
UNU.RAN User Manual
Generating non-uniform random numbers

Version 1.3.0, 25 November 2008

Josef Leydold
Wolfgang Hörmann

Copyright c© 2000–2007 Institut fuer Statistik, WU Wien.
Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

i

Table of Contents

UNU.RAN – Universal Non-Uniform RANdom number
generators . 1

1 Introduction . 3
1.1 Usage of this document . 3
1.2 Installation . 3
1.3 Using the library . 5
1.4 Concepts of UNU.RAN . 6
1.5 Contact the authors . 11

2 Examples . 13
2.1 As short as possible . 14
2.2 As short as possible (String API) . 16
2.3 Select a method . 17
2.4 Select a method (String API) . 19
2.5 Arbitrary distributions . 20
2.6 Arbitrary distributions (String API) . 22
2.7 Change parameters of the method . 24
2.8 Change parameters of the method (String API) . 26
2.9 Change uniform random generator . 28
2.10 Sample pairs of antithetic random variates . 30
2.11 Sample pairs of antithetic random variates (String API) . 33
2.12 More examples . 35

3 String Interface . 37
3.1 Syntax of String Interface . 37
3.2 Distribution String . 40

3.2.1 Keys for Distribution String . 40
3.3 Function String . 43
3.4 Method String . 46

3.4.1 Keys for Method String . 46
3.5 Uniform RNG String . 54

4 Handling distribution objects . 55
4.1 Functions for all kinds of distribution objects . 57
4.2 Continuous univariate distributions . 59
4.3 Continuous univariate order statistics . 66
4.4 Continuous empirical univariate distributions . 69
4.5 Continuous multivariate distributions . 71
4.6 Continuous univariate full conditional distribution . 79
4.7 Continuous empirical multivariate distributions . 81
4.8 MATRix distributions . 82
4.9 Discrete univariate distributions . 83

ii UNU.RAN User Manual

5 Methods for generating non-uniform random variates. . . . 87
5.1 Routines for all generator objects . 87
5.2 AUTO – Select method automatically . 90
5.3 Methods for continuous univariate distributions . 91

5.3.1 AROU – Automatic Ratio-Of-Uniforms method . 95
5.3.2 ARS – Adaptive Rejection Sampling . 98
5.3.3 CEXT – wrapper for Continuous EXTernal generators . 101
5.3.4 CSTD – Continuous STandarD distributions . 105
5.3.5 HINV – Hermite interpolation based INVersion of CDF . 107
5.3.6 HRB – Hazard Rate Bounded. 111
5.3.7 HRD – Hazard Rate Decreasing . 112
5.3.8 HRI – Hazard Rate Increasing . 113
5.3.9 ITDR – Inverse Transformed Density Rejection . 115
5.3.10 NINV – Numerical INVersion . 117
5.3.11 NROU – Naive Ratio-Of-Uniforms method. 120
5.3.12 PINV – Polynomial interpolation based INVersion of CDF 122
5.3.13 SROU – Simple Ratio-Of-Uniforms method . 126
5.3.14 SSR – Simple Setup Rejection . 129
5.3.15 TABL – a TABLe method with piecewise constant hats 131
5.3.16 TDR – Transformed Density Rejection . 136
5.3.17 UTDR – Universal Transformed Density Rejection . 141

5.4 Methods for continuous empirical univariate distributions. 143
5.4.1 EMPK – EMPirical distribution with Kernel smoothing 146
5.4.2 EMPL – EMPirical distribution with Linear interpolation 149
5.4.3 HIST – HISTogramm of empirical distribution . 150

5.5 Methods for continuous multivariate distributions . 151
5.5.1 MVTDR – Multi-Variate Transformed Density Rejection 152
5.5.2 NORTA – NORmal To Anything . 154
5.5.3 VNROU – Multivariate Naive Ratio-Of-Uniforms method 155

5.6 Markov chain samplers for continuous multivariate distributions 158
5.6.1 GIBBS – Markov Chain - GIBBS sampler . 159
5.6.2 HITRO – Markov Chain - HIT-and-run sampler with Ratio-Of-uniforms 162

5.7 Methods for continuous empirical multivariate distributions . 167
5.7.1 VEMPK – (Vector) EMPirical distribution with Kernel smoothing 169

5.8 Methods for discrete univariate distributions . 170
5.8.1 DARI – Discrete Automatic Rejection Inversion . 173
5.8.2 DAU – (Discrete) Alias-Urn method . 175
5.8.3 DEXT – wrapper for Discrete EXTernal generators . 176
5.8.4 DGT – (Discrete) Guide Table method (indexed search) 180
5.8.5 DSROU – Discrete Simple Ratio-Of-Uniforms method . 182
5.8.6 DSS – (Discrete) Sequential Search method . 184
5.8.7 DSTD – Discrete STandarD distributions . 185

5.9 Methods for random matrices . 187
5.9.1 MCORR – Random CORRelation matrix . 188

5.10 Methods for uniform univariate distributions . 190
5.10.1 UNIF – wrapper for UNIForm random number generator 191

6 Using uniform random number generators 193
6.1 Simple interface for uniform random number generators . 198
6.2 Interface to GSL uniform random number generators . 199
6.3 Interface to GSL generators for quasi-random points . 201
6.4 Interface to Otmar Lendl’s pseudo-random number generators 201
6.5 Interface to L’Ecuyer’s RNGSTREAM random number generators 202
6.6 Combine point set generator with random shifts . 203

iii

7 UNU.RAN Library of standard distributions. 205
7.1 UNU.RAN Library of continuous univariate distributions . 207

7.1.1 F – F-distribution . 207
7.1.2 beta – Beta distribution . 207
7.1.3 cauchy – Cauchy distribution . 207
7.1.4 chi – Chi distribution . 207
7.1.5 chisquare – Chisquare distribution . 208
7.1.6 exponential – Exponential distribution . 208
7.1.7 extremeI – Extreme value type I (Gumbel-type) distribution 208
7.1.8 extremeII – Extreme value type II (Frechet-type) distribution 209
7.1.9 gamma – Gamma distribution . 209
7.1.10 laplace – Laplace distribution . 209
7.1.11 logistic – Logistic distribution . 210
7.1.12 lomax – Lomax distribution (Pareto distribution of second kind) 210
7.1.13 normal – Normal distribution . 210
7.1.14 pareto – Pareto distribution (of first kind) . 211
7.1.15 powerexponential – Powerexponential (Subbotin) distribution 211
7.1.16 rayleigh – Rayleigh distribution . 211
7.1.17 student – Student’s t distribution . 211
7.1.18 triangular – Triangular distribution . 212
7.1.19 uniform – Uniform distribution . 212
7.1.20 weibull – Weibull distribution . 212

7.2 UNU.RAN Library of continuous multivariate distributions . 213
7.2.1 copula – Copula (distribution with uniform marginals) . 213
7.2.2 multicauchy – Multicauchy distribution . 213
7.2.3 multiexponential – Multiexponential distribution . 213
7.2.4 multinormal – Multinormal distribution . 213
7.2.5 multistudent – Multistudent distribution . 214

7.3 UNU.RAN Library of discrete univariate distributions . 215
7.3.1 binomial – Binomial distribution . 215
7.3.2 geometric – Geometric distribution . 215
7.3.3 hypergeometric – Hypergeometric distribution . 215
7.3.4 logarithmic – Logarithmic distribution . 216
7.3.5 negativebinomial – Negative Binomial distribution . 216
7.3.6 poisson – Poisson distribution . 216

7.4 UNU.RAN Library of random matrices . 217
7.4.1 correlation – Random correlation matrix . 217

8 Error handling and Debugging . 219
8.1 Output streams . 219
8.2 Debugging . 219
8.3 Error reporting . 221
8.4 Error codes . 222
8.5 Error handlers . 224

9 Testing . 227

10 Miscelleanous . 231
10.1 Mathematics . 231

iv UNU.RAN User Manual

Appendix A A Short Introduction to Random Variate
Generation . 233

A.1 The Inversion Method . 233
A.2 The Rejection Method . 234
A.3 The Composition Method . 235
A.4 The Ratio-of-Uniforms Method . 236
A.5 Inversion for Discrete Distributions . 237
A.6 Indexed Search (Guide Table Method) . 238

Appendix B Glossary . 239

Appendix C Bibliography . 241

Appendix D Function Index . 245

UNU.RAN – Universal Non-Uniform RANdom number generators 1

UNU.RAN – Universal Non-Uniform RANdom
number generators

UNU.RAN (Universal Non-Uniform RAndom Number generator) is a collection of algorithms
for generating non-uniform pseudorandom variates as a library of C functions designed and
implemented by the ARVAG (Automatic Random VAriate Generation) project group in Vienna,
and released under the GNU Public License (GPL). It is especially designed for such situations
where

− a non-standard distribution or a truncated distribution is needed.

− experiments with different types of distributions are made.

− random variates for variance reduction techniques are used.

− fast generators of predictable quality are necessary.

Of course it is also well suited for standard distributions. However due to its more sophisti-
cated programming interface it might not be as easy to use if you only look for a generator for
the standard normal distribution. (Although UNU.RAN provides generators that are superior
in many aspects to those found in quite a number of other libraries.)

UNU.RAN implements several methods for generating random numbers. The choice depends
primary on the information about the distribution can be provided and – if the user is familar
with the different methods – on the preferences of the user.

The design goals of UNU.RAN are to provide reliable, portable and robust (as far as this is
possible) functions with a consisent and easy to use interface. It is suitable for all situation where
experiments with different distributions including non-standard distributions. For example it is
no problem to replace the normal distribution by an empirical distribution in a model.

Since originally designed as a library for so called black-box or universal algorithms its in-
terface is different from other libraries. (Nevertheless it also contains special generators for
standard distributions.) It does not provide subroutines for random variate generation for par-
ticular distributions. Instead it uses an object-oriented interface. Distributions and generators
are treated as independent objects. This approach allows one not only to have different methods
for generating non-uniform random variates. It is also possible to choose the method which is
optimal for a given situation (e.g. speed, quality of random numbers, using for variance re-
duction techniques, etc.). It also allows to sample from non-standard distribution or even from
distributions that arise in a model and can only be computed in a complicated subroutine.

Sampling from a particular distribution requires the following steps:

1. Create a distribution object. (Objects for standard distributions are available in the library)

2. Choose a method.

3. Initialize the generator, i.e., create the generator object. If the choosen method is not
suitable for the given distribution (or if the distribution object contains too little information
about the distribution) the initialization routine fails and produces an error message. Thus
the generator object does (probably) not produce false results (random variates of a different
distribution).

4. Use this generator object to sample from the distribution.

There are four types of objects that can be manipulated independently:

• Distribution objects: hold all information about the random variates that should be gener-
ated. The following types of distributions are available:

− Continuous and Discrete distributions

− Empirical distributions

− Multivariate distributions

2 UNU.RAN User Manual

Of course a library of standard distributions is included (and these can be further modified
to get, e.g., truncated distributions). Moreover the library provides subroutines to build
almost arbitrary distributions.

• Generator objects: hold the generators for the given distributions. It is possible to build
independent generator objects for the same distribution object which might use the same
or different methods for generation. (If the choosen method is not suitable for the given
method, a NULL pointer is returned in the initialization step).

• Parameter objects: Each transformation method requires several parameters to adjust the
generator to a given distribution. The parameter object holds all this information. When
created it contains all necessary default settings. It is only used to create a generator
object and destroyed immediately. Altough there is no need to change these parameters or
even know about their existence for “usual distributions”, they allow a fine tuning of the
generator to work with distributions with some awkward properties. The library provides
all necessary functions to change these default parameters.

• Uniform Random Number Generators: All generator objects need one (or more) streams
of uniform random numbers that are transformed into random variates of the given distri-
bution. These are given as pointers to appropriate functions or structures (objects). Two
generator objects may have their own uniform random number generators or share a com-
mon one. Any functions that produce uniform (pseudo-) random numbers can be used. We
suggest Otmar Lendl’s PRNG library.

Chapter 1: Introduction 3

1 Introduction

1.1 Usage of this document

We designed this document in a way such that one can use UNU.RAN with reading as little
as necessary. Read Section 1.2 [Installation], page 3 for the instructions to install the library.
Section 1.4 [Concepts of UNU.RAN], page 6, discribes the basics of UNU.RAN. It also has a
short guideline for choosing an appropriate method. In Chapter 2 [Examples], page 13 examples
are given that can be copied and modified. They also can be found in the directory ‘examples’
in the source tree.

Further information are given in consecutive chapters. Chapter 4 [Handling distribution
objects], page 55, describes how to create and manipulate distribution objects. Chapter 7
[standard distributions], page 205, describes predefined distribution objects that are ready to
use. Chapter 5 [Methods], page 87 describes the various methods in detail. For each of possible
distribution classes (continuous, discrete, empirical, multivariate) there exists a short overview
section that can be used to choose an appropriate method followed by sections that describe
each of the particular methods in detail. These are merely for users with some knowledge about
the methods who want to change method-specific parameters and can be ignored by others.

Abbreviations and explanation of some basic terms can be found in Appendix B [Glossary],
page 239.

1.2 Installation

UNU.RAN was developed on an Intel architecture under Linux with the GNU C compiler but
should compile and run on any computing environment. It requires an ANSI compliant C
compiler.

Below find the installation instructions for unices.

Uniform random number generator

UNU.RAN can be used with any uniform random number generator but (at the
moment) some features work best with Pierre L’Ecuyer’s RngStreams library (see
http://statistik.wu-wien.ac.at/software/RngStreams/ for a description and download-
ing. For details on using uniform random number in UNU.RAN see Chapter 6 [Using uniform
random number generators], page 193.

Install the required libraries first.

UNU.RAN
1. First unzip and untar the package and change to the directory:

tar zxvf unuran-1.3.0.tar.gz

cd unuran-1.3.0

2. Optional: Edit the file ‘src/unuran_config.h’
3. Run a configuration script:

sh ./configure --prefix=<prefix>

where <prefix> is the root of the installation tree. When omitted ‘/usr/local’ is used.
Use ./configure --help to get a list of other options. In particular the following flags are
important:
• Enable support for some external sources of uniform random number generators (see

Chapter 6 [Using uniform random number generators], page 193):

--with-urng-rngstream
URNG: use Pierre L’Ecuyer’s RNGSTREAM library [default=no]

http://statistik.wu-wien.ac.at/software/RngStreams/

4 UNU.RAN User Manual

--with-urng-prng
URNG: use Otmar Lendl’s PRNG library [default=no]

--with-urng-gsl
URNG: use random number generators from GNU Scientific Library
[default=no]

--with-urng-default
URNG: global default URNG (builtin|rngstream) [default=builtin]

We strongly recommend to use RngStreams library:
sh ./configure --with-urng-rngstream --with-urng-default=rngstream

Important: You must install the respective libraries ‘RngStreams’, ‘PRNG’ and ‘GSL’
before ./configure is executed.

• Also make a shared library:

--enable-shared
build shared libraries [default=no]

• The library provides the function unur_gen_info for information about generator ob-
jects. This is intented for using in interactive computing environments. This feature
can be enabled / disabled by means of the configure flag

--enable-info
INFO: provide function with information about generator objects
[default=yes]

• Enable support for deprecated UNU.RAN routines if you have some problems with
older application after upgrading the library:

--enable-deprecated
enable support for deprecated UNU.RAN routines [default=no]

• Enable debugging tools:

--enable-check-struct
Debug: check validity of pointers to structures [default=no]

--enable-logging
Debug: print informations about generator into logfile [default=no]

4. Compile and install the libray:
make

make install

Obviously $(prefix)/include and $(prefix)/lib must be in the search path of your
compiler. You can use environment variables to add these directories to the search path. If
you are using the bash type (or add to your profile):

export LIBRARY_PATH="<prefix>/lib"

export C_INCLURE_PATH="<prefix>/include"

If you want to make a shared library, then making such a library can be enabled using
sh ./configure --enable-shared

If you want to link against the shared library make sure that it can be found when executing
the binary that links to the library. If it is not installed in the usual path, then the
easiest way is to set the LD_LIBRARY_PATH environment variable. See any operating system
documentation about shared libraries for more information, such as the ld(1) and ld.so(8)
manual pages.

5. Documentation in various formats (PDF, HTML, info, plain text) can be found in directory
‘doc’.

6. You can run some tests by

Chapter 1: Introduction 5

make check

However, some of these tests requires the usage of the PRNG or RngStreams library and
are only executed if these are installed enabled by the corresponding configure flag.
An extended set of tests is run by

make fullcheck

However some of these might fail occasionally due to roundoff errors or the mysteries of
floating point arithmetic, since we have used some extreme settings to test the library.

Upgrading

− Important:
UNU.RAN now relies on some aspects of IEEE 754 compliant floating point arithmetic. In
particular, 1./0. and 0./0. must result in infinity and NaN (not a number), respectively,
and must not cause a floating point exception. For allmost all modern compting architecture
this is implemented in hardware. For others there should be a special compiler flag to get
this feature (e.g., -MIEEE on DEC alpha or -mp for the Intel C complier).

− Upgrading UNU.RAN from version 0.9.x or earlier:
With UNU.RAN version 1.0.x some of the macro definitions in file ‘src/unuran_config.h’
are moved into file ‘config.h’ and are set/controlled by the ./configure script.
Writting logging information into the logfile must now be enabled when running the con-
figure script:

sh ./configure --enable-logging

− Upgrading UNU.RAN from version 0.7.x or earlier:
With UNU.RAN version 0.8.0 the interface for changing underlying distributions and run-
ning a reinitialization routine has been simplified. The old routines can be compiled into
the library using the following configure flag:

sh ./configure --enable-deprecated

Notice: Using these deprecated routines is not supported any more and this strong discour-
aged.
Wrapper functions for external sources of uniform random numbers are now enabled by
configure flags and not by macros defined in file ‘src/unuran_config.h’.
The file ‘src/unuran_config.h’ is not installed any more. It is now only included when
the library is compiled. It should be removed from the global include path of the compiler.

1.3 Using the library

ANSI C Compliance

The library is written in ANSI C and is intended to conform to the ANSI C standard. It should
be portable to any system with a working ANSI C compiler.

The library does not rely on any non-ANSI extensions in the interface it exports to the user.
Programs you write using UNU.RAN can be ANSI compliant. Extensions which can be used in
a way compatible with pure ANSI C are supported, however, via conditional compilation. This
allows the library to take advantage of compiler extensions on those platforms which support
them.

To avoid namespace conflicts all exported function names and variables have the prefix unur_,
while exported macros have the prefix UNUR_.

Compiling and Linking
If you want to use the library you must include the UNU.RAN header file

#include <unuran.h>

If you also need the test routines then also add

6 UNU.RAN User Manual

#include <unuran_tests.h>

If wrapper functions for external sources of uniform random number generators are used, the
corresponding header files must also be included, e.g.,

#include <unuran_urng_rngstream.h>

If these header files are not installed on the standard search path of your compiler you will also
need to provide its location to the preprocessor as a command line flag. The default location
of the ‘unuran.h’ is ‘/usr/local/include’. A typical compilation command for a source file
‘app.c’ with the GNU C compiler gcc is,

gcc -I/usr/local/include -c app.c

This results in an object file ‘app.o’. The default include path for gcc searches
‘/usr/local/include’ automatically so the -I option can be omitted when UNU.RAN is
installed in its default location.

The library is installed as a single file, ‘libunuran.a’. A shared version of the library
is also installed on systems that support shared libraries. The default location of these files
is ‘/usr/local/lib’. To link against the library you need to specify the main library. The
following example shows how to link an application with the library (and the the RNGSTREAMS
library if you decide to use this source of uniform pseudo-random numbers),

gcc app.o -lunuran -lrngstreams -lm

Shared Libraries

To run a program linked with the shared version of the library it may be necessary to define
the shell variable LD_LIBRARY_PATH to include the directory where the library is installed. For
example,

LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH

To compile a statically linked version of the program instead, use the -static flag in gcc,
gcc -static app.o -lunuran -lrngstreams -lm

Compatibility with C++

The library header files automatically define functions to have extern "C" linkage when included
in C++ programs.

1.4 Concepts of UNU.RAN

UNU.RAN is a C library for generating non-uniformly distributed random variates. Its emphasis
is on the generation of non-standard distribution and on streams of random variates of special
purposes. It is designed to provide a consistent tool to sample from distributions with various
properties. Since there is no universal method that fits for all situations, various methods for
sampling are implemented.

UNU.RAN solves this complex task by means of an object oriented programming interface.
Three basic objects are used:

• distribution object UNUR_DISTR
Hold all information about the random variates that should be generated.

• generator object UNUR_GEN
Hold the generators for the given distributions. Two generator objects are completely
independent of each other. They may share a common uniform random number generator
or have their owns.

• parameter object UNUR_PAR
Hold all information for creating a generator object. It is necessary due to various param-
eters and switches for each of these generation methods.

Chapter 1: Introduction 7

Notice that the parameter objects only hold pointers to arrays but do not have their own
copy of such an array. Especially, if a dynamically allocated array is used it must not be
freed until the generator object has been created!

The idea behind these structures is that creatin distributions, choosing a generation method
and draing samples are orthogonal (ie. independent) functions of the library. The parameter
object is only introduced due to the necessity to deal with various parameters and switches for
each of these generation methods which are required to adjust the algorithms to unusual distri-
butions with extreme properties but have default values that are suitable for most applications.
These parameters and the data for distributions are set by various functions.

Once a generator object has been created sampling (from the univariate continuous distribu-
tion) can be done by the following command:

double x = unur_sample_cont(generator);

Analogous commands exist for discrete and multivariate distributions. For detailed examples
that can be copied and modified see Chapter 2 [Examples], page 13.

Distribution objects

All information about a distribution are stored in objects (structures) of type UNUR_DISTR.
UNU.RAN has five different types of distribution objects:

cont Continuous univariate distributions.

cvec Continuous multivariate distributions.

discr Discrete univariate distributions.

cemp Continuous empirical univariate distribution, ie. given by a sample.

cvemp Continuous empirical multivariate distribution, ie. given by a sample.

matr Matrix distributions.

Distribution objects can be created from scratch by the following call

distr = unur_distr_<type>_new();

where <type> is one of the five possible types from the above table. Notice that these commands
only create an empty object which still must be filled by means of calls for each type of distri-
bution object (see Chapter 4 [Handling distribution objects], page 55). The naming scheme of
these functions is designed to indicate the corresponding type of the distribution object and the
task to be performed. It is demonstated on the following example.

unur_distr_cont_set_pdf(distr, mypdf);

This command stores a PDF named mypdf in the distribution object distr which must have
the type cont.

Of course UNU.RAN provides an easier way to use standard distributions. Instead of using
unur_distr_<type>_new calls and fuctions unur_distr_<type>_set_<...> for setting data,
objects for standard distribution can be created by a single call. Eg. to get an object for the
normal distribution with mean 2 and standard deviation 5 use

double parameter[2] = {2.0 ,5.0};
UNUR_DISTR *distr = unur_distr_normal(parameter, 2);

For a list of standard distributions see Chapter 7 [Standard distributions], page 205.

8 UNU.RAN User Manual

Generation methods

The information that a distribution object must contain depends heavily on the chosen genera-
tion method choosen.

Brackets indicate optional information while a tilde indicates that only an approximation
must be provided. See Appendix B [Glossary], page 239, for unfamiliar terms.

� �
Methods for continuous univariate distributions
sample with unur_sample_cont

method PDF dPDF CDF mode area other
AROU x x [x] T-concave
HINV [x] [x] x
HRB bounded hazard rate
HRD decreasing hazard rate
HRI increasing hazard rate
ITDR x x x monotone with pole
NINV [x] x
NROU x [x]
SROU x x x T-concave
SSR x x x T-concave
TABL x x [~] all local extrema
TDR x x T-concave
TDRGW x x T-concave
UTDR x x ~ T-concave
CSTD build-in standard distribution
CEXT wrapper for external generator
 	

� �
Methods for continuous empirical univariate distributions
sample with unur_sample_cont

EMPK: Requires an observed sample.
EMPL: Requires an observed sample.
 	

� �
Methods for continuous multivariate distributions
sample with unur_sample_vec

NORTA: Requires rank correlation matrix and marginal distributions.
VNROU: Requires the PDF.
MVSTD: Generator for built-in standard distributions.
MVSTD: Requires PDF and gradiant of PDF.
 	

Chapter 1: Introduction 9

� �
Methods for continuous empirical multivariate distributions
sample with unur_sample_vec

VEMPK: Requires an observed sample.
 	
� �
Methods for discrete univariate distributions
sample with unur_sample_discr

method PMF PV mode sum other
DARI x x ~ T-concave
DAU [x] x
DGT [x] x
DSROU x x x T-concave
DSS [x] x x
DSTD build-in standard distribution
CEXT wrapper for external generator
 	

� �
Methods for matrix distributions
sample with unur_sample_matr

MCORR: Distribution object for random correlation matrix.
 	
� �
Markov Chain Methods for continuous multivariate distributions
sample with unur_sample_vec

GIBBS: T-concave logPDF and derivatives of logPDF.
HITRO: Requires PDF.
 	

Because of tremendous variety of possible problems, UNU.RAN provides many methods. All
information for creating a generator object has to be collected in a parameter object first. For
example, if the task is to sample from a continuous distribution the method AROU might be a
good choice. Then the call

UNUR_PAR *par = unur_arou_new(distribution);

creates an parameter object par with a pointer to the distribution object and default values for
all necessary parameters for method AROU. Other methods can be used by replacing arou with
the name of the desired methods (in lower case letters):

UNUR_PAR *par = unur_<method>_new(distribution);

This sets the default values for all necessary parameters for the chosen method. These are
suitable for almost all applications. Nevertheless, it is possible to control the behavior of the
method using corresponding set calls for each method. This might be necessary to adjust
the algorithm for an unusual distribution with extreme properties, or just for fine tuning the
perforence of the algorithm. The following example demonstrates how to change the maximum
number of iterations for method NINV to the value 50:

10 UNU.RAN User Manual

unur_ninv_set_max_iteration(par, 50);

All available methods are described in details in Chapter 5 [Methods], page 87.

Creating a generator object

Now it is possible to create a generator object:
UNUR_GEN *generator = unur_init(par);
if (generator == NULL) exit(EXIT_FAILURE);

Important: You must always check whether unur_init has been executed successfully. Other-
wise the NULL pointer is returned which causes a segmentation fault when used for sampling.
Important: The call of unur_init destroys the parameter object!
Moreover, it is recommended to call unur_init immediately after the parameter object par has
created and modified.

An existing generator object is a rather static construct. Nevertheless, some of the parameters
can still be modified by chg calls, e.g.

unur_ninv_chg_max_iteration(gen, 30);

Notice that it is important when parameters are changed because different functions must
be used:

The function name includes the term set and the first argument must be of type UNUR_PAR
when the parameters are changed before the generator object is created.

The function name includes the term chg and the first argument must be of type UNUR_GEN
when the parameters are changed for an existing generator object.

For details see Chapter 5 [Methods], page 87.

Sampling

You can now use your generator object in any place of your program to sample from your
distribution. You only have to take care about the type of variates it computes: double, int
or a vector (array of doubles). Notice that at this point it does not matter whether you are
sampling from a gamma distribution, a truncated normal distribution or even an empirical
distribution.

Reinitializing

It is possible for a generator object to change the parameters and the domain of the underlying
distribution. This must be done by extracting this object by means of a unur_get_distr call and
changing the distribution using the correspondig set calls, see Chapter 4 [Handling distribution
objects], page 55. The generator object must then be reinitialized by means of the unur_reinit
call.

Important : Currently not all methods allow reinitialization, see the description of the par-
ticular method (keyword Reinit).

Destroy

When you do not need your generator object any more, you should destroy it:
unur_free(generator);

Uniform random numbers

Each generator object can have its own uniform random number generator or share one with
others. When created a parameter object the pointer for the uniform random number generator
is set to the default generator. However, it can be changed at any time to any other generator:

Chapter 1: Introduction 11

unur_set_urng(par, urng);

or
unur_chg_urng(generator, urng);

respectively. See Chapter 6 [Using uniform random number generators], page 193, for details.

1.5 Contact the authors

If you have any problems with UNU.RAN, suggestions how to improve the library, or find a
bug, please contact us via email unuran@statistik.wu-wien.ac.at.

For news please visit out homepage at http://statistik.wu-wien.ac.at/unuran/.

mailto:unuran@statistik.wu-wien.ac.at
http://statistik.wu-wien.ac.at/unuran/

12 UNU.RAN User Manual

Chapter 2: Examples 13

2 Examples

The examples in this chapter should compile cleanly and can be found in the directory ‘examples’
of the source tree of UNU.RAN. Assuming that UNU.RAN as well as the PRNG libraries have
been installed properly (see Section 1.2 [Installation], page 3) each of these can be compiled
(using the GCC in this example) with

gcc -Wall -O2 -o example example.c -lunuran -lprng -lm

Remark: -lprng must be omitted when the PRNG library is not installed. Then however some
of the examples might not work.

The library uses three objects: UNUR_DISTR, UNUR_PAR and UNUR_GEN. It is not important
to understand the details of these objects but it is important not to changed the order of their
creation. The distribution object can be destroyed after the generator object has been made.
(The parameter object is freed automatically by the unur_init call.) It is also important to
check the result of the unur_init call. If it has failed the NULL pointer is returned and causes
a segmentation fault when used for sampling.

We give all examples with the UNU.RAN standard API and the more convenient string API.

14 UNU.RAN User Manual

2.1 As short as possible

Select a distribution and let UNU.RAN do all necessary steps.
/* --- */

/* File: example0.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

int main(void)

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Use a predefined standard distribution: */

/* Gaussian with mean zero and standard deviation 1. */

/* Since this is the standard form of the distribution, */

/* we need not give these parameters. */

distr = unur_distr_normal(NULL, 0);

/* Use method AUTO: */

/* Let UNURAN select a suitable method for you. */

par = unur_auto_new(distr);

/* Now you can change some of the default settings for the */

/* parameters of the chosen method. We don’t do it here. */

/* Create the generator object. */

gen = unur_init(par);

/* Notice that this call has also destroyed the parameter */

/* object ‘par’ as a side effect. */

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the standard Gaussian distribution. */

/* Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

Chapter 2: Examples 15

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

16 UNU.RAN User Manual

2.2 As short as possible (String API)

Select a distribution and let UNU.RAN do all necessary steps.
/* --- */

/* File: example0_str.c */

/* --- */

/* String API. */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

int main(void)

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare UNURAN generator object. */

UNUR_GEN *gen; /* generator object */

/* Create the generator object. */

/* Use a predefined standard distribution: */

/* Standard Gaussian distribution. */

/* Use method AUTO: */

/* Let UNURAN select a suitable method for you. */

gen = unur_str2gen("normal()");

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Now you can use the generator object ‘gen’ to sample from */

/* the standard Gaussian distribution. */

/* Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

Chapter 2: Examples 17

2.3 Select a method

Select method AROU and use it with default parameters.
/* --- */

/* File: example1.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

int main(void)

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Use a predefined standard distribution: */

/* Gaussian with mean zero and standard deviation 1. */

/* Since this is the standard form of the distribution, */

/* we need not give these parameters. */

distr = unur_distr_normal(NULL, 0);

/* Choose a method: AROU. */

/* For other (suitable) methods replace "arou" with the */

/* respective name (in lower case letters). */

par = unur_arou_new(distr);

/* Now you can change some of the default settings for the */

/* parameters of the chosen method. We don’t do it here. */

/* Create the generator object. */

gen = unur_init(par);

/* Notice that this call has also destroyed the parameter */

/* object ‘par’ as a side effect. */

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the standard Gaussian distribution. */

/* Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

18 UNU.RAN User Manual

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

Chapter 2: Examples 19

2.4 Select a method (String API)

Select method AROU and use it with default parameters.
/* --- */

/* File: example1_str.c */

/* --- */

/* String API. */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

int main(void)

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare UNURAN generator object. */

UNUR_GEN *gen; /* generator object */

/* Create the generator object. */

/* Use a predefined standard distribution: */

/* Standard Gaussian distribution. */

/* Choose a method: AROU. */

/* For other (suitable) methods replace "arou" with the */

/* respective name. */

gen = unur_str2gen("normal() & method=arou");

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Now you can use the generator object ‘gen’ to sample from */

/* the standard Gaussian distribution. */

/* Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

20 UNU.RAN User Manual

2.5 Arbitrary distributions

If you want to sample from a non-standard distribution, UNU.RAN might be exactly what you
need. Depending on the information is available, a method must be choosen for sampling, see
Section 1.4 [Concepts], page 6 for an overview and Chapter 5 [Methods], page 87 for details.

/* --- */

/* File: example2.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* In this example we build a distribution object from scratch */

/* and sample from this distribution. */

/* */

/* We use method TDR (Transformed Density Rejection) which */

/* required a PDF and the derivative of the PDF. */

/* --- */

/* Define the PDF and dPDF of our distribution. */

/* */

/* Our distribution has the PDF */

/* */

/* / 1 - x*x if |x| <= 1 */

/* f(x) = < */

/* \ 0 otherwise */

/* */

/* The PDF of our distribution: */

double mypdf(double x, const UNUR_DISTR *distr)

/* The second argument (‘distr’) can be used for parameters */

/* for the PDF. (We do not use parameters in our example.) */

{

if (fabs(x) >= 1.)

return 0.;

else

return (1.-x*x);

} /* end of mypdf() */

/* The derivative of the PDF of our distribution: */

double mydpdf(double x, const UNUR_DISTR *distr)

{

if (fabs(x) >= 1.)

return 0.;

else

return (-2.*x);

} /* end of mydpdf() */

/* --- */

int main(void)

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Create a new distribution object from scratch. */

Chapter 2: Examples 21

/* It is a continuous distribution, and we need a PDF and the */

/* derivative of the PDF. Moreover we set the domain. */

/* Get empty distribution object for a continuous distribution */

distr = unur_distr_cont_new();

/* Assign the PDF and dPDF (defined above). */

unur_distr_cont_set_pdf(distr, mypdf);

unur_distr_cont_set_dpdf(distr, mydpdf);

/* Set the domain of the distribution (optional for TDR). */

unur_distr_cont_set_domain(distr, -1., 1.);

/* Choose a method: TDR. */

par = unur_tdr_new(distr);

/* Now you can change some of the default settings for the */

/* parameters of the chosen method. We don’t do it here. */

/* Create the generator object. */

gen = unur_init(par);

/* Notice that this call has also destroyed the parameter */

/* object ‘par’ as a side effect. */

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

22 UNU.RAN User Manual

2.6 Arbitrary distributions (String API)

If you want to sample from a non-standard distribution, UNU.RAN might be exactly what you
need. Depending on the information is available, a method must be choosen for sampling, see
Section 1.4 [Concepts], page 6 for an overview and Chapter 5 [Methods], page 87 for details.

/* --- */

/* File: example2_str.c */

/* --- */

/* String API. */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* In this example we use a generic distribution object */

/* and sample from this distribution. */

/* */

/* The PDF of our distribution is given by */

/* */

/* / 1 - x*x if |x| <= 1 */

/* f(x) = < */

/* \ 0 otherwise */

/* */

/* We use method TDR (Transformed Density Rejection) which */

/* required a PDF and the derivative of the PDF. */

/* --- */

int main(void)

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare UNURAN generator object. */

UNUR_GEN *gen; /* generator object */

/* Create the generator object. */

/* Use a generic continuous distribution. */

/* Choose a method: TDR. */

gen = unur_str2gen(

"distr = cont; pdf=\"1-x*x\"; domain=(-1,1) & method=tdr");

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

Chapter 2: Examples 23

} /* end of main() */

/* --- */

24 UNU.RAN User Manual

2.7 Change parameters of the method

Each method for generating random numbers allows several parameters to be modified. If you do
not want to use default values, it is possible to change them. The following example illustrates
how to change parameters. For details see Chapter 5 [Methods], page 87.

/* --- */

/* File: example3.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

int main(void)

{

int i; /* loop variable */

double x; /* will hold the random number */

double fparams[2]; /* array for parameters for distribution */

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Use a predefined standard distribution: */

/* Gaussian with mean 2. and standard deviation 0.5. */

fparams[0] = 2.;

fparams[1] = 0.5;

distr = unur_distr_normal(fparams, 2);

/* Choose a method: TDR. */

par = unur_tdr_new(distr);

/* Change some of the default parameters. */

/* We want to use T(x)=log(x) for the transformation. */

unur_tdr_set_c(par, 0.);

/* We want to have the variant with immediate acceptance. */

unur_tdr_set_variant_ia(par);

/* We want to use 10 construction points for the setup */

unur_tdr_set_cpoints (par, 10, NULL);

/* Create the generator object. */

gen = unur_init(par);

/* Notice that this call has also destroyed the parameter */

/* object ‘par’ as a side effect. */

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

unur_distr_free(distr);

Chapter 2: Examples 25

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* It is possible with method TDR to truncate the distribution */

/* for an existing generator object ... */

unur_tdr_chg_truncated(gen, -1., 0.);

/* ... and sample again. */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

26 UNU.RAN User Manual

2.8 Change parameters of the method (String API)

Each method for generating random numbers allows several parameters to be modified. If you do
not want to use default values, it is possible to change them. The following example illustrates
how to change parameters. For details see Chapter 5 [Methods], page 87.

/* --- */

/* File: example3_str.c */

/* --- */

/* String API. */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

int main(void)

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare UNURAN generator object. */

UNUR_GEN *gen; /* generator object */

/* Create the generator object. */

/* Use a predefined standard distribution: */

/* Gaussian with mean 2. and standard deviation 0.5. */

/* Choose a method: TDR with parameters */

/* c = 0: use T(x)=log(x) for the transformation; */

/* variant "immediate acceptance"; */

/* number of construction points = 10. */

gen = unur_str2gen(

"normal(2,0.5) & method=tdr; c=0.; variant_ia; cpoints=10");

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* It is possible with method TDR to truncate the distribution */

/* for an existing generator object ... */

unur_tdr_chg_truncated(gen, -1., 0.);

/* ... and sample again. */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

Chapter 2: Examples 27

} /* end of main() */

/* --- */

28 UNU.RAN User Manual

2.9 Change uniform random generator

All generator object use the same default uniform random number generator by default. This
can be changed to any generator of your choice such that each generator object has its own
random number generator or can share it with some other objects. It is also possible to change
the default generator at any time. See Chapter 6 [Using uniform random number generators],
page 193, for details.

The following example shows how the uniform random number generator can be set or
changed for a generator object. It requires the RNGSTREAMS library to be installed and
used. Otherwise the example must be modified accordingly.

/* --- */

/* File: example_rngstreams.c */

/* --- */

#ifdef UNURAN_SUPPORTS_RNGSTREAM

/* --- */

/* This example makes use of the RNGSTREAM library for */

/* for generating uniform random numbers. */

/* (see http://statmath.wu-wien.ac.at/software/RngStreams/) */

/* To compile this example you must have set */

/* ./configure --with-urng-rngstream */

/* (Of course the executable has to be linked against the */

/* RNGSTREAM library.) */

/* --- */

/* Include UNURAN header files. */

#include <unuran.h>

#include <unuran_urng_rngstreams.h>

/* --- */

int main(void)

{

int i; /* loop variable */

double x; /* will hold the random number */

double fparams[2]; /* array for parameters for distribution */

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Declare objects for uniform random number generators. */

UNUR_URNG *urng1, *urng2; /* uniform generator objects */

/* The RNGSTREAMS library sets a package seed. */

unsigned long seed[] = {111u, 222u, 333u, 444u, 555u, 666u};

RngStream_SetPackageSeed(seed);

/* RngStreams only: */

/* Make a object for uniform random number generator. */

/* For details see */

/* http://statmath.wu-wien.ac.at/software/RngStreams/ */

urng1 = unur_urng_rngstream_new("urng-1");

if (urng1 == NULL) exit (EXIT_FAILURE);

/* Use a predefined standard distribution: */

/* Beta with parameters 2 and 3. */

fparams[0] = 2.;

fparams[1] = 3.;

distr = unur_distr_beta(fparams, 2);

/* Choose a method: TDR. */

par = unur_tdr_new(distr);

Chapter 2: Examples 29

/* Set uniform generator in parameter object */

unur_set_urng(par, urng1);

/* Create the generator object. */

gen = unur_init(par);

/* Notice that this call has also destroyed the parameter */

/* object ‘par’ as a side effect. */

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* Now we want to switch to a different (independent) stream */

/* of uniform random numbers. */

urng2 = unur_urng_rngstream_new("urng-2");

if (urng2 == NULL) exit (EXIT_FAILURE);

unur_chg_urng(gen, urng2);

/* ... and sample again. */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

/* We also should destroy the uniform random number generators.*/

unur_urng_free(urng1);

unur_urng_free(urng2);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

#else

#include <stdio.h>

#include <stdlib.h>

int main(void) {

printf("You must enable the RNGSTREAM library to run this example!\n\n");

exit (77); /* exit code for automake check routines */

}

#endif

/* --- */

30 UNU.RAN User Manual

2.10 Sample pairs of antithetic random variates

Using Method TDR it is easy to sample pairs of antithetic random variates.
/* --- */

/* File: example_anti.c */

/* --- */

#ifdef UNURAN_SUPPORTS_PRNG

/* --- */

/* This example makes use of the PRNG library for generating */

/* uniform random numbers. */

/* (see http://statistik.wu-wien.ac.at/prng/) */

/* To compile this example you must have set */

/* ./configure --with-urng-prng */

/* (Of course the executable has to be linked against the */

/* PRNG library.) */

/* --- */

/* Example how to sample from two streams of antithetic random */

/* variates from Gaussian N(2,5) and Gamma(4) distribution, resp.*/

/* --- */

/* Include UNURAN header files. */

#include <unuran.h>

#include <unuran_urng_prng.h>

/* --- */

int main(void)

{

int i; /* loop variable */

double xn, xg; /* will hold the random number */

double fparams[2]; /* array for parameters for distribution */

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen_normal, *gen_gamma;

/* generator objects */

/* Declare objects for uniform random number generators. */

UNUR_URNG *urng1, *urng2; /* uniform generator objects */

/* PRNG only: */

/* Make a object for uniform random number generator. */

/* For details see http://statistik.wu-wien.ac.at/prng/. */

/* The first generator: Gaussian N(2,5) */

/* uniform generator: We use the Mersenne Twister. */

urng1 = unur_urng_prng_new("mt19937(1237)");

if (urng1 == NULL) exit (EXIT_FAILURE);

/* UNURAN generator object for N(2,5) */

fparams[0] = 2.;

fparams[1] = 5.;

distr = unur_distr_normal(fparams, 2);

/* Choose method TDR with variant PS. */

par = unur_tdr_new(distr);

unur_tdr_set_variant_ps(par);

/* Set uniform generator in parameter object. */

unur_set_urng(par, urng1);

Chapter 2: Examples 31

/* Set auxilliary uniform random number generator. */

/* We use the default generator. */

unur_use_urng_aux_default(par);

/* Alternatively you can create and use your own auxilliary */

/* uniform random number generator: */

/* UNUR_URNG *urng_aux; */

/* urng_aux = unur_urng_prng_new("tt800"); */

/* if (urng_aux == NULL) exit (EXIT_FAILURE); */

/* unur_set_urng_aux(par, urng_aux); */

/* Create the generator object. */

gen_normal = unur_init(par);

if (gen_normal == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Destroy distribution object (gen_normal has its own copy). */

unur_distr_free(distr);

/* The second generator: Gamma(4) with antithetic variates. */

/* uniform generator: We use the Mersenne Twister. */

urng2 = unur_urng_prng_new("anti(mt19937(1237))");

if (urng2 == NULL) exit (EXIT_FAILURE);

/* UNURAN generator object for gamma(4) */

fparams[0] = 4.;

distr = unur_distr_gamma(fparams, 1);

/* Choose method TDR with variant PS. */

par = unur_tdr_new(distr);

unur_tdr_set_variant_ps(par);

/* Set uniform generator in parameter object. */

unur_set_urng(par, urng2);

/* Set auxilliary uniform random number generator. */

/* We use the default generator. */

unur_use_urng_aux_default(par);

/* Alternatively you can create and use your own auxilliary */

/* uniform random number generator (see above). */

/* Notice that both generator objects gen_normal and */

/* gen_gamma can share the same auxilliary URNG. */

/* Create the generator object. */

gen_gamma = unur_init(par);

if (gen_gamma == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Destroy distribution object (gen_normal has its own copy). */

unur_distr_free(distr);

/* Now we can sample pairs of negatively correlated random */

/* variates. E.g.: */

for (i=0; i<10; i++) {

xn = unur_sample_cont(gen_normal);

xg = unur_sample_cont(gen_gamma);

32 UNU.RAN User Manual

printf("%g, %g\n",xn,xg);

}

/* When you do not need the generator objects any more, you */

/* can destroy it. */

unur_free(gen_normal);

unur_free(gen_gamma);

/* We also should destroy the uniform random number generators.*/

unur_urng_free(urng1);

unur_urng_free(urng2);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

#else

#include <stdio.h>

#include <stdlib.h>

int main(void) {

printf("You must enable the PRNG library to run this example!\n\n");

exit (77); /* exit code for automake check routines */

}

#endif

/* --- */

Chapter 2: Examples 33

2.11 Sample pairs of antithetic random variates (String API)

Using Method TDR it is easy to sample pairs of antithetic random variates.
/* --- */

/* File: example_anti_str.c */

/* --- */

/* String API. */

/* --- */

#ifdef UNURAN_SUPPORTS_PRNG

/* --- */

/* This example makes use of the PRNG library for generating */

/* uniform random numbers. */

/* (see http://statistik.wu-wien.ac.at/prng/) */

/* To compile this example you must have set */

/* ./configure --with-urng-prng */

/* (Of course the executable has to be linked against the */

/* PRNG library.) */

/* --- */

/* Example how to sample from two streams of antithetic random */

/* variates from Gaussian N(2,5) and Gamma(4) distribution, resp.*/

/* --- */

/* Include UNURAN header files. */

#include <unuran.h>

#include <unuran_urng_prng.h>

/* --- */

int main(void)

{

int i; /* loop variable */

double xn, xg; /* will hold the random number */

/* Declare UNURAN generator objects. */

UNUR_GEN *gen_normal, *gen_gamma;

/* PRNG only: */

/* Make a object for uniform random number generator. */

/* For details see http://statistik.wu-wien.ac.at/prng/. */

/* Create the first generator: Gaussian N(2,5) */

gen_normal = unur_str2gen("normal(2,5) & method=tdr; variant_ps & urng=mt19937(1237)");

if (gen_normal == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Set auxilliary uniform random number generator. */

/* We use the default generator. */

unur_chgto_urng_aux_default(gen_normal);

/* The second generator: Gamma(4) with antithetic variates. */

gen_gamma = unur_str2gen("gamma(4) & method=tdr; variant_ps & urng=anti(mt19937(1237))");

if (gen_gamma == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

unur_chgto_urng_aux_default(gen_gamma);

/* Now we can sample pairs of negatively correlated random */

/* variates. E.g.: */

for (i=0; i<10; i++) {

xn = unur_sample_cont(gen_normal);

34 UNU.RAN User Manual

xg = unur_sample_cont(gen_gamma);

printf("%g, %g\n",xn,xg);

}

/* When you do not need the generator objects any more, you */

/* can destroy it. */

/* But first we have to destroy the uniform random number */

/* generators. */

unur_urng_free(unur_get_urng(gen_normal));

unur_urng_free(unur_get_urng(gen_gamma));

unur_free(gen_normal);

unur_free(gen_gamma);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

#else

#include <stdio.h>

#include <stdlib.h>

int main(void) {

printf("You must enable the PRNG library to run this example!\n\n");

exit (77); /* exit code for automake check routines */

}

#endif

/* --- */

Chapter 2: Examples 35

2.12 More examples

See Section 5.3 [Methods for continuous univariate distributions], page 91.
See Section 5.4 [Methods for continuous empirical univariate distributions], page 143.
See Section 5.7 [Methods for continuous empirical multivariate distributions], page 167.
See Section 5.8 [Methods for discrete univariate distributions], page 170.

