and $\mathrm{b}=1$ $(\bmod 2)$.
- Introduced in:

Eichenauer-Hermann, J. "Modified explicit inverive congruential pseudorandom numbers with power of 2 modulus" Statistics and Computing 6:31-36 (1996)

3.2.7 DICG (digital inversive congruential generator)

- Definition:

```
y_n = a * inv(y_{n-1}) + b (mod p) n > 0
```

All operations are in the field $F_{-}\left\{2^{\wedge} k\right\}$!!

- Name (as given to prng_new): "dicg(k,a,b,y_0)".
- Properties:
- Period length $=2^{\wedge} \mathrm{k}$.
- Strong non-linear properties.
- Parameters seem not to be sensitive
- prng_is_congruential is TRUE.
- prng_can_seed is TRUE. The parameter of prng_seed will be used as $y_{-}\{n-1\}$ in the next call to get_next
- prng_can_fast_sub and prng_can_fast_con are FALSE.
- Parameter selection:

Tricky.

- Introduced in:

Eichenauer-Herrmann and Niederreiter, "Digital inversive pseudorandom numbers", ACM Transactions on Modeling and Computer Simulation, 4:339-349 (1994)

3.2.8 EXTERNAL (Interface to fixed-parameter generators)

These generators are included to provide a uniform interface to a wider range of PRNG. The only enhancements from the published code is the support for multiple streams of these generators, as the original code used global variables.

See the file 'src/external.c' for the references. Included are

- TT800 (a large TSFR by M. Matsumoto)
- CTG (Combined Tausworthe Generator by P. L'Ecuyer)
- MRG (Multiple Recursive Generator by P. L'Ecuyer)
- CMRG (Combined (Multiple Recursive Generator by P. L'Ecuyer)

3.2.9 COMPOUND

- Definition:

This is a "meta"-generator which combines a number of PRNG into one single generator by adding the respective numbers modulo 1 .

- Name (as given to prng_new): "c(generator1, generator2, ...)".

Up to PRNG_MAX_COMPOUNDS generators are permitted. generatorX may be any valid generator definition, including a compound generator.

- Properties:
- Period length: Least common multiple of the period length's of the component generators.
- Generally speaking, most properties of PRNG are preserved if combining generators of the same type.
- prng_is_congruential is FALSE.
- prng_can_seed is TRUE.
- The parameters of prng_seed is used to seed all seedable component generators.
- prng_can_fast_sub and prng_can_fast_con depend on the underlying generators.

3.2.10 SUB

- Definition: This is a "meta"-generator which takes a subsequence out of another generator.
- Name (as given to prng_new): "sub(gen,s,i)".

The output of "gen" is spliced into s streams, and the i -th is used. $(0<=\mathrm{i}<\mathrm{s})$

- Properties:
- Period length: Typically the period of "gen".
- Generally speaking, most properties of PRNG are preserved when taking subsequence.
- prng_is_congruential and prng_can_seed depend on "gen".
- prng_can_fast_sub and prng_can_fast_con are FALSE.

3.2.11 ANTI

- Definition:

This is a "meta"-generator wich returns 1-U instead of U as random number.

- Name (as given to prng_new): "anti (gen)".

The output of gen (U) is changed to $1-\mathrm{U}$.

3.2.12 CON

- Definition:

This is a "meta"-generator which takes a block of numbers out of the output of another generator.

- Name (as given to prng_new): "con(gen,l,i)".

The output of "gen" is divided into blocks of length 1 , and the i -th is used. $(0<=\mathrm{i}<\mathrm{l})$

- Properties:
- Period length: The period of "gen".
- prng_is_congruential and prng_can_seed depend on "gen".
- prng_can_fast_sub and prng_can_fast_con are FALSE.

3.2.13 AFILE (ASCII file)

- Definition :

This generator takes its numbers from the named file. It expects each number in plain ascii (atof must be able to parse it) and on its own line. If EOF is reached, a warning is printed to stderr and reading continues at the beginning of the file.

- Name (as given to prng_new): "afile(some_file_name)".
- Properties:
- prng_is_congruential is FALSE.
- prng_can_seed is FALSE.
- prng_can_fast_sub and prng_can_fast_con are FALSE.

3.2.14 BFILE (Binary file)

- Definition:

This generator takes its numbers from the named file. In order to get good numbers, the file should contain random bytes. If EOF is reached, a warning is printed to stderr and reading continues at the beginning of the file.

- Name (as given to prng_new): "bfile(some_file_name)".

WARNING: The conversion between bytes and numbers in $[0,1)$ is NOT guaranteed to yield the same results on different computers.

- Properties:
- prng_is_congruential is FALSE.
- prng_can_seed is FALSE.
- prng_can_fast_sub and prng_can_fast_con are FALSE.

3.3 Recommended Reading

Niederreiter, H. "New developments in uniform pseudorandom number and vector generation" in "Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing", Lecture Notes in Statistics, Springer.