36 UNU.RAN User Manual

Chapter 3: String Interface 37

3 String Interface

The string interface (string API) provided by the unur_str2gen call is the easiest way to use
UNU.RAN. This function takes a character string as its argument. The string is parsed and the
information obtained is used to create a generator object. It returns NULL if this fails, either due
to a syntax error, or due to invalid data. In both cases unur_error is set to the corresponding
error codes (see Section 8.3 [Error reporting], page 221). Additionally there exists the call
unur_str2distr that only produces a distribution object.

Notice that the string interface does not implement all features of the UNU.RAN library.
For trickier tasks it might be necessary to use the UNU.RAN calls.

In Chapter 2 [Examples], page 13, all examples are given using both the UNU.RAN standard
API and this convenient string API. The corresponding programm codes are equivalent.

Function reference

UNUR_GEN* unur_str2gen (const char* string)
Get a generator object for the distribution, method and uniform random number generator
as described in the given string. See Section 3.1 [Syntax of String Interface], page 37, for
details.

UNUR_DISTR* unur_str2distr (const char* string)
Get a distribution object for the distribution described in string. See Section 3.1 [Syntax of
String Interface], page 37, and Section 3.2 [Distribution String], page 40, for details. However,
only the block for the distribution object is allowed.

UNUR_GEN* unur_makegen_ssu (const char* distrstr, const char* methodstr,
UNUR URNG* urng)

UNUR_GEN* unur_makegen_dsu (const UNUR_DISTR* distribution, const char*
methodstr, UNUR URNG* urng)

Make a generator object for the distribution, method and uniform random number generator.
The distribution can be given either as string distrstr or as a distribution object distr. The
method must be given as a string methodstr. For the syntax of these strings see Section 3.1
[Syntax of String Interface], page 37. However, the method keyword is optional for these calls
and can be omitted. If methodstr is the empty (blank) string or NULL method AUTO is used.
The uniform random number generator is optional. If urng is NULL then the default uniform
random number generator is used.

3.1 Syntax of String Interface

The given string holds information about the requested distribution and (optional) about the
sampling method and the uniform random number generator invoked. The interpretation of the
string is not case-sensitive, all white spaces are ignored.

The string consists of up to three blocks, separated by ampersands &.

Each block consists of <key>=<value> pairs, separated by semicolons ;.

The first key in each block is used to indicate each block. We have three different blocks with
the following (first) keys:

distr definition of the distribution (see Section 3.2 [Distribution String], page 40).

method description of the transformation method (see Section 3.4 [Method String], page 46).

urng uniform random number generation (see Section 3.5 [Uniform RNG String], page 54).

38 UNU.RAN User Manual

The distr block must be the very first block and is obligatory. All the other blocks are
optional and can be arranged in arbitrary order.

For details see the following description of each block.
In the following example

distr = normal(3.,0.75); domain = (0,inf) & method = tdr; c = 0

we have a distribution block for the truncated normal distribution with mean 3 and standard
deviation 0.75 on domain (0,infinity); and block for choosing method TDR with parameter c set
to 0.

The <key>=<value> pairs that follow the first (initial) pair in each block are used to set
parameters. The name of the parameter is given by the <key> string. It is deduced from the
UNU.RAN set calls by taking the part after ..._set_. The <value> string holds the parameters
to be set, separated by commata ,. There are three types of parameters:

string "..."
i.e. any sequence of characters enclosed by double quotes "...",

list (...,...)
i.e. list of numbers, separated by commata ,, enclosed in parenthesis (...), and

number a sequence of characters that is not enclosed by quotes "..." or parenthesis (...).
It is interpreted as float or integer depending on the type of the corresponding
parameter.

The <value> string (including the character =) can be omitted when no argument is required.
At the moment not all set calls are supported. The syntax for the <value> can be directly

derived from the corresponding set calls. To simplify the syntax additional shortcuts are pos-
sible. The following table lists the parameters for the set calls that are supported by the string
interface; the entry in parenthesis gives the type of the argument as <value> string:

int (number):
The number is interpreted as an integer. true and on are transformed to 1, false
and off are transformed to 0. A missing argument is interpreted as 1.

int, int (number, number or list):
The two numbers or the first two entries in the list are interpreted as a integers.
inf and -inf are transformed to INT_MAX and INT_MIN respectively, i.e. the largest
and smallest integers that can be represented by the computer.

unsigned (number):
The number is interpreted as an unsigned hexadecimal integer.

double (number):
The number is interpreted as a floating point number. inf is transformed to UNUR_
INFINITY.

double, double (number, number or list):
The two numbers or the first two entries in the list are interpreted as a floating
point numbers. inf is transformed to UNUR_INFINITY. However using inf in the
list might not work for all versions of C. Then it is recommended to use two single
numbers instead of a list.

int, double* ([number,] list or number):
− The list is interpreted as a double array. The (first) number as its length. If

it is less than the actual size of the array only the first entries of the array are
used.

Chapter 3: String Interface 39

− If only the list is given (i.e., if the first number is omitted), the first number is
set to the actual size of the array.

− If only the number is given (i.e., if the list is omitted), the NULL pointer is used
instead an array as argument.

double*, int (list [,number]):
The list is interpreted as a double array. The (second) number as its length. If
the length is omitted, it is replaced by the actual size of the array. (Only in the
distribution block!)

char* (string):
The character string is passed as is to the corresponding set call.

Notice that missing entries in a list of numbers are interpreted as 0. E.g, a the list (1,,3)
is read as (1,0,3), the list (1,2,) as (1,2,0).

The the list of key strings in Section 3.2.1 [Keys for Distribution String], page 40, and
Section 3.4.1 [Keys for Method String], page 46, for further details.

40 UNU.RAN User Manual

3.2 Distribution String

The distr block must be the very first block and is obligatory. For that reason the keyword
distr is optional and can be omitted (together with the = character). Moreover it is ignored
while parsing the string. However, to avoid some possible confusion it has to start with the
letter d (if it is given at all).

The value of the distr key is used to get the distribution object, either via a unur_distr_
<value> call for a standard distribution via a unur_distr_<value>_new call to get an object
of a generic distribution. However not all generic distributions are supported yet.

The parameters for the standard distribution are given as a list. There must not be any
character (other than white space) between the name of the standard distribution and the
opening parenthesis (of this list. E.g., to get a beta distribution, use

distr = beta(2,4)

To get an object for a discrete distribution with probability vector (0.5,0.2,0.3), use
distr = discr; pv = (0.5,0.2,0.3)

It is also possible to set a PDF, PMF, or CDF using a string. E.g., to create a continuous
distribution with PDF proportional to exp(-sqrt(2+(x-1)^2) + (x-1)) and domain (0,inf) use

distr = cont; pdf = "exp(-sqrt(2+(x-1)^2) + (x-1))"

Notice: If this string is used in an unur_str2distr or unur_str2gen call the double quotes
" must be protected by \". Alternatively, single quotes may be used instead

distr = cont; pdf = ’exp(-sqrt(2+(x-1)^2) + (x-1))’

For the details of function strings see Section 3.3 [Function String], page 43.

3.2.1 Keys for Distribution String

List of standard distributions see Chapter 7 [Standard distributions], page 205
− [distr =] beta(...) ⇒ see Section 7.1.2 [beta], page 207
− [distr =] binomial(...) ⇒ see Section 7.3.1 [binomial], page 215
− [distr =] cauchy(...) ⇒ see Section 7.1.3 [cauchy], page 207
− [distr =] chi(...) ⇒ see Section 7.1.4 [chi], page 207
− [distr =] chisquare(...) ⇒ see Section 7.1.5 [chisquare], page 208
− [distr =] exponential(...) ⇒ see Section 7.1.6 [exponential], page 208
− [distr =] extremeI(...) ⇒ see Section 7.1.7 [extremeI], page 208
− [distr =] extremeII(...) ⇒ see Section 7.1.8 [extremeII], page 209
− [distr =] F(...) ⇒ see Section 7.1.1 [F], page 207
− [distr =] gamma(...) ⇒ see Section 7.1.9 [gamma], page 209
− [distr =] geometric(...) ⇒ see Section 7.3.2 [geometric], page 215
− [distr =] hypergeometric(...) ⇒ see Section 7.3.3 [hypergeometric], page 215
− [distr =] laplace(...) ⇒ see Section 7.1.10 [laplace], page 209
− [distr =] logarithmic(...) ⇒ see Section 7.3.4 [logarithmic], page 216
− [distr =] logistic(...) ⇒ see Section 7.1.11 [logistic], page 210
− [distr =] lomax(...) ⇒ see Section 7.1.12 [lomax], page 210
− [distr =] negativebinomial(...) ⇒ see Section 7.3.5 [negativebinomial], page 216
− [distr =] normal(...) ⇒ see Section 7.1.13 [normal], page 210
− [distr =] pareto(...) ⇒ see Section 7.1.14 [pareto], page 211
− [distr =] poisson(...) ⇒ see Section 7.3.6 [poisson], page 216
− [distr =] powerexponential(...) ⇒ see Section 7.1.15 [powerexponential], page 211
− [distr =] rayleigh(...) ⇒ see Section 7.1.16 [rayleigh], page 211

Chapter 3: String Interface 41

− [distr =] student(...) ⇒ see Section 7.1.17 [student], page 211
− [distr =] triangular(...) ⇒ see Section 7.1.18 [triangular], page 212
− [distr =] uniform(...) ⇒ see Section 7.1.19 [uniform], page 212
− [distr =] weibull(...) ⇒ see Section 7.1.20 [weibull], page 212

List of generic distributions see Chapter 4 [Handling Distribution Objects], page 55
− [distr =] cemp ⇒ see Section 4.4 [CEMP], page 69
− [distr =] cont ⇒ see Section 4.2 [CONT], page 59
− [distr =] discr ⇒ see Section 4.9 [DISCR], page 83

Notice: Order statistics for continuous distributions (see Section 4.3 [CORDER], page 66)
are supported by using the key orderstatistics for distributions of type CONT.

List of keys that are available via the String API. For description see the corresponding
UNU.RAN set calls.
• All distribution types

name = "<string>"
⇒ see [unur_distr_set_name], page 57

• cemp (Distribution Type) (see Section 4.4 [CEMP], page 69)

data = (<list>) [, <int>]
⇒ see [unur_distr_cemp_set_data], page 69

hist_bins = (<list>) [, <int>]
⇒ see [unur_distr_cemp_set_hist_bins], page 70

hist_domain = <double>, <double> | (<list>)
⇒ see [unur_distr_cemp_set_hist_domain], page 70

hist_prob = (<list>) [, <int>]
⇒ see [unur_distr_cemp_set_hist_prob], page 69

• cont (Distribution Type) (see Section 4.2 [CONT], page 59)

cdf = "<string>"
⇒ see [unur_distr_cont_set_cdfstr], page 61

center = <double>
⇒ see [unur_distr_cont_set_center], page 64

domain = <double>, <double> | (<list>)
⇒ see [unur_distr_cont_set_domain], page 62

hr = "<string>"
⇒ see [unur_distr_cont_set_hrstr], page 63

logcdf = "<string>"
⇒ see [unur_distr_cont_set_logcdfstr], page 62

logpdf = "<string>"
⇒ see [unur_distr_cont_set_logpdfstr], page 62

mode = <double>
⇒ see [unur_distr_cont_set_mode], page 64

42 UNU.RAN User Manual

pdf = "<string>"
⇒ see [unur_distr_cont_set_pdfstr], page 61

pdfarea = <double>
⇒ see [unur_distr_cont_set_pdfarea], page 64

pdfparams = (<list>) [, <int>]
⇒ see [unur_distr_cont_set_pdfparams], page 61

orderstatistics = <int>, <int> | (<list>)
Make order statistics for given distribution. The first parameter gives the sam-
ple size, the second parameter its rank. (see see [unur_distr_corder_new],
page 66)

• discr (Distribution Type) (see Section 4.9 [DISCR], page 83)

cdf = "<string>"
⇒ see [unur_distr_discr_set_cdfstr], page 85

domain = <int>, <int> | (<list>)
⇒ see [unur_distr_discr_set_domain], page 85

mode [= <int>]
⇒ see [unur_distr_discr_set_mode], page 86

pmf = "<string>"
⇒ see [unur_distr_discr_set_pmfstr], page 84

pmfparams = (<list>) [, <int>]
⇒ see [unur_distr_discr_set_pmfparams], page 85

pmfsum = <double>
⇒ see [unur_distr_discr_set_pmfsum], page 86

pv = (<list>) [, <int>]
⇒ see [unur_distr_discr_set_pv], page 83

Chapter 3: String Interface 43

3.3 Function String

In unuran it is also possible to define functions (e.g. CDF or PDF) as strings. As you can
see in Example 2 (Section 2.6 [Example 2 str], page 22) it is very easy to define the PDF of a
distribution object by means of a string. The possibilities using this string interface are more
restricted than using a pointer to a routine coded in C (Section 2.5 [Example 2], page 20). But
the differences in evaluation time is small. When a distribution object is defined using this string
interface then of course the same conditions on the given density or CDF must be satisfied for
a chosen method as for the standard API. This string interface can be used for both within the
UNU.RAN string API using the unur_str2gen call, and for calls that define the density or CDF
for a particular distribution object as done with (e.g.) the call unur_distr_cont_set_pdfstr.
Here is an example for the latter case:

unur_distr_cont_set_pdfstr(distr,"1-x*x");

Syntax

The syntax for the function string is case insensitive, white spaces are ingnored. The expressions
are similar to most programming languages and mathematical programs (see also the examples
below). It is especially influenced by C. The usual preceedence rules are used (from highest to
lowest preceedence: functions, power, multiplication, addition, relation operators). Use paren-
theses in case of doubt or when these preceedences should be changed.

Relation operators can be used as indicator functions, i.e. the term (x>1) is evaluted as 1 if
this relation is satisfied, and as 0 otherwise.

The first unknown symbol (letter or word) is interpreted as the variable of the function. It
is recommended to use x. Only one variable can be used.

Important : The symbol e is used twice, for Euler’s constant (= 2.7182. . .) and as exponent.
The multiplication operator * must not be omitted, i.e. 2 x is interpreted as the string 2x (which
will result in a syntax error).

List of symbols� �
Numbers

Numbers are composed using digits and, optionally, a sign, a decimal point, and an exponent
indicated by e.

Symbol Explanation Examples
0...9 digits 2343
. decimal point 165.567
- negative sign -465.223
e exponet 13.2e-4 (=0.00132)
 	

� �
Constants

pi pi = 3.1415. . . 3*pi+2
e Euler’s constant 3*e+2 (= 10.15. . . ; do not cofuse with

3e2 = 300)
inf infinity (used for domains)
 	

44 UNU.RAN User Manual

� �
Special symbols

(opening parenthesis 2*(3+x)
) closing parenthesis 2*(3+x)
, (argument) list separator mod(13,2)
 	

� �
Relation operators (Indicator functions)

< less than (x<1)
= equal (2=x)
== same as = (x==3)
> greater than (x>0)
<= less than or equal (x<=1)
!= not equal (x!0)
<> same as != (x<>pi)
>= greater or equal (x>=1)
 	

� �
Arithmetic operators

+ addition 2+x
- subtraction 2-x
* multiplication 2*x
/ division x/2
^ power x^2
 	

� �
Functions

mod mod(m,n) remainder of devi-
sion m over n

mod(x,2)

exp exponential function (same as
e^x)

exp(-x^2) (same as e^(-x^2))

log natural logarithm log(x)
sin sine sin(x)
cos cosine cos(x)
tan tangent tan(x)
sec secant sec(x*2)
sqrt square root sqrt(2*x)
abs absolute value abs(x)
sgn sign function sign(x)*3
 	

Chapter 3: String Interface 45

� �
Variable

x variable 3*x^2
 	
Examples

1.231+7.9876*x-1.234e-3*x^2+3.335e-5*x^3

sin(2*pi*x)+x^2

exp(-((x-3)/2.1)^2)

It is also possible to define functions using different terms on separate domains. However, instead
of constructs using if ... then ... else ... indicator functions are available.
For example to define the density of triangular distribution with domain (-1,1) and mode 0 use

(x>-1)*(x<0)*(1+x) + (x>=0)*(x<1)*(1-x)

46 UNU.RAN User Manual

3.4 Method String
The key method is obligatory, it must be the first key and its value is the name of a method
suitable for the choosen standard distribution. E.g., if method AROU is chosen, use

method = arou

Of course the all following keys dependend on the method choosen at first. All corresponding
set calls of UNU.RAN are available and the key is the string after the unur_<methodname>_set_
part of the command. E.g., UNU.RAN provides the command unur_arou_set_max_sqhratio
to set a parameter of method AROU. To call this function via the string-interface, the key
max_sqhratio can be used:

max_sqhratio = 0.9

Additionally the keyword debug can be used to set debugging flags (see Section 8.2 [Debug-
ging], page 219, for details).

If this block is omitted, a suitable default method is used. Notice however that the default
method may change in future versions of UNU.RAN.

3.4.1 Keys for Method String

List of methods and keys that are available via the String API. For description see the corre-
sponding UNU.RAN set calls.

• method = arou ⇒ unur_arou_new (see Section 5.3.1 [AROU], page 95)

cpoints = <int> [, (<list>)] | (<list>)
⇒ see [unur_arou_set_cpoints], page 96

darsfactor = <double>
⇒ see [unur_arou_set_darsfactor], page 95

guidefactor = <double>
⇒ see [unur_arou_set_guidefactor], page 96

max_segments [= <int>]
⇒ see [unur_arou_set_max_segments], page 96

max_sqhratio = <double>
⇒ see [unur_arou_set_max_sqhratio], page 95

pedantic [= <int>]
⇒ see [unur_arou_set_pedantic], page 96

usecenter [= <int>]
⇒ see [unur_arou_set_usecenter], page 96

usedars [= <int>]
⇒ see [unur_arou_set_usedars], page 95

verify [= <int>]
⇒ see [unur_arou_set_verify], page 96

• method = ars ⇒ unur_ars_new (see Section 5.3.2 [ARS], page 98)

cpoints = <int> [, (<list>)] | (<list>)
⇒ see [unur_ars_set_cpoints], page 99

max_intervals [= <int>]
⇒ see [unur_ars_set_max_intervals], page 98

max_iter [= <int>]
⇒ see [unur_ars_set_max_iter], page 99

Chapter 3: String Interface 47

pedantic [= <int>]
⇒ see [unur_ars_set_pedantic], page 99

reinit_ncpoints [= <int>]
⇒ see [unur_ars_set_reinit_ncpoints], page 99

reinit_percentiles = <int> [, (<list>)] | (<list>)
⇒ see [unur_ars_set_reinit_percentiles], page 99

verify [= <int>]
⇒ see [unur_ars_set_verify], page 99

• method = auto ⇒ unur_auto_new (see Section 5.2 [AUTO], page 90)

logss [= <int>]
⇒ see [unur_auto_set_logss], page 90

• method = cstd ⇒ unur_cstd_new (see Section 5.3.4 [CSTD], page 105)

variant = <unsigned>
⇒ see [unur_cstd_set_variant], page 105

• method = dari ⇒ unur_dari_new (see Section 5.8.1 [DARI], page 173)

cpfactor = <double>
⇒ see [unur_dari_set_cpfactor], page 174

squeeze [= <int>]
⇒ see [unur_dari_set_squeeze], page 173

tablesize [= <int>]
⇒ see [unur_dari_set_tablesize], page 173

verify [= <int>]
⇒ see [unur_dari_set_verify], page 174

• method = dau ⇒ unur_dau_new (see Section 5.8.2 [DAU], page 175)

urnfactor = <double>
⇒ see [unur_dau_set_urnfactor], page 175

• method = dgt ⇒ unur_dgt_new (see Section 5.8.4 [DGT], page 180)

guidefactor = <double>
⇒ see [unur_dgt_set_guidefactor], page 180

variant = <unsigned>
⇒ see [unur_dgt_set_variant], page 181

• method = dsrou ⇒ unur_dsrou_new (see Section 5.8.5 [DSROU], page 182)

cdfatmode = <double>
⇒ see [unur_dsrou_set_cdfatmode], page 182

verify [= <int>]
⇒ see [unur_dsrou_set_verify], page 182

• method = dstd ⇒ unur_dstd_new (see Section 5.8.7 [DSTD], page 185)

48 UNU.RAN User Manual

variant = <unsigned>
⇒ see [unur_dstd_set_variant], page 185

• method = empk ⇒ unur_empk_new (see Section 5.4.1 [EMPK], page 146)

beta = <double>
⇒ see [unur_empk_set_beta], page 148

kernel = <unsigned>
⇒ see [unur_empk_set_kernel], page 147

positive [= <int>]
⇒ see [unur_empk_set_positive], page 148

smoothing = <double>
⇒ see [unur_empk_set_smoothing], page 148

varcor [= <int>]
⇒ see [unur_empk_set_varcor], page 148

• method = gibbs ⇒ unur_gibbs_new (see Section 5.6.1 [GIBBS], page 159)

burnin [= <int>]
⇒ see [unur_gibbs_set_burnin], page 161

c = <double>
⇒ see [unur_gibbs_set_c], page 160

thinning [= <int>]
⇒ see [unur_gibbs_set_thinning], page 161

variant_coordinate
⇒ see [unur_gibbs_set_variant_coordinate], page 160

variant_random_direction
⇒ see [unur_gibbs_set_variant_random_direction], page 160

• method = hinv ⇒ unur_hinv_new (see Section 5.3.5 [HINV], page 107)

boundary = <double>, <double> | (<list>)
⇒ see [unur_hinv_set_boundary], page 109

cpoints = (<list>), <int>
⇒ see [unur_hinv_set_cpoints], page 108

guidefactor = <double>
⇒ see [unur_hinv_set_guidefactor], page 109

max_intervals [= <int>]
⇒ see [unur_hinv_set_max_intervals], page 109

order [= <int>]
⇒ see [unur_hinv_set_order], page 108

u_resolution = <double>
⇒ see [unur_hinv_set_u_resolution], page 108

• method = hitro ⇒ unur_hitro_new (see Section 5.6.2 [HITRO], page 162)

adaptive_multiplier = <double>
⇒ see [unur_hitro_set_adaptive_multiplier], page 165

Chapter 3: String Interface 49

burnin [= <int>]
⇒ see [unur_hitro_set_burnin], page 166

r = <double>
⇒ see [unur_hitro_set_r], page 165

thinning [= <int>]
⇒ see [unur_hitro_set_thinning], page 166

use_adaptiveline [= <int>]
⇒ see [unur_hitro_set_use_adaptiveline], page 164

use_adaptiverectangle [= <int>]
⇒ see [unur_hitro_set_use_adaptiverectangle], page 165

use_boundingrectangle [= <int>]
⇒ see [unur_hitro_set_use_boundingrectangle], page 164

v = <double>
⇒ see [unur_hitro_set_v], page 165

variant_coordinate
⇒ see [unur_hitro_set_variant_coordinate], page 164

variant_random_direction
⇒ see [unur_hitro_set_variant_random_direction], page 164

• method = hrb ⇒ unur_hrb_new (see Section 5.3.6 [HRB], page 111)

upperbound = <double>
⇒ see [unur_hrb_set_upperbound], page 111

verify [= <int>]
⇒ see [unur_hrb_set_verify], page 111

• method = hrd ⇒ unur_hrd_new (see Section 5.3.7 [HRD], page 112)

verify [= <int>]
⇒ see [unur_hrd_set_verify], page 112

• method = hri ⇒ unur_hri_new (see Section 5.3.8 [HRI], page 113)

p0 = <double>
⇒ see [unur_hri_set_p0], page 113

verify [= <int>]
⇒ see [unur_hri_set_verify], page 113

• method = itdr ⇒ unur_itdr_new (see Section 5.3.9 [ITDR], page 115)

cp = <double>
⇒ see [unur_itdr_set_cp], page 116

ct = <double>
⇒ see [unur_itdr_set_ct], page 116

verify [= <int>]
⇒ see [unur_itdr_set_verify], page 116

xi = <double>
⇒ see [unur_itdr_set_xi], page 116

50 UNU.RAN User Manual

• method = mvtdr ⇒ unur_mvtdr_new (see Section 5.5.1 [MVTDR], page 152)

boundsplitting = <double>
⇒ see [unur_mvtdr_set_boundsplitting], page 153

maxcones [= <int>]
⇒ see [unur_mvtdr_set_maxcones], page 153

stepsmin [= <int>]
⇒ see [unur_mvtdr_set_stepsmin], page 153

verify [= <int>]
⇒ see [unur_mvtdr_set_verify], page 153

• method = ninv ⇒ unur_ninv_new (see Section 5.3.10 [NINV], page 117)

max_iter [= <int>]
⇒ see [unur_ninv_set_max_iter], page 118

start = <double>, <double> | (<list>)
⇒ see [unur_ninv_set_start], page 118

table [= <int>]
⇒ see [unur_ninv_set_table], page 118

usenewton
⇒ see [unur_ninv_set_usenewton], page 118

useregula
⇒ see [unur_ninv_set_useregula], page 118

x_resolution = <double>
⇒ see [unur_ninv_set_x_resolution], page 118

• method = nrou ⇒ unur_nrou_new (see Section 5.3.11 [NROU], page 120)

center = <double>
⇒ see [unur_nrou_set_center], page 121

r = <double>
⇒ see [unur_nrou_set_r], page 121

u = <double>, <double> | (<list>)
⇒ see [unur_nrou_set_u], page 121

v = <double>
⇒ see [unur_nrou_set_v], page 121

verify [= <int>]
⇒ see [unur_nrou_set_verify], page 121

• method = pinv ⇒ unur_pinv_new (see Section 5.3.12 [PINV], page 122)

boundary = <double>, <double> | (<list>)
⇒ see [unur_pinv_set_boundary], page 124

max_intervals [= <int>]
⇒ see [unur_pinv_set_max_intervals], page 124

order [= <int>]
⇒ see [unur_pinv_set_order], page 123

Chapter 3: String Interface 51

searchboundary = <int>, <int> | (<list>)
⇒ see [unur_pinv_set_searchboundary], page 124

u_resolution = <double>
⇒ see [unur_pinv_set_u_resolution], page 123

usecdf ⇒ see [unur_pinv_set_usecdf], page 124

usepdf ⇒ see [unur_pinv_set_usepdf], page 124

• method = srou ⇒ unur_srou_new (see Section 5.3.13 [SROU], page 126)

cdfatmode = <double>
⇒ see [unur_srou_set_cdfatmode], page 127

pdfatmode = <double>
⇒ see [unur_srou_set_pdfatmode], page 127

r = <double>
⇒ see [unur_srou_set_r], page 127

usemirror [= <int>]
⇒ see [unur_srou_set_usemirror], page 127

usesqueeze [= <int>]
⇒ see [unur_srou_set_usesqueeze], page 127

verify [= <int>]
⇒ see [unur_srou_set_verify], page 128

• method = ssr ⇒ unur_ssr_new (see Section 5.3.14 [SSR], page 129)

cdfatmode = <double>
⇒ see [unur_ssr_set_cdfatmode], page 130

pdfatmode = <double>
⇒ see [unur_ssr_set_pdfatmode], page 130

usesqueeze [= <int>]
⇒ see [unur_ssr_set_usesqueeze], page 130

verify [= <int>]
⇒ see [unur_ssr_set_verify], page 130

• method = tabl ⇒ unur_tabl_new (see Section 5.3.15 [TABL], page 131)

areafraction = <double>
⇒ see [unur_tabl_set_areafraction], page 133

boundary = <double>, <double> | (<list>)
⇒ see [unur_tabl_set_boundary], page 134

cpoints = <int> [, (<list>)] | (<list>)
⇒ see [unur_tabl_set_cpoints], page 132

darsfactor = <double>
⇒ see [unur_tabl_set_darsfactor], page 133

guidefactor = <double>
⇒ see [unur_tabl_set_guidefactor], page 134

52 UNU.RAN User Manual

max_intervals [= <int>]
⇒ see [unur_tabl_set_max_intervals], page 134

max_sqhratio = <double>
⇒ see [unur_tabl_set_max_sqhratio], page 133

nstp [= <int>]
⇒ see [unur_tabl_set_nstp], page 132

pedantic [= <int>]
⇒ see [unur_tabl_set_pedantic], page 135

slopes = (<list>), <int>
⇒ see [unur_tabl_set_slopes], page 134

usedars [= <int>]
⇒ see [unur_tabl_set_usedars], page 133

useear [= <int>]
⇒ see [unur_tabl_set_useear], page 132

variant_ia [= <int>]
⇒ see [unur_tabl_set_variant_ia], page 132

variant_splitmode = <unsigned>
⇒ see [unur_tabl_set_variant_splitmode], page 133

verify [= <int>]
⇒ see [unur_tabl_set_verify], page 135

• method = tdr ⇒ unur_tdr_new (see Section 5.3.16 [TDR], page 136)

c = <double>
⇒ see [unur_tdr_set_c], page 137

cpoints = <int> [, (<list>)] | (<list>)
⇒ see [unur_tdr_set_cpoints], page 138

darsfactor = <double>
⇒ see [unur_tdr_set_darsfactor], page 138

guidefactor = <double>
⇒ see [unur_tdr_set_guidefactor], page 139

max_intervals [= <int>]
⇒ see [unur_tdr_set_max_intervals], page 139

max_sqhratio = <double>
⇒ see [unur_tdr_set_max_sqhratio], page 139

pedantic [= <int>]
⇒ see [unur_tdr_set_pedantic], page 140

reinit_ncpoints [= <int>]
⇒ see [unur_tdr_set_reinit_ncpoints], page 138

reinit_percentiles = <int> [, (<list>)] | (<list>)
⇒ see [unur_tdr_set_reinit_percentiles], page 138

usecenter [= <int>]
⇒ see [unur_tdr_set_usecenter], page 139

Chapter 3: String Interface 53

usedars [= <int>]
⇒ see [unur_tdr_set_usedars], page 137

usemode [= <int>]
⇒ see [unur_tdr_set_usemode], page 139

variant_gw
⇒ see [unur_tdr_set_variant_gw], page 137

variant_ia
⇒ see [unur_tdr_set_variant_ia], page 137

variant_ps
⇒ see [unur_tdr_set_variant_ps], page 137

verify [= <int>]
⇒ see [unur_tdr_set_verify], page 140

• method = utdr ⇒ unur_utdr_new (see Section 5.3.17 [UTDR], page 141)

cpfactor = <double>
⇒ see [unur_utdr_set_cpfactor], page 141

deltafactor = <double>
⇒ see [unur_utdr_set_deltafactor], page 141

pdfatmode = <double>
⇒ see [unur_utdr_set_pdfatmode], page 141

verify [= <int>]
⇒ see [unur_utdr_set_verify], page 142

• method = vempk ⇒ unur_vempk_new (see Section 5.7.1 [VEMPK], page 169)

smoothing = <double>
⇒ see [unur_vempk_set_smoothing], page 169

varcor [= <int>]
⇒ see [unur_vempk_set_varcor], page 169

• method = vnrou ⇒ unur_vnrou_new (see Section 5.5.3 [VNROU], page 155)

r = <double>
⇒ see [unur_vnrou_set_r], page 156

v = <double>
⇒ see [unur_vnrou_set_v], page 156

verify [= <int>]
⇒ see [unur_vnrou_set_verify], page 156

54 UNU.RAN User Manual

3.5 Uniform RNG String

The value of the urng key is passed to the PRNG interface (see PRNG manual for details).
However it only works when using the PRNG library is enabled, see Section 1.2 [Installation],
page 3 for details. There are no other keys.

IMPORTANT: UNU.RAN creates a new uniform random number generator for the generator
object. The pointer to this uniform generator has to be read and saved via a unur_get_urng
call in order to clear the memory before the UNU.RAN generator object is destroyed.

If this block is omitted the UNU.RAN default generator is used (which must not be de-
stroyed).

http://statistik.wu-wien.ac.at/prng/manual/

Chapter 4: Handling distribution objects 55

4 Handling distribution objects

Objects of type UNUR_DISTR are used for handling distributions. All data about a distribution
are stored in this object. UNU.RAN provides functions that return instances of such objects
for standard distributions (see Chapter 7 [Standard distributions], page 205). It is then possible
to change these distribution objects by various set calls. Moreover, it is possible to build a
distribution object entirely from scratch. For this purpose there exists unur_distr_<type>_new
calls that return an empty object of this type for each object type (eg. univariate contiuous)
which can be filled with the appropriate set calls.

UNU.RAN distinguishes between several types of distributions, each of which has its own
sets of possible parameters (for details see the corresponding sections):

− continuous univariate distributions
− continuous univariate order statistics
− continuous empirical univariate distributions
− continuous multivariate distributions
− continuous empirical multivariate distributions
− matrix distributions
− discrete univariate distributions

Notice that there are essential data about a distribution, eg. the PDF, a list of (shape,
scale, location) parameters for the distribution, and the domain of (the possibly truncated)
distribution. And there exist parameters that are/can be derived from these, eg. the mode
of the distribution or the area below the given PDF (which need not be normalized for many
methods). UNU.RAN keeps track of parameters which are known. Thus if one of the essential
parameters is changed all derived parameters are marked as unknown and must be set again if
these are required for the chosen generation method. Additionally to set calls there are calls
for updating derived parameters for objects provided by the UNU.RAN library of standard
distributions (one for each parameter to avoid computational overhead since not all parameters
are required for all generator methods).

All parameters of distribution objects can be read by corresponding get calls.

Every generator object has its own copy of a distribution object which is accessible by a
unur_get_distr call. Thus the parameter for this distribution can be read. However, never
extract the distribution object out of a generator object and run one of the set calls on it to
modify the distribution. (How should the poor generator object know what has happend?)
Instead there exist calls for each of the generator methods that change particular parameters of
the internal copy of the distribution object.

How To Use

UNU.RAN collects all data required for a particular generation method in a distribution object.
There are two ways to get an instance of a distributions object:

1. Build a distribtion from scratch, by means of the corresponding unur_distr_<type>_new
call, where <type> is the type of the distribution as listed in the below subsections.

2. Use the corresponding unur_distr_<name>_new call to get prebuild distribution from the
UNU.RAN library of standard distributions. Here <name> is the name of the standard
distribution in Chapter 7 [Standard distributions], page 205.

In either cases the corresponding unur_distr_<type>_set_<param> calls to set the necessary
parameters <param> (case 1), or change the values of the standard distribution in case 2 (if this
makes sense for you). In the latter case <type> is the type to which the standard distribution

56 UNU.RAN User Manual

belongs to. These set calls return UNUR_SUCCESS when the correspondig parameter has been
set successfully. Otherwise an error code is returned.

The parameters of a distribution are divided into essential and derived parameters.
Notice, that there are some restrictions in setting parameters to avoid possible confusions.

Changing essential parameters marks derived parameters as unknown. Some of the parameters
cannot be changed any more when already set; some parameters block each others. In such a
case a new instance of a distribution object has to be build.

Additionally unur_distr_<type>_upd_<param> calls can be used for updating derived pa-
rameters for objects provided by the UNU.RAN library of standard distributions.

All parameters of a distribution object get be read by means of unur_distr_<type>_get_
<param> calls.

Every distribution object be identified by its name which is a string of arbitrary charac-
ters provided by the user. For standard distribution it is automatically set to <name> in the
corresponding new call. It can be changed to any other string.

Chapter 4: Handling distribution objects 57

4.1 Functions for all kinds of distribution objects

The calls in this section can be applied to all distribution objects.
− Destroy free an instance of a generator object.
− Ask for the type of a generator object.
− Ask for the dimension of a generator object.
− Deal with the name (identifier string) of a generator object.

Function reference

void unur_distr_free (UNUR DISTR* distribution)
Destroy the distribution object.

int unur_distr_set_name (UNUR DISTR* distribution, const char* name)
const char* unur_distr_get_name (const UNUR_DISTR* distribution)

Set and get name of distribution. The name can be an arbitrary character string. It can
be used to identify generator objects for the user. It is used by UNU.RAN when printing
information of the distribution object into a log files.

int unur_distr_get_dim (const UNUR_DISTR* distribution)
Get number of components of a random vector (its dimension) the distribution.
For univariate distributions it returns dimension 1.
For matrix distributions it returns the number of components (i.e., number of rows times
number of columns). When the respective numbers of rows and columns are needed use
unur_distr_matr_get_dim instead.

unsigned int unur_distr_get_type (const UNUR_DISTR* distribution)
Get type of distribution. Possible types are

UNUR_DISTR_CONT
univariate continuous distribution

UNUR_DISTR_CEMP
empirical continuous univariate distribution (i.e. a sample)

UNUR_DISTR_CVEC
continuous mulitvariate distribution

UNUR_DISTR_CVEMP
empirical continuous multivariate distribution (i.e. a vector sample)

UNUR_DISTR_DISCR
discrete univariate distribution

UNUR_DISTR_MATR
matrix distribution

Alternatively the unur_distr_is_<TYPE> calls can be used.

int unur_distr_is_cont (const UNUR_DISTR* distribution)
TRUE if distribution is a continuous univariate distribution.

int unur_distr_is_cvec (const UNUR_DISTR* distribution)
TRUE if distribution is a continuous multivariate distribution.

58 UNU.RAN User Manual

int unur_distr_is_cemp (const UNUR_DISTR* distribution)
TRUE if distribution is an empirical continuous univariate distribution, i.e. a sample.

int unur_distr_is_cvemp (const UNUR_DISTR* distribution)
TRUE if distribution is an empirical continuous multivariate distribution.

int unur_distr_is_discr (const UNUR_DISTR* distribution)
TRUE if distribution is a discrete univariate distribution.

int unur_distr_is_matr (const UNUR_DISTR* distribution)
TRUE if distribution is a matrix distribution.

int unur_distr_set_extobj (UNUR DISTR* distribution, const void*
extobj)

Store a pointer to an external object. This might be usefull if the PDF, PMF, CDF or other
functions used to implement a particular distribution a parameter set that cannot be stored
as doubles (e.g. pointers to some structure that holds information of the distribution).
Important: When UNU.RAN copies this distribution object into the generator object, then
the address extobj that this pointer contains is simply copied. Thus the generator holds an
address of a non-private object! Once the generator object has been created any change in
the external object might effect the generator object.
Warning: External objects must be used with care. Once the generator object has been
created or the distribution object has been copied you must not destroy this external object.

const void* unur_distr_get_extobj (const UNUR_DISTR* distribution)
Get the pointer to the external object.
Important: Changing this object must be done with with extreme care.

Chapter 4: Handling distribution objects 59

4.2 Continuous univariate distributions

The calls in this section can be applied to continuous univariate distributions.

− Create a new instance of a continuous univariate distribution.

− Handle and evaluate distribution function (CDF, cdf), probability density function (PDF,
pdf) and the derivative of the density function (dpdf). The following is important:

. pdf need not be normalized, i.e., any integrable nonnegative function can be used.

. dpdf must the derivate of the function provided as pdf.

. cdf must be a distribution function, i.e. it must be monotonically increasing with
range [0,1].

. If cdf and pdf are used together for a pariticular generation method, then pdf must
be the derivate of the cdf, i.e., it must be normalized.

− Handle and evaluate the logarithm of the probability density function (logPDF, logpdf)
and the derivative of the logarithm of the density function (dlogpdf).

Some methods use the logarithm of the density if available.

− Set (and change) parameters (pdfparams) and the area below the graph (pdfarea) of the
given density.

− Set the mode (or pole) of the distribution.

− Set the center of the distribution. It is used by some generation methods to adjust the
parameters of the generation algorithms to gain better performance. It can be seens as the
location of the “central part” of the distribution.

− Some generation methods require the hazard rate (hr) of the distribution instead of its pdf.

− Alternatively, cdf, pdf, dpdf, and hr can be provided as strings instead of function point-
ers.

− Set the domain of the distribution. Notice that the library also can handle truncated
distributions, i.e., distributions that are derived from (standard) distributions by simply
restricting its domain to a subset. However, there is a subtle difference between changing the
domain of a distribution object by a unur_distr_cont_set_domain call and changing the
(truncated) domain for an existing generator object. The domain of the distribution object
is used to create the generator object with hats, squeezes, tables, etc. Whereas truncating
the domain of an existing generator object need not necessarily require a recomputation
of these data. Thus by a unur_<method>_chg_truncated call (if available) the sampling
region is restricted to the subset of the domain of the given distribution object. However,
generation methods that require a recreation of the generator object when the domain
is changed have a unur_<method>_chg_domain call instead. For these calls there are of
course no restrictions on the given domain (i.e., it is possible to increase the domain of the
distribution) (see Chapter 5 [Methods], page 87, for details).

Function reference

UNUR_DISTR* unur_distr_cont_new (void)
Create a new (empty) object for univariate continuous distribution.

Essential parameters

int unur_distr_cont_set_pdf (UNUR DISTR* distribution,
UNUR FUNCT CONT* pdf)

int unur_distr_cont_set_dpdf (UNUR DISTR* distribution,
UNUR FUNCT CONT* dpdf)

60 UNU.RAN User Manual

int unur_distr_cont_set_cdf (UNUR DISTR* distribution,
UNUR FUNCT CONT* cdf)

Set respective pointer to the probability density function (PDF), the derivative of the prob-
ability density function (dPDF) and the cumulative distribution function (CDF) of the dis-
tribution. Each of these function pointers must be of type double funct(double x, const
UNUR_DISTR *distr).
Due to the fact that some of the methods do not require a normalized PDF the following is
important:
− The given CDF must be the cumulative distribution function of the (non-truncated)

distribution. If a distribution from the UNU.RAN library of standard distributions (see
Chapter 7 [Standard distributions], page 205) is truncated, there is no need to change
the CDF.

− If both the CDF and the PDF are used (for a method or for order statistics), the PDF
must be the derivative of the CDF. If a truncated distribution for one of the standard
distributions from the UNU.RAN library of standard distributions is used, there is no
need to change the PDF.

− If the area below the PDF is required for a given distribution it must be given by
the unur_distr_cont_set_pdfarea call. For a truncated distribution this must be of
course the integral of the PDF in the given truncated domain. For distributions from
the UNU.RAN library of standard distributions this is done automatically by the unur_
distr_cont_upd_pdfarea call.

It is important to note that all these functions must return a result for all values of x. Eg., if
the domain of a given PDF is the interval [-1,1], then the given function must return 0.0 for
all points outside this interval. In case of an overflow the PDF should return UNUR_INFINITY.
It is not possible to change such a function. Once the PDF or CDF is set it cannot be
overwritten. This also holds when the logPDF is given or when the PDF is given by the
unur_distr_cont_set_pdfstr or unur_distr_cont_set_logpdfstr call. A new distribu-
tion object has to be used instead.

UNUR_FUNCT_CONT* unur_distr_cont_get_pdf (const UNUR_DISTR*
distribution)

UNUR_FUNCT_CONT* unur_distr_cont_get_dpdf (const UNUR_DISTR*
distribution)

UNUR_FUNCT_CONT* unur_distr_cont_get_cdf (const UNUR_DISTR*
distribution)

Get the respective pointer to the PDF, the derivative of the PDF and the CDF of the
distribution. The pointer is of type double funct(double x, const UNUR_DISTR *distr).
If the corresponding function is not available for the distribution, the NULL pointer is returned.

double unur_distr_cont_eval_pdf (double x, const UNUR_DISTR*
distribution)

double unur_distr_cont_eval_dpdf (double x, const UNUR_DISTR*
distribution)

double unur_distr_cont_eval_cdf (double x, const UNUR_DISTR*
distribution)

Evaluate the PDF, derivative of the PDF and the CDF, respectively, at x. Notice that
distribution must not be the NULL pointer. If the corresponding function is not available for
the distribution, UNUR_INFINITY is returned and unur_errno is set to UNUR_ERR_DISTR_DATA.
IMPORTANT: In the case of a truncated standard distribution these calls always return the
respective values of the untruncated distribution!

Chapter 4: Handling distribution objects 61

int unur_distr_cont_set_logpdf (UNUR DISTR* distribution,
UNUR FUNCT CONT* logpdf)

int unur_distr_cont_set_dlogpdf (UNUR DISTR* distribution,
UNUR FUNCT CONT* dlogpdf)

int unur_distr_cont_set_logcdf (UNUR DISTR* distribution,
UNUR FUNCT CONT* logcdf)

UNUR_FUNCT_CONT* unur_distr_cont_get_logpdf (const UNUR_DISTR*
distribution)

UNUR_FUNCT_CONT* unur_distr_cont_get_dlogpdf (const UNUR_DISTR*
distribution)

UNUR_FUNCT_CONT* unur_distr_cont_get_logcdf (const UNUR_DISTR*
distribution)

double unur_distr_cont_eval_logpdf (double x, const UNUR_DISTR*
distribution)

double unur_distr_cont_eval_dlogpdf (double x, const UNUR_DISTR*
distribution)

double unur_distr_cont_eval_logcdf (double x, const UNUR_DISTR*
distribution)

Analogous calls for the logarithm of the density distribution functions.

int unur_distr_cont_set_pdfstr (UNUR DISTR* distribution, const char*
pdfstr)

This function provides an alternative way to set a PDF and its derivative of the distribution.
pdfstr is a character string that contains the formula for the PDF, see Section 3.3 [Function
String], page 43, for details. The derivative of the given PDF is computed automatically. See
also the remarks for the unur_distr_cont_set_pdf call.
It is not possible to call this funtion twice or to call this function after a unur_distr_cont_
set_pdf call.

int unur_distr_cont_set_cdfstr (UNUR DISTR* distribution, const char*
cdfstr)

This function provides an alternative way to set a CDF; analogously to the unur_distr_cont_
set_pdfstr call. The PDF and its derivative of the given CDF are computed automatically.

char* unur_distr_cont_get_pdfstr (const UNUR_DISTR* distribution)
char* unur_distr_cont_get_dpdfstr (const UNUR_DISTR* distribution)
char* unur_distr_cont_get_cdfstr (const UNUR_DISTR* distribution)

Get pointer to respective string for PDF, derivate of PDF, and CDF of distribution that is
given as string (instead of a function pointer). This call allocates memory to produce this
string. It should be freed when it is not used any more.

int unur_distr_cont_set_pdfparams (UNUR DISTR* distribution, const
double* params, int n_params)

Sets array of parameters for distribution. There is an upper limit for the number of parameters
n_params. It is given by the macro UNUR_DISTR_MAXPARAMS in ‘unuran_config.h’. (It is set
to 5 by default but can be changed to any appropriate nonnegative number.) If n params
is negative or exceeds this limit no parameters are copied into the distribution object and
unur_errno is set to UNUR_ERR_DISTR_NPARAMS.
For standard distributions from the UNU.RAN library the parameters are checked. Moreover,
the domain is updated automatically unless it has been changed before by a unur_distr_
cont_set_domain call. If the given parameters are invalid for the standard distribution, then

62 UNU.RAN User Manual

no parameters are set and an error code is returned. Notice, that the given parameter list for
such a distribution is handled in the same way as in the corresponding new calls, i.e. optional
parameters for the PDF that are not present in the given list are (re-)set to their default
values.
Important: If the parameters of a distribution from the UNU.RAN library of standard dis-
tributions (see Chapter 7 [Standard distributions], page 205) are changed, then neither its
mode nor the normalization constant are updated. Please use the respective calls unur_
distr_cont_upd_mode and unur_distr_cont_upd_pdfarea. Moreover, if the domain has
been changed by a unur_distr_cont_set_domain it is not automatically updated, either.
Updating the normalization constant is in particular very important, when the CDF of the
distribution is used.

int unur_distr_cont_get_pdfparams (const UNUR_DISTR* distribution, const
double** params)

Get number of parameters of the PDF and set pointer params to array of parameters. If no
parameters are stored in the object, an error code is returned and params is set to NULL.
Important: Do not change the entries in params!

int unur_distr_cont_set_pdfparams_vec (UNUR DISTR* distribution, int
par, const double* param_vec, int n_param_vec)

This function provides an interface for additional vector parameters for a continuous distri-
bution.
It sets the parameter with number par. par indicates directly which of the parameters is set
and must be a number between 0 and UNUR_DISTR_MAXPARAMS-1 (the upper limit of possible
parameters defined in ‘unuran_config.h’; it is set to 5 but can be changed to any appropriate
nonnegative number.)
The entries of a this parameter are given by the array param vec of size n param vec.
If param vec is NULL then the corresponding entry is cleared.
If an error occurs no parameters are copied into the parameter object unur_errno is set to
UNUR_ERR_DISTR_DATA.

int unur_distr_cont_get_pdfparams_vec (const UNUR_DISTR* distribution,
int par, const double** param_vecs)

Get parameter of the PDF with number par. The pointer to the parameter array is stored in
param vecs, its size is returned by the function. If the requested parameter is not set, then
an error code is returned and params is set to NULL.
Important: Do not change the entries in param vecs!

int unur_distr_cont_set_logpdfstr (UNUR DISTR* distribution, const
char* logpdfstr)

char* unur_distr_cont_get_logpdfstr (const UNUR_DISTR* distribution)
char* unur_distr_cont_get_dlogpdfstr (const UNUR_DISTR* distribution)
int unur_distr_cont_set_logcdfstr (UNUR DISTR* distribution, const

char* logcdfstr)
char* unur_distr_cont_get_logcdfstr (const UNUR_DISTR* distribution)

Analogous calls for the logarithm of the density and distribution functions.

int unur_distr_cont_set_domain (UNUR DISTR* distribution, double left,
double right)

Set the left and right borders of the domain of the distribution. This can also be used to
truncate an existing distribution. For setting the boundary to ±∞ use +/- UNUR_INFINITY.

Chapter 4: Handling distribution objects 63

If right is not strictly greater than left no domain is set and unur_errno is set to UNUR_ERR_
DISTR_SET.
Important: For some technical reasons it is assumed that the density is unimodal and thus
monotone on either side of the mode! This is used in the case when the given mode is outside
of the original domain. Then the mode is set to the corresponding boundary of the new
domain. If this result is not the desired it must be changed by using a unur_distr_cont_
set_mode call (or a unur_distr_cont_upd_mode call).

int unur_distr_cont_get_domain (const UNUR_DISTR* distribution, double*
left, double* right)

Get the left and right borders of the domain of the distribution. If the domain is not set +/-
UNUR_INFINITY is assumed and returned. No error is reported in this case.

int unur_distr_cont_get_truncated (const UNUR_DISTR* distribution,
double* left, double* right)

Get the left and right borders of the (truncated) domain of the distribution. For non-
truncated distribution this call is equivalent to the unur_distr_cont_get_domain call.
This call is only useful in connection with a unur_get_distr call to get the boundaries of
the sampling region of a generator object.

int unur_distr_cont_set_hr (UNUR DISTR* distribution,
UNUR FUNCT CONT* hazard)

Set pointer to the hazard rate (HR) of the distribution.
The hazard rate (or failure rate) is a mathematical way of describing aging. If the lifetime
X is a random variable with density f(x) and CDF F(x) the hazard rate h(x) is defined as
h(x) = f(x) / (1-F(x)). In other words, h(x) represents the (conditional) rate of failure of
a unit that has survived up to time x with probability 1-F(x). The key distribution is the
exponential distribution as it has constant hazard rate of value 1. Hazard rates tending to
infinity describe distributions with sub-exponential tails whereas distributions with hazard
rates tending to zero have heavier tails than the exponential distribution.
It is important to note that all these functions must return a result for all floats x. In case
of an overflow the PDF should return UNUR_INFINITY.
Important: Do not simply use f(x) / (1-F(x)), since this is numerically very unstable and
results in numerical noise if F(x) is (very) close to 1. Moreover, if the density f(x) is known
a generation method that uses the density is more appropriate.
It is not possible to change such a function. Once the HR is set it cannot be overwritten.
This also holds when the HR is given by the unur_distr_cont_set_hrstr call. A new
distribution object has to be used instead.

UNUR_FUNCT_CONT* unur_distr_cont_get_hr (const UNUR_DISTR*
distribution)

Get the pointer to the hazard rate of the distribution. The pointer is of type double
funct(double x, const UNUR_DISTR *distr). If the corresponding function is not avail-
able for the distribution, the NULL pointer is returned.

double unur_distr_cont_eval_hr (double x, const UNUR_DISTR* distribution)
Evaluate the hazard rate at x. Notice that distribution must not be the NULL pointer. If the
corresponding function is not available for the distribution, UNUR_INFINITY is returned and
unur_errno is set to UNUR_ERR_DISTR_DATA.

64 UNU.RAN User Manual

int unur_distr_cont_set_hrstr (UNUR DISTR* distribution, const char*
hrstr)

This function provides an alternative way to set a hazard rate and its derivative of the
distribution. hrstr is a character string that contains the formula for the HR, see Section 3.3
[Function String], page 43, for details. See also the remarks for the unur_distr_cont_set_hr
call.

It is not possible to call this funtion twice or to call this function after a unur_distr_cont_
set_hr call.

char* unur_distr_cont_get_hrstr (const UNUR_DISTR* distribution)
Get pointer to string for HR of distribution that is given via the string interface. This call
allocates memory to produce this string. It should be freed when it is not used any more.

Derived parameters

The following paramters must be set whenever one of the essential parameters has been set or
changed (and the parameter is required for the chosen method).

int unur_distr_cont_set_mode (UNUR DISTR* distribution, double mode)
Set mode of distribution. The mode must be contained in the domain of distribution. Oth-
erwise the mode is not set and unur_errno is set to UNUR_ERR_DISTR_SET. For distributions
with unbounded density, this call is used to set the pole of the PDF. Notice that the PDF
should then return UNUR INFINITY at the pole. Notice that the mode is adjusted when
the domain is set, see the remark for the unur_distr_cont_set_domain call.

int unur_distr_cont_upd_mode (UNUR DISTR* distribution)
Recompute the mode of the distribution. This call works properly for distribution objects
from the UNU.RAN library of standard distributions when the corresponding function is
available. Otherwise a (slow) numerical mode finder based on Brent’s algorithm is used. If
it failes unur_errno is set to UNUR_ERR_DISTR_DATA.

double unur_distr_cont_get_mode (UNUR DISTR* distribution)
Get mode of distribution. If the mode is not marked as known, unur_distr_cont_upd_
mode is called to compute the mode. If this is not successful UNUR_INFINITY is returned and
unur_errno is set to UNUR_ERR_DISTR_GET. (There is no difference between the case where
no routine for computing the mode is available and the case where no mode exists for the
distribution at all.)

int unur_distr_cont_set_center (UNUR DISTR* distribution, double
center)

Set center of the distribution. The center is used by some methods to shift the distribution
in order to decrease numerical round-off error. If not given explicitly a default is used.

Important: This call does not check whether the center is contained in the given domain.
Similarly unur_distr_cont_set_domain does not adjust the center properly.

Default: The mode, if set by a unur_distr_cont_set_mode or unur_distr_cont_upd_mode
call; otherwise 0.

double unur_distr_cont_get_center (const UNUR_DISTR* distribution)
Get center of the distribution. It always returns some point as there always exists a default
for the center, see unur_distr_cont_set_center.

Chapter 4: Handling distribution objects 65

int unur_distr_cont_set_pdfarea (UNUR DISTR* distribution, double area)
Set the area below the PDF. If area is non-positive, no area is set and unur_errno is set to
UNUR_ERR_DISTR_SET.
For a distribution object created by the UNU.RAN library of standard distributions you
always should use the unur_distr_cont_upd_pdfarea. Otherwise there might be ambiguous
side-effects.

int unur_distr_cont_upd_pdfarea (UNUR DISTR* distribution)
Recompute the area below the PDF of the distribution. It only works for distribution objects
from the UNU.RAN library of standard distributions when the corresponding function is
available. Otherwise unur_errno is set to UNUR_ERR_DISTR_DATA.
This call also sets the normalization constant such that the given PDF is the derivative of a
given CDF, i.e. the area is 1. However, for truncated distributions the area is smaller than
1.
The call does not work for distributions from the UNU.RAN library of standard distributions
with truncated domain when the CDF is not available.

double unur_distr_cont_get_pdfarea (UNUR DISTR* distribution)
Get the area below the PDF of the distribution. If this area is not known,
unur_distr_cont_upd_pdfarea is called to compute it. If this is not successful UNUR_
INFINITY is returned and unur_errno is set to UNUR_ERR_DISTR_GET.

66 UNU.RAN User Manual

4.3 Continuous univariate order statistics

These are special cases of a continuous univariate distributions and thus they have most of these
parameters (with the exception that functions cannot be changed). Additionally,
− there is a call to extract the underlying distribution,
− and a call to handle the rank of the order statistics.

Function reference

UNUR_DISTR* unur_distr_corder_new (const UNUR_DISTR* distribution, int n,
int k)

Create an object for order statistics of sample size n and rank k. distribution must be a
pointer to a univariate continuous distribution. The resulting generator object is of the same
type as of a unur_distr_cont_new call. (However, it cannot be used to make an order
statistics out of an order statistics.)
To have a PDF for the order statistics, the given distribution object must contain a CDF
and a PDF. Moreover, it is assumed that the given PDF is the derivative of the given CDF.
Otherwise the area below the PDF of the order statistics is not computed correctly.
Important: There is no warning when the computed area below the PDF of the order statistics
is wrong.

const UNUR_DISTR* unur_distr_corder_get_distribution (const UNUR_DISTR*
distribution)

Get pointer to distribution object for underlying distribution.

Essential parameters

int unur_distr_corder_set_rank (UNUR DISTR* distribution, int n, int k)
Change sample size n and rank k of order statistics. In case of invalid data, no parameters
are changed. The area below the PDF can be set to that of the underlying distribution by a
unur_distr_corder_upd_pdfarea call.

int unur_distr_corder_get_rank (const UNUR_DISTR* distribution, int* n,
int* k)

Get sample size n and rank k of order statistics. In case of error an error code is returned.

Additionally most of the set and get calls for continuous univariate distributions work. The
most important exceptions are that the PDF and CDF cannot be changed and unur_distr_
cont_upd_mode uses in any way a (slow) numerical method that might fail.

UNUR_FUNCT_CONT* unur_distr_corder_get_pdf (UNUR DISTR* distribution)
UNUR_FUNCT_CONT* unur_distr_corder_get_dpdf (UNUR DISTR*

distribution)
UNUR_FUNCT_CONT* unur_distr_corder_get_cdf (UNUR DISTR* distribution)

Get the respective pointer to the PDF, the derivative of the PDF and the CDF of the distribu-
tion, respectively. The pointer is of type double funct(double x, UNUR_DISTR *distr). If
the corresponding function is not available for the distribution, the NULL pointer is returned.
See also unur_distr_cont_get_pdf. (Macro)

double unur_distr_corder_eval_pdf (double x, UNUR DISTR* distribution)
double unur_distr_corder_eval_dpdf (double x, UNUR DISTR* distribution)
double unur_distr_corder_eval_cdf (double x, UNUR DISTR* distribution)

Evaluate the PDF, derivative of the PDF. and the CDF, respectively, at x. Notice that
distribution must not be the NULL pointer. If the corresponding function is not available for

Chapter 4: Handling distribution objects 67

the distribution, UNUR_INFINITY is returned and unur_errno is set to UNUR_ERR_DISTR_DATA.
See also unur_distr_cont_eval_pdf. (Macro)

IMPORTANT: In the case of a truncated standard distribution these calls always return the
respective values of the untruncated distribution!

int unur_distr_corder_set_pdfparams (UNUR DISTR* distribution, double*
params, int n_params)

Set array of parameters for underlying distribution. See unur_distr_cont_set_pdfparams
for details. (Macro)

int unur_distr_corder_get_pdfparams (UNUR DISTR* distribution, double**
params)

Get number of parameters of the PDF of the underlying distribution and set pointer params
to array of parameters. See unur_distr_cont_get_pdfparams for details. (Macro)

int unur_distr_corder_set_domain (UNUR DISTR* distribution, double
left, double right)

Set the left and right borders of the domain of the distribution. See unur_distr_cont_set_
domain for details. (Macro)

int unur_distr_corder_get_domain (UNUR DISTR* distribution, double*
left, double* right)

Get the left and right borders of the domain of the distribution. See unur_distr_cont_get_
domain for details. (Macro)

int unur_distr_corder_get_truncated (UNUR DISTR* distribution, double*
left, double* right)

Get the left and right borders of the (truncated) domain of the distribution. See unur_distr_
cont_get_truncated for details. (Macro)

Derived parameters

The following paramters must be set whenever one of the essential parameters has been set or
changed (and the parameter is required for the chosen method).

int unur_distr_corder_set_mode (UNUR DISTR* distribution, double mode)
Set mode of distribution. See also unur_distr_corder_set_mode. (Macro)

double unur_distr_corder_upd_mode (UNUR DISTR* distribution)
Recompute the mode of the distribution numerically. Notice that this routine is slow and
might not work properly in every case. See also unur_distr_cont_upd_mode for further
details. (Macro)

double unur_distr_corder_get_mode (UNUR DISTR* distribution)
Get mode of distribution. See unur_distr_cont_get_mode for details. (Macro)

int unur_distr_corder_set_pdfarea (UNUR DISTR* distribution, double
area)

Set the area below the PDF. See unur_distr_cont_set_pdfarea for details. (Macro)

68 UNU.RAN User Manual

double unur_distr_corder_upd_pdfarea (UNUR DISTR* distribution)
Recompute the area below the PDF of the distribution. It only works for order statistics
for distribution objects from the UNU.RAN library of standard distributions when the cor-
responding function is available. unur_distr_cont_upd_pdfarea assumes that the PDF of
the underlying distribution is normalized, i.e. it is the derivative of its CDF. Otherwise the
computed area is wrong and there is no warning about this failure. See unur_distr_cont_
upd_pdfarea for further details. (Macro)

double unur_distr_corder_get_pdfarea (UNUR DISTR* distribution)
Get the area below the PDF of the distribution. See unur_distr_cont_get_pdfarea for
details. (Macro)

Chapter 4: Handling distribution objects 69

4.4 Continuous empirical univariate distributions

Empirical univariate distributions are derived from observed data. There are two ways to create
such a generator object:
1. By a list of raw data by means of a unur_distr_cemp_set_data call.
2. By a histogram (i.e. preprocessed data) by means of a unur_distr_cemp_set_hist call.

How these data are used to sample from the empirical distribution depends from the chosen
generation method.

Function reference

UNUR_DISTR* unur_distr_cemp_new (void)
Create a new (empty) object for empirical univariate continuous distribution.

Essential parameters

int unur_distr_cemp_set_data (UNUR DISTR* distribution, const double*
sample, int n_sample)

Set observed sample for empirical distribution.

int unur_distr_cemp_read_data (UNUR DISTR* distribution, const char*
filename)

Read data from file ‘filename’. It reads the first number from each line. Numbers are parsed
by means of the C standard routine strtod. Lines that do not start with +, -, ., or a digit
are ignored. (Beware of lines starting with a blank!)
In case of an error (file cannot be opened, invalid string for double in line) no data are copied
into the distribution object and an error code is returned.

int unur_distr_cemp_get_data (const UNUR_DISTR* distribution, const
double** sample)

Get number of samples and set pointer sample to array of observations. If no sample has
been given, an error code is returned and sample is set to NULL.
Important: Do not change the entries in sample!

int unur_distr_cemp_set_hist (UNUR DISTR* distribution, const double*
prob, int n_prob, double xmin, double xmax)

Set a histogram with bins of equal width. prob is an array of length n prob that contains
the probabilities for the bins (in ascending order). xmin and xmax give the lower and upper
bound of the histogram, respectively. The bins are assumed to have equal width.
Remark: This is shortcut for calling unur_distr_cemp_set_hist_prob and unur_distr_
cemp_set_hist_domain. Notice: All sampling methods either use raw data or histogram. It
is possible to set both types of data; however, it is not checked whether the given histogran
corresponds to possibly given raw data.

int unur_distr_cemp_set_hist_prob (UNUR DISTR* distribution, const
double* prob, int n_prob)

Set probabilities of a histogram with n prob bins. Hence prob must be an array of length
n prob that contains the probabilities for the bins in ascending order. It is important also
to set the location of the bins either with a unur_distr_cemp_set_hist_domain for bins of
equal width or unur_distr_cemp_set_hist_bins when the bins have different width.
Notice: All sampling methods either use raw data or histogram. It is possible to set both
types of data; however, it is not checked whether the given histogram corresponds to possibly
given raw data.

70 UNU.RAN User Manual

int unur_distr_cemp_set_hist_domain (UNUR DISTR* distribution, double
xmin, double xmax)

Set a domain of a histogram with bins of equal width. xmin and xmax give the lower and
upper bound of the histogram, respectively.

int unur_distr_cemp_set_hist_bins (UNUR DISTR* distribution, const
double* bins, int n_bins)

Set location of bins of a histogram with n bins bins. Hence bins must be an array of length
n bins. The domain of the distribution is automatically set by this call and overrides any calls
to unur_distr_cemp_set_hist_domain. Important: The probabilities of the bins of the dis-
tribution must be already be set by a unur_distr_cemp_set_hist_prob (or a unur_distr_
cemp_set_hist call) and the value of n bins must equal n prob+1 from the corresponding
value of the respective call.

Chapter 4: Handling distribution objects 71

4.5 Continuous multivariate distributions

The following calls handle multivariate distributions. However, the requirements of particular
generation methods is not as unique as for univariate distributions. Moreover, random vector
generation methods are still under development. The below functions are a first attempt to
handle this situation.

Notice that some of the parameters – when given carelessly – might contradict to others. For
example: Some methods require the marginal distribution and some methods need a standard-
ized form of the marginal distributions, where the actual mean and variance is stored in the
mean vector and the covariance matrix, respectively.

We also have to mention that some methods might abuse some of the parameters. Please
read the discription of the chosen sampling method carfully.

The following kind of calls exists:

− Create a new instance of a continuous multivariate distribution;

− Handle and evaluate probability density function (PDF, pdf) and the gradient of the density
function (dpdf). The following is important:

. pdf need not be normalized, i.e., any integrable nonnegative function can be used.

. dpdf must the derivate of the function provided as pdf.

− Handle and evaluate the logarithm of the probability density function (logPDF, logpdf)
and the gradient of the logarithm of the density function (dlogpdf).

Some methods use the logarithm of the density if available.

− Set (and change) parameters (pdfparams) and the volume below the graph (pdfvol) of the
given density.

− Set mode and mean of the distribution.

− Set the center of the distribution. It is used by some generation methods to adjust the
parameters of the generation algorithms to gain better performance. It can be seens as the
location of the “central part” of the distribution.

− Handle the covariance matrix of the distribution and its cholesky and invverse matrices.

− Set the rankcorrelation matrix of the distribution.

− Deal with marginal distributions.

− Set domain of the distribution.

Function reference

UNUR_DISTR* unur_distr_cvec_new (int dim)
Create a new (empty) object for multivariate continuous distribution. dim is the number of
components of the random vector (i.e. its dimension). It is also possible to use dimension
1. Notice, however, that this is treated as a distribution of random vectors with only one
component and not as a distribution of real numbers. For the latter unur_distr_cont_new
should be used to create an object for a univariate distribution.

Essential parameters

int unur_distr_cvec_set_pdf (UNUR DISTR* distribution,
UNUR FUNCT CVEC* pdf)

Set respective pointer to the PDF of the distribution. This function must be of type double
funct(const double *x, UNUR_DISTR *distr), where x must be a pointer to a double array
of appropriate size (i.e. of the same size as given to the unur_distr_cvec_new call).

72 UNU.RAN User Manual

It is not necessary that the given PDF is normalized, i.e. the integral need not be 1. Nev-
ertheless the volume below the PDF can be provided by a unur_distr_cvec_set_pdfvol
call.
It is not possible to change the PDF. Once the PDF is set it cannot be overwritten. This
also holds when the logPDF is given. A new distribution object has to be used instead.

int unur_distr_cvec_set_dpdf (UNUR DISTR* distribution,
UNUR VFUNCT CVEC* dpdf)

Set pointer to the gradient of the PDF. The type of this function must be int funct(double
*result, const double *x, UNUR_DISTR *distr), where result and x must be pointers to
double arrays of appropriate size (i.e. of the same size as given to the unur_distr_cvec_new
call). The gradient of the PDF is stored in the array result. The function should return an
error code in case of an error and must return UNUR_SUCCESS otherwise.
The given function must be the gradient of the function given by a unur_distr_cvec_set_
pdf call.
It is not possible to change the gradient of the PDF. Once the dPDF is set it cannot be
overwritten. This also holds when the gradient of the logPDF is given. A new distribution
object has to be used instead.

int unur_distr_cvec_set_pdpdf (UNUR DISTR* distribution,
UNUR FUNCTD CVEC* pdpdf)

Set pointer to partial derivatives of the PDF. The type of this function must be double
funct(const double *x, int coord, UNUR_DISTR *distr), where x must be a pointer to a
double array of appropriate size (i.e. of the same size as given to the unur_distr_cvec_new
call). coord is the coordinate for which the partial dervative should be computed.
Notice that coord must be an integer from {0,. . . ,dim-1}.
It is not possible to change the partial derivative of the PDF. Once the pdPDF is set it cannot
be overwritten. This also holds when the partial derivative of the logPDF is given. A new
distribution object has to be used instead.

UNUR_FUNCT_CVEC* unur_distr_cvec_get_pdf (const UNUR_DISTR*
distribution)

Get the pointer to the PDF of the distribution. The pointer is of type double funct(const
double *x, UNUR_DISTR *distr). If the corresponding function is not available for the dis-
tribution, the NULL pointer is returned.

UNUR_VFUNCT_CVEC* unur_distr_cvec_get_dpdf (const UNUR_DISTR*
distribution)

Get the pointer to the gradient of the PDF of the distribution. The pointer is of type
int double funct(double *result, const double *x, UNUR_DISTR *distr). If the corre-
sponding function is not available for the distribution, the NULL pointer is returned.

double unur_distr_cvec_eval_pdf (const double* x, UNUR DISTR*
distribution)

Evaluate the PDF of the distribution at x. x must be a pointer to a double array of appro-
priate size (i.e. of the same size as given to the unur_distr_cvec_new call) that contains
the vector for which the function has to be evaluated.
Notice that distribution must not be the NULL pointer. If the corresponding function is not
available for the distribution, UNUR_INFINITY is returned and unur_errno is set to UNUR_
ERR_DISTR_DATA.

Chapter 4: Handling distribution objects 73

int unur_distr_cvec_eval_dpdf (double* result, const double* x,
UNUR DISTR* distribution)

Evaluate the gradient of the PDF of the distribution at x. The result is stored in the double
array result. Both result and x must be pointer to double arrays of appropriate size (i.e. of
the same size as given to the unur_distr_cvec_new call).
Notice that distribution must not be the NULL pointer. If the corresponding function is not
available for the distribution, an error code is returned and unur_errno is set to UNUR_ERR_
DISTR_DATA (result is left unmodified).

double unur_distr_cvec_eval_pdpdf (const double* x, int coord,
UNUR DISTR* distribution)

Evaluate the partial derivative of the PDF of the distribution at x for the coordinate coord.
x must be a pointer to a double array of appropriate size (i.e. of the same size as given to
the unur_distr_cvec_new call) that contains the vector for which the function has to be
evaluated.
Notice that coord must be an integer from {0,. . . ,dim-1}.
Notice that distribution must not be the NULL pointer. If the corresponding function is not
available for the distribution, UNUR_INFINITY is returned and unur_errno is set to UNUR_
ERR_DISTR_DATA.

int unur_distr_cvec_set_logpdf (UNUR DISTR* distribution,
UNUR FUNCT CVEC* logpdf)

int unur_distr_cvec_set_dlogpdf (UNUR DISTR* distribution,
UNUR VFUNCT CVEC* dlogpdf)

int unur_distr_cvec_set_pdlogpdf (UNUR DISTR* distribution,
UNUR FUNCTD CVEC* pdlogpdf)

UNUR_FUNCT_CVEC* unur_distr_cvec_get_logpdf (const UNUR_DISTR*
distribution)

UNUR_VFUNCT_CVEC* unur_distr_cvec_get_dlogpdf (const UNUR_DISTR*
distribution)

double unur_distr_cvec_eval_logpdf (const double* x, UNUR DISTR*
distribution)

int unur_distr_cvec_eval_dlogpdf (double* result, const double* x,
UNUR DISTR* distribution)

double unur_distr_cvec_eval_pdlogpdf (const double* x, int coord,
UNUR DISTR* distribution)

Analogous calls for the logarithm of the density function.

int unur_distr_cvec_set_mean (UNUR DISTR* distribution, const double*
mean)

Set mean vector for multivariate distribution. mean must be a pointer to an array of size
dim, where dim is the dimension returned by unur_distr_get_dim. A NULL pointer for mean
is interpreted as the zero vector (0,. . . ,0).
Important: If the parameters of a distribution from the UNU.RAN library of standard dis-
tributions (see Chapter 7 [Standard distributions], page 205) are changed, then neither its
mode nor the normalization constant are updated. Please use the respective calls unur_
distr_cvec_upd_mode and unur_distr_cvec_upd_pdfvol.

const double* unur_distr_cvec_get_mean (const UNUR_DISTR* distribution)
Get the mean vector of the distribution. The function returns a pointer to an array of size
dim. If the mean vector is not marked as known the NULL pointer is returned and unur_errno
is set to UNUR_ERR_DISTR_GET.

74 UNU.RAN User Manual

Important: Do not modify the array that holds the mean vector!

int unur_distr_cvec_set_covar (UNUR DISTR* distribution, const double*
covar)

Set covariance matrix for multivariate distribution. covar must be a pointer to an array of
size dim x dim, where dim is the dimension returned by unur_distr_get_dim. The rows of
the matrix have to be stored consecutively in this array.

covar must be a variance-covariance matrix of the distribution, i.e. it must be symmetric and
positive definit and its diagonal entries (i.e. the variance of the components of the random
vector) must be strictly positive. The Cholesky factor is computed (and stored) to verify
the positive definiteness condition. Notice that the inverse of the given covariance matrix is
automatically computed when it is requested by some routine. Notice that the computation
of this inverse matrix is unstable in case of high correlations and/or high dimensions. Thus
it might fail and methods that require this inverse cannot be used. As an alternative the
inverse of the covariance matrix can be directly set by a unur_distr_cvec_set_covar_inv
call.

A NULL pointer for covar is interpreted as the identity matrix.

Important: This entry is abused in some methods which do not require the covariance matrix.
It is then used to perform some transformation to obtain better performance.

Important: In case of an error (e.g. because covar is not a valid covariance matrix) an error
code is returned. Moreover, the covariance matrix is not set and is marked as unknown. A
previously set covariance matrix is then no longer available.

Important: If the parameters of a distribution from the UNU.RAN library of standard dis-
tributions (see Chapter 7 [Standard distributions], page 205) are changed, then neither its
mode nor the normalization constant are updated. Please use the respective calls unur_
distr_cvec_upd_mode and unur_distr_cvec_upd_pdfvol. Remark: UNU.RAN does not
check whether the an eventually set covariance matrix and a rank-correlation matrix do not
contradict each other.

int unur_distr_cvec_set_covar_inv (UNUR DISTR* distribution, const
double* covar_inv)

Set inverse of the covariance matrix for multivariate distribution. covar inv must be a pointer
to an array of size dim x dim, where dim is the dimension returned by unur_distr_get_dim.
The rows of the matrix have to be stored consecutively in this array.

covar inv must be symmetric and positive definit. Only the symmetry of the matrix is
checked.

A NULL pointer for covar inv is interpreted as the identity matrix.

Important: In case of an error (because covar inv is not symetric) an error code is returned.
Moreover, the inverse of the covariance matrix is not set and is marked as unknown. A
previously set inverse matrix is then no longer available.

Remark: UNU.RAN does not check whether the given matrix is positive definit.

Remark: UNU.RAN does not check whether the matrix covar inv is the inverse of the even-
tually set covariance matrix.

const double* unur_distr_cvec_get_covar (const UNUR_DISTR*
distribution)

const double* unur_distr_cvec_get_cholesky (const UNUR_DISTR*
distribution)

Chapter 4: Handling distribution objects 75

const double* unur_distr_cvec_get_covar_inv (UNUR DISTR*
distribution)

Get covariance matrix of distribution, its Cholesky factor, and its inverse, respectively. The
function returns a pointer to an array of size dim x dim. The rows of the matrix are stored
consecutively in this array. If the requested matrix is not marked as known the NULL pointer
is returned and unur_errno is set to UNUR_ERR_DISTR_GET.

Important: Do not modify the array that holds the covariance matrix!

Remark: The inverse of the covariance matrix is computed if it is not already stored.

int unur_distr_cvec_set_rankcorr (UNUR DISTR* distribution, const
double* rankcorr)

Set rank-correlation matrix (Spearman’s correlation) for multivariate distribution. rankcorr
must be a pointer to an array of size dim x dim, where dim is the dimension returned by
unur_distr_get_dim. The rows of the matrix have to be stored consecutively in this array.

rankcorr must be a rank-correlation matrix of the distribution, i.e. it must be symmetric and
positive definite and its diagonal entries must be equal to 1.

The Cholesky factor is computed (and stored) to verify the positive definiteness condition.

A NULL pointer for rankcorr is interpreted as the identity matrix.

Important: In case of an error (e.g. because rankcorr is not a valid rank-correlation matrix)
an error code is returned. Moreover, the rank-correlation matrix is not set and is marked as
unknown. A previously set rank-correlation matrix is then no longer available.

Remark: UNU.RAN does not check whether the an eventually set covariance matrix and a
rank-correlation matrix do not contradict each other.

const double* unur_distr_cvec_get_rankcorr (const UNUR_DISTR*
distribution)

const double* unur_distr_cvec_get_rk_cholesky (const UNUR_DISTR*
distribution)

Get rank-correlation matrix and its cholesky factor, respectively, of distribution. The function
returns a pointer to an array of size dim x dim. The rows of the matrix are stored consecutively
in this array. If the requested matrix is not marked as known the NULL pointer is returned
and unur_errno is set to UNUR_ERR_DISTR_GET.

Important: Do not modify the array that holds the rank-correlation matrix!

int unur_distr_cvec_set_marginals (UNUR DISTR* distribution,
UNUR DISTR* marginal)

Sets marginal distributions of the given distribution to the same marginal distribution object.
The marginal distribution must be an instance of a continuous univariate distribution object.
Notice that the marginal distribution is copied into the distribution object.

int unur_distr_cvec_set_marginal_array (UNUR DISTR* distribution,
UNUR DISTR** marginals)

Analogously to the above unur_distr_cvec_set_marginals call. However, now an array
marginals of the pointers to each of the marginal distributions must be given. It must be
an array of size dim, where dim is the dimension returned by unur_distr_get_dim. Notice:
Local copies for each of the entries are stored in the distribution object. If some of these
entries are identical (i.e. contain the same pointer), then for each of these a new copy is
made.

76 UNU.RAN User Manual

int unur_distr_cvec_set_marginal_list (UNUR DISTR* distribution, ...)
Similar to the above unur_distr_cvec_set_marginal_array call. However, now the point-
ers to the particular marginal distributions can be given as parameter and does not require
an array of pointers. Additionally the given distribution objects are immediately destroyed.
Thus calls like unur_distr_normal can be used as arguments. (With unur_distr_cvec_
set_marginal_array the result of such call has to be stored in a pointer since it has to be
freed afterwarts to avoid memory leaks!)

The number of pointers to in the list of function arguments must be equal to the dimension
of the distribution, i.e. the dimension returned by unur_distr_get_dim. If one of the
given pointer to marginal distributions is the NULL pointer then the marginal distributions of
distribution are not set (or previous settings are not changed) and an error code is returned.

Important: All distribution objects given in the argument list are destroyed!

const UNUR_DISTR* unur_distr_cvec_get_marginal (const UNUR_DISTR*
distribution, int n)

Get pointer to the n-th marginal distribution object from the given multivariate distribution.
If this does not exist, NULL is returned. The marginal distributions are enumerated from 1
to dim, where dim is the dimension returned by unur_distr_get_dim.

int unur_distr_cvec_set_pdfparams (UNUR DISTR* distribution, const
double* params, int n_params)

Sets array of parameters for distribution. There is an upper limit for the number of parameters
n_params. It is given by the macro UNUR_DISTR_MAXPARAMS in ‘unuran_config.h’. (It is set
to 5 by default but can be changed to any appropriate nonnegative number.) If n params
is negative or exceeds this limit no parameters are copied into the distribution object and
unur_errno is set to UNUR_ERR_DISTR_NPARAMS.

For standard distributions from the UNU.RAN library the parameters are checked. Moreover,
the domain is updated automatically. If the given parameters are invalid for the standard
distribution, then no parameters are set and an error code is returned. Notice that the given
parameter list for such a distribution is handled in the same way as in the corresponding new
calls, i.e. optional parameters for the PDF that are not present in the given list are (re-)set
to their default values.

Important: If the parameters of a distribution from the UNU.RAN library of standard dis-
tributions (see Chapter 7 [Standard distributions], page 205) are changed, then neither its
mode nor the normalization constant are updated. Please use the respective calls unur_
distr_cvec_upd_mode and unur_distr_cvec_upd_pdfvol.

int unur_distr_cvec_get_pdfparams (const UNUR_DISTR* distribution, const
double** params)

Get number of parameters of the PDF and set pointer params to array of parameters. If no
parameters are stored in the object, an error code is returned and params is set to NULL.

Important: Do not change the entries in params!

int unur_distr_cvec_set_pdfparams_vec (UNUR DISTR* distribution, int
par, const double* param_vec, int n_params)

This function provides an interface for additional vector parameters for a multivariate distri-
bution besides mean vector and covariance matrix which have their own calls.

It sets the parameter with number par. par indicates directly which of the parameters is set
and must be a number between 0 and UNUR_DISTR_MAXPARAMS-1 (the upper limit of possible

Chapter 4: Handling distribution objects 77

parameters defined in ‘unuran_config.h’; it is set to 5 but can be changed to any appropriate
nonnegative number.)

The entries of a this parameter are given by the array param vec of size n params. Notice
that using this interface an An (n x m)-matrix has to be stored in an array of length n params
= n times m; where the rows of the matrix are stored consecutively in this array.

Due to great variety of possible parameters for a multivariate distribution there is no simpler
interface.

If param vec is NULL then the corresponding entry is cleared.

Important: If the parameters of a distribution from the UNU.RAN library of standard distri-
butions (see Chapter 7 [Standard distributions], page 205) are changed, then neither its mode
nor the normalization constant are updated. Please use the respective calls unur_distr_
cvec_upd_mode and unur_distr_cvec_upd_pdfvol. If an error occurs no parameters are
copied into the parameter object unur_errno is set to UNUR_ERR_DISTR_DATA.

int unur_distr_cvec_get_pdfparams_vec (const UNUR_DISTR* distribution,
int par, const double** param_vecs)

Get parameter of the PDF with number par. The pointer to the parameter array is stored in
param vecs, its size is returned by the function. If the requested parameter is not set, then
an error code is returned and params is set to NULL.

Important: Do not change the entries in param vecs!

int unur_distr_cvec_set_domain_rect (UNUR DISTR* distribution, const
double* lowerleft, const double* upperright)

Set rectangular domain for distribution with lowerleft and upperright vertices. Both must
be pointer to an array of the size returned by unur_distr_get_dim. A NULL pointer is
interpreted as the zero vector (0,. . . ,0). For setting a coordinate of the boundary to ±∞ use
+/- UNUR_INFINITY. The lowerleft vertex must be strictly smaller than upperright in each
component. Otherwise no domain is set and unur_errno is set to UNUR_ERR_DISTR_SET.

By default the domain of a distribution is unbounded. Thus one can use this call to truncate
an existing distribution.

Important: Changing the domain of distribution marks derived parameters like the mode or
the center as unknown and must be set after changing the domain. This is important for the
already set (or default) value for the center does not fall into the given domain. Notice that
calls of the PDF and derived functions return 0. when the parameter is not contained in the
domain.

int unur_distr_cvec_is_indomain (const double* x, const UNUR_DISTR*
distribution)

Check whether x falls into the domain of distribution.