Hellekalek, P. "Inversive pseudorandom number generators: Concepts, Results and Links"
Eichenauer-Herrmann, J. "Pseudorandom Number Generation by Nonlinear Methods" Int. Statistical Review 63:247-255 (1995)

L'Ecuyer, P. "Uniform random number generation" Ann. Oper. Res. 53:77-120 (1994)
Wegenkittl, S. "Empirical testing of pseudorandom number generators" Master's thesis, Universitaet Salzburg, 1995

Appendix A Tables of Parameters

This chapter lists the implemented generators plus a few recommendations on the parameters.

A. 1 Parameters for LCG (linear congruential generators)

```
y_n = a * y_{n-1} + b (mod p) n > 0
```

Hint: A rule of thumb suggests not to use more than sqrt(p) random numbers from an LCG.
Notice that moduli larger than $2^{\wedge} 32$ require a computer with sizeof (long) >32.

Generators recommended by Park and Miller (1988), "Random number generators: good ones are hard to find", Comm. ACM 31, pp. 1192-1201 (Minimal standard).
$\frac{\text { modul } \mathrm{p}}{2^{\wedge} 31-1=} \quad 2147483647 \quad \frac{\text { multiplicator } \mathrm{a}}{16807(\mathrm{~b}=0)}$

Generators recommended by Fishman (1990), "Multiplicative congruential random number generators with modulus 2^{β} : An exhaustive analysis for $\beta=32$ and a partial analysis for $\beta=48 "$, Math. Comp. 54, pp. 331-344.

$\frac{\text { modul } \mathrm{p}}{2 \sim 31-1}=$	2147483647
$\frac{\text { multiplicator a }}{950706376(\mathrm{~b}=0)}$	

Generators recommended by L'Ecuyer (1999), "Tables of linear congruential generators of different sizes and good lattice structure", Math.Comp. 68, pp. 249-260. (constant b=0.)

Generators with short periods can be used for generating quasi-random numbers (QuasiMonte Carlo methods). In this case the whole period should be used.
(These figures are listed without warranty. Please see also the original paper.)

$\frac{\text { modul } p}{}$		multiplicator a
ค $-5=$	251	33
		55
$2 \wedge 9-3=$	509	25
		110
		273
	349	
$2 \wedge 10-3=$	1021	65
		331

$2 \sim 11-9=$	2039	995
		328
		393
$2^{\wedge} 12-3=$	4093	209
		235
		219
		3551
$2 \wedge 13-1=$	8191	884
		1716
		2685
$2^{\wedge} 14-3=$	16381	572
		3007
		665
		12957
$2^{\wedge} 15-19=$	32749	219
		1944
		9515
$2^{\wedge} 16-15=$	65521	17364
		33285
		2469
$2 \sim 17-1=$	131071	43165
		29223
		29803
$2^{\wedge} 18-5=$	262139	92717
		21876
$2^{\sim} 19-1=$	524287	283741
		37698
		155411
$2^{\sim} 20-3=$	1048573	380985
		604211
		100768
		947805
		22202
		1026371
$2^{\sim} 21-9=$	2097143	360889
		1043187
		1939807
$2^{\sim} 22-3=$	4194301	914334
		2788150
		1731287
		2463014

$2^{\wedge} 23-15=$	8388593	$\begin{aligned} & 653276 \\ & 3219358 \\ & 1706325 \\ & 6682268 \\ & 422527 \\ & 7966066 \end{aligned}$
$2^{\wedge} 24-3=$	16777213	$\begin{aligned} & 6423135 \\ & 7050296 \\ & 4408741 \\ & 12368472 \\ & 931724 \\ & 15845489 \end{aligned}$
$2^{\wedge} 25-39=$	33554393	$\begin{aligned} & 25907312 \\ & 12836191 \\ & 28133808 \\ & 25612572 \\ & 31693768 \end{aligned}$
$2^{\wedge} 26-5=$	67108859	$\begin{aligned} & 26590841 \\ & 19552116 \\ & 66117721 \end{aligned}$
$2^{\wedge} 27-39=$	134217689	$\begin{aligned} & 45576512 \\ & 63826429 \\ & 3162696 \end{aligned}$
$2^{\wedge} 28-57=$	268435399	$\begin{aligned} & 246049789 \\ & 140853223 \\ & 29908911 \\ & 104122896 \end{aligned}$
$2^{\wedge} 29-3=$	536870909	$\begin{aligned} & 520332806 \\ & 530877178 \end{aligned}$
$2^{\wedge} 30-35=$	1073741789	$\begin{aligned} & 771645345 \\ & 295397169 \\ & 921746065 \end{aligned}$
$2^{\wedge} 31-1=$	2147483647	$\begin{aligned} & 1583458089 \\ & 784588716 \end{aligned}$
$2^{\wedge} 32-5=$	4294967291	$\begin{aligned} & 1588635695 \\ & 1223106847 \\ & 279470273 \end{aligned}$
$2^{\wedge} 33-9=$	8589934583	$\begin{aligned} & 7425194315 \\ & 2278442619 \\ & 7312638624 \end{aligned}$
$2^{\wedge} 34-41=$	17179869143	$\begin{aligned} & 5295517759 \\ & 473186378 \end{aligned}$