Derived parameters

The following paramters must be set whenever one of the essential parameters has been set or
changed (and the parameter is required for the chosen method).

int unur_distr_cvec_set_mode (UNUR DISTR* distribution, const double*
mode)

Set mode of the distribution. mode must be a pointer to an array of the size returned by
unur_distr_get_dim. A NULL pointer for mode is interpreted as the zero vector (0,. . . ,0).

78 UNU.RAN User Manual

int unur_distr_cvec_upd_mode (UNUR DISTR* distribution)
Recompute the mode of the distribution. This call works properly for distribution objects
from the UNU.RAN library of standard distributions when the corresponding function is
available. If it failes unur_errno is set to UNUR_ERR_DISTR_DATA.

const double* unur_distr_cvec_get_mode (UNUR DISTR* distribution)
Get mode of the distribution. The function returns a pointer to an array of the size returned
by unur_distr_get_dim. If the mode is not marked as known the NULL pointer is returned
and unur_errno is set to UNUR_ERR_DISTR_GET. (There is no difference between the case
where no routine for computing the mode is available and the case where no mode exists for
the distribution at all.)
Important: Do not modify the array that holds the mode!

int unur_distr_cvec_set_center (UNUR DISTR* distribution, const double*
center)

Set center of the distribution. center must be a pointer to an array of the size returned by
unur_distr_get_dim. A NULL pointer for center is interpreted as the zero vector (0,. . . ,0).
The center is used by some methods to shift the distribution in order to decrease numerical
round-off error. If not given explicitly a default is used. Moreover, it is used as starting point
for several numerical search algorithm (e.g. for the mode). Then center must be a pointer
where the call to the PDF returns a non-zero value. In particular center must contained in
the domain of the distribution.
Default: The mode, if given by a unur_distr_cvec_set_mode call; else the mean, if given
by a unur_distr_cvec_set_mean call; otherwise the null vector (0,. . . ,0).

const double* unur_distr_cvec_get_center (UNUR DISTR* distribution)
Get center of the distribution. The function returns a pointer to an array of the size returned
by unur_distr_get_dim. It always returns some point as there always exists a default for
the center, see unur_distr_cvec_set_center. Important: Do not modify the array that
holds the center!

int unur_distr_cvec_set_pdfvol (UNUR DISTR* distribution, double
volume)

Set the volume below the PDF. If vol is non-positive, no volume is set and unur_errno is set
to UNUR_ERR_DISTR_SET.

int unur_distr_cvec_upd_pdfvol (UNUR DISTR* distribution)
Recompute the volume below the PDF of the distribution. It only works for distribution
objects from the UNU.RAN library of standard distributions when the corresponding function
is available. Otherwise unur_errno is set to UNUR_ERR_DISTR_DATA.
This call also sets the normalization constant such that the given PDF is the derivative of a
given CDF, i.e. the volume is 1.

double unur_distr_cvec_get_pdfvol (UNUR DISTR* distribution)
Get the volume below the PDF of the distribution. If this volume is not known,
unur_distr_cont_upd_pdfarea is called to compute it. If this is not successful UNUR_
INFINITY is returned and unur_errno is set to UNUR_ERR_DISTR_GET.

Chapter 4: Handling distribution objects 79

4.6 Continuous univariate full conditional distribution

Full conditional distribution for a given continuous multivariate distributiion. The condition is
a position vector and either a variable that is variated or a vector that indicates the direction
on which the random vector can variate.

There is a subtle difference between using direction vector and using the k-th variable. When a
direction vector is given the PDF of the conditional distribution is defined by f(t) = PDF (pos+
t ·dir). When a variable is selected the full conditional distribution with all other variables fixed
is used.

This is a special case of a continuous univariate distribution and thus they have most of these
parameters (with the exception that functions cannot be changed). Additionally,
− there is a call to extract the underlying multivariate distribution,
− and a call to handle the variables that are fixed and the direction for changing the random

vector.

This distibution type is primarily used for evaluation the conditional distribution and its
derivative (as required for, e.g., the Gibbs sampler). The density is not normalized (i.e. does
not integrate to one). Mode and area are not available and it does not make sense to use any
call to set or change parameters except the ones given below.

Function reference

UNUR_DISTR* unur_distr_condi_new (const UNUR_DISTR* distribution, const
double* pos, const double* dir, int k)

Create an object for full conditional distribution for the given distribution. The condition is
given by a position vector pos and either the k-th variable that is variated or the vector dir
that contains the direction on which the random vector can variate.
distribution must be a pointer to a multivariate continuous distribution. pos must be a
pointer to an array of size dim, where dim is the dimension of the underlying distribution
object. dir must be a pointer to an array if size dim or NULL. k must be in the range 0, ...,
dim-1. If the k-th variable is used, dir must be set to NULL.
Notice: There is a subtle difference between using direction vector dir and using the k-th
variable. When dir is given, the current position pos is mapped into 0 of the conditional
distribution and the derivative is taken from the function PDF(pos+t*dir) w.r.t. t. On the
other hand, when the coordinate k is used (i.e., when dir is set to NULL), the full conditional
distribution of the distribution is considered (as used for the Gibbs sampler). In particular,
the current point is just projected into the one-dimensional subspace without mapping it into
the point 0.
Notice: If a coordinate k is used, then the k-th partial derivative is used if it as available.
Otherwise the gradient is computed and the k-th component is returned.
The resulting generator object is of the same type as of a unur_distr_cont_new call.

int unur_distr_condi_set_condition (struct unur_distr* distribution,
const double* pos, const double* dir, int k)

Set/change condition for conditional distribution. Change values of fixed variables to pos
and use direction dir or k-th variable of conditional distribution.
pos must be a pointer to an array of size dim, where dim is the dimension of the underlying
distribution object. dir must be a pointer to an array if size dim or NULL. k must be in the
range 0, ..., dim-1. If the k-th variable is used, dir must be set to NULL.
Notice: There is a subtle difference between using direction vector dir and using the k-th
variable. When dir is given, the current position pos is mapped into 0 of the conditional

80 UNU.RAN User Manual

distribution and the derivative is taken from the function PDF(pos+t*dir) w.r.t. t. On the
other hand, when the coordinate k is used (i.e., when dir is set to NULL), the full conditional
distribution of the distribution is considered (as used for the Gibbs sampler). In particular,
the current point is just projected into the one-dimensional subspace without mapping it into
the point 0.

int unur_distr_condi_get_condition (struct unur_distr* distribution,
const double** pos, const double** dir, int* k)

Get condition for conditional distribution. The values for the fixed variables are stored in
pos, which must be a pointer to an array of size dim. The condition is stored in dir and k,
respectively.
Important: Do not change the entries in pos and dir!

const UNUR_DISTR* unur_distr_condi_get_distribution (const UNUR_DISTR*
distribution)

Get pointer to distribution object for underlying distribution.

Chapter 4: Handling distribution objects 81

4.7 Continuous empirical multivariate distributions

Empirical multivariate distributions are just lists of vectors (with the same dimension). Thus
there are only calls to insert these data. How these data are used to sample from the empirical
distribution depends from the chosen generation method.

Function reference

UNUR_DISTR* unur_distr_cvemp_new (int dim)
Create a new (empty) object for an empirical multivariate continuous distribution. dim is
the number of components of the random vector (i.e. its dimension). It must be at least
2; otherwise unur_distr_cemp_new should be used to create an object for an empirical
univariate distribution.

Essential parameters

int unur_distr_cvemp_set_data (UNUR DISTR* distribution, const double*
sample, int n_sample)

Set observed sample for empirical distribution. sample is an array of doubles of size dim x
n sample, where dim is the dimension of the distribution returned by unur_distr_get_dim.
The data points must be stored consecutively in sample, i.e., data points (x1, y1), (x2, y2),
. . . are given as an array {x1, y1, x2, y2, . . .}.

int unur_distr_cvemp_read_data (UNUR DISTR* distribution, const char*
filename)

Read data from file ‘filename’. It reads the first dim numbers from each line, where dim is
the dimension of the distribution returned by unur_distr_get_dim. Numbers are parsed by
means of the C standard routine strtod. Lines that do not start with +, -, ., or a digit are
ignored. (Beware of lines starting with a blank!)
In case of an error (file cannot be opened, too few entries in a line, invalid string for double
in line) no data are copied into the distribution object and an error code is returned.

int unur_distr_cvemp_get_data (const UNUR_DISTR* distribution, const
double** sample)

Get number of samples and set pointer sample to array of observations. If no sample has
been given, an error code is returned and sample is set to NULL. If successful sample points to
an array of length dim x n_sample, where dim is the dimension of the distribution returned
by unur_distr_get_dim and n_sample the return value of the function.
Important: Do not modify the array sample.

82 UNU.RAN User Manual

4.8 MATRix distributions

Distributions for random matrices. Notice that UNU.RAN uses arrays of doubles to handle
matrices. The rows of the matrix are stored consecutively.

Function reference

UNUR_DISTR* unur_distr_matr_new (int n_rows, int n_cols)
Create a new (empty) object for a matrix distribution. n rows and n cols are the respective
numbers of rows and columns of the random matrix (i.e. its dimensions). It is also possible
to have only one number or rows and/or columns. Notice, however, that this is treated as
a distribution of random matrices with only one row or column or component and not as a
distribution of vectors or real numbers. For the latter unur_distr_cont_new or unur_distr_
cvec_new should be used to create an object for a univariate distribution and a multivariate
(vector) distribution, respectively.

Essential parameters

int unur_distr_matr_get_dim (const UNUR_DISTR* distribution, int* n_rows,
int* n_cols)

Get number of rows and columns of random matrix (its dimension). It returns the total
number of components. If successfull UNUR_SUCCESS is returned.

Chapter 4: Handling distribution objects 83

4.9 Discrete univariate distributions

The calls in this section can be applied to discrete univariate distributions.
− Create a new instance of a discrete univariate distribution.
− Handle and evaluate distribution function (CDF, cdf) and probability mass function (PMF,

pmf). The following is important:
. pmf need not be normalized, i.e., any summable nonnegative function on the set of

intergers can be used.
. cdf must be a distribution function, i.e. it must be monotonically increasing with

range [0,1].
. If cdf and pdf are used together for a pariticular generation method, then pmf must

be normalized, i.e. it must sum to 1.
− Alternatively, cdf and pdf can be provided as strings instead of function pointers.
− Some generation methods require a (finite) probability vector (PV, pv), i.e. an array of

doubles. It can be automatically computed if the pmf is given but pv is not.
− Set (and change) parameters (pmfparams) and the total sum (pmfsum) of the given PMF

or PV.
− Set the mode of the distribution.
− Set the domain of the distribution.

Function reference

UNUR_DISTR* unur_distr_discr_new (void)
Create a new (empty) object for a univariate discrete distribution.

Essential parameters

There are two interfaces for discrete univariate distributions: Either provide a (finite) probability
vector (PV). Or provide a probability mass function (PMF). For the latter case there are also a
couple of derived parameters that are not required when a PV is given.

It is not possible to set both a PMF and a PV directly. However, the PV can be computed
from the PMF (or the CDF if no PMF is available) by means of a unur_distr_discr_make_
pv call. If both the PV and the PMF are given in the distribution object it depends on the
generation method which of these is used.

int unur_distr_discr_set_pv (UNUR DISTR* distribution, const double* pv,
int n_pv)

Set finite probability vector (PV) for the distribution. It is not necessary that the entries
in the given PV sum to 1. n pv must be positive. However, there is no testing whether all
entries in pv are non-negative.
If no domain has been set, then the left boundary is set to 0, by default. If n pv is too large,
e.g. because left boundary + n pv exceeds the range of integers, then the call fails.
Notice that it is not possible to set both a PV and a PMF or CDF. If the PMF or CDF is
set first one cannot set the PV. If the PMF or CDF is set first after a PV is set, the latter is
removed (and recomputed using unur_distr_discr_make_pv when required).

int unur_distr_discr_make_pv (UNUR DISTR* distribution)
Compute a PV when a PMF or CDF is given. However, when the domain is not given or
is too large and the sum over the PMF is given then the (right) tail of the distribution is
chopped off such that the probability for the tail region is less than 1.e-8. If the sum over
the PMF is not given a PV of maximal length is computed.

84 UNU.RAN User Manual

The maximal size of the created PV is bounded by the macro UNUR_MAX_AUTO_PV that is
defined in ‘unuran_config.h’.
If successful, the length of the generated PV is returned. If the sum over the PMF on the
chopped tail is not neglible small (i.e. greater than 1.e-8 or unknown) than the negative of
the length of the PV is returned and unur_errno is set to UNUR_ERR_DISTR_SET.
Notice that the left boundary of the PV is set to 0 by default when a discrete distribution
object is created from scratch.
If computing a PV fails for some reasons, an error code is returned and unur_errno is set to
UNUR_ERR_DISTR_SET.

int unur_distr_discr_get_pv (const UNUR_DISTR* distribution, const
double** pv)

Get length of PV of the distribution and set pointer pv to array of probabilities. If no PV is
given, an error code is returned and pv is set to NULL.
(It does not call unur_distr_discr_make_pv !)

int unur_distr_discr_set_pmf (UNUR DISTR* distribution,
UNUR FUNCT DISCR* pmf)

int unur_distr_discr_set_cdf (UNUR DISTR* distribution,
UNUR FUNCT DISCR* cdf)

Set respective pointer to the PMF and the CDF of the distribution. These functions must
be of type double funct(int k, const UNUR_DISTR *distr).
It is important to note that all these functions must return a result for all integers k. E.g.,
if the domain of a given PMF is the interval {1,2,3,. . . ,100}, than the given function must
return 0.0 for all points outside this interval.
The default domain for the PMF or CDF is [0, INT_MAX]. The domain can be changed using
a unur_distr_discr_set_domain call.
It is not possible to change such a function. Once the PMF or CDF is set it cannot be
overwritten. A new distribution object has to be used instead.
Notice that it is not possible to set both a PV and a PMF or CDF. If the PMF or CDF is
set first one cannot set the PV. If the PMF or CDF is set first after a PV is set, the latter is
removed (and recomputed using unur_distr_discr_make_pv when required).

double unur_distr_discr_eval_pv (int k, const UNUR_DISTR* distribution)
double unur_distr_discr_eval_pmf (int k, const UNUR_DISTR* distribution)
double unur_distr_discr_eval_cdf (int k, const UNUR_DISTR* distribution)

Evaluate the PV, PMF, and the CDF, respectively, at k. Notice that distribution must not
be the NULL pointer. If no PV is set for the distribution, then unur_distr_discr_eval_pv
behaves like unur_distr_discr_eval_pmf. If the corresponding function is not available for
the distribution, UNUR_INFINITY is returned and unur_errno is set to UNUR_ERR_DISTR_DATA.
IMPORTANT: In the case of a truncated standard distribution these calls always return the
respective values of the untruncated distribution!

int unur_distr_discr_set_pmfstr (UNUR DISTR* distribution, const char*
pmfstr)

This function provides an alternative way to set a PMF of the distribution. pmfstr is a
character string that contains the formula for the PMF, see Section 3.3 [Function String],
page 43, for details. See also the remarks for the unur_distr_discr_set_pmf call.
It is not possible to call this funtion twice or to call this function after a unur_distr_discr_
set_pmf call.

Chapter 4: Handling distribution objects 85

int unur_distr_discr_set_cdfstr (UNUR DISTR* distribution, const char*
cdfstr)

This function provides an alternative way to set a CDF; analogously to the unur_distr_
discr_set_pmfstr call.

char* unur_distr_discr_get_pmfstr (const UNUR_DISTR* distribution)
char* unur_distr_discr_get_cdfstr (const UNUR_DISTR* distribution)

Get pointer to respective string for PMF and CDF of distribution that is given via the string
interface. This call allocates memory to produce this string. It should be freed when it is not
used any more.

int unur_distr_discr_set_pmfparams (UNUR DISTR* distribution, const
double* params, int n_params)

Set array of parameters for distribution. There is an upper limit for the number of parameters
n params. It is given by the macro UNUR_DISTR_MAXPARAMS in ‘unuran_config.h’. (It is set
to 5 but can be changed to any appropriate nonnegative number.) If n params is negative
or exceeds this limit no parameters are copied into the distribution object and unur_errno
is set to UNUR_ERR_DISTR_NPARAMS.

For standard distributions from the UNU.RAN library the parameters are checked. Moreover,
the domain is updated automatically unless it has been changed before by a unur_distr_
discr_set_domain call. If the given parameters are invalid for the standard distribution,
then no parameters are set and an error code is returned. Notice that the given parameter
list for such a distribution is handled in the same way as in the corresponding new calls, i.e.
optional parameters for the PDF that are not present in the given list are (re-)set to their
default values.

Important: Integer parameter must be given as doubles.

int unur_distr_discr_get_pmfparams (const UNUR_DISTR* distribution, const
double** params)

Get number of parameters of the PMF and set pointer params to array of parameters. If no
parameters are stored in the object, an error code is returned and params is set to NULL.

int unur_distr_discr_set_domain (UNUR DISTR* distribution, int left, int
right)

Set the left and right borders of the domain of the distribution. This can also be used to
truncate an existing distribution. For setting the boundary to ±∞ use INT_MIN and INT_MAX,
respectively. If right is not strictly greater than left no domain is set and unur_errno is set
to UNUR_ERR_DISTR_SET. It is allowed to use this call to increase the domain. If the PV of
the discrete distribution is used, than the right boudary is ignored (and internally set to left
+ size of PV −1). Notice that INT_MIN and INT_MAX are interpreted as (minus/plus) infinity.

Default: [0, INT_MAX].

int unur_distr_discr_get_domain (const UNUR_DISTR* distribution, int*
left, int* right)

Get the left and right borders of the domain of the distribution. If the domain is not set
explicitly the interval [INT_MIN, INT_MAX] is assumed and returned. When a PV is given then
the domain is set automatically to [0,size of PV −1].

86 UNU.RAN User Manual

Derived parameters

The following paramters must be set whenever one of the essential parameters has been set or
changed (and the parameter is required for the chosen method).

int unur_distr_discr_set_mode (UNUR DISTR* distribution, int mode)
Set mode of distribution.

int unur_distr_discr_upd_mode (UNUR DISTR* distribution)
Recompute the mode of the distribution. This call works properly for distribution objects
from the UNU.RAN library of standard distributions when the corresponding function is
available. Otherwise a (slow) numerical mode finder is used. It only works properly for
unimodal probability mass functions. If it failes unur_errno is set to UNUR_ERR_DISTR_DATA.

int unur_distr_discr_get_mode (UNUR DISTR* distribution)
Get mode of distribution. If the mode is not marked as known, unur_distr_discr_upd_mode
is called to compute the mode. If this is not successful INT_MAX is returned and unur_errno
is set to UNUR_ERR_DISTR_GET. (There is no difference between the case where no routine for
computing the mode is available and the case where no mode exists for the distribution at
all.)

int unur_distr_discr_set_pmfsum (UNUR DISTR* distribution, double sum)
Set the sum over the PMF. If sum is non-positive, no sum is set and unur_errno is set to
UNUR_ERR_DISTR_SET.
For a distribution object created by the UNU.RAN library of standard distributions you
always should use the unur_distr_discr_upd_pmfsum. Otherwise there might be ambiguous
side-effects.

int unur_distr_discr_upd_pmfsum (UNUR DISTR* distribution)
Recompute the sum over the PMF of the distribution. In most cases the normalization
constant is recomputed and thus the sum is 1. This call works for distribution objects from
the UNU.RAN library of standard distributions when the corresponding function is available.
When a PV, a PMF with finite domain, or a CDF is given, a simple generic function which
uses a naive summation loop is used. If this computation is not possible, an error code is
returned and unur_errno is set to UNUR_ERR_DISTR_DATA.
The call does not work for distributions from the UNU.RAN library of standard distributions
with truncated domain when the CDF is not available.

double unur_distr_discr_get_pmfsum (UNUR DISTR* distribution)
Get the sum over the PMF of the distribution. If this sum is not known, unur_distr_discr_
upd_pmfsum is called to compute it. If this is not successful UNUR_INFINITY is returned and
unur_errno is set to UNUR_ERR_DISTR_GET.

Chapter 5: Methods for generating non-uniform random variates 87

5 Methods for generating non-uniform random
variates

Sampling from a particular distribution with UNU.RAN requires the following steps:
1. Create a distribution object (see Chapter 4 [Handling distribution objects], page 55).
2. Select a method and create a parameter object.
3. Initizialize the generator object using unur_init.

Important : Initialization of the generator object might fail. unur_init returns a NULL
pointer then, which must not be used for sampling.

4. Draw a sample from the generator object using the corresponding sampling function (de-
pending on the type of distribution: univariate continuous, univariate discrete, multivariate
continuous, and random matrix).

5. It is possible for a generator object to change the parameters and the domain of the underly-
ing distribution. This must be done by extracting this object by means of a unur_get_distr
call and changing the distribution using the correspondig set calls, see Chapter 4 [Handling
distribution objects], page 55. The generator object must then be reinitialized by means of
the unur_reinit call.
Important : Currently not all methods allow reinitialization, see the description of the par-
ticular method (keyword Reinit).
Important : Reinitialization of the generator object might fail. Thus one must check the
return code of the unur_reinit call.
Important : When reinitialization fails then sampling routines always return INFINITY (for
continuous distributions) or 0 (for discrete distributions), respectively. However, it is still
possible to change the underlying distribution and try to reinitialize again.

5.1 Routines for all generator objects

Routines for all generator objects.

Function reference

UNUR_GEN* unur_init (UNUR PAR* parameters)
Initialize a generator object. All necessary information must be stored in the parameter
object.
Important: If an error has occurred a NULL pointer is return. This must not be used for the
sampling routines (this causes a segmentation fault).
Always check whether the call was successful or not!
Important: This call destroys the parameter object automatically. Thus it is not neces-
sary/allowed to free it.

int unur_reinit (UNUR GEN* generator)
Update an existing generator object after the underlying distribution has been modified (using
unur_get_distr together with corresponding set calls. It must be executed before sampling
using this generator object is continued as otherwise it produces an invalid sample or might
even cause a segmentation fault.
Important : Currently not all methods allow reinitialization, see the description of the partic-
ular method (keyword Reinit).
Important : Reinitialization of the generator object might fail. Thus one must check the
return code:

88 UNU.RAN User Manual

UNUR_SUCCESS (0x0u)
success (no error)

UNUR_ERR_NO_REINIT
reinit routine not implemented.

other values
some error has occured while trying to reinitialize the generator object.

Important : When reinitialization fails then sampling routines always return INFINITY (for
continuous distributions) or 0 (for discrete distributions), respectively. However, it is still
possible to change the underlying distribution and try to reinitialize again.
Important : When one tries to run unur_reinit, but reinitialization is not implemented, then
the generator object cannot be used any more and must be destroyed and a new one has to
be built from scratch.

int unur_sample_discr (UNUR GEN* generator)
double unur_sample_cont (UNUR GEN* generator)
int unur_sample_vec (UNUR GEN* generator, double* vector)
int unur_sample_matr (UNUR GEN* generator, double* matrix)

Sample from generator object. The three routines depend on the type of the generator object
(discrete or continuous univariate distribution, multivariate distribution, or random matrix).
Notice: UNU.RAN uses arrays of doubles to handle matrices. There the rows of the matrix
are stored consecutively.
Notice: The routines unur_sample_vec and unur_sample_matr return UNUR_SUCCESS if gen-
eration was successful and some error code otherwise.
Important: These routines do not check whether generator is an invalid NULL pointer.

double unur_quantile (UNUR GEN* generator, double U)
Compute the U quantile of a continuous distribution using a generator object that implements
an (approximate) inversion methods.
The following methods are currently available:
• HINV, see Section 5.3.5 [HINV], page 107.
• NINV, see Section 5.3.10 [NINV], page 117.
• PINV, see Section 5.3.12 [PINV], page 122.

Important: This routine does not check whether generator is an invalid NULL pointer.
In case of an error UNUR INFINITY is returned.

void unur_free (UNUR GEN* generator)
Destroy (free) the given generator object.

const char* unur_gen_info (UNUR GEN* generator, int help)
Get a string with informations about the given generator. These informations allow some
fine tuning of the generation method. If help is TRUE, some hints on setting parameters are
given.
This function is intented for using in interactive environments (like R).
If an error occurs, then NULL is returned.

int unur_get_dimension (const UNUR_GEN* generator)
Get the number of dimension of a (multivariate) distribution. For a univariate distribution
1 is return.

Chapter 5: Methods for generating non-uniform random variates 89

const char* unur_get_genid (const UNUR_GEN* generator)
Get identifier string for generator.

UNUR_DISTR* unur_get_distr (const UNUR_GEN* generator)
Get pointer to distribution object from generator object. This function can be used to
change the parameters of the distribution and reinitialize the generator object. Notice that
currently not all generating methods have a reinitialize routine. This function should be
used with extreme care. Changing the distribution is changed and using the generator object
without reinitializing might cause wrong samples or segmentation faults. Moreover, if the
corresponding generator object is freed, the pointer must not be used.
Important: The returned distribution object must not be freed. If the distribution object is
changed then one must run unur_reinit !

int unur_set_use_distr_privatecopy (UNUR PAR* parameters, int
use_privatecopy)

Set flag whether the generator object should make a private copy of the given distribution
object or just stores the pointer to this distribution object. Values for use privatecopy :

TRUE make a private copy (default)

FALSE do not make a private copy and store pointer to given (external) distribution
object.

By default, generator objects keep their own private copy of the given distribution object.
Thus the generator object can be handled independently from other UNU.RAN objects (with
uniform random number generators as the only exception). When the generator object is
initialized the given distribution object is cloned and stored.
However, in some rare situations it can be useful when only the pointer to the given distri-
bution object is stored without making a private copy. A possible example is when only one
random variate has to be drawn from the distribution. This behavior can be achieved when
use localcopy is set to FALSE.
Warning! Using a pointer to the external distribution object instead of a private copy must be
done with extreme care! When the distrubtion object is changed or freed then the generator
object does not work any more, might case a segmentation fault, or (even worse) produces
garbage. On the other hand, when the generator object is initialized or used to draw a
random sampling the distribution object may be changed.
Notice: The prototypes of all unur_<method>_new calls use a const qualifier for the distri-
bution argument. However, if use privatecopy is set to FALSE this qualifier is discarded and
the distribution might be changed.
Important! If use localcopy is set to FALSE and the corresponding distribution object is
changed then one must run unur_reinit on the generator object. (Notice that currently not
all generation methods support reinitialization.)
Default: use privatecopy is TRUE.

90 UNU.RAN User Manual

5.2 AUTO – Select method automatically

AUTO selects a an appropriate method for the given distribution object automatically. There
are no parameters for this method, yet. But it is planned to give some parameter to describe the
task for which the random variate generator is used for and thus make the choice of the generating
method more appropriate. Notice that the required sampling routine for the generator object
depends on the type of the given distribution object.

The chosen method also depends on the sample size for which the generator object will be
used. If only a few random variates the order of magnitude of the sample size should be set via
a unur_auto_set_logss call.

IMPORTANT: This is an experimental version and the method chosen may change in future
releases of UNU.RAN.

For an example see Section 2.1 [Example: As short as possible], page 14.

How To Use

Create a generator object for the given distribution object.

Function reference

UNUR_PAR* unur_auto_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_auto_set_logss (UNUR PAR* parameters, int logss)
Set the order of magnitude for the size of the sample that will be generated by the generator,
i.e., the the common logarithm of the sample size.
Default is 10.
Notice: This feature will be used in future releases of UNU.RAN only.

Chapter 5: Methods for generating non-uniform random variates 91

5.3 Methods for continuous univariate distributions

Overview of methods� �
Methods for continuous univariate distributions
sample with unur_sample_cont

method PDF dPDF CDF mode area other
AROU x x [x] T-concave
HINV [x] [x] x
HRB bounded hazard rate
HRD decreasing hazard rate
HRI increasing hazard rate
ITDR x x x monotone with pole
NINV [x] x
NROU x [x]
SROU x x x T-concave
SSR x x x T-concave
TABL x x [~] all local extrema
TDR x x T-concave
TDRGW x x T-concave
UTDR x x ~ T-concave
CSTD build-in standard distribution
CEXT wrapper for external generator
 	
Example

/* --- */

/* File: example_cont.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* Example how to sample from a continuous univariate */

/* distribution. */

/* */

/* We build a distribution object from scratch and sample. */

/* --- */

/* Define the PDF and dPDF of our distribution. */

/* */

/* Our distribution has the PDF */

/* */

/* / 1 - x*x if |x| <= 1 */

/* f(x) = < */

/* \ 0 otherwise */

/* */

/* The PDF of our distribution: */

double mypdf(double x, const UNUR_DISTR *distr)

/* The second argument (‘distr’) can be used for parameters */

/* for the PDF. (We do not use parameters in our example.) */

{

if (fabs(x) >= 1.)

92 UNU.RAN User Manual

return 0.;

else

return (1.-x*x);

} /* end of mypdf() */

/* The derivative of the PDF of our distribution: */

double mydpdf(double x, const UNUR_DISTR *distr)

{

if (fabs(x) >= 1.)

return 0.;

else

return (-2.*x);

} /* end of mydpdf() */

/* --- */

int main(void)

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Create a new distribution object from scratch. */

/* Get empty distribution object for a continuous distribution */

distr = unur_distr_cont_new();

/* Fill the distribution object -- the provided information */

/* must fulfill the requirements of the method choosen below. */

unur_distr_cont_set_pdf(distr, mypdf); /* PDF */

unur_distr_cont_set_dpdf(distr, mydpdf); /* its derivative */

unur_distr_cont_set_mode(distr, 0.); /* mode */

unur_distr_cont_set_domain(distr, -1., 1.); /* domain */

/* Choose a method: TDR. */

par = unur_tdr_new(distr);

/* Set some parameters of the method TDR. */

unur_tdr_set_variant_gw(par);

unur_tdr_set_max_sqhratio(par, 0.90);

unur_tdr_set_c(par, -0.5);

unur_tdr_set_max_intervals(par, 100);

unur_tdr_set_cpoints(par, 10, NULL);

/* Create the generator object. */

gen = unur_init(par);

/* Notice that this call has also destroyed the parameter */

/* object ‘par’ as a side effect. */

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

Chapter 5: Methods for generating non-uniform random variates 93

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

Example (String API)
/* --- */

/* File: example_cont_str.c */

/* --- */

/* String API. */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* Example how to sample from a continuous univariate */

/* distribution. */

/* We use a generic distribution object and sample. */

/* */

/* The PDF of our distribution is given by */

/* */

/* / 1 - x*x if |x| <= 1 */

/* f(x) = < */

/* \ 0 otherwise */

/* */

/* --- */

int main(void)

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare UNURAN generator object. */

UNUR_GEN *gen; /* generator object */

/* Create the generator object. */

/* Use a generic continuous distribution. */

/* Choose a method: TDR. */

gen = unur_str2gen(

"distr = cont; pdf=\"1-x*x\"; domain=(-1,1); mode=0. & \

method=tdr; variant_gw; max_sqhratio=0.90; c=-0.5; \

max_intervals=100; cpoints=10");

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

94 UNU.RAN User Manual

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

Chapter 5: Methods for generating non-uniform random variates 95

5.3.1 AROU – Automatic Ratio-Of-Uniforms method

Required: T-concave PDF, dPDF

Optional: mode

Speed: Set-up: slow, Sampling: fast

Reinit: not implemented

Reference: [LJa00]

AROU is a variant of the ratio-of-uniforms method that uses the fact that the transformed
region is convex for many distributions. It works for all T-concave distributions with T(x) =
-1/sqrt(x).

It is possible to use this method for correlation induction by setting an auxiliary uniform
random number generator via the unur_set_urng_aux call. (Notice that this must be done
after a possible unur_set_urng call.) When an auxiliary generator is used then the number of
used uniform random numbers that is used up for one generated random variate is constant and
equal to 1.

There exists a test mode that verifies whether the conditions for the method are satisfied or
not while sampling. It can be switched on by calling unur_arou_set_verify and unur_arou_
chg_verify, respectively. Notice however that sampling is (much) slower then.

For densities with modes not close to 0 it is suggested to set either the mode or the center of
the distribution by the unur_distr_cont_set_mode or unur_distr_cont_set_center call. The
latter is the approximate location of the mode or the mean of the distribution. This location
provides some information about the main part of the PDF and is used to avoid numerical
problems.

Function reference

UNUR_PAR* unur_arou_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_arou_set_usedars (UNUR PAR* parameters, int usedars)
If usedars is set to TRUE, “derandomized adaptive rejection sampling” (DARS) is used in
setup. Segments where the area between hat and squeeze is too large compared to the average
area between hat and squeeze over all intervals are split. This procedure is repeated until
the ratio between area below squeeze and area below hat exceeds the bound given by unur_
arou_set_max_sqhratio call or the maximum number of segments is reached. Moreover, it
also aborts when no more segments can be found for splitting.
Segments are split such that the angle of the segments are halved (corresponds to arc-mean
rule of method TDR (see Section 5.3.16 [TDR], page 136)).
Default is TRUE.

int unur_arou_set_darsfactor (UNUR PAR* parameters, double factor)
Set factor for “derandomized adaptive rejection sampling”. This factor is used to determine
the segments that are “too large”, that is, all segments where the area between squeeze and
hat is larger than factor times the average area over all intervals between squeeze and hat.
Notice that all segments are split when factor is set to 0., and that there is no splitting at
all when factor is set to UNUR_INFINITY.
Default is 0.99. There is no need to change this parameter.

96 UNU.RAN User Manual

int unur_arou_set_max_sqhratio (UNUR PAR* parameters, double max_ratio)
Set upper bound for the ratio (area inside squeeze) / (area inside envelope). It must be a
number between 0 and 1. When the ratio exceeds the given number no further construction
points are inserted via adaptive rejection sampling. Use 0 if no construction points should be
added after the setup. Use 1 if adding new construction points should not be stopped until
the maximum number of construction points is reached.
Default is 0.99.

double unur_arou_get_sqhratio (const UNUR_GEN* generator)
Get the current ratio (area inside squeeze) / (area inside envelope) for the generator. (In
case of an error UNUR_INFINITY is returned.)

double unur_arou_get_hatarea (const UNUR_GEN* generator)
Get the area below the hat for the generator. (In case of an error UNUR_INFINITY is returned.)

double unur_arou_get_squeezearea (const UNUR_GEN* generator)
Get the area below the squeeze for the generator. (In case of an error UNUR_INFINITY is
returned.)

int unur_arou_set_max_segments (UNUR PAR* parameters, int max_segs)
Set maximum number of segements. No construction points are added after the setup when
the number of segments succeeds max segs.
Default is 100.

int unur_arou_set_cpoints (UNUR PAR* parameters, int n_stp, const double*
stp)

Set construction points for enveloping polygon. If stp is NULL, then a heuristical rule of thumb
is used to get n stp construction points. This is the default behavior when this routine is not
called. The (default) number of construction points is 30, then.

int unur_arou_set_usecenter (UNUR PAR* parameters, int usecenter)
Use the center as construction point. Default is TRUE.

int unur_arou_set_guidefactor (UNUR PAR* parameters, double factor)
Set factor for relative size of the guide table for indexed search (see also method DGT
Section 5.8.4 [DGT], page 180). It must be greater than or equal to 0. When set to 0, then
sequential search is used.
Default is 2.

int unur_arou_set_verify (UNUR PAR* parameters, int verify)
int unur_arou_chg_verify (UNUR GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition squeeze(x) <= PDF(x) <=
hat(x) is violated for some x then unur_errno is set to UNUR_ERR_GEN_CONDITION. However
notice that this might happen due to round-off errors for a few values of x (less than 1%).
Default is FALSE.

int unur_arou_set_pedantic (UNUR PAR* parameters, int pedantic)
Sometimes it might happen that unur_init has been executed successfully. But when ad-
ditional construction points are added by adaptive rejection sampling, the algorithm detects
that the PDF is not T-concave.

Chapter 5: Methods for generating non-uniform random variates 97

With pedantic being TRUE, the sampling routine is then exchanged by a routine that simply
returns UNUR_INFINITY. Otherwise the new point is not added to the list of construction
points. At least the hat function remains T-concave.
Setting pedantic to FALSE allows sampling from a distribution which is “almost” T-concave
and small errors are tolerated. However it might happen that the hat function cannot be
improved significantly. When the hat function that has been constructed by the unur_init
call is extremely large then it might happen that the generation times are extremely high
(even hours are possible in extremely rare cases).
Default is FALSE.

98 UNU.RAN User Manual

5.3.2 ARS – Adaptive Rejection Sampling

Required: concave logPDF, derivative of logPDF

Optional: mode

Speed: Set-up: fast, Sampling: slow

Reinit: supported

Reference: [GWa92] [HLD04: Cha.4]

ARS is an acceptance/rejection method that uses the concavity of the log-density function
to construct hat function and squeezes automatically. It is very similar to method TDR (see
Section 5.3.16 [TDR], page 136) with variant GW, parameter c = 0, and DARS switched off.
Moreover, method ARS requires the logPDF and its derivative dlogPDF to run. On the other
hand, it is designed to draw only a (very) small samples and it is much more robust against
densities with very large or small areas below the PDF as it occurs, for example, in condi-
tional distributions of (high dimensional) multivariate distributions. Additionally, it can be
re-initialized when the underlying distribution has been modified. Thus it is well suited for
Gibbs sampling.

Notice, that method ARS is a restricted version of TDR. If the full functionally of Trans-
formed Density Rejection is needed use method Section 5.3.16 [TDR], page 136.

How To Use

Method ARS is designed for distributions with log-concave densities. To use this method you
need a distribution object with the logarithm of the PDF and its derivative given.

The number of construction points as well as a set of such points can be provided using unur_
ars_set_cpoints. Notice that addition construction points are added by means of adaptive re-
jection sampling until the maximal number of intervals given by unur_ars_set_max_intervals
is reached.

A generated distribution object can be reinitialized using the unur_reinit call. When unur_
reinit is called construction points for the new generator are necessary. There are two options:
Either the same construction points as for the initial generator (given by a unur_ars_set_
cpoints call) are used (this is the default), or percentiles of the old hat function can be used.
This can be set or changed using unur_ars_set_reinit_percentiles and unur_ars_chg_
reinit_percentiles. This feature is usefull when the underlying distribution object is only
moderately changed. (An example is Gibbs sampling with small correlations.)

There exists a test mode that verifies whether the conditions for the method are satisfied
or not. It can be switched on by calling unur_ars_set_verify and unur_ars_chg_verify,
respectively. Notice however that sampling is (much) slower then.

Method ARS aborts after a given number of iterations and return UNUR INFINITY to
prevent (almost) infinite loops. This might happen when the starting hat is much too large and
it is not possible to insert new construction points due to severe numerical errors or (more likely)
the given PDF is not log-concave. This maximum number of iterations can be set by means of
a unur_ars_set_max_iter call.

Function reference

UNUR_PAR* unur_ars_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

Chapter 5: Methods for generating non-uniform random variates 99

int unur_ars_set_max_intervals (UNUR PAR* parameters, int max_ivs)
Set maximum number of intervals. No construction points are added after the setup when
the number of intervals suceeds max ivs. It is increased automatically to twice the number
of construction points if this is larger.
Default is 200.

int unur_ars_set_cpoints (UNUR PAR* parameters, int n_cpoints, const
double* cpoints)

Set construction points for the hat function. If cpoints is NULL then a heuristic rule of thumb
is used to get n cpoints construction points. This is the default behavior. n cpoints should
be at least 2, otherwise defaults are used.
The default number of construction points is 2.

int unur_ars_set_reinit_percentiles (UNUR PAR* parameters, int
n_percentiles, const double* percentiles)

int unur_ars_chg_reinit_percentiles (UNUR GEN* generator, int
n_percentiles, const double* percentiles)

By default, when the generator object is reinitialized, it used the same construction points as
for the initialization procedure. Often the underlying distribution object has been changed
only moderately. For example, the full conditional distribution of a multivariate distribution.
In this case it might be more appropriate to use percentilesm of the hat function for the last
(unchanged) distribution. percentiles must then be a pointer to an ordered array of numbers
between 0.01 and 0.99. If percentiles is NULL, then a heuristic rule of thumb is used to
get n percentiles values for these percentiles. Notice that n percentiles must be at least 2,
otherwise defaults are used. (Then the first and third quartiles are used by default.)

int unur_ars_set_reinit_ncpoints (UNUR PAR* parameters, int ncpoints)
int unur_ars_chg_reinit_ncpoints (UNUR GEN* generator, int ncpoints)

When reinit fails with the given construction points or the percentiles of the old hat function,
another trial is undertaken with ncpoints construction points. ncpoints must be at least 10.
Default: 30

int unur_ars_set_max_iter (UNUR PAR* parameters, int max_iter)
The rejection loop stops after max iter iterations and return UNUR INFINITY.
Default: 10000

int unur_ars_set_verify (UNUR PAR* parameters, int verify)
int unur_ars_chg_verify (UNUR GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition squeeze(x) <= PDF(x) <=
hat(x) is violated for some x then unur_errno is set to UNUR_ERR_GEN_CONDITION. However
notice that this might happen due to round-off errors for a few values of x (less than 1%).
Default is FALSE.

int unur_ars_set_pedantic (UNUR PAR* parameters, int pedantic)
Sometimes it might happen that unur_init has been executed successfully. But when ad-
ditional construction points are added by adaptive rejection sampling, the algorithm detects
that the PDF is not log-concave.
With pedantic being TRUE, the sampling routine is exchanged by a routine that simply returns
UNUR_INFINITY. Otherwise the new point is not added to the list of construction points. At
least the hat function remains log-concave.

100 UNU.RAN User Manual

Setting pedantic to FALSE allows sampling from a distribution which is “almost” log-concave
and small errors are tolerated. However it might happen that the hat function cannot be
improved significantly. When the hat functions that has been constructed by the unur_init
call is extremely large then it might happen that the generation times are extremely high
(even hours are possible in extremely rare cases).
Default is FALSE.

double unur_ars_get_loghatarea (const UNUR_GEN* generator)
Get the logarithm of area below the hat for the generator. (In case of an error UNUR_INFINITY
is returned.)

double unur_ars_eval_invcdfhat (const UNUR_GEN* generator, double u)
Evaluate the inverse of the CDF of the hat distribution at u.
If u is out of the domain [0,1] then unur_errno is set to UNUR_ERR_DOMAIN and the respective
bound of the domain of the distribution are returned (which is -UNUR_INFINITY or UNUR_
INFINITY in the case of unbounded domains).

Chapter 5: Methods for generating non-uniform random variates 101

5.3.3 CEXT – wrapper for Continuous EXTernal generators

Required: routine for sampling continuous random variates

Speed: depends on external generator

Reinit: supported

Method CEXT is a wrapper for external generators for continuous univariate distributions.
It allows the usage of external random variate generators within the UNU.RAN framework.

How To Use

The following steps are required to use some external generator within the UNU.RAN framework
(some of these are optional):
1. Make an empty generator object using a unur_cext_new call. The argument distribution is

optional and can be replaced by NULL. However, it is required if you want to pass parameters
of the generated distribution to the external generator or for running some validation tests
provided by UNU.RAN.

2. Create an initialization routine of type int (*init)(UNUR_GEN *gen) and plug it into the
generator object using the unur_cext_set_init call. Notice that the init routine must
return UNUR_SUCCESS when it has been executed successfully and UNUR_FAILURE otherwise.
It is possible to get the size of and the pointer to the array of parameters of the underlying
distribution object by the respective calls unur_cext_get_ndistrparams and unur_cext_
get_distrparams. Parameters for the external generator that are computed in the init
routine can be stored in a single array or structure which is available by the unur_cext_
get_params call.
Using an init routine is optional and can be omitted.

3. Create a sampling routine of type double (*sample)(UNUR_GEN *gen) and plug it into the
generator object using the unur_cext_set_sample call.
Uniform random numbers are provided by the unur_sample_urng call. Do not use your
own implementation of a uniform random number generator directly. If you want to use
your own random number generator we recommend to use the UNU.RAN interface (see see
Chapter 6 [Using uniform random number generators], page 193).
The array or structure that contains parameters for the external generator that are com-
puted in the init routine are available using the unur_cext_get_params call.
Using a sample routine is of course obligatory.

It is possible to change the parameters and the domain of the chosen distribution and run
unur_reinit to reinitialize the generator object. The init routine is then called again.

Here is a short example that demonstrates the application of this method by means of the
exponential distribution:

/* --- */

/* File: example_cext.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* This example shows how an external generator for the */

/* exponential distribution with one scale parameter can be */

/* used within the UNURAN framework. */

/* */

102 UNU.RAN User Manual

/* Notice, that this example does not provide the simplest */

/* solution. */

/* --- */

/* Initialization routine. */

/* */

/* Here we simply read the scale parameter of the exponential */

/* distribution and store it in an array for parameters of */

/* the external generator. */

/* [Of course we could do this in the sampling routine as */

/* and avoid the necessity of this initialization routine.] */

int exponential_init (UNUR_GEN *gen)

{

/* Get pointer to parameters of exponential distribution */

double *params = unur_cext_get_distrparams(gen);

/* The scale parameter is the first entry (see manual) */

double lambda = (params) ? params[0] : 1.;

/* Get array to store this parameter for external generator */

double *genpar = unur_cext_get_params(gen, sizeof(double));

genpar[0] = lambda;

/* Executed successfully */

return UNUR_SUCCESS;

}

/* --- */

/* Sampling routine. */

/* */

/* Contains the code for the external generator. */

double exponential_sample (UNUR_GEN *gen)

{

/* Get scale parameter */

double *genpar = unur_cext_get_params(gen,0);

double lambda = genpar[0];

/* Sample a uniformly distributed random number */

double U = unur_sample_urng(gen);

/* Transform into exponentially distributed random variate */

return (-log(1. - U) * lambda);

}

/* --- */

int main(void)

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Use predefined exponential distribution with scale param. 2 */

double fpar[1] = { 2. };

distr = unur_distr_exponential(fpar, 1);

/* Use method CEXT */

par = unur_cext_new(distr);

Chapter 5: Methods for generating non-uniform random variates 103

/* Set initialization and sampling routines. */

unur_cext_set_init(par, exponential_init);

unur_cext_set_sample(par, exponential_sample);

/* Create the generator object. */

gen = unur_init(par);

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the standard Gaussian distribution. */

/* Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

Function reference

UNUR_PAR* unur_cext_new (const UNUR_DISTR* distribution)
Get default parameters for new generator.

int unur_cext_set_init (UNUR PAR* parameters, int (* init)(UNUR GEN*
gen))

Set initialization routine for external generator. Inside the
Important: The routine init must return UNUR_SUCCESS when the generator was initialized
successfully and UNUR_FAILURE otherwise.
Parameters that are computed in the init routine can be stored in an array or structure
that is avaiable by means of the unur_cext_get_params call. Parameters of the underlying
distribution object can be obtained by the unur_cext_get_distrparams call.

int unur_cext_set_sample (UNUR PAR* parameters, double (*
sample)(UNUR GEN* gen))

Set sampling routine for external generator.
Important: Use unur_sample_urng(gen) to get a uniform random number. The pointer to
the array or structure that contains the parameters that are precomputed in the init routine
are available by unur_cext_get_params(gen,0). Additionally one can use the unur_cext_
get_distrparams call.

104 UNU.RAN User Manual

void* unur_cext_get_params (UNUR GEN* generator, size t size)
Get pointer to memory block for storing parameters of external generator. A memory block
of size size is automatically (re-) allocated if necessary and the pointer to this block is stored
in the generator object. If one only needs the pointer to this memory block set size to 0.
Notice, that size is the size of the memory block and not the length of an array.
Important: This rountine should only be used in the initialization and sampling routine of
the external generator.

double* unur_cext_get_distrparams (UNUR GEN* generator)
int unur_cext_get_ndistrparams (UNUR GEN* generator)

Get size of and pointer to array of parameters of underlying distribution in generator object.
Important: These rountines should only be used in the initialization and sampling routine of
the external generator.

Chapter 5: Methods for generating non-uniform random variates 105

5.3.4 CSTD – Continuous STandarD distributions

Required: standard distribution from UNU.RAN library (see Chapter 7 [Standard distribu-
tions], page 205).

Speed: Set-up: fast, Sampling: depends on distribution and generator

Reinit: supported

CSTD is a wrapper for special generators for continuous univariate standard distributions.
It only works for distributions in the UNU.RAN library of standard distributions (see Chapter 7
[Standard distributions], page 205). If a distribution object is provided that is build from scratch,
or if no special generator for the given standard distribution is provided, the NULL pointer is
returned.

For some distributions more than one special generator is possible.

How To Use

Create a distribution object for a standard distribution from the UNU.RAN library (see Chap-
ter 7 [Standard distributions], page 205). For some distributions more than one special generator
(variants) is possible. These can be choosen by a unur_cstd_set_variant call. For possible
variants see Chapter 7 [Standard distributions], page 205. However the following are common
to all distributions:

UNUR_STDGEN_DEFAULT
the default generator.

UNUR_STDGEN_FAST
the fastest available special generator.

UNUR_STDGEN_INVERSION
the inversion method (if available).

Notice that the variant UNUR_STDGEN_FAST for a special generator may be slower than one
of the universal algorithms! Additional variants may exist for particular distributions.

Sampling from truncated distributions (which can be constructed by changing the de-
fault domain of a distribution by means of unur_distr_cont_set_domain or unur_cstd_chg_
truncated calls) is possible but requires the inversion method.

It is possible to change the parameters and the domain of the chosen distribution and run
unur_reinit to reinitialize the generator object.

Function reference

UNUR_PAR* unur_cstd_new (const UNUR_DISTR* distribution)
Get default parameters for new generator. It requires a distribution object for a continuous
univariant distribution from the UNU.RAN library of standard distributions (see Chapter 7
[Standard distributions], page 205).
Using a truncated distribution is allowed only if the inversion method is available and selected
by the unur_cstd_set_variant call immediately after creating the parameter object. Use
a unur_distr_cont_set_domain call to get a truncated distribution. To change the domain
of a (truncated) distribution of a generator use the unur_cstd_chg_truncated call.

int unur_cstd_set_variant (UNUR PAR* parameters, unsigned variant)
Set variant (special generator) for sampling from a given distribution. For possible variants
see Chapter 7 [Standard distributions], page 205.

106 UNU.RAN User Manual

Common variants are UNUR_STDGEN_DEFAULT for the default generator, UNUR_STDGEN_FAST
for (one of the) fastest implemented special generators, and UNUR_STDGEN_INVERSION for the
inversion method (if available). If the selected variant number is not implemented, then an
error code is returned and the variant is not changed.

int unur_cstd_chg_truncated (UNUR GEN* generator, double left, double
right)

Change left and right border of the domain of the (truncated) distribution. This is only
possible if the inversion method is used. Otherwise this call has no effect and an error code
is returned.
Notice that the given truncated domain must be a subset of the domain of the given distri-
bution. The generator always uses the intersection of the domain of the distribution and the
truncated domain given by this call.
It is not required to run unur_reinit after this call has been used.
Important: If the CDF is (almost) the same for left and right and (almost) equal to 0 or 1,
then the truncated domain is not chanced and the call returns an error code.
Notice: If the parameters of the distribution has been changed it is recommended to set the
truncated domain again, since the former call might change the domain of the distribution
but not update the values for the boundaries of the truncated distribution.

Chapter 5: Methods for generating non-uniform random variates 107

5.3.5 HINV – Hermite interpolation based INVersion of CDF

Required: CDF

Optional: PDF, dPDF

Speed: Set-up: (very) slow, Sampling: (very) fast

Reinit: supported

Reference: [HLa03] [HLD04: Sect.7.2; Alg.7.1]

HINV is a variant of numerical inversion, where the inverse CDF is approximated using
Hermite interpolation, i.e., the interval [0,1] is split into several intervals and in each interval
the inverse CDF is approximated by polynomials constructed by means of values of the CDF
and PDF at interval boundaries. This makes it possible to improve the accuracy by splitting
a particular interval without recomputations in unaffected intervals. Three types of splines
are implemented: linear, cubic, and quintic interpolation. For linear interpolation only the
CDF is required. Cubic interpolation also requires PDF and quintic interpolation PDF and its
derivative.

These splines have to be computed in a setup step. However, it only works for distributions
with bounded domain; for distributions with unbounded domain the tails are chopped off such
that the probability for the tail regions is small compared to the given u-resolution.

The method is not exact, as it only produces random variates of the approximated distribu-
tion. Nevertheless, the maximal numerical error in "u-direction" (i.e. |U-CDF(X)|, for X =
"approximate inverse CDF"(U) |U-CDF(X)|) can be set to the required resolution (within ma-
chine precision). Notice that very small values of the u-resolution are possible but may increase
the cost for the setup step.

As the possible maximal error is only estimated in the setup it may be necessary to set some
special design points for computing the Hermite interpolation to guarantee that the maximal u-
error can not be bigger than desired. Such points are points where the density is not differentiable
or has a local extremum. Notice that there is no necessity to do so. However, if you do not
provide these points to the algorithm there might be a small chance that the approximation
error is larger than the given u-resolution, or that the required number of intervals is larger than
necessary.

How To Use

HINV works for continuous univariate distribution objects with given CDF and (optional) PDF.
It uses Hermite interpolation of order 1, 3 [default] or 5. The order can be set by means of unur_
hinv_set_order. For distributions with unbounded domains the tails are chopped off such that
the probability for the tail regions is small compared to the given u-resulution. For finding these
cut points the algorithm starts with the region [-1.e20,1.e20]. For the exceptional case where
this might be too small (or one knows this region and wants to avoid this search heuristics) it
can be directly set via a unur_hinv_set_boundary call.

It is possible to use this method for generating from truncated distributions. It even can be
changed for an existing generator object by an unur_hinv_chg_truncated call.

This method is not exact, as it only produces random variates of the approximated distri-
bution. Nevertheless, the numerical error in "u-direction" (i.e. |U-CDF(X)|, for X = "ap-
proximate inverse CDF"(U) |U-CDF(X)|) can be controlled by means of unur_hinv_set_u_
resolution. The possible maximal error is only estimated in the setup. Thus it might be
necessary to set some special design points for computing the Hermite interpolation to guaran-
tee that the maximal u-error can not be bigger than desired. Such points (e.g. extremal points
of the PDF, points with infinite derivative) can be set using using the unur_hinv_set_cpoints

108 UNU.RAN User Manual

call. If the mode for a unimodal distribution is set in the distribution object this mode is
automatically used as design-point if the unur_hinv_set_cpoints call is not used.

As already mentioned the maximal error of this approximation is only estimated. If this error
is crucial for an application we recommend to compute this error using unur_hinv_estimate_
error which runs a small Monte Carlo simulation.

It is possible to change the parameters and the domain of the chosen distribution and run
unur_reinit to reinitialize the generator object. The values given by the last unur_hinv_chg_
truncated call will be then changed to the values of the domain of the underlying distribution
object. Moreover, starting construction points (nodes) that are given by a unur_hinv_set_
cpoints call are ignored when unur_reinit is called. It is important to note that for a
distribution from the UNU.RAN library of standard distributions (see Chapter 7 [Standard
distributions], page 205) the normalization constant has to be updated using the unur_distr_
cont_upd_pdfarea call whenever its parameters have been changed by means of a unur_distr_
cont_set_pdfparams call.

Function reference

UNUR_PAR* unur_hinv_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_hinv_set_order (UNUR PAR* parameters, int order)
Set order of Hermite interpolation. Valid orders are 1, 3, and 5. Notice that order greater
than 1 requires the density of the distribution, and order greater than 3 even requires the
derivative of the density. Using order 1 results for most distributions in a huge number of
intervals and is therefore not recommended. If the maximal error in u-direction is very small
(say smaller than 1.e-10), order 5 is recommended as it leads to considerably fewer design
points, as long there are no poles or heavy tails.
Remark: When the target distribution has poles or (very) heavy tails order 5 (i.e., quintic
interpolation) is numerically less stable and more sensitive to round-off errors than order 3
(i.e., cubic interpolation).
Default is 3 if the density is given and 1 otherwise.

int unur_hinv_set_u_resolution (UNUR PAR* parameters, double
u_resolution)

Set maximal error in u-direction. However, the given u-error must not be smaller than
machine epsilon (DBL_EPSILON) and should not be too close to this value. As the resolution
of most uniform random number sources is 2^(-32) = 2.3e-10, a value of 1.e-10 leads to an
inversion algorithm that could be called exact. For most simulations slightly bigger values
for the maximal error are enough as well.
Remark: The u-error might become larger than u resolution due to rescaling of floating point
numbers when the domain of the distribution is truncated by a unur_hinv_chg_truncated
call.
Default is 1.e-10.

int unur_hinv_set_cpoints (UNUR PAR* parameters, const double* stp, int
n_stp)

Set starting construction points (nodes) for Hermite interpolation.
As the possible maximal error is only estimated in the setup it may be necessary to set some
special design points for computing the Hermite interpolation to guarantee that the maximal
u-error can not be bigger than desired. We suggest to include as special design points all local

Chapter 5: Methods for generating non-uniform random variates 109

extrema of the density, all points where the density is not differentiable, and isolated points
inside of the domain with density 0. If there is an interval with density constant equal to 0
inside of the given domain of the density, both endpoints of this interval should be included
as special design points. Notice that there is no necessity to do so. However, if these points
are not provided to the algorithm the approximation error might be larger than the given
u-resolution, or the required number of intervals could be larger than necessary.
Important : Notice that the given points must be in increasing order and they must be disjoint.
Important : The boundary point of the computational region must not be given in this list!
Points outside the boundary of the computational region are ignored.
Default is for unimodal densities - if known - the mode of the density, if it is not equal to the
border of the domain.

int unur_hinv_set_boundary (UNUR PAR* parameters, double left, double
right)

Set the left and right boundary of the computational interval. Of course +/- UNUR_INFINITY
is not allowed. If the CDF at left and right is not close to the respective values 0. and 1.
then this interval is increased by a (rather slow) search algorithm.
Important : This call does not change the domain of the given distribution itself. But it
restricts the domain for the resulting random variates.
Default is 1.e20.

int unur_hinv_set_guidefactor (UNUR PAR* parameters, double factor)
Set factor for relative size of the guide table for indexed search (see also method DGT
Section 5.8.4 [DGT], page 180). It must be greater than or equal to 0. When set to 0, then
sequential search is used.
Default is 1.

int unur_hinv_set_max_intervals (UNUR PAR* parameters, int max_ivs)
Set maximum number of intervals. No generator object is created if the necessary number of
intervals for the Hermite interpolation exceeds max ivs. It is used to prevent the algorithm
to eat up all memory for very badly shaped CDFs.
Default is 1000000 (1.e6).

int unur_hinv_get_n_intervals (const UNUR_GEN* generator)
Get number of nodes (design points) used for Hermite interpolation in the generator object.
The number of intervals is the number of nodes minus 1. It returns an error code in case of
an error.

double unur_hinv_eval_approxinvcdf (const UNUR_GEN* generator, double u)
Evaluate Hermite interpolation of inverse CDF at u. If u is out of the domain [0,1] then
unur_errno is set to UNUR_ERR_DOMAIN and the respective bound of the domain of the distri-
bution are returned (which is -UNUR_INFINITY or UNUR_INFINITY in the case of unbounded
domains).
Notice: When the domain has been truncated by a unur_hinv_chg_truncated call then the
inverse CDF of the truncated distribution is returned.

int unur_hinv_chg_truncated (UNUR GEN* generator, double left, double
right)

Changes the borders of the domain of the (truncated) distribution.

110 UNU.RAN User Manual

Notice that the given truncated domain must be a subset of the domain of the given distri-
bution. The generator always uses the intersection of the domain of the distribution and the
truncated domain given by this call. The tables of splines are not recomputed. Thus it might
happen that the relative error for the generated variates from the truncated distribution is
greater than the bound for the non-truncated distribution. This call also fails when the CDF
values of the boundary points are too close, i.e. when only a few different floating point
numbers would be computed due to round-off errors with floating point arithmetic.
Remark: The u-error might become larger than the u resolution given by a unur_hinv_
set_u_resolution call due to rescaling of floating point numbers when the domain of the
distribution is truncated.
When failed an error code is returned.
Important : Always check the return code since the domain is not changed in case of an error.

int unur_hinv_estimate_error (const UNUR_GEN* generator, int samplesize,
double* max_error, double* MAE)

Estimate maximal u-error and mean absolute error (MAE) for generator by means of a (quasi-
) Monte-Carlo simulation with sample size samplesize. The results are stored in max error
and MAE, respectively.
It returns UNUR_SUCCESS if successful.

Chapter 5: Methods for generating non-uniform random variates 111

5.3.6 HRB – Hazard Rate Bounded

Required: bounded hazard rate

Optional: upper bound for hazard rate

Speed: Set-up: fast, Sampling: slow

Reinit: supported

Reference: [HLD04: Sect.9.1.4; Alg.9.4]

Generates random variate with given hazard rate which must be bounded from above. It
uses the thinning method with a constant dominating hazard function.

How To Use

HRB requires a hazard function for a continuous distribution together with an upper bound.
The latter has to be set using the unur_hrb_set_upperbound call. If no such upper bound
is given it is assumed that the upper bound can be achieved by evaluating the hazard rate at
the left hand boundary of the domain of the distribution. Notice, however, that for decreasing
hazard rate the method HRD (see Section 5.3.7 [Hazard Rate Decreasing], page 112) is much
faster and thus the prefered method.

It is important to note that the domain of the distribution can be set via a unur_distr_
cont_set_domain call. However, the left border must not be negative. Otherwise it is set to 0.
This is also the default if no domain is given at all. For computational reasons the right border
is always set to UNUR_INFINITY independently of the given domain. Thus for domains bounded
from right the function for computing the hazard rate should return UNUR_INFINITY right of
this domain.

For distributions with increasing hazard rate method HRI (see Section 5.3.8 [Hazard Rate
Increasing], page 113) is required.

It is possible to change the parameters and the domain of the chosen distribution and run
unur_reinit to reinitialize the generator object. Notice, that the upper bound given by the
unur_hrb_set_upperbound call cannot be changed and must be valid for the changed distribu-
tion.

Function reference

UNUR_PAR* unur_hrb_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_hrb_set_upperbound (UNUR PAR* parameters, double upperbound)
Set upper bound for hazard rate. If this call is not used it is assumed that the the maximum
of the hazard rate is achieved at the left hand boundary of the domain of the distribution.

int unur_hrb_set_verify (UNUR PAR* parameters, int verify)
int unur_hrb_chg_verify (UNUR GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the hazard rate is not bounded by the
given bound, then unur_errno is set to UNUR_ERR_GEN_CONDITION.
Default is FALSE.

112 UNU.RAN User Manual

5.3.7 HRD – Hazard Rate Decreasing

Required: decreasing (non-increasing) hazard rate

Speed: Set-up: fast, Sampling: slow

Reinit: supported

Reference: [HLD04: Sect.9.1.5; Alg.9.5]

Generates random variate with given non-increasing hazard rate. It is necessary that the
distribution object contains this hazard rate. Decreasing hazard rate implies that the corre-
sponding PDF of the distribution has heavier tails than the exponential distribution (which has
constant hazard rate).

How To Use

HRD requires a hazard function for a continuous distribution with non-increasing hazard rate.
There are no parameters for this method.

It is important to note that the domain of the distribution can be set via a unur_distr_cont_
set_domain call. However, only the left hand boundary is used. For computational reasons the
right hand boundary is always reset to UNUR_INFINITY. If no domain is given by the user then
the left hand boundary is set to 0.

For distributions which do not have decreasing hazard rates but are bounded from above
use method HRB (see Section 5.3.6 [Hazard Rate Bounded], page 111). For distributions with
increasing hazard rate method HRI (see Section 5.3.8 [Hazard Rate Increasing], page 113) is
required.

It is possible to change the parameters and the domain of the chosen distribution and run
unur_reinit to reinitialize the generator object.

Function reference

UNUR_PAR* unur_hrd_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_hrd_set_verify (UNUR PAR* parameters, int verify)
int unur_hrd_chg_verify (UNUR GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the hazard rate is not bounded by the
given bound, then unur_errno is set to UNUR_ERR_GEN_CONDITION.
Default is FALSE.

Chapter 5: Methods for generating non-uniform random variates 113

5.3.8 HRI – Hazard Rate Increasing

Required: increasing (non-decreasing) hazard rate

Speed: Set-up: fast, Sampling: slow

Reinit: supported

Reference: [HLD04: Sect.9.1.6; Alg.9.6]

Generates random variate with given non-increasing hazard rate. It is necessary that the dis-
tribution object contains this hazard rate. Increasing hazard rate implies that the corresponding
PDF of the distribution has heavier tails than the exponential distribution (which has constant
hazard rate).

The method uses a decomposition of the hazard rate into a main part which is constant for
all x beyond some point p0 and a remaining part. From both of these parts points are sampled
using the thinning method and the minimum of both is returned. Sampling from the first part
is easier as we have a constant dominating hazard rate. Thus p0 should be large. On the other
hand, if p0 is large than the thinning algorithm needs many iteration. Thus the performance of
the the algorithm deponds on the choice of p0. We found that values close to the expectation
of the generated distribution result in good performance.

How To Use

HRI requires a hazard function for a continuous distribution with non-decreasing hazard rate.
The parameter p0 should be set to a value close to the expectation of the required distribution
using unur_hri_set_p0. If performance is crucial one may try other values as well.

It is important to note that the domain of the distribution can be set via a unur_distr_cont_
set_domain call. However, only the left hand boundary is used. For computational reasons the
right hand boundary is always reset to UNUR_INFINITY. If no domain is given by the user then
the left hand boundary is set to 0.

For distributions with decreasing hazard rate method HRD (see Section 5.3.8 [Hazard Rate
Decreasing], page 113) is required. For distributions which do not have increasing or decreasing
hazard rates but are bounded from above use method HRB (see Section 5.3.6 [Hazard Rate
Bounded], page 111).

It is possible to change the parameters and the domain of the chosen distribution and run
unur_reinit to reinitialize the generator object.

Notice, that the upper bound given by the unur_hrb_set_upperbound call cannot be changed
and must be valid for the changed distribution. Notice that the parameter p0 which has been set
by a unur_hri_set_p0 call cannot be changed and must be valid for the changed distribution.

Function reference

UNUR_PAR* unur_hri_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_hri_set_p0 (UNUR PAR* parameters, double p0)
Set design point for algorithm. It is used to split the domain of the distribution. Values for
p0 close to the expectation of the distribution results in a relatively good performance of the
algorithm. It is important that the hazard rate at this point must be greater than 0 and less
than UNUR_INFINITY.

Default: left boundary of domain + 1.

114 UNU.RAN User Manual

int unur_hri_set_verify (UNUR PAR* parameters, int verify)
int unur_hri_chg_verify (UNUR GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the hazard rate is not bounded by the
given bound, then unur_errno is set to UNUR_ERR_GEN_CONDITION.
Default is FALSE.

Chapter 5: Methods for generating non-uniform random variates 115

5.3.9 ITDR – Inverse Transformed Density Rejection

Required: monotone PDF, dPDF, pole

Optional: splitting point between pole and tail region, c-values

Speed: Set-up: moderate, Sampling: moderate

Reinit: supported

Reference: [HLDa07]

ITDR is an acceptance/rejection method that works for monotone densities. It is especially
designed for PDFs with a single pole. It uses different hat functions for the pole region and for
the tail region. For the tail region Transformed Density Rejection with a single construction
point is used. For the pole region a variant called Inverse Transformed Density Rejection is
used. The optimal splitting point between the two regions and the respective maximum local
concavity and inverse local concavity (see Appendix B [Glossary], page 239) that guarantee
valid hat functions for each regions are estimated. This splitting point is set to the intersection
point of local concavity and inverse local concavity. However, it is assumed that both, the local
concavity and the inverse local concavity do not have a local minimum in the interior of the
domain (which is the case for all standard distributions with a single pole). In other cases
(or when the built-in search routines do not compute non-optimal values) one can provide the
splitting point, and the c-values.

How To Use

Method ITDR requires a distribution object with given PDF and its derivative and the location
of the pole (or mode). The PDF must be monotone and may contain a pole. It must be set
via the unur_distr_cont_set_pdf and unur_distr_cont_set_dpdf calls. The PDF should
return UNUR INFINITY for the pole. Alternatively, one can also set the logarithm of the PDF
and its derivative via the unur_distr_cont_set_logpdf and unur_distr_cont_set_dlogpdf
calls. This is in especially useful since then the setup and search routines are numerically more
stable. Moreover, for many distributions computing the logarithm of the PDF is less expensive
then computing the PDF directly.

The pole of the distribution is given by a unur_distr_cont_set_mode call. Notice that
distributions with “heavy” poles may have numerical problems caused by the resultion of the
floating point numbers used by computers. While the minimal distance between two different
floating point numbers is about 1.e-320 near 0. it increases to 1.e-16 near 1. Thus any
random variate generator implemented on a digital computer in fact draws samples from a
discrete distribution that approximates the desired continuous distribution. For distributions
with “heavy” poles not at 0 this approximation may be too crude and thus every goodness-of-
fit test will fail. Besides this theoretic problem that cannot be resolved we have to take into
consideration that round-off errors occur more frequently when we have PDFs with poles far
away from 0. Method ITDR tries to handles this situation as good as possible by moving the
pole into 0. Thus do not use a wrapper for your PDF that hides this shift since the information
about the resolution of the floating point numbers near the pole gets lost.

Method ITDR uses different hats for the pole region and for the tail region. The splitting
point between these two regions, the optimal c-value and design points for constructing the
hats using Transformed Density Rejection are computed automatically. (The results of these
computations can be read using the respective calls unur_itdr_get_xi, unur_itdr_get_cp
, and unur_itdr_get_ct for the intersection point between local concavity and inverse local
concavity, the c-value for the pole and the tail region.) However, one can also analyze the local
concavity and inverse local concavity set the corresponding values using unur_itdr_set_xi,
unur_itdr_set_cp , and unur_itdr_set_ct calls. Notice, that c-values greater than -1/2 can

116 UNU.RAN User Manual

be set to -0.5. Although this results in smaller acceptance probabities sampling from the hat
distribution is much faster than for other values of c. Depending on the expenses of evaluating
the PDF the resulting algorithm is usually faster.

It is possible to change the parameters and the domain of the chosen distribution and run
unur_reinit to reinitialize the generator object. However, the values given by unur_itdr_
set_xi, unur_itdr_set_cp , or unur_itdr_set_ct calls are then ignored when unur_reinit
is called.

Function reference

UNUR_PAR* unur_itdr_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_itdr_set_xi (UNUR PAR* parameters, double xi)
Sets points where local concavity and inverse local concavity are (almost) equal. It is used to
estimate the respective c-values for pole region and hat regions and to determine the splitting
point bx between pole and tail region. If no such point is provided it will be computed
automatically.
Default: not set.

int unur_itdr_set_cp (UNUR PAR* parameters, double cp)
Sets parameter cp for transformation T for inverse density in pole region. It must be at most
0 and greater than -1. A value of -0.5 is treated separately and usually results in faster
marginal generation time (at the expense of smaller acceptance probabilities. If no cp-value
is given it is estimated automatically.
Default: not set.

int unur_itdr_set_ct (UNUR PAR* parameters, double ct)
Sets parameter ct for transformation T for density in tail region. It must be at most 0. For
densities with unbounded domain it must be greater than -1. A value of -0.5 is treated
separately and usually results in faster marginal generation time (at the expense of smaller
acceptance probabilities. If no ct-value is given it is estimated automatically.
Default: not set.

double unur_itdr_get_xi (UNUR GEN* generator)
double unur_itdr_get_cp (UNUR GEN* generator)
double unur_itdr_get_ct (UNUR GEN* generator)

Get intersection point xi, and c-values cp and ct, respectively. (In case of an error UNUR_
INFINITY is returned.)

double unur_itdr_get_area (UNUR GEN* generator)
Get area below hat. (In case of an error UNUR_INFINITY is returned.)

int unur_itdr_set_verify (UNUR PAR* parameters, int verify)
Turn verifying of algorithm while sampling on/off.
If the condition PDF (x) ≤ hat(x) is violated for some x then unur_errno is set to UNUR_
ERR_GEN_CONDITION. However, notice that this might happen due to round-off errors for a
few values of x (less than 1%).
Default is FALSE.

int unur_itdr_chg_verify (UNUR GEN* generator, int verify)
Change the verifying of algorithm while sampling on/off.

Chapter 5: Methods for generating non-uniform random variates 117

5.3.10 NINV – Numerical INVersion

Required: CDF

Optional: PDF

Speed: Set-up: optional, Sampling: (very) slow

Reinit: supported

NINV is the implementation of numerical inversion. For finding the root it is possible to
choose between Newton’s method and the regula falsi (combined with interval bisectioning).
The regula falsi requires only the CDF while Newton’s method also requires the PDF. To speed
up the marginal generation time a table with suitable starting points can be computed in the
setup. The performance of the algorithm can adjusted by desired accuracy of the method. It is
possible to use this method for generating from truncated distributions. The truncated domain
can be changed for an existing generator object.

How To Use

The method works generates random variates by numerical inversion and requires a continuous
univariate distribution objects with given CDF. Two methods are available:
− Regula falsi [default]
− Newton’s method

Newton’s method additionally requires the PDF of the distribution and cannot be used
otherwise (NINV automatically switches to regula falsi then. Default algorithm is regula falsi.
It is slightly slower but numerically much more stable than Newton’s algorithm.

It is possible to use this method for generating from truncated distributions. It even can be
changed for an existing generator object by an unur_ninv_chg_truncated call.

To speed up the marginal generation time a table with suitable starting points can be com-
puted in the setup. Using such a table can be switched on by means of a unur_ninv_set_table
call where the table size is given as a parameter. The table is still useful when the (truncated)
domain is changed often, since it is computed for the domain of the given distribution. (It is
not possible to enlarge this domain.) If it is necessary to recalculate the table during sampling,
the command unur_ninv_chg_table can be used. As a rule of thumb using such a table is
appropriate when the number of generated points exceeds the table size by a factor of 100.

The default number of iterations of NINV should be enough for all reasonable cases. Nev-
ertheless, it is possible to adjust the maximal number of iterations with the commands unur_
ninv_set_max_iter and unur_ninv_chg_max_iter. In particular this might be necessary when
the PDF has a pole (where it is not bounded from below).

It is also possible to set/change the accuracy of the method (which also heavily influencies
the generation time). For this it is possible to change the maximum error allowed in x with
unur_ninv_set_x_resolution and unur_ninv_chg_x_resolution, respectively.

NINV tries to use proper starting values for both the regala falsi and Newton’s method. Of
course the user might have more knowledge about the properties of the underlying distribution
and is able to share his wisdom with NINV using the respective commands unur_ninv_set_
start and unur_ninv_chg_start

It is possible to change the parameters and the domain of the chosen distribution and run
unur_reinit to reinitialize the generator object. The values given by the last unur_ninv_chg_
truncated call will be then changed to the values of the domain of the underlying distribution
object. It is important to note that for a distribution from the UNU.RAN library of standard
distributions (see Chapter 7 [Standard distributions], page 205) the normalization constant has

118 UNU.RAN User Manual

to be updated using the unur_distr_cont_upd_pdfarea call whenever its parameters have been
changed by means of a unur_distr_cont_set_pdfparams call.

It might happen that NINV aborts unur_sample_cont without computing the correct value
(because the maximal number iterations has been exceeded). Then the last approximate value
for x is returned (with might be fairly false) and unur_error is set to UNUR_ERR_GEN_SAMPLING.

Function reference

UNUR_PAR* unur_ninv_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_ninv_set_useregula (UNUR PAR* parameters)
Switch to regula falsi combined with interval bisectioning. (This the default.)

int unur_ninv_set_usenewton (UNUR PAR* parameters)
Switch to Newton’s method. Notice that it is numerically less stable than regula falsi. It it
is not possible to invert the CDF for a particular uniform random number U when calling
unur_sample_cont, unur_error is set to UNUR_ERR_GEN_SAMPLING. Thus it is recommended
to check unur_error before using the result of the sampling routine.

int unur_ninv_set_max_iter (UNUR PAR* parameters, int max_iter)
int unur_ninv_chg_max_iter (UNUR GEN* generator, int max_iter)

Set and change number of maximal iterations. Default is 40.

int unur_ninv_set_x_resolution (UNUR PAR* parameters, double
x_resolution)

int unur_ninv_chg_x_resolution (UNUR GEN* generator, double
x_resolution)

Set and change the maximal relative error in x. Default is 1.e-8.

int unur_ninv_set_start (UNUR PAR* parameters, double left, double right)
Set starting points. If not set, suitable values are chosen automatically.
Newton: left: starting point
Regula falsi: left, right: boundary of starting interval
If the starting points are not set then the follwing points are used by default:
Newton: left: CDF(left) = 0.5
Regula falsi: left: CDF(left) = 0.1

right: CDF(right) = 0.9
If left == right, then UNU.RAN always uses the default starting points!

int unur_ninv_chg_start (UNUR GEN* gen, double left, double right)
Change the starting points for numerical inversion. If left==right, then UNU.RAN uses the
default starting points (see unur_ninv_set_start).

int unur_ninv_set_table (UNUR PAR* parameters, int no_of_points)
Generates a table with no of points points containing suitable starting values for the itera-
tion. The value of no of points must be at least 10 (otherwise it will be set to 10 automati-
cally).
The table points are chosen such that the CDF at these points form an equidistance sequence
in the interval (0,1).
If a table is used, then the starting points given by unur_ninv_set_start are ignored.
No table is used by default.

Chapter 5: Methods for generating non-uniform random variates 119

int unur_ninv_chg_table (UNUR GEN* gen, int no_of_points)
Recomputes a table as described in unur_ninv_set_table.

int unur_ninv_chg_truncated (UNUR GEN* gen, double left, double right)
Changes the borders of the domain of the (truncated) distribution.
Notice that the given truncated domain must be a subset of the domain of the given distri-
bution. The generator always uses the intersection of the domain of the distribution and the
truncated domain given by this call. Moreover the starting point(s) will not be changed.
Important: If the CDF is (almost) the same for left and right and (almost) equal to 0 or 1,
then the truncated domain is not chanced and the call returns an error code.
Notice: If the parameters of the distribution has been changed by a unur_distr_cont_set_
pdfparams call it is recommended to set the truncated domain again, since the former call
might change the domain of the distribution but not update the values for the boundaries of
the truncated distribution.

double unur_ninv_eval_approxinvcdf (UNUR GEN* generator, double u)
Get approximate approximate value of inverse CDF at u. If u is out of the domain [0,1]
then unur_errno is set to UNUR_ERR_DOMAIN and the respective bound of the domain of
the distribution are returned (which is -UNUR_INFINITY or UNUR_INFINITY in the case of
unbounded domains).
Notice: This function always evaluates the inverse CDF of the given distribution. A call to
unur_ninv_chg_truncated call has no effect.

120 UNU.RAN User Manual

5.3.11 NROU – Naive Ratio-Of-Uniforms method

Required: PDF

Optional: mode, center, bounding rectangle for acceptance region

Speed: Set-up: slow or fast, Sampling: moderate

Reinit: supported

Reference: [HLD04: Sect.2.4 and Sect.6.4]

NROU is an implementation of the (generalized) ratio-of-uniforms method which uses (mini-
mal) bounding rectangles, see Section A.4 [Ratio-of-Uniforms], page 236. It uses a positive con-
trol parameter r for adjusting the algorithm to the given distribution to improve performance
and/or to make this method applicable. Larger values of r increase the class of distributions
for which the method works at the expense of a higher rejection constant. For computational
reasons r=1 should be used if possible (this is the default). Moreover, this implementation uses
the center µ of the distribution (see unur_distr_cont_get_center for details of its default
values).

For the special case with r = 1 the coordinates of the minimal bounding rectangles are given
by

v+ = sup
x

√
PDF (x),

u− = inf
x

(x− µ)
√
PDF (x),

u+ = sup
x

(x− µ)
√
PDF (x),

where µ is the center of the distribution. For other values of r we have
v+ = sup

x
(PDF (x))1/(r+1),

u− = inf
x

(x− µ)(PDF (x))r/(r+1),

u+ = sup
x

(x− µ)(PDF (x))r/(r+1).

These bounds can be given directly. Otherwise they are computed automatically by means of a
(slow) numerical routine. Of course this routine can fail, especially when this rectangle is not
bounded.

It is important to note that the algorithm works with PDF (x−µ) instead of PDF (x). This
is important as otherwise the acceptance region can become a very long and skinny ellipsoid
along a diagonal of the (huge) bounding rectangle.

How To Use

For using the NROU method UNU.RAN needs the PDF of the distribution. Additionally, the
parameter r can be set via a unur_vnrou_set_r call. Notice that the acceptance probability
decreases when r is increased. On the other hand is is more unlikely that the bounding rectangle
does not exist if r is small.

A bounding rectangle can be given by the unur_vnrou_set_u and unur_vnrou_set_v calls.
Important: The bounding rectangle has to be provided for the function PDF (x − center)!

Notice that center is the center of the given distribution, see unur_distr_cont_set_center.
If in doubt or if this value is not optimal, it can be changed (overridden) by a unur_nrou_set_
center call.

If the coordinates of the bounding rectangle are not provided by the user then the minimal
bounding rectangle is computed automatically.

By means of unur_vnrou_set_verify and unur_vnrou_chg_verify one can run the sam-
pling algorithm in a checking mode, i.e., in every cycle of the rejection loop it is checked whether

Chapter 5: Methods for generating non-uniform random variates 121

the used rectangle indeed enclosed the acceptance region of the distribution. When in doubt
(e.g., when it is not clear whether the numerical routine has worked correctly) this can be used
to run a small Monte Carlo study.

It is possible to change the parameters and the domain of the chosen distribution and run
unur_reinit to reinitialize the generator object. Notice, that derived parameters like the mode
must also be (re-) set if the parameters or the domain has be changed. Notice, however, that then
the values that has been set by unur_vnrou_set_u and unur_vnrou_set_v calls are removed
and the coordinates of the bounding box are computed numerically.

Function reference

UNUR_PAR* unur_nrou_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_nrou_set_u (UNUR PAR* parameters, double umin, double umax)
Sets left and right boundary of bounding rectangle. If no values are given, the boundary of
the minimal bounding rectangle is computed numerically.
Notice: Computing the minimal bounding rectangle may fail under some circumstances.
Moreover, for multimodal distributions the bounds might be too small as only local extrema
are computed. Nevertheless, for Tc -concave distributions with c = −1/2 it should work.
Important: The bounding rectangle that has to be provided is for the function PDF (x −
center)!
Default: not set.

int unur_nrou_set_v (UNUR PAR* parameters, double vmax)
Set upper boundary for bounding rectangle. If this value is not given then

√
PDF (mode) is

used instead.
Notice: When the mode is not given for the distribution object, then it will be computed
numerically.
Default: not set.

int unur_nrou_set_r (UNUR PAR* parameters, double r)
Sets the parameter r of the generalized ratio-of-uniforms method.
Notice: This parameter must satisfy r>0.
Default: 1.

int unur_nrou_set_center (UNUR PAR* parameters, double center)
Set the center (µ) of the PDF. If not set the center of the given distribution object is used.
Default: see unur_distr_cont_set_center.

int unur_nrou_set_verify (UNUR PAR* parameters, int verify)
Turn verifying of algorithm while sampling on/off.
If the condition PDF (x) ≤ hat(x) is violated for some x then unur_errno is set to UNUR_
ERR_GEN_CONDITION. However, notice that this might happen due to round-off errors for a
few values of x (less than 1%).
Default is FALSE.

int unur_nrou_chg_verify (UNUR GEN* generator, int verify)
Change the verifying of algorithm while sampling on/off.

122 UNU.RAN User Manual

5.3.12 PINV – Polynomial interpolation based INVersion of CDF

Required: PDF or CDF, center

Optional: domain

Speed: Set-up: (very) slow, Sampling: (very) fast

Reinit: not implemented

Reference: [DHLa08]

PINV is a variant of numerical inversion, where the inverse CDF is approximated using
Newton’s interpolating formula. The interval [0,1] is split into several subintervals. In each of
these the inverse CDF is constructed at nodes (CDF (x), x) for some points x in this subinterval.
If the PDF is given then the CDF is computed numerically from the given PDF using adaptive
Gauss-Lobatto integration with 5 points. Subintervals are splitted until the requested accuracy
goal is reached.

The method is not exact, as it only produces random variates of the approximated distribu-
tion. Nevertheless, the maximal tolerated approximation error can be set to be the resolution
(but of course is bounded by the machine precision). We use the u-error |U − CDF (X)| to
measure the error for X = "approximate inverse CDF"(U). Notice that very small values of the
u-resolution are possible but increase the cost for the setup step. We call the maximal tolerated
u-error the u-resolution of the algorithm in the sequel.

Both the order of the interpolating polynomial and the u-resolution can be selected.
The interpolating polynomials have to be computed in a setup step. However, it only works

for distributions with bounded domain; for distributions with unbounded domain the tails are
cut off such that the probability for the tail regions is small compared to the given u-resolution.

The construction of the interpolation polynomial only works when the PDF is unimodal or
when the PDF does not vanish between two modes.

There are some restrictions for the given distribution:
• The support of the distribution (i.e., the region where the PDF is strictly positive) must be

connected. In practice this means, that the region where PDF is "not too small" must be
connected. Unimodal densities satisfy this condition. If this condition is violated then the
domain of the distribution might be truncated.

• When the PDF is integrated numerically, then the given PDF must be continuous and
should be smooth.

• The PDF must be bounded.
• The algorithm has problems when the distribution has heavy tails (as then the inverse

CDF becomes very steep at 0 or 1) and the requested u-resolution is very small. E.g., the
Cauchy distribution is likely to show this problem when the requested u-resolution is less
then 1.e-12.

Regions with very small PDF values or heavy tails might lead to an abortion of the set-
up or (even worse) the approximation error might become larger than requested, since the
(computation of the) interpolating polynomial becomes numerically unstable.

How To Use

PINV works for continuous univariate distribution objects with given PDF. The corresponding
distribution object must contain a typical point of the distribution, i.e., a point where the PDF is
not too small, e.g., (a point near) the mode. It can be set using a unur_distr_cont_set_center
or a unur_distr_cont_set_mode call. (If neither is set, 0 is assumed!) It is recommended that

Chapter 5: Methods for generating non-uniform random variates 123

the domain of the distribution with bounded domain is specified using a unur_distr_cont_set_
domain call. Otherwise, the boundary is searched numerically which might be rather expensive,
especially when this boundary point is 0.

When sampling from truncated distributions with extreme truncation points, it is recom-
mended to provide the log-density using unur_distr_cont_set_logpdf and the mode. Then
the PDF is rescaled such that the PDF at the mode is 1. Thus the algorithm is numerically
more stable.

It is also possible to use the CDF of the distribution instead of the PDF. Then the distribution
object must contain a pointer to the CDF. Moreover, this variant of the algorithmus has to be
switched on using an unur_pinv_set_usecdf call. Notice, however, that the setup for this
variant is numerically less stable than using integration of the PDF (the default variant).

The inverse CDF is interpolated using Newton polymials. The order of this polynomial can
be set by means of a unur_pinv_set_order call.

For distributions with unbounded domains the tails are cut off such that the probability for
the tail regions is small compared to the given u-resulution. For finding these cut points the
algorithm starts with the region [-1.e100,1.e100]. For the exceptional case where this does
not work these starting points can be changed via a unur_pinv_set_boundary call.

This method is not exact, as it only produces random variates of the approximated distri-
bution. Nevertheless, the numerical error in "u-direction" (i.e., |U-CDF(X)|, for X = "ap-
proximate inverse CDF"(U) |U-CDF(X)|) can be controlled by means of unur_pinv_set_u_
resolution. However, the maximal error of this approximation is only estimated. For very
small u-resolutions the actual approximation error might be (slightly) larger than the requested
u-resolution. (Of course the size of this value depends on the given PDF.) If this error is cru-
cial for an application we recommend to compute this error using unur_pinv_estimate_error
which runs a small Monte Carlo simulation. See also the documentation for function unur_
pinv_set_u_resolution and the remark given there.