$2^{\wedge} 35-31=$	34359738337	$\begin{aligned} & 3124199165 \\ & 22277574834 \\ & 8094871968 \end{aligned}$
$2^{\wedge} 36-5=$	68719476731	$\begin{aligned} & 49865143810 \\ & 45453986995 \end{aligned}$
$2^{\wedge} 37-25=$	137438953447	$\begin{aligned} & 76886758244 \\ & 2996735870 \\ & 85876534675 \end{aligned}$
$2^{\wedge} 38-45=$	274877906899	$\begin{aligned} & 17838542566 \\ & 101262352583 \\ & 24271817484 \end{aligned}$
$2^{\wedge} 39-7=$	549755813881	$\begin{aligned} & 61992693052 \\ & 486583348513 \\ & 541240737696 \end{aligned}$
$2 \wedge 40-87=$	1099511627689	$\begin{aligned} & 1038914804222 \\ & 88718554611 \\ & 937333352873 \end{aligned}$
$2 \wedge 41-21=$	2199023255531	140245111714 416480024109 1319743354064
$2 \wedge 42-11=$	4398046511093	$\begin{aligned} & 2214813540776 \\ & 2928603677866 \\ & 92644101553 \end{aligned}$
$2 \wedge 43-57=$	8796093022151	4928052325348 4204926164974 3663455557440
$2 \wedge 44-17=$	17592186044399	$\begin{aligned} & 6307617245999 \\ & 11394954323348 \\ & 949305806524 \end{aligned}$
$2 \wedge 45-55=$	35184372088777	$\begin{aligned} & 25933916233908 \\ & 18586042069168 \\ & 20827157855185 \end{aligned}$
$2 \wedge 46-21=$	70368744177643	$\begin{aligned} & 63975993200055 \\ & 15721062042478 \\ & 31895852118078 \end{aligned}$
$2^{\wedge} 47-115=$	140737488355213	$\begin{aligned} & 72624924005429 \\ & 47912952719020 \\ & 106090059835221 \end{aligned}$
$2 \wedge 48-59=$	281474976710597	$\begin{aligned} & 49235258628958 \\ & 51699608632694 \\ & 59279420901007 \end{aligned}$

$2 \wedge 49-81=$	562949953421231	265609885904224
		480567615612976
		305898857643681
$2^{\sim} 50-27=$	1125899906842597	1087141320185010
		157252724901243
		791038363307311
$2 \sim 51-129=$	2251799813685119	349044191547257
		277678575478219
		486848186921772
$2^{\sim} 52-47=$	4503599627370449	4359287924442956
		3622689089018661
		711667642880185
$2^{\sim} 53-111=$	9007199254740881	2082839274626558
		4179081713689027
		5667072534355537
2^54-33=	18014398509481951	9131148267933071
		3819217137918427
		11676603717543485
$2 \sim 55-55=$	36028797018963913	33266544676670489
		19708881949174686
		32075972421209701
$2^{\wedge} 56-5=$	72057594037927931	4595551687825993
		26093644409268278
		4595551687828611
$2 \sim 57-13=$	144115188075855859	75953708294752990
		95424006161758065
		133686472073660397
2~58-27 =	288230376151711717	101565695086122187
		163847936876980536
		206638310974457555
2~ $59-55=$	576460752303423433	346764851511064641
		124795884580648576
		573223409952553925
$2 \wedge 60-93=$	1152921504606846883	561860773102413563
		439138238526007932
		734022639675925522
$2^{\wedge} 61-1=$	2305843009213693951	1351750484049952003
		1070922063159934167
		1267205010812451270
$2 \wedge 62-57=$	4611686018427387847	2774243619903564593

		431334713195186118
		2192641879660214934
$2 \sim 63-25=$	9223372036854775783	4645906587823291368
		2551091334535185398
		4373305567859904186
$2 \wedge 64-59=$	18446744073709551557	13891176665706064842
		2227057010910366687
		18263440312458789471

A. 2 Parameters for ICG (inversive congruential generator)

```
y_n = a * inv(y_{n-1}) + b (mod p) n > 0
```

Notice that moduli larger than $2^{\wedge} 32$ require a computer with sizeof(long) >32.

Parameters suggested by P. Hellekalek (1995), "Inversive pseudorandom number generators: Concepts, Results and Links", in: C. Alexopoulos, K. Kang, W.R. Lilegdon, and D. Goldsman (eds.), Proceedings of the 1995 Winter Simulation Conference, pp. 255-262:

There are no results that give reason to prefer one set of parameters over another.
(These figures are listed without warranty. Please see also the original paper.)

p	a	b
1031	849	1
	345	1
	55	1
	116	1
	441	1
1033	413	1
	878	1
	595	1
	522	1
	818	1
1039	173	1
	481	1
	769	1
	1028	1
	136	1
2027	579	1
	1877	1
	390	1
	837	1
	1048	1
2147483053	858993221	1

22211	11926380	
579	24456079	
11972	62187060	
21474	94901263	
4594	44183289	
	1288490188	1
9102	36884165	
	14288	758634
21916	71499791	
28933	59217914	
	31152	48897674