The number of required subintervals heavily depends on the order of the interpolating poly-
nomial and the requested u-resolution: it increases when order or u-resolution are decreased.
It can be checked using a unur_pinv_get_n_intervals call. The maximum number of such
subintervals is fixed but can be increased using a unur_pinv_set_max_intervals call. If this
maximum number is too small then the set-up aborts with a corresponding error message.

Function reference

UNUR_PAR* unur_pinv_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_pinv_set_order (UNUR PAR* parameters, int order)
Set order of interpolation. Valid orders are between 3 and 12. Higher orders result in fewer
intervals for the approximations.
Default: 5.

int unur_pinv_set_u_resolution (UNUR PAR* parameters, double
u_resolution)

Set maximal tolerated u-error. Values of u resolution must at least 1.e-15 and 1.e-5 at
most. Notice that the resolution of most uniform random number sources is 2−32 = 2.3e-10.
Thus a value of 1.e-10 leads to an inversion algorithm that could be called exact. For most
simulations slightly bigger values for the maximal error are enough as well.
Smaller values for u resolution increase the number of subinterval that are necessary for
the approximation of the inverse CDF. For very small values (less then 1.e-12) this number

124 UNU.RAN User Manual

might exceed the maximum number of such intervals. However, this number can be increased
using a unur_pinv_set_max_intervals call.
Remark: We ran many experiments and found that the observed u-error was always smaller
than the given u resolution whenever this value was 1.e-12. For values smaller than 1e-13
the maximal observed u-error was slightly larger. One use 1.e-15 if best approximation is
required. However, then the actual u-error can be as large as 1.e-14.
Warning! These figures are based on our experiments (with some tolarence added to be on
the safe side). There is no guarentee for these error estimates for a particular distribution.
Default is 1.e-10.

int unur_pinv_set_usepdf (UNUR PAR* parameters)
Use PDF (if available) to compute approximate inverse CDF.
This is the default.

int unur_pinv_set_usecdf (UNUR PAR* parameters)
Use CDF (if available) to compute approximate inverse CDF.
Remark: We ran many experiments and found that for small values of the given u resolution
(less than 1.e-12) the setup fails for distributions with heavy tails. We found that using the
PDF (instead of the CDF) is numerically more stable.

int unur_pinv_set_boundary (UNUR PAR* parameters, double left, double
right)

Set left and right point for finding the cut-off points for the "computational domain", i.e.,
the domain that covers the essential part of the distribution. The cut-off points are computed
such that the tail probabilities are smaller than given by unur_pinv_set_u_resolution. It
is usually safe to use a large interval. However, +/- UNUR_INFINITY is not allowed.
Important : This call does not change the domain of the given distribution itself. But it
restricts the domain for the resulting random variates.
Default: intersection of [-1.e100,+1.e100] and the given domain of the distribution.

int unur_pinv_set_searchboundary (UNUR PAR* parameters, int left, int
right)

If left or right is set to FALSE then the respective boundary as given by a unur_pinv_set_
boundary call is used without any further computations. However, these boundary points
might cause numerical problems during the setup when PDF returns 0 “almost everywhere”.
If set to TRUE (the default) then the computational interval is shortened to a more sensible
region by means of a search algorithm. Switching off this search is useful, e.g., for the
Gamma(2) distribution where the left border 0 is fixed and finite.
Remark: The searching algorithm assumes that the support of the distribution is connected.
Remark: Do not set this parameter to FALSE except when searching for cut-off points fails
and one wants to try with precomputed values.
Default: TRUE.

int unur_pinv_set_max_intervals (UNUR PAR* parameters, int max_ivs)
Set maximum number of intervals. max ivs must be at least 100 and at most 1000000.
Default is 10000.

int unur_pinv_get_n_intervals (const UNUR_GEN* generator)
Get number of intervals used for interpolation in the generator object. It returns 0 in case
of an error.

Chapter 5: Methods for generating non-uniform random variates 125

double unur_pinv_eval_approxinvcdf (const UNUR_GEN* generator, double u)
Evaluate interpolation of inverse CDF at u. If u is out of the domain (0,1) then unur_errno
is set to UNUR_ERR_DOMAIN and the respective bound of the domain of the distribution are
returned (which is -UNUR_INFINITY or UNUR_INFINITY in the case of unbounded domains).

int unur_pinv_estimate_error (const UNUR_GEN* generator, int samplesize,
double* max_error, double* MAE)

Estimate maximal u-error and mean absolute error (MAE) for generator by means of Monte-
Carlo simulation with sample size samplesize. The results are stored in max error and MAE,
respectively.
It returns UNUR_SUCCESS if successful.

126 UNU.RAN User Manual

5.3.13 SROU – Simple Ratio-Of-Uniforms method

Required: T-concave PDF, mode, area

Speed: Set-up: fast, Sampling: slow

Reinit: supported

Reference: [LJa01] [LJa02] [HLD04: Sect.6.3.1; Sect.6.3.2; Sect.6.4.1; Alg.6.4; Alg.6.5; Alg.6.7]

SROU is based on the ratio-of-uniforms method (see Section A.4 [Ratio-of-Uniforms],
page 236) that uses universal inequalities for constructing a (universal) bounding rectangle.
It works for all T-concave distributions, including log-concave and T-concave distributions with
T (x) = −1/

√
x.

Moreover an (optional) parameter r can be given, to adjust the generator to the given
distribution. This parameter is strongly related to the parameter c for transformed density
rejection (see Section 5.3.16 [TDR], page 136) via the formula c = -r/(r+1). The rejection
constant increases with higher values for r. On the other hand, the given density must be Tc
-concave for the corresponding c. The default setting for r is 1 which results in a very simple
code. (For other settings, sampling uniformly from the acceptance region is more complicated.)

Optionally the CDF at the mode can be given to increase the performance of the algorithm.
Then the rejection constant is reduced by 1/2 and (if r=1) even a universal squeeze can (but
need not be) used. A way to increase the performance of the algorithm when the CDF at the
mode is not provided is the usage of the mirror principle (only if r=1). However, using squeezes
and using the mirror principle is only recommended when the PDF is expensive to compute.

The exact location of the mode and/or the area below the PDF can be replace by appropriate
bounds. Then the algorithm still works but has larger rejection constants.

How To Use

SROU works for any continuous univariate distribution object with given Tc -concave PDF with
c < 1,) mode and area below PDF. Optional the CDF at the mode can be given to increase the
performance of the algorithm by means of the unur_srou_set_cdfatmode call. Additionally
squeezes can be used and switched on via unur_srou_set_usesqueeze (only if r=1). A way to
increase the performance of the algorithm when the CDF at the mode is not provided is the usage
of the mirror principle which can be swithced on by means of a unur_srou_set_usemirror call
(only if r=1) . However using squeezes and using the mirror principle is only recommended when
the PDF is expensive to compute.

The parameter r can be given, to adjust the generator to the given distribution. This
parameter is strongly related parameter c for transformed density rejection via the formula c
= -r/(r+1). The parameter r can be any value larger than or equal to 1. Values less then 1
are automatically set to 1. The rejection constant depends on the chosen parameter r but not
on the particular distribution. It is 4 for r equal to 1 and higher for higher values of r. It is
important to note that different algorithms for different values of r: If r equal to 1 this is much
faster than the algorithm for r greater than 1. The default setting for r is 1.

If the (exact) area below the PDF is not known, then an upper bound can be used instead
(which of course increases the rejection constant). But then the squeeze flag must not be set
and unur_srou_set_cdfatmode must not be used.

If the exact location of the mode is not known, then use the approximate location and provide
the (exact) value of the PDF at the mode by means of the unur_srou_set_pdfatmode call. But
then unur_srou_set_cdfatmode must not be used. Notice, that a (slow) numerical mode finder
will be used if no mode is given at all. It is even possible to give an upper bound for the PDF
only. However, then the (upper bound for the) area below the PDF has to be multiplied by the

Chapter 5: Methods for generating non-uniform random variates 127

ratio between the upper bound and the lower bound of the PDF at the mode. Again setting the
squeeze flag and using unur_srou_set_cdfatmode is not allowed.

It is possible to change the parameters and the domain of the chosen distribution and run
unur_reinit to reinitialize the generator object. Notice, that derived parameters like the mode
must also be (re-) set if the parameters or the domain has be changed. Moreover, if the PDF at
the mode has been provided by a unur_srou_set_pdfatmode call, additionally unur_srou_chg_
pdfatmode must be used (otherwise this call is not necessary since then this figure is computed
directly from the PDF).

There exists a test mode that verifies whether the conditions for the method are satisfied or
not while sampling. It can be switched on by calling unur_srou_set_verify and unur_srou_
chg_verify, respectively. Notice however that sampling is (a little bit) slower then.

Function reference

UNUR_PAR* unur_srou_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_srou_set_r (UNUR PAR* parameters, double r)
Set parameter r for transformation. Only values greater than or equal to 1 are allowed. The
performance of the generator decreases when r is increased. On the other hand r must not
be set to small, since the given density must be T c-concave for c = -r/(r+1).

Notice: If r is set to 1 a simpler and much faster algorithm is used then for r greater than
one.

For computational reasons values of r that are greater than 1 but less than 1.01 are always
set to 1.01.

Default is 1.

int unur_srou_set_cdfatmode (UNUR PAR* parameters, double Fmode)
Set CDF at mode. When set, the performance of the algorithm is increased by factor 2.
However, when the parameters of the distribution are changed unur_srou_chg_cdfatmode
has to be used to update this value.

Default: not set.

int unur_srou_set_pdfatmode (UNUR PAR* parameters, double fmode)
Set pdf at mode. When set, the PDF at the mode is never changed. This is to avoid additional
computations, when the PDF does not change when parameters of the distributions vary. It
is only useful when the PDF at the mode does not change with changing parameters of the
distribution.

IMPORTANT: This call has to be executed after a possible call of unur_srou_set_r. Default:
not set.

int unur_srou_set_usesqueeze (UNUR PAR* parameters, int usesqueeze)
Set flag for using universal squeeze (default: off). Using squeezes is only useful when the
evaluation of the PDF is (extremely) expensive. Using squeezes is automatically disabled
when the CDF at the mode is not given (then no universal squeezes exist).

Squeezes can only be used if r=1.

Default is FALSE.

128 UNU.RAN User Manual

int unur_srou_set_usemirror (UNUR PAR* parameters, int usemirror)
Set flag for using mirror principle (default: off). Using the mirror principle is only useful when
the CDF at the mode is not known and the evaluation of the PDF is rather cheap compared
to the marginal generation time of the underlying uniform random number generator. It is
automatically disabled when the CDF at the mode is given. (Then there is no necessity to
use the mirror principle. However disabling is only done during the initialization step but
not at a re-initialization step.)
The mirror principle can only be used if r=1.
Default is FALSE.

int unur_srou_set_verify (UNUR PAR* parameters, int verify)
int unur_srou_chg_verify (UNUR GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition squeeze(x) <= PDF(x) <=
hat(x) is violated for some x then unur_errno is set to UNUR_ERR_GEN_CONDITION. However
notice that this might happen due to round-off errors for a few values of x (less than 1%).
Default is FALSE.

int unur_srou_chg_cdfatmode (UNUR GEN* generator, double Fmode)
Change CDF at mode of distribution. unur_reinit must be executed before sampling from
the generator again.

int unur_srou_chg_pdfatmode (UNUR GEN* generator, double fmode)
Change PDF at mode of distribution. unur_reinit must be executed before sampling from
the generator again.

Chapter 5: Methods for generating non-uniform random variates 129

5.3.14 SSR – Simple Setup Rejection

Required: T-concave PDF, mode, area

Speed: Set-up: fast, Sampling: slow

Reinit: supported

Reference: [LJa01] [HLD04: Sect.6.3.3; Alg.6.6]

SSR is an acceptance/rejection method that uses universal inequalities for constructing (uni-
versal) hats and squeezes (see Section A.2 [Rejection], page 234). It works for all T-concave
distributions with T (x) = −1/

√
x.

It requires the PDF, the (exact) location of the mode and the area below the given PDF. The
rejection constant is 4 for all T-concave distributions with unbounded domain and is less than
4 when the domain is bounded. Optionally the CDF at the mode can be given to increase the
performance of the algorithm. Then the rejection constant is at most 2 and a universal squeeze
can (but need not be) used. However, using squeezes is not recommended unless the evaluation
of the PDF is expensive.

The exact location of the mode and/or the area below the PDF can be replace by appropriate
bounds. Then the algorithm still works but has larger rejection constants.

How To Use

SSR works for any continuous univariate distribution object with given T-concave PDF (with
T (x) = −1/

√
x,) mode and area below PDF. Optional the CDF at the mode can be given

to increase the performance of the algorithm by means of the unur_ssr_set_cdfatmode call.
Additionally squeezes can be used and switched on via unur_ssr_set_usesqueeze. If the
(exact) area below the PDF is not known, then an upper bound can be used instead (which
of course increases the rejection constant). But then the squeeze flag must not be set and
unur_ssr_set_cdfatmode must not be used.

If the exact location of the mode is not known, then use the approximate location and provide
the (exact) value of the PDF at the mode by means of the unur_ssr_set_pdfatmode call. But
then unur_ssr_set_cdfatmode must not be used. Notice, that a (slow) numerical mode finder
will be used if no mode is given at all. It is even possible to give an upper bound for the PDF
only. However, then the (upper bound for the) area below the PDF has to be multiplied by the
ratio between the upper bound and the lower bound of the PDF at the mode. Again setting the
squeeze flag and using unur_ssr_set_cdfatmode is not allowed.

It is possible to change the parameters and the domain of the chosen distribution and run
unur_reinit to reinitialize the generator object. Notice, that derived parameters like the mode
must also be (re-) set if the parameters or the domain has be changed. Moreover, if the PDF at
the mode has been provided by a unur_ssr_set_pdfatmode call, additionally unur_ssr_chg_
pdfatmode must be used (otherwise this call is not necessary since then this figure is computed
directly from the PDF).

Important: If any of mode, PDF or CDF at the mode, or the area below the mode has been
changed, then unur_reinit must be executed. (Otherwise the generator produces garbage).

There exists a test mode that verifies whether the conditions for the method are satisfied or
not while sampling. It can be switched on/off by calling unur_ssr_set_verify and unur_ssr_
chg_verify, respectively. Notice, however, that sampling is (a little bit) slower then.

Function reference

UNUR_PAR* unur_ssr_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

130 UNU.RAN User Manual

int unur_ssr_set_cdfatmode (UNUR PAR* parameters, double Fmode)
Set CDF at mode. When set, the performance of the algorithm is increased by factor 2.
However, when the parameters of the distribution are changed unur_ssr_chg_cdfatmode
has to be used to update this value.
Default: not set.

int unur_ssr_set_pdfatmode (UNUR PAR* parameters, double fmode)
Set pdf at mode. When set, the PDF at the mode is never changed. This is to avoid additional
computations, when the PDF does not change when parameters of the distributions vary. It
is only useful when the PDF at the mode does not change with changing parameters for the
distribution.
Default: not set.

int unur_ssr_set_usesqueeze (UNUR PAR* parameters, int usesqueeze)
Set flag for using universal squeeze (default: off). Using squeezes is only useful when the
evaluation of the PDF is (extremely) expensive. Using squeezes is automatically disabled
when the CDF at the mode is not given (then no universal squeezes exist).
Default is FALSE.

int unur_ssr_set_verify (UNUR PAR* parameters, int verify)
int unur_ssr_chg_verify (UNUR GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition squeeze(x) <= PDF(x) <=
hat(x) is violated for some x then unur_errno is set to UNUR_ERR_GEN_CONDITION. However
notice that this might happen due to round-off errors for a few values of x (less than 1%).
Default is FALSE.

int unur_ssr_chg_cdfatmode (UNUR GEN* generator, double Fmode)
Change CDF at mode of distribution. unur_reinit must be executed before sampling from
the generator again.

int unur_ssr_chg_pdfatmode (UNUR GEN* generator, double fmode)
Change PDF at mode of distribution. unur_reinit must be executed before sampling from
the generator again.

Chapter 5: Methods for generating non-uniform random variates 131

5.3.15 TABL – a TABLe method with piecewise constant hats

Required: PDF, all local extrema, cut-off values for the tails

Optional: approximate area

Speed: Set-up: (very) slow, Sampling: fast

Reinit: not implemented

Reference: [AJa93] [AJa95] [HLD04: Cha.5.1]

TABL (called Ahrens method in [HLD04]) is an acceptance/rejection method (see Section A.2
[Rejection], page 234) that uses a decomposition of the domain of the distribution into many
short subintervals. Inside of these subintervals constant hat and squeeze functions are utilized.
Thus it is easy to use the idea of immediate acceptance for points below the squeeze. This
reduces the expected number of uniform random numbers per generated random variate to less
than two. Using a large number of subintervals only little more than one random number is
necessary on average. Thus this method becomes very fast.

Due to the constant hat function this method only works for distributions with bounded
domains. Thus for unbounded domains the left and right tails have to be cut off. This is no
problem when the probability of falling into these tail regions is beyond computational relevance
(e.g. smaller than 1.e-12).

For easy construction of hat and squeeze functions it is necessary to know the regions of
monotonicity (called slopes) or equivalently all local maxima and minima of the density. The
main problem for this method in the setup is the choice of the subintervals. A simple and close
to optimal approach is the "equal area rule" [HLD04: Cha.5.1] . There the subintervals are
selected such that the area below the hat is the same for each subinterval which can be realized
with a simple recursion. If more subintervals are necessary it is possible to split either randomly
chosen intervals (adaptive rejection sampling, ARS) or those intervals, where the ratio between
squeeze and hat is smallest. This version of the setup is called derandomized ARS (DARS).
With the default settings TABL is first calculating approximately 30 subintervals with the equal
area rule. Then DARS is used till the desired fit of the hat is reached.

A convenient measure to control the quality of the fit of hat and squeeze is the ratio (area
below squeeze)/(area below hat) called sqhratio which must be smaller or equal to one. The
expected number of iterations in the rejection algorithm is known to be smaller than 1/sqhratio
and the expected number of evaluations of the density is bounded by 1/sqhratio - 1. So values
of the sqhratio close to one (e.g. 0.95 or 0.99) lead to many subintervals. Thus a better fitting
hat is constructed and the sampling algorithm becomes fast; on the other hand large tables
are needed and the setup is very slow. For moderate values of sqhratio (e.g. 0.9 or 0.8) the
sampling is slower but the required tables are smaller and the setup is not so slow.

It follows from the above explanations that TABL is always requiring a slow setup and that
it is not very well suited for heavy-tailed distributions.

How To Use

For using the TABL method UNU.RAN needs a bounded interval to which the generated variates
can be restricted and information about all local extrema of the distribution. For unimodal
densities it is sufficient to provide the mode of the distribution. For the case of a built-in
unimodal distribution with bounded domain all these information is present in the distribution
object and thus no extra input is necessary (see example TABL1 below).

For a built-in unimodal distribution with unbounded domain we should specify the cut-off val-
ues for the tails. This can be done with the unur_tabl_set_boundary call (see example TABL2

132 UNU.RAN User Manual

below). For the case that we do not set these boundaries the default values of +/- 1.e20 are
used. We can see in example TABL1 that this still works fine for many standard distributions.

For the case of a multimodal distribution we have to set the regions of monotonicity (called
slopes) explicitly using the unur_tabl_set_slopes command (see example TABL3 below).

To controll the fit of the hat and the size of the tables and thus the speed of the setup and
the sampling it is most convenient to use the unur_tabl_set_max_sqhratio call. The default
is 0.9 which is a sensible value for most distributions and applications. If very large samples
of a distribution are required or the evaluation of a density is very slow it may be useful to
increase the sqhratio to eg. 0.95 or even 0.99. With the unur_tabl_get_sqhratio call we can
check which sqhratio was really reached. If that value is below the desired value it is necessary
to increase the maximal number of subintervals, which defaults to 1000, using the unur_tabl_
set_max_intervals call. The unur_tabl_get_n_intervals call can be used to find out the
number of subintervals the setup calculated.

It is also possible to set the number of intervals and their respective boundaries by means of
the unur_tabl_set_cpoints call.

It is also possible to use method TABL for correlation induction (variance reduction) by
setting of an auxiliary uniform random number generator via the unur_set_urng_aux call.
(Notice that this must be done after a possible unur_set_urng call.) However, this only works
when immediate acceptance is switched of by a unur_tabl_set_variant_ia call.

Function reference

UNUR_PAR* unur_tabl_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_tabl_set_variant_ia (UNUR PAR* parameters, int use_ia)
Use immediate acceptance when use ia is set to TRUE. This technique requires less uniform.
If it is set to FALSE, “classical” acceptance/rejection from hat distribution is used.
Notice: Auxiliary uniform random number generators for correlation induction (variance
reduction) can only be used when “classical” acceptance/rejection is used.
Default: TRUE.

int unur_tabl_set_cpoints (UNUR PAR* parameters, int n_cpoints, const
double* cpoints)

Set construction points for the hat function. If stp is NULL than a heuristic rule of thumb is
used to get n stp construction points. This is the default behavior.
The default number of construction points is 30.

int unur_tabl_set_nstp (UNUR PAR* parameters, int n_stp)
Set number of construction points for the hat function. n stp must be greater than zero.
After the setup there are about n stp construction points. However it might be larger when
a small fraction is given by the unur_tabl_set_areafraction call. It also might be smaller
for some variants.
Default is 30.

int unur_tabl_set_useear (UNUR PAR* parameters, int useear)
If useear is set to TRUE, the “equal area rule” is used, the given slopes are partitioned in such
a way that the area below the hat function in each subinterval (“stripe”) has the same area
(except the last the last interval which can be smaller). The area can be set by means of the
unur_tabl_set_areafraction call.
Default is TRUE.

Chapter 5: Methods for generating non-uniform random variates 133

int unur_tabl_set_areafraction (UNUR PAR* parameters, double fraction)
Set parameter for the equal area rule. During the setup a piecewise constant hat is con-
structed, such that the area below each of these pieces (strips) is the same and equal to the
(given) area below the PDF times fraction (which must be greater than zero).
Important: If the area below the PDF is not set in the distribution object, then 1 is assumed.
Default is 0.1.

int unur_tabl_set_usedars (UNUR PAR* parameters, int usedars)
If usedars is set to TRUE, “derandomized adaptive rejection sampling” (DARS) is used in the
setup. Intervals, where the area between hat and squeeze is too large compared to the average
area between hat and squeeze over all intervals, are split. This procedure is repeated until the
ratio between squeeze and hat exceeds the bound given by unur_tabl_set_max_sqhratio
call or the maximum number of intervals is reached. Moreover, it also aborts when no more
intervals can be found for splitting.
For finding splitting points the arc-mean rule (a mixture of arithmetic mean and harmonic
mean) is used.
Default is TRUE.

int unur_tabl_set_darsfactor (UNUR PAR* parameters, double factor)
Set factor for “derandomized adaptive rejection sampling”. This factor is used to determine
the segments that are “too large”, that is, all segments where the area between squeeze and
hat is larger than factor times the average area over all intervals between squeeze and hat.
Notice that all segments are split when factor is set to 0., and that there is no splitting at
all when factor is set to UNUR_INFINITY.
Default is 0.99. There is no need to change this parameter.

int unur_tabl_set_variant_splitmode (UNUR PAR* parameters, unsigned
splitmode)

There are three variants for adaptive rejection sampling. These differ in the way how an
interval is split:

splitmode 1
use the generated point to split the interval.

splitmode 2
use the mean point of the interval.

splitmode 3
use the arcmean point; suggested for distributions with heavy tails.

Default is splitmode 2.

int unur_tabl_set_max_sqhratio (UNUR PAR* parameters, double max_ratio)
Set upper bound for the ratio (area below squeeze) / (area below hat). It must be a number
between 0 and 1. When the ratio exceeds the given number no further construction points
are inserted via DARS in the setup.
For the case of ARS (unur tabl set usedars() must be set to FALSE): Use 0 if no construction
points should be added after the setup. Use 1 if added new construction points should not be
stopped until the maximum number of construction points is reached. If max ratio is close
to one, many construction points are used.
Default is 0.9.

134 UNU.RAN User Manual

double unur_tabl_get_sqhratio (const UNUR_GEN* generator)
Get the current ratio (area below squeeze) / (area below hat) for the generator. (In case of
an error UNUR_INFINITY is returned.)

double unur_tabl_get_hatarea (const UNUR_GEN* generator)
Get the area below the hat for the generator. (In case of an error UNUR_INFINITY is returned.)

double unur_tabl_get_squeezearea (const UNUR_GEN* generator)
Get the area below the squeeze for the generator. (In case of an error UNUR_INFINITY is
returned.)

int unur_tabl_set_max_intervals (UNUR PAR* parameters, int max_ivs)
Set maximum number of intervals. No construction points are added in or after the setup
when the number of intervals suceeds max ivs.
Default is 1000.

int unur_tabl_get_n_intervals (const UNUR_GEN* generator)
Get the current number of intervals. (In case of an error 0 is returned.)

int unur_tabl_set_slopes (UNUR PAR* parameters, const double* slopes, int
n_slopes)

Set slopes for the PDF. A slope <a,b> is an interval [a,b] or [b,a] where the PDF is monotone
and PDF(a) >= PDF(b). The list of slopes is given by an array slopes where each consecutive
tuple (i.e. (slopes[0], slopes[1]), (slopes[2], slopes[3]), etc.) defines one slope.
Slopes must be sorted (i.e. both slopes[0] and slopes[1] must not be greater than any
entry of the slope (slopes[2], slopes[3]), etc.) and must not be overlapping. Otherwise
no slopes are set and unur errno is set to UNUR_ERR_PAR_SET.
Notice: n slopes is the number of slopes (and not the length of the array slopes).
Notice that setting slopes resets the given domain for the distribution. However, in case of a
standard distribution the area below the PDF is not updated.

int unur_tabl_set_guidefactor (UNUR PAR* parameters, double factor)
Set factor for relative size of the guide table for indexed search (see also method DGT
Section 5.8.4 [DGT], page 180). It must be greater than or equal to 0. When set to 0, then
sequential search is used.
Default is 1.

int unur_tabl_set_boundary (UNUR PAR* parameters, double left, double
right)

Set the left and right boundary of the computation interval. The piecewise hat is only
constructed inside this interval. The probability outside of this region must not be of com-
putational relevance. Of course +/- UNUR_INFINITY is not allowed.
Default is -1.e20,1.e20.

int unur_tabl_chg_truncated (UNUR GEN* gen, double left, double right)
Change the borders of the domain of the (truncated) distribution.
Notice that the given truncated domain must be a subset of the domain of the given distri-
bution. The generator always uses the intersection of the domain of the distribution and the
truncated domain given by this call. The hat function will not be changed.

Chapter 5: Methods for generating non-uniform random variates 135

Important: The ratio between the area below the hat and the area below the squeeze changes
when the sampling region is restricted. In particalur it becomes (very) large when sampling
from the (far) tail of the distribution. Then it is better to create a generator object for the
tail of distribution only.
Important: This call does not work for variant IA (immediate acceptance). In this case
UNU.RAN switches automatically to variant RH (use “classical” acceptance/rejection from
hat distribution) and does revert to the variant originally set by the user.
Important: It is not a good idea to use adaptave rejection sampling while sampling from a
domain that is a strict subset of the domain that has been used to construct the hat. For
that reason adaptive adding of construction points is automatically disabled by this call.
Important: If the CDF of the hat is (almost) the same for left and right and (almost) equal
to 0 or 1, then the truncated domain is not changed and the call returns an error code.

int unur_tabl_set_verify (UNUR PAR* parameters, int verify)
int unur_tabl_chg_verify (UNUR GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition squeeze(x) <= PDF(x) <=
hat(x) is violated for some x then unur_errno is set to UNUR_ERR_GEN_CONDITION. However
notice that this might happen due to round-off errors for a few values of x (less than 1%).
Default is FALSE.

int unur_tabl_set_pedantic (UNUR PAR* parameters, int pedantic)
Sometimes it might happen that unur_init has been executed successfully. But when ad-
ditional construction points are added by adaptive rejection sampling, the algorithm detects
that the PDF is not monotone in the given slopes.
With pedantic being TRUE, the sampling routine is exchanged by a routine that simply returns
UNUR_INFINITY indicating an error.
Default is FALSE.

136 UNU.RAN User Manual

5.3.16 TDR – Transformed Density Rejection

Required: T-concave PDF, dPDF

Optional: mode

Speed: Set-up: slow, Sampling: fast

Reinit: supported

Reference: [GWa92] [HWa95] [HLD04: Cha.4]

TDR is an acceptance/rejection method that uses the concavity of a transformed density to
construct hat function and squeezes automatically. Such PDFs are called T-concave. Currently
the following transformations are implemented and can be selected by setting their c-values by
a unur_tdr_set_c call:

c = 0 T(x) = log(x)

c = -0.5 T(x) = -1/sqrt(x) (Default)

In future releases the transformations T(x) = -(x)^c will be available for any c with 0 > c >
-1. Notice that if a PDF is T-concave for a c then it also T-concave for every c’<c. However
the performance decreases when c’ is smaller than c. For computational reasons we suggest the
usage of c = -0.5 (this is the default). For c <= -1 the hat is not bounded any more if the
domain of the PDF is unbounded. But in the case of a bounded domain using method TABL is
preferred to a TDR with c < -1 (except in a few special cases).

We offer three variants of the algorithm.

GW squeezes between construction points

PS squeezes proportional to hat function (Default)

IA same as variant PS but uses a compositon method with “immediate acceptance” in
the region below the squeeze.

GW has a slightly faster setup but higher marginal generation times. PS is faster than GW. IA
uses less uniform random numbers and is therefore faster than PS.

It is also possible to evaluate the inverse of the CDF of the hat distribution directly using
the unur_tdr_eval_invcdfhat call.

There are lots of parameters for these methods, see below.
It is possible to use this method for correlation induction by setting an auxiliary uniform

random number generator via the unur_set_urng_aux call. (Notice that this must be done
after a possible unur_set_urng call.) When an auxiliary generator is used then the number of
uniform random numbers from the first URNG that are used for one generated random variate
is constant and given in the following table:

GW ... 2

PS ... 2

IA ... 1

There exists a test mode that verifies whether the conditions for the method are satisfied
or not. It can be switched on by calling unur_tdr_set_verify and unur_tdr_chg_verify,
respectively. Notice however that sampling is (much) slower then.

For densities with modes not close to 0 it is suggested to set either the mode or the center of
the distribution by the unur_distr_cont_set_mode or unur_distr_cont_set_center call. The
latter is the approximate location of the mode or the mean of the distribution. This location

Chapter 5: Methods for generating non-uniform random variates 137

provides some information about the main part of the PDF and is used to avoid numerical
problems.

It is possible to use this method for generating from truncated distributions. It even can be
changed for an existing generator object by an unur_tdr_chg_truncated call.

It is possible to change the parameters and the domain of the chosen distribution and run
unur_reinit to reinitialize the generator object.

Important: The ratio between the area below the hat and the area below the squeeze changes
when the sampling region is restricted. Especially it becomes (very) small when sampling from
the (far) tail of the distribution. Then it is better to create a new generator object for the tail
of the distribution only.

Function reference

UNUR_PAR* unur_tdr_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_tdr_set_c (UNUR PAR* parameters, double c)
Set parameter c for transformation T. Currently only values between 0 and -0.5 are allowed.
If c is between 0 and -0.5 it is set to -0.5.
Default is -0.5.

int unur_tdr_set_variant_gw (UNUR PAR* parameters)
Use original version with squeezes between construction points as proposed by Gilks & Wild
(1992).

int unur_tdr_set_variant_ps (UNUR PAR* parameters)
Use squeezes proportional to the hat function. This is faster than the original version. This
is the default.

int unur_tdr_set_variant_ia (UNUR PAR* parameters)
Use squeezes proportional to the hat function together with a composition method that
required less uniform random numbers.

int unur_tdr_set_usedars (UNUR PAR* parameters, int usedars)
If usedars is set to TRUE, “derandomized adaptive rejection sampling” (DARS) is used in
setup. Intervals where the area between hat and squeeze is too large compared to the average
area between hat and squeeze over all intervals are split. This procedure is repeated until
the ratio between area below squeeze and area below hat exceeds the bound given by unur_
tdr_set_max_sqhratio call or the maximum number of intervals is reached. Moreover, it
also aborts when no more intervals can be found for splitting.
For finding splitting points the following rules are used (in this order, i.e., is if the first rule
cannot be applied, the next one is used):
1. Use the expected value of adaptive rejection sampling.
2. Use the arc-mean rule (a mixture of arithmetic mean and harmonic mean).
3. Use the arithmetic mean of the interval boundaries.

Notice, however, that for unbounded intervals neither rule 1 nor rule 3 can be used.
As an additional feature, it is possible to choose amoung these rules. If usedars is set to 1
or TRUE the expected point (rule 1) is used (it switches to rule 2 for a particular interval if
rule 1 cannot be applied). If it is set to 2 the arc-mean rule is used. If it is set to 3 the mean

138 UNU.RAN User Manual

is used. Notice that rule 3 can only be used if the domain of the distribution is bounded. It
is faster than the other two methods but for heavy-tailed distribution and large domain the
hat converges extremely slowly.
The default depends on the given construction points. If the user has provided such points
via a unur_tdr_set_cpoints call, then usedars is set to FALSE by default, i.e., there is no
further splitting. If the user has only given the number of construction points (or only uses
the default number), then usedars is set to TRUE (i.e., use rule 1).

int unur_tdr_set_darsfactor (UNUR PAR* parameters, double factor)
Set factor for “derandomized adaptive rejection sampling”. This factor is used to determine
the intervals that are “too large”, that is, all intervals where the area between squeeze and
hat is larger than factor times the average area over all intervals between squeeze and hat.
Notice that all intervals are split when factor is set to 0., and that there is no splitting at
all when factor is set to UNUR_INFINITY.
Default is 0.99. There is no need to change this parameter.

int unur_tdr_set_cpoints (UNUR PAR* parameters, int n_stp, const double*
stp)

Set construction points for the hat function. If stp is NULL than a heuristic rule of thumb is
used to get n stp construction points. This is the default behavior.
The default number of construction points is 30.

int unur_tdr_set_reinit_percentiles (UNUR PAR* parameters, int
n_percentiles, const double* percentiles)

int unur_tdr_chg_reinit_percentiles (UNUR GEN* generator, int
n_percentiles, const double* percentiles)

By default, when the generator object is reinitialized, it used the same construction points as
for the initialization procedure. Often the underlying distribution object has been changed
only moderately. For example, the full conditional distribution of a multivariate distribution.
In this case it might be more appropriate to use percentilesm of the hat function for the last
(unchanged) distribution. percentiles must then be a pointer to an ordered array of numbers
between 0.01 and 0.99. If percentiles is NULL, then a heuristic rule of thumb is used to
get n percentiles values for these percentiles. Notice that n percentiles must be at least 2,
otherwise defaults are used. (Then the first and third quartiles are used by default.)

int unur_tdr_set_reinit_ncpoints (UNUR PAR* parameters, int ncpoints)
int unur_tdr_chg_reinit_ncpoints (UNUR GEN* generator, int ncpoints)

When reinit fails with the given construction points or the percentiles of the old hat function,
another trial is undertaken with ncpoints construction points. ncpoints must be at least 10.
Default: 50

int unur_tdr_chg_truncated (UNUR GEN* gen, double left, double right)
Change the borders of the domain of the (truncated) distribution.
Notice that the given truncated domain must be a subset of the domain of the given distri-
bution. The generator always uses the intersection of the domain of the distribution and the
truncated domain given by this call. The hat function will not be changed and there is no
need to run unur_reinit. Important: The ratio between the area below the hat and the area
below the squeeze changes when the sampling region is restricted. In particular it becomes
(very) large when sampling from the (far) tail of the distribution. Then it is better to create
a generator object for the tail of distribution only.

Chapter 5: Methods for generating non-uniform random variates 139

Important: This call does not work for variant IA (immediate acceptance). In this case
UNU.RAN switches automatically to variant PS.
Important: It is not a good idea to use adaptave rejection sampling while sampling from a
domain that is a strict subset of the domain that has been used to construct the hat. For
that reason adaptive adding of construction points is automatically disabled by this call.
Important: If the CDF of the hat is (almost) the same for left and right and (almost) equal
to 0 or 1, then the truncated domain is not changed and the call returns an error code.

int unur_tdr_set_max_sqhratio (UNUR PAR* parameters, double max_ratio)
Set upper bound for the ratio (area below squeeze) / (area below hat). It must be a number
between 0 and 1. When the ratio exceeds the given number no further construction points
are inserted via adaptive rejection sampling. Use 0 if no construction points should be added
after the setup. Use 1 if added new construction points should not be stopped until the
maximum number of construction points is reached.
Default is 0.99.

double unur_tdr_get_sqhratio (const UNUR_GEN* generator)
Get the current ratio (area below squeeze) / (area below hat) for the generator. (In case of
an error UNUR_INFINITY is returned.)

double unur_tdr_get_hatarea (const UNUR_GEN* generator)
Get the area below the hat for the generator. (In case of an error UNUR_INFINITY is returned.)

double unur_tdr_get_squeezearea (const UNUR_GEN* generator)
Get the area below the squeeze for the generator. (In case of an error UNUR_INFINITY is
returned.)

int unur_tdr_set_max_intervals (UNUR PAR* parameters, int max_ivs)
Set maximum number of intervals. No construction points are added after the setup when
the number of intervals suceeds max ivs. It is increased automatically to twice the number
of construction points if this is larger.
Default is 100.

int unur_tdr_set_usecenter (UNUR PAR* parameters, int usecenter)
Use the center as construction point. Default is TRUE.

int unur_tdr_set_usemode (UNUR PAR* parameters, int usemode)
Use the (exact!) mode as construction point. Notice that the behavior of the algorithm is
different to simply adding the mode in the list of construction points via a unur_tdr_set_
cpoints call. In the latter case the mode is treated just like any other point. However, when
usemode is TRUE, the tangent in the mode is always set to 0. Then the hat of the transformed
density can never cut the x-axis which must never happen if c < 0, since otherwise the hat
would not be bounded.
Default is TRUE.

int unur_tdr_set_guidefactor (UNUR PAR* parameters, double factor)
Set factor for relative size of the guide table for indexed search (see also method DGT
Section 5.8.4 [DGT], page 180). It must be greater than or equal to 0. When set to 0, then
sequential search is used.
Default is 2.

140 UNU.RAN User Manual

int unur_tdr_set_verify (UNUR PAR* parameters, int verify)
int unur_tdr_chg_verify (UNUR GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition squeeze(x) <= PDF(x) <=
hat(x) is violated for some x then unur_errno is set to UNUR_ERR_GEN_CONDITION. However
notice that this might happen due to round-off errors for a few values of x (less than 1%).
Default is FALSE.

int unur_tdr_set_pedantic (UNUR PAR* parameters, int pedantic)
Sometimes it might happen that unur_init has been executed successfully. But when ad-
ditional construction points are added by adaptive rejection sampling, the algorithm detects
that the PDF is not T-concave.
With pedantic being TRUE, the sampling routine is exchanged by a routine that simply returns
UNUR_INFINITY. Otherwise the new point is not added to the list of construction points. At
least the hat function remains T-concave.
Setting pedantic to FALSE allows sampling from a distribution which is “almost” T-concave
and small errors are tolerated. However it might happen that the hat function cannot be
improved significantly. When the hat functions that has been constructed by the unur_init
call is extremely large then it might happen that the generation times are extremely high
(even hours are possible in extremely rare cases).
Default is FALSE.

double unur_tdr_eval_invcdfhat (const UNUR_GEN* generator, double u,
double* hx, double* fx, double* sqx)

Evaluate the inverse of the CDF of the hat distribution at u. As a side effect the values of
the hat, the density, and the squeeze at the computed point x are stored in hx, fx, and sqx,
respectively. However, these computations are suppressed if the corresponding variable is set
to NULL.
If u is out of the domain [0,1] then unur_errno is set to UNUR_ERR_DOMAIN and the respective
bound of the domain of the distribution are returned (which is -UNUR_INFINITY or UNUR_
INFINITY in the case of unbounded domains).
Important: This call does not work for variant IA (immediate acceptance). In this case the
hat CDF is evaluated as if variant PS is used.
Notice: This function always evaluates the inverse CDF of the hat distribution. A call to
unur_tdr_chg_truncated call has no effect.

Chapter 5: Methods for generating non-uniform random variates 141

5.3.17 UTDR – Universal Transformed Density Rejection

Required: T-concave PDF, mode, approximate area

Speed: Set-up: moderate, Sampling: Moderate

Reinit: supported

Reference: [HWa95] [HLD04: Sect.4.5.4; Alg.4.4]

UTDR is based on the transformed density rejection and uses three almost optimal points for
constructing hat and squeezes. It works for all T-concave distributions with T (x) = −1/

√
(x).

It requires the PDF and the (exact) location of the mode. Notice that if no mode is given
at all, a (slow) numerical mode finder will be used. Moreover the approximate area below
the given PDF is used. (If no area is given for the distribution the algorithm assumes that
it is approximately 1.) The rejection constant is bounded from above by 4 for all T-concave
distributions.

How To Use

UTDR works for any continuous univariate distribution object with given T-concave PDF (with
T (x) = −1/

√
x,) mode and approximate area below PDF.

When the PDF does not change at the mode for varying parameters, then this value can be
set with unur_utdr_set_pdfatmode to avoid some computations. Since this value will not be
updated any more when the parameters of the distribution are changed, the unur_utdr_chg_
pdfatmode call is necessary to do this manually.

It is possible to change the parameters and the domain of the chosen distribution and run
unur_reinit to reinitialize the generator object. Notice, that derived parameters like the mode
must also be (re-) set if the parameters or the domain has be changed. Moreover, if the PDF at
the mode has been provided by a unur_utdr_set_pdfatmode call, additionally unur_utdr_chg_
pdfatmode must be used (otherwise this call is not necessary since then this figure is computed
directly from the PDF).

There exists a test mode that verifies whether the conditions for the method are satisfied
or not. It can be switched on by calling unur_utdr_set_verify and unur_utdr_chg_verify,
respectively. Notice however that sampling is slower then.

Function reference

UNUR_PAR* unur_utdr_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_utdr_set_pdfatmode (UNUR PAR* parameters, double fmode)
Set pdf at mode. When set, the PDF at the mode is never changed. This is to avoid additional
computations, when the PDF does not change when parameters of the distributions vary. It
is only useful when the PDF at the mode does not change with changing parameters for the
distribution.
Default: not set.

int unur_utdr_set_cpfactor (UNUR PAR* parameters, double cp_factor)
Set factor for position of left and right construction point. The cp factor is used to find
almost optimal construction points for the hat function. There is no need to change this
factor in almost all situations.
Default is 0.664.

142 UNU.RAN User Manual

int unur_utdr_set_deltafactor (UNUR PAR* parameters, double delta)
Set factor for replacing tangents by secants. higher factors increase the rejection constant but
reduces the risk of serious round-off errors. There is no need to change this factor it almost
all situations.
Default is 1.e-5.

int unur_utdr_set_verify (UNUR PAR* parameters, int verify)
int unur_utdr_chg_verify (UNUR GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition squeeze(x) <= PDF(x) <=
hat(x) is violated for some x then unur_errno is set to UNUR_ERR_GEN_CONDITION. However
notice that this might happen due to round-off errors for a few values of x (less than 1%).
Default is FALSE.

int unur_utdr_chg_pdfatmode (UNUR GEN* generator, double fmode)
Change PDF at mode of distribution. unur_reinit must be executed before sampling from
the generator again.

Chapter 5: Methods for generating non-uniform random variates 143

5.4 Methods for continuous empirical univariate distributions

Overview of methods� �
Methods for continuous empirical univariate distributions
sample with unur_sample_cont

EMPK: Requires an observed sample.
EMPL: Requires an observed sample.
 	
Example

/* --- */

/* File: example_emp.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* Example how to sample from an empirial continuous univariate */

/* distribution. */

/* --- */

int main(void)

{

int i;

double x;

/* data points */

double data[15] = { -0.1, 0.05, -0.5, 0.08, 0.13,\

-0.21,-0.44, -0.43, -0.33, -0.3, \

0.18, 0.2, -0.37, -0.29, -0.9 };

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Create a distribution object and set empirical sample. */

distr = unur_distr_cemp_new();

unur_distr_cemp_set_data(distr, data, 15);

/* Choose a method: EMPK. */

par = unur_empk_new(distr);

/* Set smooting factor. */

unur_empk_set_smoothing(par, 0.8);

/* Create the generator object. */

gen = unur_init(par);

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

144 UNU.RAN User Manual

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

Example (String API)
/* --- */

/* File: example_emp_str.c */

/* --- */

/* String API. */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* Example how to sample from an empirial continuous univariate */

/* distribution. */

/* --- */

int main(void)

{

int i;

double x;

/* Declare UNURAN generator object. */

UNUR_GEN *gen; /* generator object */

/* Create the generator object. */

gen = unur_str2gen("distr = cemp; \

data=(-0.10, 0.05,-0.50, 0.08, 0.13, \

-0.21,-0.44,-0.43,-0.33,-0.30, \

0.18, 0.20,-0.37,-0.29,-0.90) & \

method=empk; smoothing=0.8");

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

Chapter 5: Methods for generating non-uniform random variates 145

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

146 UNU.RAN User Manual

5.4.1 EMPK – EMPirical distribution with Kernel smoothing

Required: observed sample

Speed: Set-up: slow (as sample is sorted), Sampling: fast (depends on kernel)

Reinit: not implemented

Reference: [HLa00] [HLD04: Sect.12.1.2]

EMPK generates random variates from an empirical distribution that is given by an observed
sample. The idea is that simply choosing a random point from the sample and to return it with
some added noise results in a method that has very nice properties, as it can be seen as sampling
from a kernel density estimate. If the underlying distribution is continuous, especially the fine
structur of the resulting empirical distribution is much better than using only resampling without
noise.

Clearly we have to decide about the density of the noise (called kernel) and about the standard
deviation of the noise. The mathematical theory of kernel density estimation shows us that we
are comparatively free in choosing the kernel. It also supplies us with a simple formula to
compute the optimal standarddeviation of the noise, called bandwidth (or window width) of the
kernel.

The variance of the estimated density is slightly larger than that of the observed sample.
However, this can be easily corrected if required.

There is also a correction (mirroring technique) for distributions with non-negative support.
A simple robust reference method is implemented to find a good standard deviation of the

noise (i.e. the bandwidth of kernel density estimation). For some cases (e.g. densities with two
or more sharp distinct peaks) there kernel density estimation can be adjusted by changing the
smoothness factor and the so called beta factor.

How To Use

EMPK uses empirical distributions. The main parameter is the choice if of kernel density.
The most important kernels can be set by unur_empk_set_kernel. Additionally generators for
other kernels can be used by using unur_empk_set_kernelgen instead. Additionally variance
correction and a correction for non-negative variates can be switched on.

The two other parameters (smoothing factor and beta factor) are only useful for people
knowing the theory of kernel density estimation. It is not necessary to change them if the
true underlying distribution is somehow comparable with a bell-shaped curve, even skewed or
with some not too sharp extra peaks. In all these cases the simple robust reference method
implemented to find a good standard deviation of the noise (i.e. the bandwidth of kernel
density estimation) should give sensible results. However, it might be necessary to overwrite this
automatic method to find the bandwidth eg. when resampling from data with two or more sharp
distinct peaks. Then the distribution has nearly discrete components as well and our automatic
method may easily choose too large a bandwidth which results in an empirical distribution which
is oversmoothed (i.e. it has lower peaks than the original distribution). Then it is recommended
to decrease the bandwidth using the unur_empk_set_smoothing call. A smoothing factor of 1 is
the default. A smoothing factor of 0 leads to naive resampling of the data. Thus an appropriate
value between these extremes should be choosen. We recommend to consult a reference on kernel
smoothing when doing so; but it is not a simple problem to determine an optimal bandwidth
for distributions with sharp peaks.

In general, for most applications it is perfectly ok to use the default values offered. Unless you
have some knowledge on density estimation we do not recommend to change anything. There
are two exceptions:

Chapter 5: Methods for generating non-uniform random variates 147

A. In the case that the unknown underlying distribution is not continuous but discrete you
should "turn off" the adding of the noise by setting:

unur_empk_set_smoothing(par, 0.)

B. In the case that you are especially interested in a fast sampling algorithm use the call
unur_empk_set_kernel(par, UNUR_DISTR_BOXCAR);

to change the used noise distribution from the default Gaussian distribution to the uniform
distribution.

Function reference

UNUR_PAR* unur_empk_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_empk_set_kernel (UNUR PAR* parameters, unsigned kernel)
Select one of the supported kernel distributions. Currently the following kernels are sup-
ported:

UNUR_DISTR_GAUSSIAN
Gaussian (normal) kernel

UNUR_DISTR_EPANECHNIKOV
Epanechnikov kernel

UNUR_DISTR_BOXCAR
Boxcar (uniform, rectangular) kernel

UNUR_DISTR_STUDENT
t3 kernel (Student’s distribution with 3 degrees of freedom)

UNUR_DISTR_LOGISTIC
logistic kernel

For other kernels (including kernels with Student’s distribution with other than 3 degrees of
freedom) use the unur_empk_set_kernelgen call.
It is not possible to call unur_empk_set_kernel twice.
Default is the Gaussian kernel.

int unur_empk_set_kernelgen (UNUR PAR* parameters, const UNUR_GEN*
kernelgen, double alpha, double kernelvar)

Set generator for the kernel used for density estimation.
alpha is used to compute the optimal bandwidth from the point of view of minimizing the
mean integrated square error (MISE). It depends on the kernel K and is given by

alpha(K) = Var(K)^(-2/5){ \int K(t)^2 dt}^(1/5)

For standard kernels (see above) alpha is computed by the algorithm.
kernvar is the variance of the used kernel. It is only required for the variance corrected
version of density estimation (which is used by default); otherwise it is ignored. If kernelvar
is nonpositive, variance correction is disabled. For standard kernels (see above) kernvar is
computed by the algorithm.
It is not possible to call unur_empk_set_kernelgen after a standard kernel has been selected
by a unur_empk_set_kernel call.
Notice that the uniform random number generator of the kernel generator is overwritten
during the unur_init call and at each unur_chg_urng call with the uniform generator used
for the empirical distribution.
Default is the Gaussian kernel.

148 UNU.RAN User Manual

int unur_empk_set_beta (UNUR PAR* parameters, double beta)
beta is used to compute the optimal bandwidth from the point of view of minimizing the
mean integrated square error (MISE). beta depends on the (unknown) distribution of the
sampled data points. By default Gaussian distribution is assumed for the sample (beta =
1.3637439). There is no requirement to change beta.
Default: 1.3637439

int unur_empk_set_smoothing (UNUR PAR* parameters, double smoothing)
int unur_empk_chg_smoothing (UNUR GEN* generator, double smoothing)

Set and change the smoothing factor. The smoothing factor controlles how “smooth” the re-
sulting density estimation will be. A smoothing factor equal to 0 results in naive resampling.
A very large smoothing factor (together with the variance correction) results in a density
which is approximately equal to the kernel. Default is 1 which results in a smoothing param-
eter minimising the MISE (mean integrated squared error) if the data are not too far away
from normal. If a large smoothing factor is used, then variance correction must be switched
on.
Default: 1

int unur_empk_set_varcor (UNUR PAR* parameters, int varcor)
int unur_empk_chg_varcor (UNUR GEN* generator, int varcor)

Switch variance correction in generator on/off. If varcor is TRUE then the variance of the used
density estimation is the same as the sample variance. However this increases the MISE of
the estimation a little bit.
Default is FALSE.

int unur_empk_set_positive (UNUR PAR* parameters, int positive)
If positive is TRUE then only nonnegative random variates are generated. This is done by
means of a mirroring technique.
Default is FALSE.

Chapter 5: Methods for generating non-uniform random variates 149

5.4.2 EMPL – EMPirical distribution with Linear interpolation

Required: observed sample

Speed: Set-up: slow (as sample is sorted), Sampling: very fast (inversion)

Reinit: not implemented

Reference: [HLa00] [HLD04: Sect.12.1.3]

EMPL generates random variates from an empirical distribution that is given by an observed
sample. This is done by linear interpolation of the empirical CDF. Although this method is
suggested in the books of Law and Kelton (2000) and Bratly, Fox, and Schrage (1987) we do not
recommend this method at all since it has many theoretical drawbacks: The variance of empirical
distribution function does not coincide with the variance of the given sample. Moreover, when
the sample increases the empirical density function does not converge to the density of the
underlying random variate. Notice that the range of the generated point set is always given by
the range of the given sample.

This method is provided in UNU.RAN for the sake of completeness. We always recommend to
use method EMPK (see Section 5.4.1 [EMPirical distribution with Kernel smoothing], page 146).

If the data seem to be far away from having a bell shaped histogram, then we think that
naive resampling is still better than linear interpolation.

How To Use

EMPL creates and samples from an empiral distribution by linear interpolation of the empirical
CDF. There are no parameters to set.
Important : We do not recommend to use this method! Use method EMPK (see Section 5.4.1
[EMPirical distribution with Kernel smoothing], page 146) instead.

Function reference

UNUR_PAR* unur_empl_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

150 UNU.RAN User Manual

5.4.3 HIST – HISTogramm of empirical distribution

Required: histogram

Speed: Set-up: moderate, Sampling: fast

Reinit: not implemented

Method HIST generates random variates from an empirical distribution that is given as
histogram. Sampling is done using the inversion method.

If observed (raw) data are provided we recommend method EMPK (see Section 5.4.1 [EM-
Pirical distribution with Kernel smoothing], page 146) instead of compting a histogram as this
reduces information.

How To Use

Method HIST uses empirical distributions that are given as a histgram. There are no optional
parameters.

Function reference

UNUR_PAR* unur_hist_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

Chapter 5: Methods for generating non-uniform random variates 151

5.5 Methods for continuous multivariate distributions

Overview of methods� �
Methods for continuous multivariate distributions
sample with unur_sample_vec

NORTA: Requires rank correlation matrix and marginal distributions.
VNROU: Requires the PDF.
MVSTD: Generator for built-in standard distributions.
MVSTD: Requires PDF and gradiant of PDF.
 	

152 UNU.RAN User Manual

5.5.1 MVTDR – Multi-Variate Transformed Density Rejection

Required: log-concave (log)PDF, gradient of (log)PDF

Optional: mode

Speed: Set-up: slow, Sampling: depends on dimension

Reinit: not implemented

Reference: [HLD04: Sect.11.3.4; Alg.11.15.] [LJa98]

MVTDR a multivariate version of the Transformed Density Rection (see Section 5.3.16
[TDR], page 136) that works for log-concave densities. For this method the domain of the
distribution is partitioned into cones with the mode (or the center) of the distribution as their
(common) vertex. The hat function is then constructed as tangent planes of the transformed
density in each of these cones. The respective construction points lie on the central lines in
the cones through the vertex. The point is chosen such that the hat is minimal among all such
points (see the given references for more details).

The cones are created by starting with the orthants of the reals space. These are then
iteratively split when the volume below the hat in such cones is too large. Thus an increasing
number of cones results in a better fitting hat function. Notice however, that the required
number of cones increases exponentially with the number of dimension. Moreover, due to the
construction the rejection does not converge to 1 and remains strictly larger than 1.

For distributions with bounded domains the cones are cut to pyramids that cover the domain.

How To Use

Create a multivariate generator object that contains the PDF and its gradient. This object also
should contain the mode of the distribution (or a point nearby should be provided as center of
the distribution).

The method has three parameter to adjust the method for the given distribution:

stepsmin Minimal number of iterations for splitting cones. Notice that we start with 2^dim
initial cones and that we arrive at 2^(dim+stepsmin) cones after these splits. So this
number must be set with care. It can be set by a unur_mvtdr_set_stepsmin call.

boundsplitting
Cones where the volume below the hat is relatively large (i.e. larger than the average
volume over all cones times boundsplitting are further split. This parameter can
set via a unur_mvtdr_set_boundsplitting call.

maxcones The maximum number of generated cones. When this number is reached, the initial-
ization routine is stopped. Notice that the rejection constant can be still prohibitive
large. This parameter can set via a unur_mvtdr_set_maxcones call.

Setting of these parameter can be quite tricky. The default settings lead to hat functions
where the volume below the hat is similar in each cone. However, there might be some problems
with distributions with higher correlations, since then too few cones are created. Then it might
be necessary to increase the values for stepsmin and maxcones and to set boundsplitting to
0.

The number of cones and the total volume below the hat can be controlled using the respec-
tive calls unur_mvtdr_get_ncones and unur_mvtdr_get_hatvol. Notice, that the rejection
constant is bounded from below by some figure (larger than 1) that depends on the dimension.

Unfortunately, the algorithm cannot detect the quality of the constructed hat.

Chapter 5: Methods for generating non-uniform random variates 153

Function reference

UNUR_PAR* unur_mvtdr_new (const UNUR_DISTR* distribution)
Get parameters for generator.

int unur_mvtdr_set_stepsmin (UNUR PAR* parameters, int stepsmin)
Set minimum number of triangulation step for each starting cone. stepsmin must be nonneg-
ative.
Default: 5.

int unur_mvtdr_set_boundsplitting (UNUR PAR* parameters, double
boundsplitting)

Set bound for splitting cones. All cones are split which have a volume below the hat that is
greater than bound splitting times the average over all volumes. However, the number given
by the unur_mvtdr_set_maxcones is not exceeded. Notice that the later number is always
reached if bound splitting is less than 1.
Default: 1.5

int unur_mvtdr_set_maxcones (UNUR PAR* parameters, int maxcones)
Set maximum number of cones.
Notice that this number is always increased to 2dim+stepsmin where dim is the dimension of
the distribution object and stepsmin the given mimimum number of triangulation steps.
Notice: For higher dimensions and/or higher correlations between the coordinates of the
random vector the required number of cones can be very high. A too small maximum number
of cones can lead to a very high rejection constant.
Default: 10000.

int unur_mvtdr_get_ncones (const UNUR_GEN* generator)
Get the number of cones used for the hat function of the generator. (In case of an error 0 is
returned.)

double unur_mvtdr_get_hatvol (const UNUR_GEN* generator)
Get the volume below the hat for the generator. (In case of an error UNUR_INFINITY is
returned.)

int unur_mvtdr_set_verify (UNUR PAR* parameters, int verify)
int unur_mvtdr_chg_verify (UNUR GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition squeeze(x) <= PDF(x) <=
hat(x) is violated for some x then unur_errno is set to UNUR_ERR_GEN_CONDITION. However
notice that this might happen due to round-off errors for a few values of x (less than 1%).
Default is FALSE.

154 UNU.RAN User Manual

5.5.2 NORTA – NORmal To Anything

Required: rank correlation matrix, marginal distributions

Speed: Set-up: slow, Sampling: depends on dimension

Reinit: not implemented

Reference: [HLD04: Sect.12.5.2; Alg.12.11.]

NORTA (NORmal to anything) is a model to get random vectors with given marginal dis-
tributions and rank correlation.

Important: Notice that marginal distribution and (rank) correlation structure do not
uniquely define a multivariate distribution. Thus there are many other (more or less sensible)
models.

In the NORTA model multinormal random variates with the given (Spearman’s) rank cor-
relations are generated. In a second step the (standard normal distributed) marginal variates
are transformed by means of the CDF of the normal distribution to get uniform marginals. The
resulting random vectors have uniform marginals and the desired rank correlation between its
components. Such a random vector is called ’copula’.

By means of the inverse CDF the uniform marginals are then transformed into the target
marginal distributions. This transformation does not change the rank correlation.

For the generation of the multinormal distribution the (Spearman’s) rank correlation matrix
is transformed into the corresponding (Pearson) correlation matrix. Samples from the resulting
multinormal distribution are generated by means of the Cholesky decomposition of the covari-
ance matrix.

It can happen that the desired rank correlation matrix is not feasible, i.e., it cannot occur
as rank correlation matrix of a multinormal distribution. The resulting "covariance" matrix
is not positive definite. In this case an eigenvector correction method is used. Then all non-
positive eigenvalues are set to a small positive value and hence the rank correlation matrix of
the generated random vectors is "close" to the desired matrix.

How To Use

Create a multivariate generator object and set marginal distributions using unur_distr_
cvec_set_marginals, unur_distr_cvec_set_marginal_array , or unur_distr_cvec_set_
marginal_list. (Do not use the corresponding calls for the standard marginal distributions).

When the domain of the multivariate distribution is set by of a unur_distr_cvec_set_
domain_rect call then the domain of each of the marginal distributions is truncated by the
respective coordinates of the given rectangle.

If copulae are required (i.e. multivariate distributions with uniform marginals) such a gener-
ator object can be created by means of unur_distr_copula .

There are no optional parameters for this method.

Function reference

UNUR_PAR* unur_norta_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

Chapter 5: Methods for generating non-uniform random variates 155

5.5.3 VNROU – Multivariate Naive Ratio-Of-Uniforms method

Required: PDF

Optional: mode, center, bounding rectangle for acceptance region

Speed: Set-up: fast or slow, Sampling: slow

Reinit: supported

Reference: [WGS91]

VNROU is an implementation of the multivariate ratio-of-uniforms method which uses a
(minimal) bounding hyper-rectangle, see also Section A.4 [Ratio-of-Uniforms], page 236. It uses
an additional parameter r that can be used for adjusting the algorithm to the given distribution
to improve performance and/or to make this method applicable. Larger values of r increase the
class of distributions for which the method works at the expense of higher rejection constants.
Moreover, this implementation uses the center µ of the distribution (which is set to the mode
or mean by default, see unur_distr_cvec_get_center for details of its default values).

The minimal bounding has then the coordinates
v+ = sup

x
(f(x))1/r d+1,

u−i = inf
xi

(xi − µi)(f(x))r/r d+1,

u+
i = sup

xi

(xi − µi)(f(x))r/r d+1,

where xi is the i-th coordinate of point x ; µi is the i-th coordinate of the center µ. d denotes
the dimension of the distribution. These bounds can either be given directly, or are computed
automatically by means of an numerical routine by Hooke and Jeeves [HJa61] called direct search
(see ‘src/utils/hooke.c’ for further references and details). Of course this algorithm can fail,
especially when this rectangle is not bounded.

It is important to note that the algorithm works with PDF (x− center) instead of PDF (x),
i.e. the bounding rectangle has to be provided for PDF (x − center). This is important as
otherwise the acceptance region can become a very long and skinny ellipsoid along a diagonal
of the (huge) bounding rectangle.

VNROU is based on the rejection method (see Section A.2 [Rejection], page 234), and it
is important to note that the acceptance probability decreases exponentially with dimension.
Thus even for moderately many dimensions (e.g. 5) the number of repetitions to get one random
vector can be prohibitively large and the algorithm seems to stay in an infinite loop.

How To Use

For using the VNROU method UNU.RAN needs the PDF of the distribution. Additionally, the
parameter r can be set via a unur_vnrou_set_r call. Notice that the acceptance probability
decreases when r is increased. On the other hand is is more unlikely that the bounding rectangle
does not exist if r is small.

A bounding rectangle can be given by the unur_vnrou_set_u and unur_vnrou_set_v calls.
Important: The bounding rectangle has to be provided for the function PDF (x − center)!

Notice that center is the center of the given distribution, see unur_distr_cvec_set_center.
If in doubt or if this value is not optimal, it can be changed (overridden) by a unur_distr_
cvec_set_center call.

If the coordinates of the bounding rectangle are not provided by the user then the minimal
bounding rectangle is computed automatically.

By means of unur_vnrou_set_verify and unur_vnrou_chg_verify one can run the sam-
pling algorithm in a checking mode, i.e., in every cycle of the rejection loop it is checked whether

156 UNU.RAN User Manual

the used rectangle indeed enclosed the acceptance region of the distribution. When in doubt
(e.g., when it is not clear whether the numerical routine has worked correctly) this can be used
to run a small Monte Carlo study.

Important: The rejection constant (i.e. the expected number of iterations for generationg
one random vector) can be extremely high, in particular when the dimension is 4 or higher.
Then the algorithm will perform almost infinite loops. Thus it is recommended to read the
volume below the hat function by means of the unur_vnrou_get_volumehat call. The returned
number divided by the volume below the PDF (which is 1 in case of a normalized PDF) gives
the rejection constant.

It is possible to change the parameters and the domain of the chosen distribution and run
unur_reinit to reinitialize the generator object. Notice, that the coordinates of a bounding
rectangle given by unur_vnrou_set_u and unur_vnrou_set_v calls are used also when the
generator is reused. These can be changed by means of unur_vnrou_chg_u and unur_vnrou_
chg_v calls. (If no such coordinates have been given, then they are computed numerically during
the reinitialization proceedure.)

Function reference

UNUR_PAR* unur_vnrou_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_vnrou_set_u (UNUR PAR* parameters, double* umin, double* umax)
Sets left and right boundaries of bounding hyper-rectangle. If no values are given, the bound-
ary of the minimal bounding hyper-rectangle is computed numerically.

Important: The boundaries are those of the density shifted by the center of the distribution,
i.e., for the function PDF (x− center)!
Notice: Computing the minimal bounding rectangle may fail under some circumstances.
Moreover, for multimodal distributions the bounds might be too small as only local extrema
are computed. Nevertheless, for log-concave distributions it should work.

Default: not set (i.e. computed automatically)

int unur_vnrou_chg_u (UNUR GEN* generator, double* umin, double* umax)
Change left and right boundaries of bounding hyper-rectangle.

int unur_vnrou_set_v (UNUR PAR* parameters, double vmax)
Set upper boundary for bounding hyper-rectangle. If no values are given, the density at the
mode is evaluated. If no mode is given for the distribution it is computed numerically (and
might fail).

Default: not set (i.e. computed automatically)

int unur_vnrou_chg_v (UNUR GEN* generator, double vmax)
Change upper boundary for bounding hyper-rectangle.

int unur_vnrou_set_r (UNUR PAR* parameters, double r)
Sets the parameter r of the generalized multivariate ratio-of-uniforms method.

Notice: This parameter must satisfy r>0.

Default: 1.

Chapter 5: Methods for generating non-uniform random variates 157

int unur_vnrou_set_verify (UNUR PAR* parameters, int verify)
Turn verifying of algorithm while sampling on/off.
If the condition PDF(x) <= hat(x) is violated for some x then unur_errno is set to UNUR_
ERR_GEN_CONDITION. However notice that this might happen due to round-off errors for a
few values of x (less than 1%).
Default is FALSE.

int unur_vnrou_chg_verify (UNUR GEN* generator, int verify)
Change the verifying of algorithm while sampling on/off.

double unur_vnrou_get_volumehat (const UNUR_GEN* generator)
Get the volume of below the hat. For normalized densities, i.e. when the volume below PDF
is 1, this value equals the rejection constant for the vnrou method.
In case of an error UNUR INFINITY is returned.

158 UNU.RAN User Manual

5.6 Markov chain samplers for continuous multivariate
distributions

Markov chain samplers generate sequences of random vectors which have the target distribution
as stationary distribution. There generated vectors are (more or less) correlated and it might
take a long time until the sequence has converged to the given target distribution.

Beware: MCMC sampling can be dangerous!

Overview of methods� �
Markov Chain Methods for continuous multivariate distributions
sample with unur_sample_vec

GIBBS: T-concave logPDF and derivatives of logPDF.
HITRO: Requires PDF.
 	

Chapter 5: Methods for generating non-uniform random variates 159

5.6.1 GIBBS – Markov Chain - GIBBS sampler

Required: T-concave logPDF, derivatives of logPDF

Speed: Set-up: fast, Sampling: moderate

Reinit: not implemented

Reference: [HLD04: Sect.14.1.2]

Method GIBBS implements a Gibbs sampler for a multivariate distribution with given joint
density and its gradient. When running such a Markov chain all coordinates are updated cycli-
cally using full conditional distributions. After each step the state of the chain is returned (i.e., a
random point is returned whenever a single coordinate has been updated). It is also possible to
return only points after all coordinates have been updated by "thinning" the chain. Moreover,
to reduce autocorrelation this thinning factor can be any integer. Notice, however, that the
sampling time for a chain of given length is increased by the same factor, too.

GIBBS also provides a variant of the Gibbs sampler where in each step a point from the
full conditional distribution along some random direction is sampled. This direction is chosen
uniformly from the sphere in each step. This method is also known as Hit-and-Run algorithm
for non-uniform distributions.

Our experiences shows that the original Gibbs sampler with sampling along coordinate axes
is superior to random direction sampling as long as the correlations between the components of
the random vector are not too high.

For both variants transformed density rejection (see methods see Section 5.3.16 [TDR],
page 136 and see Section 5.3.2 [ARS], page 98) is used to sample from the full conditional
distributions. In opposition to the univariate case, it is important that the factor c is as large as
possible. I.e., for a log-concave density c must be set to 0., since otherwise numerical underflow
might stop the algorithm.

Important: GIBBS does not generate independent random points. The starting point of the
Gibbs chain must be in a "typical" region of the target distribution. If such a point is not known
or would be too expensive, then the first part of the chain should be discarded (burn-in of the
chain).

How To Use

For using the GIBBS method UNU.RAN needs the logarithm of the PDF of the multivariate
joint distribution and its gradient or partial derivatives.

It provides two variants:

coordinate direction sampling (Gibbs sampling) [default]
The coordinates are updated cyclically. It requires the partial derivatives of the (log-
arithm of the) PDF of the target distribution, see unur_distr_cvec_set_pdlogpdf.
Otherwise, the gradient of the logPDF (see unur_distr_cvec_set_dlogpdf) is
used, which is more expensive.
This variant can be selected using unur_gibbs_set_variant_coordinate.

random direction sampling (nonuniform Hit-and-Run algorithm)
In each step is a direction is sampled uniformly from the sphere and the next point
in the chain is sampled from the full conditional distribution along this direction.
It requires the gradient of the logPDF and thus each step is more expensive than
each step for coordinate direction sampling.
This variant can be selected using unur_gibbs_set_variant_random_direction.

160 UNU.RAN User Manual

It is important that the c parameter for the TDR method is as large as possible. For
logconcave distribution it must be set to 0, since otherwise numerical underflow can cause the
algorithm to stop.

The starting point of the Gibbs chain must be "typical" for the target distribution. If such a
point is not known or would be too expensive, then the first part of the chain should be discarded
(burn-in of the chain). When using the unur_gibbs_set_burnin call this is done during the
setup of the Gibbs sampler object.

In case of a fatal error in the generator for conditional distributions the methods generates
points that contain UNUR INFINITY.

Warning: The algorithm requires that all full conditionals for the given distribution object
are T-concave. However, this property is not checked. If this property is not satisfied, then
generation from the conditional distributions becomes (very) slow and might fail or (even worse)
produces random vectors from an incorrect distribution. When using unur_gibbs_set_burnin
then the setup already might fail. Thus when in doubt whether GIBBS can be used for the
targent distribution it is a good idea to use a burn-in for checking.

Remark: It might happen (very rarely) that the chain becomes stuck due to numerical errors.
(This is in particular the case when the given PDF does not fulfill the condition of this method.)
When this happens during burn-in then the setup is aborted (i.e. it fails). Otherwise the chain
restarts again from its starting point.

Warning: Be carefull with debugging flags. If it contains flag 0x01000000u it produces a
lot of output for each step in the algorithm. (This flag is switched of in the default debugging
flags).

Function reference

UNUR_PAR* unur_gibbs_new (const UNUR_DISTR* distribution)
...

int unur_gibbs_set_variant_coordinate (UNUR PAR* parameters)
Coordinate Direction Sampling: Sampling along the coordinate directions (cyclic).
This is the default.

int unur_gibbs_set_variant_random_direction (UNUR PAR* parameters)
Random Direction Sampling: Sampling along the random directions.

int unur_gibbs_set_c (UNUR PAR* parameters, double c)
Set parameter c for transformation T of the transformed density rejection method. Currently
only values between 0 and -0.5 are allowed. If c is between 0 and -0.5 it is set to -0.5.
For c =0 (for logconcave densities) method ARS (see Section 5.3.2 [ARS], page 98) is used
which is very robust against badly normalized PDFs. For other values method TDR (see
Section 5.3.16 [TDR], page 136) is used.
The value for c should be as large as possible to avoid fatal numerical underflows. Thus for
log-concave distributions c must be set to 0.

Default is 0.

int unur_gibbs_set_startingpoint (UNUR PAR* parameters, const double*
x0)

Sets the starting point of the Gibbs sampler. x0 must be a "typical" point of the given
distribution. If such a "typical" point is not known and a starting point is merely guessed,
the first part of the Gibbs chain should be discarded (burn-in), e.g.\ by mean of the unur_
gibbs_set_burnin call.
Default is the result of unur_distr_cvec_get_center for the given distribution object.

Chapter 5: Methods for generating non-uniform random variates 161

int unur_gibbs_set_thinning (UNUR PAR* parameters, int thinning)
Sets the thinning parameter. When thinning is set to k then every k-th point from the
iteration is returned by the sampling algorithm.
Notice: This parameter must satisfy thinning>=1.
Default: 1.

int unur_gibbs_set_burnin (UNUR PAR* parameters, int burnin)
If a "typical" point for the target distribution is not known but merely guessed, the first part
of the Gibbs chain should be discarded (burn-in). This can be done during the initialization
of the generator object. The length of the burn-in can is then burnin.
When method GIBBS is not applicable for the target distribution then the initialization
already might fail during the burn-in. Thus this reduces the risk of running a generator that
returns UNUR INFINITY cased by some fatal error during sampling.
The thinning factor set by a unur_gibbs_set_thinning call has no effect on the length of
the burn-in, i.e., for the burn-in always a thinning factor 1 is used.
Notice: This parameter must satisfy thinning>=0.
Default: 0.

const double* unur_gibbs_get_state (UNUR GEN* generator)
int unur_gibbs_chg_state (UNUR GEN* generator, const double* state)

Get and change the current state of the Gibbs chain.

int unur_gibbs_reset_state (UNUR GEN* generator)
Reset state of chain to starting point.
Notice: Currently this function does not reset the generators for conditional distributions.
Thus it is not possible to get the same Gibbs chain even when the underlying uniform random
number generator is reset.

162 UNU.RAN User Manual

5.6.2 HITRO – Markov Chain - HIT-and-run sampler with Ratio-Of-
uniforms

Required: PDF

Optional: mode, center, bounding rectangle for acceptance region

Speed: Set-up: fast, Sampling: fast

Reinit: not implemented

Reference: [KLPa05]

HITRO is an implementation of a hit-and-run sampler that runs on the acceptance region of
the multivariate ratio-of-uniforms method, see Section A.4 [Ratio-of-Uniforms], page 236.

The Ratio-of-Uniforms transforms the region below the density into some region that we call
"region of acceptance" in the following. The minimal bounding hyperrectangle of this region is
given by

v+ = sup
x

(f(x))1/r d+1,

u−i = inf
xi

(xi − µi)(f(x))r/r d+1,

u+
i = sup

xi

(xi − µi)(f(x))r/r d+1,

where d denotes the dimension of the distribution; xi is the i-th coordinate of point x ; µi is
the i-th coordinate of the center µ of the distribution, i.e., a point in the "main region" of the
distribution. Using the center is important, since otherwise the acceptance region can become
a very long and skinny ellipsoid along a diagonal of the (huge) bounding rectangle.

For each step of the Hit-and-Run algorithm we have to choose some direction. This direction
together with the current point of the chain determines a straight line. Then a point is sampled
uniformly on intersection of this line and the region of acceptance. This is done by rejection
from a uniform distribution on a line segment that covers it. Depending of the chosen variant
the endpoints of this covering line are computed either by means of a (not necessary minimal)
bounding hyper-rectangle, or just the "covering plate" of the bounding hyper-rectangle.

The required bounds of the hyper-rectable can be given directly by the user. Otherwise, these
are computed automatically by means of a numerical routine by Hooke and Jeeves [HJa61]
called direct search (see ‘src/utils/hooke.c’ for further references and details). However,
this expensive computation can be avoided by determine these bounds "on the fly" by the
following adaptive algorithm: Start with some (small) hyper-rectangle and enlarge it whenever
the endpoints of the covering line segment are not contained in the acceptance region of the
Ratio-of-Unfiorms method. This approach works reliable as long as the region of acceptance is
convex.

The performance of the uniform sampling from the line segment is much improved if the
covering line is adjusted (shortened) whenever a point is rejected (adaptive sampling). This
technique reduces the expected number of iterations enormously.

Method HITRO requires that the region of acceptance of the Ratio-of-Uniforms method is
bounded. The shape of this region can be controlled by a parameter r. Higher values of r result
in larger classes of distributions with bounded region of acceptance. (A distribution that has
such a bounded region for some r also has a bounded region for every r’ greater than r.) On the
other hand the acceptance probability decreases with increasing r. Moreover, round-off errors
are more likely and (for large values of r) might result in a chain with a stationary distribution
different from the target distribution.

Method HITRO works optimal for distributions whose region of acceptance is convex. This
is in particular the case for all log-concave distributions when we set r = 1. For bounded but
non-convex regions of acceptance convergence is yet not guarenteed by mathematical theory.

Chapter 5: Methods for generating non-uniform random variates 163

How To Use

Method HITRO requires the PDF of the target distribution (derivatives are not necessary).

The acceptance region of the Ratio-of-Uniforms transformation must be bounded. Its shape
is controlled by parameter r. By default this parameter is set to 1 as this guarentees a convex
region of acceptance when the PDF of the given distribution is log-concave. It should only be
set to a different (higher!) value using unur_vnrou_set_r if otherwise xi (f(x))r/r d+1 were not
bounded for each coordinate.

There are two variants of the HITRO sampler:

coordinate direction sampling. [default]
The coordinates are updated cyclically. This can be seen as a Gibbs sampler running
on the acceptance region of the Ratio-of-Uniforms method. This variant can be
selected using unur_hitro_set_variant_coordinate.

random direction sampling.
In each step is a direction is sampled uniformly from the sphere.

This variant can be selected using unur_hitro_set_variant_random_direction.

Notice that each iteration of the coordinate direction sampler is cheaper than an iteration of
the random direction sampler.

Sampling uniformly from the line segment can be adjusted in several ways:

Adaptive line sampling vs. simple rejection.
When adaptive line sampling is switched on, the covering line is shortened whenever
a point is rejected. However, when the region of acceptance is not convex the line
segment from which we have to sample might not be connected. We found that
the algorithm still works but at the time being there is no formal proof that the
generated Markov chain has the required stationary distribution.

Adaptive line sampling can switch on/off by means of the unur_hitro_set_use_
adaptiveline call.

Bounding hyper-rectangle vs. "covering plate".
For computing the covering line we can use the bounding hyper-rectangle or just
its upper bound. The latter saves computing time during the setup and when
computing the covering during at each iteration step at the expense of a longer
covering line. When adaptive line sampling is used the total generation time for the
entire chain is shorter when only the "covering plate" is used.

Notice: When coordinate sampling is used the entire bounding rectangle is used.

Using the entire bounding hyper-rectangle can be switched on/off by means of the
unur_hitro_set_use_boundingrectangle call.

Deterministic vs. adaptive bounding hyper-rectangle.
A bounding rectangle can be given by the unur_vnrou_set_u and unur_vnrou_
set_v calls. Otherwise, the minimal bounding rectangle is computed automatically
during the setup by means of a numerical algorithm. However, this is (very) slow
especially in higher dimensions and it might happen that this algorithm (like any
other numerical algorithm) does not return a correct result.

Alternatively the bounding rectangle can be computed adaptively. In the latter
case unur_vnrou_set_u and unur_vnrou_set_v can be used to provide a starting
rectangle which must be sufficiently small. Then both endpoints of the covering
line segment are always check whether they are outside the acceptance region of
the Ratio-of-Uniforms method. If they are not, then the line segment and the

164 UNU.RAN User Manual

("bounding") rectangle are enlarged using a factor that can be given using the
unur_hitro_set_adaptive_multiplier call.
Notice, that running this method in the adaptive rectangle mode requires that the
region of acceptance is convex when random directions are used, or the given PDF
is unimodal when coordinate direction sampling is used. Moreover, it requires two
additional calls to the PDF in each iteration step of the chain.
Using addaptive bounding rectangles can be switched on/off by means of the unur_
hitro_set_use_adaptiverectangle call.

The algorithm takes of a bounded rectangular domain given by a unur_distr_cvec_set_
domain_rect call, i.e. the PDF is set to zero for every x outside the given domain. However, it
is only the coordinate direction sampler where the boundary values are directly used to get the
endpoins of the coverline line for the line sampling step.

Important: The bounding rectangle has to be provided for the function PDF (x − center)!
Notice that center is the center of the given distribution, see unur_distr_cvec_set_center.
If in doubt or if this value is not optimal, it can be changed (overridden) by a unur_distr_
cvec_set_center call.

Function reference

UNUR_PAR* unur_hitro_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_hitro_set_variant_coordinate (UNUR PAR* parameters)
Coordinate Direction Sampling: Sampling along the coordinate directions (cyclic).
Notice: For this variant the entire bounding rectangle is always used independent of the
unur_hitro_set_use_boundingrectangle call.
This is the default.

int unur_hitro_set_variant_random_direction (UNUR PAR* parameters)
Random Direction Sampling: Sampling along the random directions.

int unur_hitro_set_use_adaptiveline (UNUR PAR* parameters, int
adaptive)

When adaptive is set to TRUE adaptive line sampling is applied, otherwise simple rejection is
used.
Notice: When adaptive line sampling is switched off, the entire bounding rectangle must be
used since otherwise the sampling time can be arbitrarily slow.
Warning: When adaptive line sampling is switched off, sampling can be arbitrarily slow.
In particular this happens when random direction sampling is used for distributions with
rectangular domains. Then the algorithm can be trapped into a vertex (or even edge).
Default is TRUE.

int unur_hitro_set_use_boundingrectangle (UNUR PAR* parameters, int
rectangle)

When rectangle is set to TRUE the entire bounding rectangle is used for computing the covering
line. Otherwise, only an upper bound for the acceptance region is used.
Notice: When coordinate sampling is used the entire bounding rectangle has is always used
and this call has no effect.
Default: FALSE for random direction samplig, TRUE for coordinate direction sampling.

Chapter 5: Methods for generating non-uniform random variates 165

int unur_hitro_set_use_adaptiverectangle (UNUR PAR* parameters, int
adaptive)

When adaptive is set to FALSE the bounding rectangle is determined during the setup. Either,
it is computed automatically by a (slow) numerical method, or it must be provided by unur_
vnrou_set_u and unur_vnrou_set_v calls.
If adaptive is set to TRUE the bounding rectangle is computed adaptively. In this case
the unur_vnrou_set_u and unur_vnrou_set_v calls can be used to provide a starting
rectangle. This should be sufficiently small. If not given then we assume vmax = 1,
umin = (−0.001,−0.001, . . . ,−0.001), and umax = (0.001, 0.001, . . . , 0.001). Adaptive enlarge-
ments of the bounding hyperrectangle can be controlled set setting an enlargement factor
given by a unur_hitro_set_adaptive_multiplier call.
Using adaptive computation of the bounding rectangle reduces the setup time significantly
(when it is not given by the user) at the expense of two additional PDF evaluations during
each iteration step.
Important: Using adaptive bounding rectangles requires that the region of acceptance is
convex when random directions are used, or a unimodal PDF when coordinate direction
sampling is used.
Default: FALSE for random direction samplig, TRUE for coordinate direction sampling.

int unur_hitro_set_r (UNUR PAR* parameters, double r)
Sets the parameter r of the generalized multivariate ratio-of-uniforms method.
Notice: This parameter must satisfy r>0.
Default: 1.

int unur_hitro_set_v (UNUR PAR* parameters, double vmax)
Set upper boundary for bounding hyper-rectangle. If not set not set the mode of the distri-
bution is used.
If adaptive bounding rectangles the value is used for the starting rectangle. If not given (and
the mode of the distribution is not known) then vmax=1e-3 is used.
If deterministic bounding rectangles these values are the given values are used for the rect-
angle. If no value is given (and the mode of the distribution is not known), the upper bound
of the minimal bounding hyper-rectangle is computed numerically (slow).
Default: not set.

int unur_hitro_set_u (UNUR PAR* parameters, const double* umin, const
double* umax)

Sets left and right boundaries of bounding hyper-rectangle.
If adaptive bounding rectangles these values are used for the starting rectangle. If not given
then umin={-b,-b,...,-b} and umax={b,b,...,b} with b=1.e-3 is used.
If deterministic bounding rectangles these values are the given values are used for the rect-
angle. If no values are given, the boundary of the minimal bounding hyper-rectangle is
computed numerically (slow).
Important: The boundaries are those of the density shifted by the center of the distribution,
i.e., for the function PDF (x− center)!
Notice: Computing the minimal bounding rectangle may fail under some circumstances.
Moreover, for multimodal distributions the bounds might be too small as only local extrema
are computed. Nevertheless, for log-concave distributions it should work.
Default: not set.

166 UNU.RAN User Manual

int unur_hitro_set_adaptive_multiplier (UNUR PAR* parameters, double
factor)

Adaptive enlargements of the bounding hyperrectangle can be controlled set setting the
enlargement factor. This must be greater than 1. Values close to 1 result in small adaptive
steps and thus reduce the risk of too large bounding rectangles. On the other hand many
adaptive steps might be necessary.
Notice: For practical reasons this call does not accept values for factor less than 1.0001. If
this value is UNUR INFINITY this results in infinite loops.
Default: 1.1

int unur_hitro_set_startingpoint (UNUR PAR* parameters, const double*
x0)

Sets the starting point of the HITRO sampler in the original scale. x0 must be a "typical"
point of the given distribution. If such a "typical" point is not known and a starting point
is merely guessed, the first part of the HITRO chain should be discarded (burn-in), e.g.\ by
mean of the unur_hitro_set_burnin call.
Important: The PDF of the distribution must not vanish at the given point x0.
Default is the result of unur_distr_cvec_get_center for the given distribution object.

int unur_hitro_set_thinning (UNUR PAR* parameters, int thinning)
Sets the thinning parameter. When thinning is set to k then every k-th point from the
iteration is returned by the sampling algorithm. If thinning has to be set such that each
coordinate is updated when using coordinate direction sampling, then thinning should be
dim+1 (or any multiple of it) where dim is the dimension of the distribution object.
Notice: This parameter must satisfy thinning>=1.
Default: 1.

int unur_hitro_set_burnin (UNUR PAR* parameters, int burnin)
If a "typical" point for the target distribution is not known but merely guessed, the first part
of the HITRO chain should be discarded (burn-in). This can be done during the initialization
of the generator object. The length of the burn-in can is then burnin.
The thinning factor set by a unur_hitro_set_thinning call has no effect on the length of
the burn-in, i.e., for the burn-in always a thinning factor 1 is used.
Notice: This parameter must satisfy thinning>=0.
Default: 0.

const double* unur_hitro_get_state (UNUR GEN* generator)
int unur_hitro_chg_state (UNUR GEN* generator, const double* state)

Get and change the current state of the HITRO chain.
Notice: The state variable contains the point in the dim+1 dimensional point in the (tans-
formed) region of acceptance of the Ratio-of-Uniforms method. Its coordinate are stored in
the following order: state[] = {v, u1, u2, ..., udim}.
If the state can only be changed if the given state is inside this region.

int unur_hitro_reset_state (UNUR GEN* generator)
Reset state of chain to starting point.
Notice: Currently this function does not reset the generators for conditional distributions.
Thus it is not possible to get the same HITRO chain even when the underlying uniform
random number generator is reset.

Chapter 5: Methods for generating non-uniform random variates 167

5.7 Methods for continuous empirical multivariate distributions

Overview of methods� �
Methods for continuous empirical multivariate distributions
sample with unur_sample_vec

VEMPK: Requires an observed sample.
 	
Example

/* --- */

/* File: example_vemp.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* Example how to sample from an empirial continuous */

/* multivariate distribution. */

/* --- */

int main(void)

{

int i;

/* 4 data points of dimension 2 */

double data[] = { 1. ,1., /* 1st data point */

-1.,1., /* 2nd data point */

1.,-1., /* 3rd data point */

-1.,-1. }; /* 4th data point */

double result[2];

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Create a distribution object with dimension 2. */

distr = unur_distr_cvemp_new(2);

/* Set empirical sample. */

unur_distr_cvemp_set_data(distr, data, 4);

/* Choose a method: VEMPK. */

par = unur_vempk_new(distr);

/* Use variance correction. */

unur_vempk_set_varcor(par, 1);

/* Create the generator object. */

gen = unur_init(par);

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

168 UNU.RAN User Manual

exit (EXIT_FAILURE);

}

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

unur_sample_vec(gen, result);

printf("(%f,%f)\n", result[0], result[1]);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

Example (String API)

(not implemented)

Chapter 5: Methods for generating non-uniform random variates 169

5.7.1 VEMPK – (Vector) EMPirical distribution with Kernel
smoothing

Required: observed sample

Speed: Set-up: slow, Sampling: slow (depends on dimension)

Reinit: not implemented

Reference: [HLa00] [HLD04: Sect.12.2.1]

VEMPK generates random variates from a multivariate empirical distribution that is given
by an observed sample. The idea is that simply choosing a random point from the sample and
to return it with some added noise results in a method that has very nice properties, as it can be
seen as sampling from a kernel density estimate. Clearly we have to decide about the density of
the noise (called kernel) and about the covariance matrix of the noise. The mathematical theory
of kernel density estimation shows us that we are comparatively free in choosing the kernel. It
also supplies us with a simple formula to compute the optimal standarddeviation of the noise,
called bandwidth (or window width) of the kernel.

Currently only a Gaussian kernel with the same covariance matrix as the given sample is
implemented. However it is possible to choose between a variance corrected version or those
with optimal MISE. Additionally a smoothing factor can be set to adjust the estimated density
to non-bell-shaped data densities.

How To Use

VEMPK uses empirical distributions. The main parameter would be the choice if of kernel
density. However, currently only Gaussian kernels are supported. The parameters for the
density are computed by a simple but robust method. However, it is possible to control its
behavior by changing the smoothing factor. Additionally, variance correction can be swithed on
(at the price of suboptimal MISE).

Function reference

UNUR_PAR* unur_vempk_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_vempk_set_smoothing (UNUR PAR* parameters, double smoothing)
int unur_vempk_chg_smoothing (UNUR GEN* generator, double smoothing)

Set and change the smoothing factor. The smoothing factor controlles how “smooth” the re-
sulting density estimation will be. A smoothing factor equal to 0 results in naive resampling.
A very large smoothing factor (together with the variance correction) results in a density
which is approximately equal to the kernel. Default is 1 which results in a smoothing param-
eter minimising the MISE (mean integrated squared error) if the data are not too far away
from normal. If a large smoothing factor is used, then variance correction must be switched
on.
Default: 1

int unur_vempk_set_varcor (UNUR PAR* parameters, int varcor)
int unur_vempk_chg_varcor (UNUR GEN* generator, int varcor)

Switch variance correction in generator on/off. If varcor is TRUE then the variance of the used
density estimation is the same as the sample variance. However this increases the MISE of
the estimation a little bit.
Default is FALSE.

170 UNU.RAN User Manual

5.8 Methods for discrete univariate distributions

Overview of methods� �
Methods for discrete univariate distributions
sample with unur_sample_discr

method PMF PV mode sum other
DARI x x ~ T-concave
DAU [x] x
DGT [x] x
DSROU x x x T-concave
DSS [x] x x
DSTD build-in standard distribution
CEXT wrapper for external generator
 	
Example

/* --- */

/* File: example_discr.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* Example how to sample from a discrete univariate distribution.*/

/* --- */

int main(void)

{

int i;

double param = 0.3;

double probvec[10] = {1.0, 2.0, 3.0, 4.0, 5.0,\

6.0, 7.0, 8.0, 4.0, 3.0};

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr1, *distr2; /* distribution objects */

UNUR_PAR *par1, *par2; /* parameter objects */

UNUR_GEN *gen1, *gen2; /* generator objects */

/* First distribution: defined by PMF. */

distr1 = unur_distr_geometric(¶m, 1);

unur_distr_discr_set_mode(distr1, 0);

/* Choose a method: DARI. */

par1 = unur_dari_new(distr1);

gen1 = unur_init(par1);

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen1 == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

Chapter 5: Methods for generating non-uniform random variates 171

/* Second distribution: defined by (finite) PV. */

distr2 = unur_distr_discr_new();

unur_distr_discr_set_pv(distr2, probvec, 10);

/* Choose a method: DGT. */

par2 = unur_dgt_new(distr2);

gen2 = unur_init(par2);

if (gen2 == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* print some random integers */

for (i=0; i<10; i++){

printf("number %d: %d\n", i*2, unur_sample_discr(gen1));

printf("number %d: %d\n", i*2+1, unur_sample_discr(gen2));

}

/* Destroy all objects. */

unur_distr_free(distr1);

unur_distr_free(distr2);

unur_free(gen1);

unur_free(gen2);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

Example (String API)
/* --- */

/* File: example_discr_str.c */

/* --- */

/* String API. */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* Example how to sample from a discrete univariate distribution.*/

/* --- */

int main(void)

{

int i; /* loop variable */

/* Declare UNURAN generator objects. */

UNUR_GEN *gen1, *gen2; /* generator objects */

/* First distribution: defined by PMF. */

gen1 = unur_str2gen("geometric(0.3); mode=0 & method=dari");

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen1 == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

172 UNU.RAN User Manual

/* Second distribution: defined by (finite) PV. */

gen2 = unur_str2gen(

"distr=discr; pv=(1,2,3,4,5,6,7,8,4,3) & method=dgt");

if (gen2 == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* print some random integers */

for (i=0; i<10; i++){

printf("number %d: %d\n", i*2, unur_sample_discr(gen1));

printf("number %d: %d\n", i*2+1, unur_sample_discr(gen2));

}

/* Destroy all objects. */

unur_free(gen1);

unur_free(gen2);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

Chapter 5: Methods for generating non-uniform random variates 173

5.8.1 DARI – Discrete Automatic Rejection Inversion

Required: T-concave PMF, mode, approximate area

Speed: Set-up: moderate, Sampling: fast

Reinit: supported

Reference: [HDa96] [HLD04: Sect.10.2; Alg.10.4]

DARI is based on rejection inversion, which can be seen as an adaptation of transformed
density rejection to discrete distributions. The used transformation is −1/

√
x .

DARI uses three almost optimal points for constructing the (continuous) hat. Rejection is
then done in horizontal direction. Rejection inversion uses only one uniform random variate per
trial.

DARI has moderate set-up times (the PMF is evaluated nine times), and good marginal
speed, especially if an auxiliary array is used to store values during generation.

DARI works for all T−1/2 -concave distributions. It requires the PMF and the location of
the mode. Moreover the approximate sum over the PMF is used. (If no sum is given for
the distribution the algorithm assumes that it is approximately 1.) The rejection constant is
bounded from above by 4 for all T-concave distributions.

How To Use

DARI works for discrete distribution object with given PMF. The sum over probabilities should
be approximately one. Otherwise it must be set by a unur_distr_discr_set_pmfsum call to
its (approximate) value.

The size of an auxiliary table can be set by unur_dari_set_tablesize. The expected
number of evaluations can be reduced by switching the use of squeezes by means of unur_dari_
set_squeeze. It is possible to change the parameters and the domain of the chosen distribution
and run unur_reinit to reinitialize the generator object. Notice, that derived parameters like
the mode must also be (re-) set if the parameters or the domain has be changed.

There exists a test mode that verifies whether the conditions for the method are satisfied
or not. It can be switched on by calling unur_dari_set_verify and unur_dari_chg_verify,
respectively. Notice however that sampling is (much) slower then.

Function reference

UNUR_PAR* unur_dari_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_dari_set_squeeze (UNUR PAR* parameters, int squeeze)
Turn utilization of the squeeze of the algorithm on/off. This squeeze does not resamble the
squeeze of the continuous TDR method. It was especially designed for rejection inversion.
The squeeze is not necessary if the size of the auxiliary table is big enough (for the given
distribution). Using a squeeze is suggested to speed up the algorithm if the domain of the
distribution is very big or if only small samples are produced.
Default: no squeeze.

int unur_dari_set_tablesize (UNUR PAR* parameters, int size)
Set the size for the auxiliary table, that stores constants computed during generation. If
size is set to 0 no table is used. The speed-up can be impressive if the PMF is expensive to
evaluate and the “main part of the distribution” is concentrated in an interval shorter than
the size of the table.
Default is 100.

174 UNU.RAN User Manual

int unur_dari_set_cpfactor (UNUR PAR* parameters, double cp_factor)
Set factor for position of the left and right construction point, resp. The cp factor is used to
find almost optimal construction points for the hat function. The cp factor must be positive
and should not exceed 2. There is no need to change this factor in almost all situations.
Default is 0.664.

int unur_dari_set_verify (UNUR PAR* parameters, int verify)
int unur_dari_chg_verify (UNUR GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition is violated for some x then
unur_errno is set to UNUR_ERR_GEN_CONDITION. However notice that this might happen due
to round-off errors for a few values of x (less than 1%).
Default is FALSE.

Chapter 5: Methods for generating non-uniform random variates 175

5.8.2 DAU – (Discrete) Alias-Urn method

Required: probability vector (PV)

Speed: Set-up: slow (linear with the vector-length), Sampling: very fast

Reinit: supported

Reference: [WAa77] [HLD04: Sect.3.2]

DAU samples from distributions with arbitrary but finite probability vectors (PV) of length
N. The algorithmus is based on an ingeneous method by A.J. Walker and requires a table of size
(at least) N. It needs one random numbers and only one comparison for each generated random
variate. The setup time for constructing the tables is O(N).

By default the probability vector is indexed starting at 0. However this can be changed in
the distribution object by a unur_distr_discr_set_domain call.

The method also works when no probability vector but a PMF is given. However then
additionally a bounded (not too large) domain must be given or the sum over the PMF (see
unur_distr_discr_make_pv for details).

How To Use

Create an object for a discrete distribution either by setting a probability vector or a PMF.
The performance can be slightly influenced by setting the size of the used table which can be
changed by unur_dau_set_urnfactor. It is possible to change the parameters and the domain
of the chosen distribution and run unur_reinit to reinitialize the generator object.

Function reference

UNUR_PAR* unur_dau_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_dau_set_urnfactor (UNUR PAR* parameters, double factor)
Set size of urn table relative to length of the probability vector. It must not be less than 1.
Larger tables result in (slightly) faster generation times but require a more expensive setup.
However sizes larger than 2 are not recommended.
Default is 1.

176 UNU.RAN User Manual

5.8.3 DEXT – wrapper for Discrete EXTernal generators

Required: routine for sampling discrete random variates

Speed: depends on external generator

Reinit: supported

Method DEXT is a wrapper for external generators for discrete univariate distributions. It
allows the usage of external random variate generators within the UNU.RAN framework.

How To Use

The following steps are required to use some external generator within the UNU.RAN framework
(some of these are optional):
1. Make an empty generator object using a unur_dext_new call. The argument distribution is

optional and can be replaced by NULL. However, it is required if you want to pass parameters
of the generated distribution to the external generator or for running some validation tests
provided by UNU.RAN.

2. Create an initialization routine of type int (*init)(UNUR_GEN *gen) and plug it into the
generator object using the unur_dext_set_init call. Notice that the init routine must
return UNUR_SUCCESS when it has been executed successfully and UNUR_FAILURE otherwise.
It is possible to get the size of and the pointer to the array of parameters of the underlying
distribution object by the respective calls unur_dext_get_ndistrparams and unur_dext_
get_distrparams. Parameters for the external generator that are computed in the init
routine can be stored in a single array or structure which is available by the unur_dext_
get_params call.
Using an init routine is optional and can be omitted.

3. Create a sampling routine of type int (*sample)(UNUR_GEN *gen) and plug it into the
generator object using the unur_dext_set_sample call.
Uniform random numbers are provided by the unur_sample_urng call. Do not use your
own implementation of a uniform random number generator directly. If you want to use
your own random number generator we recommend to use the UNU.RAN interface (see see
Chapter 6 [Using uniform random number generators], page 193).
The array or structure that contains parameters for the external generator that are com-
puted in the init routine are available using the unur_dext_get_params call.
Using a sample routine is of course obligatory.

It is possible to change the parameters and the domain of the chosen distribution and run
unur_reinit to reinitialize the generator object. The init routine is then called again.

Here is a short example that demonstrates the application of this method by means of the
geometric distribution:

/* --- */

/* File: example_dext.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* This example shows how an external generator for the */

/* geometric distribution can be used within the UNURAN */

/* framework. */

/* */

Chapter 5: Methods for generating non-uniform random variates 177

/* Notice, that this example does not provide the simplest */

/* solution. */

/* --- */

/* Initialization routine. */

/* */

/* Here we simply read the parameter of the geometric */

/* distribution and store it in an array for parameters of */

/* the external generator. */

/* [Of course we could do this in the sampling routine as */

/* and avoid the necessity of this initialization routine.] */

int geometric_init (UNUR_GEN *gen)

{

/* Get pointer to parameters of geometric distribution */

double *params = unur_dext_get_distrparams(gen);

/* The parameter is the first entry (see manual) */

double p = params[0];

/* Get array to store this parameter for external generator */

double *genpar = unur_dext_get_params(gen, sizeof(double));

genpar[0] = p;

/* Executed successfully */

return UNUR_SUCCESS;

}

/* --- */

/* Sampling routine. */

/* */

/* Contains the code for the external generator. */

int geometric_sample (UNUR_GEN *gen)

{

/* Get scale parameter */

double *genpar = unur_dext_get_params(gen,0);

double p = genpar[0];

/* Sample a uniformly distributed random number */

double U = unur_sample_urng(gen);

/* Transform into geometrically distributed random variate */

return ((int) (log(U) / log(1.-p)));

}

/* --- */

int main(void)

{

int i; /* loop variable */

int K; /* will hold the random number */

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Use predefined geometric distribution with parameter 1/10 */

double fpar[1] = { 0.1 };

distr = unur_distr_geometric(fpar, 1);

/* Use method DEXT */

par = unur_dext_new(distr);

178 UNU.RAN User Manual

/* Set initialization and sampling routines. */

unur_dext_set_init(par, geometric_init);

unur_dext_set_sample(par, geometric_sample);

/* Create the generator object. */

gen = unur_init(par);

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the standard Gaussian distribution. */

/* Eg.: */

for (i=0; i<10; i++) {

K = unur_sample_discr(gen);

printf("%d\n",K);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

Function reference

UNUR_PAR* unur_dext_new (const UNUR_DISTR* distribution)
Get default parameters for new generator.

int unur_dext_set_init (UNUR PAR* parameters, int (* init)(UNUR GEN*
gen))

Set initialization routine for external generator. Inside the
Important: The routine init must return UNUR_SUCCESS when the generator was initialized
successfully and UNUR_FAILURE otherwise.
Parameters that are computed in the init routine can be stored in an array or structure
that is avaiable by means of the unur_dext_get_params call. Parameters of the underlying
distribution object can be obtained by the unur_dext_get_distrparams call.

int unur_dext_set_sample (UNUR PAR* parameters, int (*
sample)(UNUR GEN* gen))

Set sampling routine for external generator.
Important: Use unur_sample_urng(gen) to get a uniform random number. The pointer to
the array or structure that contains the parameters that are precomputed in the init routine
are available by unur_dext_get_params(gen,0). Additionally one can use the unur_dext_
get_distrparams call.

Chapter 5: Methods for generating non-uniform random variates 179

void* unur_dext_get_params (UNUR GEN* generator, size t size)
Get pointer to memory block for storing parameters of external generator. A memory block
of size size is automatically (re-) allocated if necessary and the pointer to this block is stored
in the generator object. If one only needs the pointer to this memory block set size to 0.
Notice, that size is the size of the memory block and not the length of an array.
Important: This rountine should only be used in the initialization and sampling routine of
the external generator.

double* unur_dext_get_distrparams (UNUR GEN* generator)
int unur_dext_get_ndistrparams (UNUR GEN* generator)

Get size of and pointer to array of parameters of underlying distribution in generator object.
Important: These rountines should only be used in the initialization and sampling routine of
the external generator.

180 UNU.RAN User Manual

5.8.4 DGT – (Discrete) Guide Table method (indexed search)

Required: probability vector (PV)

Speed: Set-up: slow (linear with the vector-length), Sampling: very fast

Reinit: supported

Reference: [CAa74] [HLD04: Sect.3.1.2]

DGT samples from arbitrary but finite probability vectors. Random numbers are generated
by the inversion method, i.e.,
1. Generate a random number U ~ U(0,1).
2. Find largest integer I such that F(I) = P(X<=I) <= U.

Step (2) is the crucial step. Using sequential search requires O(E(X)) comparisons, where
E(X) is the expectation of the distribution. Indexed search, however, uses a guide table to jump
to some I’ <= I near I to find X in constant time. Indeed the expected number of comparisons
is reduced to 2, when the guide table has the same size as the probability vector (this is the
default). For larger guide tables this number becomes smaller (but is always larger than 1), for
smaller tables it becomes larger. For the limit case of table size 1 the algorithm simply does
sequential search (but uses a more expensive setup then method DSS (see Section 5.8.6 [DSS],
page 184). On the other hand the setup time for guide table is O(N), where N denotes the
length of the probability vector (for size 1 no preprocessing is required). Moreover, for very
large guide tables memory effects might even reduce the speed of the algorithm. So we do not
recommend to use guide tables that are more than three times larger than the given probability
vector. If only a few random numbers have to be generated, (much) smaller table sizes are
better. The size of the guide table relative to the length of the given probability vector can be
set by a unur_dgt_set_guidefactor call.

There exist two variants for the setup step which can be set by a unur_dgt_set_variant
call: Variants 1 and 2. Variant 2 is faster but more sensitive to roundoff errors when the guide
table is large. By default variant 2 is used for short probability vectors (N <1000) and variant 1
otherwise.

By default the probability vector is indexed starting at 0. However this can be changed in
the distribution object by a unur_distr_discr_set_domain call.

The method also works when no probability vector but a PMF is given. However, then
additionally a bounded (not too large) domain must be given or the sum over the PMF. In
the latter case the domain of the distribution is trucated (see unur_distr_discr_make_pv for
details).

How To Use

Create an object for a discrete distribution either by setting a probability vector or a PMF. The
performance can be slightly influenced by setting the size of the used table which can be changed
by unur_dgt_set_guidefactor. It is possible to change the parameters and the domain of the
chosen distribution and run unur_reinit to reinitialize the generator object.

Function reference

UNUR_PAR* unur_dgt_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_dgt_set_guidefactor (UNUR PAR* parameters, double factor)
Set size of guide table relative to length of PV. Larger guide tables result in faster generation
time but require a more expensive setup. Sizes larger than 3 are not recommended. If the

Chapter 5: Methods for generating non-uniform random variates 181

relative size is set to 0, sequential search is used. However, this is not recommended, except
in exceptional cases, since method DSS (see Section 5.8.6 [DSS], page 184) is has almost no
setup and is thus faster (but requires the sum over the PV as input parameter).
Default is 1.

int unur_dgt_set_variant (UNUR PAR* parameters, unsigned variant)
Set variant for setup step. Possible values are 1 or 2. Variant 2 is faster but more sensitive to
roundoff errors when the guide table is large. By default variant 2 is used for short probability
vectors (N <1000) and variant 1 otherwise.

182 UNU.RAN User Manual

5.8.5 DSROU – Discrete Simple Ratio-Of-Uniforms method

Required: T-concave PMF, mode, sum over PMF

Speed: Set-up: fast, Sampling: slow

Reinit: supported

Reference: [LJa01] [HLD04: Sect.10.3.2; Alg.10.6]

DSROU is based on the ratio-of-uniforms method (see Section A.4 [Ratio-of-Uniforms],
page 236) but uses universal inequalities for constructing a (universal) bounding rectangle. It
works for all T-concave distributions with T (x) = −1/

√
x .

The method requires the PMF, the (exact) location of the mode and the sum over the given
PDF. The rejection constant is 4 for all T-concave distributions. Optionally the CDF at the
mode can be given to increase the performance of the algorithm. Then the rejection constant is
reduced to 2.

How To Use

The method works for T-concave discrete distributions with given PMF. The sum over of the
PMF or an upper bound of this sum must be known.

Optionally the CDF at the mode can be given to increase the performance using unur_dsrou_
set_cdfatmode. However, this must not be called if the sum over the PMF is replaced by an
upper bound.

It is possible to change the parameters and the domain of the chosen distribution and run
unur_reinit to reinitialize the generator object.

If any of mode, CDF at mode, or the sum over the PMF has been changed, then unur_reinit
must be executed. (Otherwise the generator produces garbage).

There exists a test mode that verifies whether the conditions for the method are satisfied
or not while sampling. It can be switched on or off by calling unur_dsrou_set_verify and
unur_dsrou_chg_verify, respectively. Notice however that sampling is (a little bit) slower
then.

Function reference

UNUR_PAR* unur_dsrou_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_dsrou_set_cdfatmode (UNUR PAR* parameters, double Fmode)
Set CDF at mode. When set, the performance of the algorithm is increased by factor 2.
However, when the parameters of the distribution are changed unur_dsrou_chg_cdfatmode
has to be used to update this value. Notice that the algorithm detects a mode at the
left boundary of the domain automatically and it is not necessary to use this call for a
monotonically decreasing PMF.
Default: not set.

int unur_dsrou_set_verify (UNUR PAR* parameters, int verify)
int unur_dsrou_chg_verify (UNUR GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition squeeze(x) <= PMF(x) <=
hat(x) is violated for some x then unur_errno is set to UNUR_ERR_GEN_CONDITION. However
notice that this might happen due to round-off errors for a few values of x (less than 1%).
Default is FALSE.

Chapter 5: Methods for generating non-uniform random variates 183

int unur_dsrou_chg_cdfatmode (UNUR GEN* generator, double Fmode)
Change CDF at mode of distribution. unur_reinit must be executed before sampling from
the generator again.

184 UNU.RAN User Manual

5.8.6 DSS – (Discrete) Sequential Search method

Required: probability vector (PV) and sum over PV; or probability mass function(PMF), sum
over PV and domain; or or cumulative distribution function (CDF)

Speed: Set-up: fast, Sampling: very slow (linear in expectation)

Reinit: supported

Reference: [HLD04: Sect.3.1.1; Alg.3.1]

DSS samples from arbitrary discrete distributions. Random numbers are generated by the
inversion method, i.e.,
1. Generate a random number U ~ U(0,1).
2. Find largest integer I such that F(I) = P(X<=I) <= U.

Step (2) is the crucial step. Using sequential search requires O(E(X)) comparisons, where
E(X) is the expectation of the distribution. Thus this method is only recommended when only
a few random variates from the given distribution are required. Otherwise, table methods like
DGT (see Section 5.8.4 [DGT], page 180) or DAU (see Section 5.8.2 [DAU], page 175) are much
faster. These methods also need not the sum over the PMF (or PV) as input. On the other
hand, however, these methods always compute a table.

DSS runs with the PV, the PMF, or the CDF of the distribution. It uses actually uses the
first one in this list (in this ordering) that could be found.

How To Use

It works with a discrete distribution object with contains at least the PV, the PMF, or the CDF.
It is possible to change the parameters and the domain of the chosen distribution and run

unur_reinit to reinitialize the generator object.

Function reference

UNUR_PAR* unur_dss_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

Chapter 5: Methods for generating non-uniform random variates 185

5.8.7 DSTD – Discrete STandarD distributions

Required: standard distribution from UNU.RAN library (see Chapter 7 [Standard distribu-
tions], page 205).

Speed: Set-up: fast, Sampling: depends on distribution and generator

Reinit: supported

DSTD is a wrapper for special generators for discrete univariate standard distributions. It
only works for distributions in the UNU.RAN library of standard distributions (see Chapter 7
[Standard distributions], page 205). If a distribution object is provided that is build from
scratch, or no special generator for the given standard distribution is provided, the NULL pointer
is returned.

For some distributions more than one special generator is possible.

How To Use

Create a distribution object for a standard distribution from the UNU.RAN library (see Chap-
ter 7 [Standard distributions], page 205). For some distributions more than one special generator
(variants) is possible. These can be choosen by a unur_dstd_set_variant call. For possible
variants See Chapter 7 [Standard distributions], page 205. However the following are common
to all distributions:

UNUR_STDGEN_DEFAULT
the default generator.

UNUR_STDGEN_FAST
the fasted available special generator.

UNUR_STDGEN_INVERSION
the inversion method (if available).

Notice that the variant UNUR_STDGEN_FAST for a special generator might be slower than one
of the universal algorithms! Additional variants may exist for particular distributions.

Sampling from truncated distributions (which can be constructed by changing the default do-
main of a distribution by means of unur_distr_discr_set_domain call) is possible but requires
the inversion method.

It is possible to change the parameters and the domain of the chosen distribution and run
unur_reinit to reinitialize the generator object.

Function reference

UNUR_PAR* unur_dstd_new (const UNUR_DISTR* distribution)
Get default parameters for new generator. It requires a distribution object for a discrete
univariant distribution from the UNU.RAN library of standard distributions (see Chapter 7
[Standard distributions], page 205).
Using a truncated distribution is allowed only if the inversion method is available and selected
by the unur_dstd_set_variant call immediately after creating the parameter object. Use a
unur_distr_discr_set_domain call to get a truncated distribution.

int unur_dstd_set_variant (UNUR PAR* parameters, unsigned variant)
Set variant (special generator) for sampling from a given distribution. For possible variants
see Chapter 7 [Standard distributions], page 205.
Common variants are UNUR_STDGEN_DEFAULT for the default generator, UNUR_STDGEN_FAST
for (one of the) fastest implemented special generators, and UNUR_STDGEN_INVERSION for the

186 UNU.RAN User Manual

inversion method (if available). If the selected variant number is not implemented, this call
has no effect.

Chapter 5: Methods for generating non-uniform random variates 187

5.9 Methods for random matrices

Overview of methods� �
Methods for matrix distributions
sample with unur_sample_matr

MCORR: Distribution object for random correlation matrix.
 	

188 UNU.RAN User Manual

5.9.1 MCORR – Random CORRelation matrix

Required: Distribution object for random correlation matrix

Speed: Set-up: fast, Sampling: depends on dimension

Reinit: supported

Reference: [DLa86: Sect.6.1; p.605] [MOa84]

MCORR generates a random correlation matrix (Pearson’s correlation). Two methods are
used:
1. When a random correlation matrix having given eigenvalues is sought, the method of

Marsaglia and Olkin [MOa84] is used. In this case, the correlation matrix R is given
as R = PDP ′ where D is a diagonal matrix containing the eigenvalues and P is a random
orthonormal matrix. In higher dimensions, the rounding-errors introduced in the previous
matrix multiplications could lead to a non-symmetric correlation matrix. Therefore the
symmetric correlation matrix is computed as R = (PDP ′ + P ′DP)/2 .

2. A matrix H is generated where all rows are independent random vectors of unit length
uniformly on a sphere. Then HH ′ is a correlation matrix (and vice versa if HH ′ is a
correlation matrix then the rows of H are random vectors on a sphere).

Notice that due to round-off errors the generated matrices might not be positive definite in
extremely rare cases (especially when the given eigenvalues are amost 0).

There are many other possibilites (distributions) of sampling the random rows from a sphere.
The chosen methods are simple but does not result in a uniform distriubution of the random
correlation matrices.

It only works with distribution objects of random correlation matrices (see Section 7.4.1
[Random Correlation Matrix], page 217).

How To Use

Create a distibution object for random correlation matrices by a unur_distr_correlation call
(see Section 7.4.1 [Random Correlation Matrix], page 217).

When a correlation matrix with given eigenvalues should be generated, these eigenvalues can
be set by a unur_mcorr_set_eigenvalues call.

Otherwise, a faster algorithm is used that generates correlation matrices with random eigen-
structure.

Notice that due to round-off errors, there is a (small) chance that the resulting matrix is not
positive definite for a Cholesky decomposition algorithm, especially when the dimension of the
distribution is high.

It is possible to change the given eigenvalues using unur_mcorr_chg_eigenvalues and run
unur_reinit to reinitialize the generator object.

Function reference

UNUR_PAR* unur_mcorr_new (const UNUR_DISTR* distribution)
Get default parameters for generator.

int unur_mcorr_set_eigenvalues (UNUR PAR* par, const double*
eigenvalues)

Sets the (optional) eigenvalues of the correlation matrix. If set, then the Marsaglia and Olkin
algorithm will be used to generate random correlation matrices with given eigenvalues.

Chapter 5: Methods for generating non-uniform random variates 189

Important: the given eigenvalues of the correlation matrix must be strictly positive and sum
to the dimension of the matrix. If non-positive eigenvalues are attempted, no eigenvalues are
set and an error code is returned. In case, that their sum is different from the dimension, an
implicit scaling to give the correct sum is performed.

int unur_mcorr_chg_eigenvalues (UNUR GEN* gen, const double*
eigenvalues)

Change the eigenvalues of the correlation matrix. One must run unur_reinit to reinitialize
the generator object then.

190 UNU.RAN User Manual

5.10 Methods for uniform univariate distributions

Chapter 5: Methods for generating non-uniform random variates 191

5.10.1 UNIF – wrapper for UNIForm random number generator

UNIF is a simple wrapper that makes it possible to use a uniform random number generator as
a UNU.RAN generator. There are no parameters for this method.

How To Use

Create a generator object with NULL as argument. The created generator object returns raw
random numbers from the underlying uniform random number generator.

Function reference

UNUR_PAR* unur_unif_new (const UNUR_DISTR* dummy)
Get default parameters for generator. UNIF does not need a distribution object. dummy is
not used and can (should) be set to NULL. It is used to keep the API consistent.

192 UNU.RAN User Manual

Chapter 6: Using uniform random number generators 193

6 Using uniform random number generators

UNU.RAN is designed to work with many sources of (pseudo-) random numbers or low discrep-
ancy numbers (so called quasi-random numbers) for almost all tasks in discrete event simulation,
(quasi-) Monte Carlo integration or any other stochastic methods. Hence UNU.RAN uses point-
ers to access uniform (pseudo-) random number generators (URNG).

Each UNU.RAN (non-uniform random variate) generator object has a pointer to a URNG
object. Thus each UNU.RAN generator object may have its own (independent) URNG or several
generator objects can share the same URNG.

If no URNG is provided for a parameter or generator object a default generator is used which
is the same for all generators. This URNG is defined in ‘unuran_config.h’ at compile time and
can be changed at runtime.

UNU.RAN uses a unified interface for all sources of random numbers. Unfortunately, the API
for random number generators, like the ‘GSL’ (GNU Scientific Library), Otmar Lendl’s ‘prng’
(Pseudo random number generators), or a single function implemented by the user herself, are
quite different. Hence an object of type UNUR_URNG is introduced to store the URNG. Thus it
is possible to handle different sources of such URNGs with the unified API. It is inspired from
similar to Pierre L’Ecuyers ‘RngStreams’ library:
− seed the random number generator;
− get a uniform random number;
− reset the URNG;
− skip to the begining next substream;
− sample antithetic numbers;
− delete the URNG object.

The routine to create a URNG depends on the chosen random number generator (i.e. library).
Nevertheless, there exist wrapper functions to simplify this task.

Currently the following sources of uniform random numbers are directly supported (i.e., there
exist wrapper functions). Of course other random number generation libraries can be used.
1. FVOID

URNGs of type double uniform(void *state). The argument state can be simply ignored
in the implementation of uniform when a global state variable is used. UNU.RAN contains
some build-in URNGs of this type in directory ‘src/uniform/’.

2. PRNG

URNGs from Otmar Lendl’s prng library. It provides a very flexible way to sample form
arbitrary URNGs by means of an object oriented programing paradigma. Similarly to the
UNU.RAN library independent generator objects can be build and used.
This library has been developed by the pLab group at the university of
Salzburg (Austria, EU) and implemented by Otmar Lendl. It is available
from http://statistik.wu-wien.ac.at/prng/ or from the pLab site at
http://random.mat.sbg.ac.at/.
This interface must be compiled into UNU.RAN using the configure flag --with-urng-prng.

3. RNGSTREAM

Pierre L’Ecuyer’s RngStream library for multiple independent streams
of pseudo-random numbers. A GNU-style package is available from
http://statistik.wu-wien.ac.at/software/RngStreams/.
This interface must be compiled into UNU.RAN using the configure flag --with-urng-
rngstream.

http://statistik.wu-wien.ac.at/prng/
http://random.mat.sbg.ac.at/
http://statistik.wu-wien.ac.at/software/RngStreams/

194 UNU.RAN User Manual

4. GSL

URNG from the GNU Scientific Library (GSL). It is available from
http://www.gnu.org/software/gsl/.
This interface must be compiled into UNU.RAN using the configure flag --with-urng-gsl.

How To Use

Each UNU.RAN generator object has a pointer to a uniform (pseudo-) random number generator
(URNG). It can be set via the unur_set_urng call. It is also possible to read this pointer via
unur_get_urng or change the URNG for an existing generator object by means of unur_chg_
urng. It is important to note that these calls only copy the pointer to the URNG object into
the generator object.

If no URNG is provided for a parameter or generator object a default URNG is used which
is the same for all generators. This URNG is defined in ‘unuran_config.h’ at compile time.
A pointer to this default URNG can be obtained via unur_get_default_urng. Nevertheless,
it is also possible to change this default URNG by another one at runtime by means of the
unur_set_default_urng call. However, this only takes effect for new parameter objects.

Some generating methods provide the possibility of correlation induction. For this feature
a second auxiliary URNG is required. It can be set and changed by unur_set_urng_aux and
unur_chg_urng_aux calls, respectively. Since the auxiliary URNG is by default the same as the
main URNG, the auxiliary URNG must be set after any unur_set_urng or unur_chg_urng call!
Since in special cases mixing of two URNG might cause problems, we supply a default auxiliary
generator that can be used by a unur_use_urng_aux_default call (after the main URNG has
been set). This default auxiliary generator can be changed with analogous calls as the (main)
default uniform generator.

Uniform random number generators form different sources have different programming in-
terfaces. Thus UNU.RAN stores all information about a particular uniform random number
generator in a structure of type UNUR_URNG. Before a URNG can be used with UNU.RAN an
appropriate object has to be created ba a unur_urng_new call. This call takes two arguments:
the pointer to the sampling routine of the generator and a pointer to a possible argument that
stores the state of the generator. The function must be of type double (*sampleunif)(void
*params), but functions without any argument also work. Additionally one can set pointers to
functions for reseting or jumping the streams generated by the URNG by the corresponding set
calls.

UNU.RAN provides a unified API to all sources of random numbers. Notice, however, that
not all functions work for all random number generators (as the respective library has not
implemented the corresponding feature).

There are wrapper functions for some libraries of uniform random number generators to
simplify the task of creating a UNU.RAN object for URNGs. These functions must be compiled
into UNU.RAN using the corresponding configure flags (see description of the respective interface
below).

Function reference

Set and get default uniform RNGs

UNUR_URNG* unur_get_default_urng (void)
Get the pointer to the default URNG. The default URNG is used by all generators where no
URNG was set explicitly by a unur_set_urng call.

UNUR_URNG* unur_set_default_urng (UNUR URNG* urng_new)
Change the default URNG that is used for new parameter objects. It returns the pointer to
the old default URNG that has been used.

http://www.gnu.org/software/gsl/

Chapter 6: Using uniform random number generators 195

UNUR_URNG* unur_set_default_urng_aux (UNUR URNG* urng_new)
UNUR_URNG* unur_get_default_urng_aux (void)

Analogous calls for default auxiliary generator.

Set, change and get uniform RNGs in generator objects

int unur_set_urng (UNUR PAR* parameters, UNUR URNG* urng)
Use the URNG urng for the new generator. This overrides the default URNG. It also sets
the auxiliary URNG to urng.

Important : For multivariate distributions that use marginal distributions this call does not
work properly. It is then better first to create the generator object (by a unur_init call)
and then change the URNG by means of unur_chg_urng.

UNUR_URNG* unur_chg_urng (UNUR GEN* generator, UNUR URNG* urng)
Change the URNG for the given generator. It returns the pointer to the old URNG that
has been used by the generator. It also changes the auxiliary URNG to urng and thus it
overrides the last unur_chg_urng_aux call.

UNUR_URNG* unur_get_urng (UNUR GEN* generator)
Get the pointer to the URNG that is used by the generator. This is usefull if two generators
should share the same URNG.

int unur_set_urng_aux (UNUR PAR* parameters, UNUR URNG* urng_aux)
Use the auxiliary URNG urng_aux for the new generator. (Default is the default URNG
or the URNG from the last unur_set_urng call. Thus if the auxiliary generator should
be different to the main URNG, unur_set_urng_aux must be called after unur_set_urng.
The auxiliary URNG is used as second stream of uniform random number for correlation
induction. It is not possible to set an auxiliary URNG for a method that does not need one.
In this case an error code is returned.

int unur_use_urng_aux_default (UNUR PAR* parameters)
Use the default auxiliary URNG. (It must be set after unur_get_urng.) It is not possible
to set an auxiliary URNG for a method that does not use one (i.e. the call returns an error
code).

int unur_chgto_urng_aux_default (UNUR GEN* generator)
Switch to default auxiliary URNG. (It must be set after unur_get_urng.) It is not possible
to set an auxiliary URNG for a method that does not use one (i.e. the call returns an error
code).

UNUR_URNG* unur_chg_urng_aux (UNUR GEN* generator, UNUR URNG*
urng_aux)

Change the auxiliary URNG for the given generator. It returns the pointer to the old auxiliary
URNG that has been used by the generator. It has to be called after each unur_chg_urng
when the auxiliary URNG should be different from the main URNG. It is not possible to
change the auxiliary URNG for a method that does not use one (i.e. the call NULL).

UNUR_URNG* unur_get_urng_aux (UNUR GEN* generator)
Get the pointer to the auxiliary URNG that is used by the generator. This is usefull if two
generators should share the same URNG.

196 UNU.RAN User Manual

Handle uniform RNGs

Notice: Some of the below function calls do not work for every source of random numbers since
not every library has implemented these features.

double unur_urng_sample (UNUR URNG* urng)
Get a uniform random number from urng. If the NULL pointer is given, the default uniform
generator is used.

double unur_sample_urng (UNUR GEN* gen)
Get a uniform random number from the underlying uniform random number generator of
generator gen. If the NULL pointer is given, the default uniform generator is used.

int unur_urng_sample_array (UNUR URNG* urng, double* X, int dim)
Set array X of length dim with uniform random numbers sampled from generator urng. If
urng is the NULL pointer, the default uniform generator is used.
Important: If urng is based on a point set generator (this is the case for generators of low
discrepance point sets as used in quasi-Monte Carlo methods) it has a “natural dimension”
s. In this case either only the first s entries of X are filled (if s < dim), or the first dim
coordinates of the generated point are filled.
The called returns the actual number of entries filled. In case of an error 0 is returned.

int unur_urng_reset (UNUR URNG* urng)
Reset urng object. The routine tries two ways to reset the generator (in this order):
1. It uses the reset function given by an unur_urng_set_reset call.
2. It uses the seed given by the last unur_urng_seed call (which requires a seeding function

given by a unur_urng_set_seed call).

If neither of the two methods work resetting of the generator is not possible and an error
code is returned.
If the NULL pointer is given, the default uniform generator is reset.

int unur_urng_sync (UNUR URNG* urng)
Jump into defined state ("sync") of the generator. This is useful when point generators are
used where the coordinates are sampled via unur_urng_sample. Then this call can be used
to jump to the first coordinate of the next generated point.

int unur_urng_seed (UNUR URNG* urng, unsigned long seed)
Set seed for generator urng. It returns an error code if this is not possible for the given
URNG. If the NULL pointer is given, the default uniform generator is seeded (if possible).
Notice: Seeding should be done only once for a particular generator (except for resetting it
to the initial state). Expertise is required when multiple seeds are used to get independent
streams. Thus we recommend appropriate libraries for this task, e.g. Pierre L’Ecuyer’s
‘RngStreams’ package. For this library only a package seed can be set and thus the unur_
urng_seed call will not have any effect to generators of this type. Use unur_urng_reset or
unur_urng_rngstream_new instead, depending whether one wants to reset the stream or get
a new stream that is independent from the previous ones.

int unur_urng_anti (UNUR URNG* urng, int anti)
Switch to antithetic random numbers in urng. It returns an error code if this is not possible
for the given URNG.
If the NULL pointer is given, the antithetic flag of the default uniform generator is switched
(if possible).

Chapter 6: Using uniform random number generators 197

int unur_urng_nextsub (UNUR URNG* urng)
Jump to start of the next substream of urng. It returns an error code if this is not possible
for the given URNG.
If the NULL pointer is given, the default uniform generator is set to the start of the next
substream (if possible).

int unur_urng_resetsub (UNUR URNG* urng)
Jump to start of the current substream of urng. It returns an error code if this is not possible
for the given URNG.
If the NULL pointer is given, the default uniform generator is set to the start of the current
substream (if possible).

int unur_gen_sync (UNUR GEN* generator)
int unur_gen_seed (UNUR GEN* generator, unsigned long seed)
int unur_gen_anti (UNUR GEN* generator, int anti)
int unur_gen_reset (UNUR GEN* generator)
int unur_gen_nextsub (UNUR GEN* generator)
int unur_gen_resetsub (UNUR GEN* generator)

Analogous to unur_urng_sync, unur_urng_seed , unur_urng_anti, unur_urng_reset ,
unur_urng_nextsub, and unur_urng_resetsub, but act on the URNG object used by the
generator object.
Warning: These calls should be used with care as it influences all generator objects that
share the same URNG object!

API to create a new URNG object

Notice: These functions are provided to built a UNUR URNG object for a particular external
random number generator from scratch. For some libraries that contain random number gen-
erators (like the GSL) there are special calls, e.g. unur_urng_gsl_new, to get such an object.
Then there is no need to change the UNUR URNG object as it already contains all available
features.

If you have a particular library for random number generators you can either write wrapper
function like those in ‘src/uniform/urng_gsl.c’ or write an email to the authors of UNU.RAN
to write it for you.

UNUR_URNG* unur_urng_new (double (* sampleunif)(void* state), void* state)
Get a new URNG object. sampleunif is a function to the uniform sampling routine, state a
pointer to its arguments which usually contains the state variables of the generator.
Functions sampleunif with a different type for p or without an argument at all also work. A
typecast might be necessary to avoid compiler warnings or error messages.
For functions sampleunif that does not have any argument should use NULL for state.
Important: sampleunif must not be the NULL pointer.
There are appropriate calls that simplifies the task of creating URNG objects for some li-
braries with uniform random number generators, see below.

void unur_urng_free (UNUR URNG* urng)
Destroy urng object. It returns an error code if this is not possible.
If the NULL is given, this function does nothing.
Warning: This call must be used with care. The urng object must not be used by any
existing generator object! It is designed to work in conjunction with the wrapper functions
to create URNG objects for generators of a particular library. Thus an object created by an
unur_urng_prng_new call can be simply destroyed by an unur_urng_free call.

198 UNU.RAN User Manual

int unur_urng_set_sample_array (UNUR URNG* urng, unsigned int(*
samplearray)(void* state, double* X, int dim))

Set function to fill array X of length dim with random numbers generated by generator urng
(if available).

int unur_urng_set_sync (UNUR URNG* urng, void (* sync)(void* state))
Set function for jumping into a defined state (“sync”).

int unur_urng_set_seed (UNUR URNG* urng, void (* setseed)(void* state,
unsigned long seed))

Set function to seed generator urng (if available).

int unur_urng_set_anti (UNUR URNG* urng, void (* setanti)(void* state, int
anti))

Set function to switch the antithetic flag of generator urng (if available).

int unur_urng_set_reset (UNUR URNG* urng, void (* reset)(void* state))
Set function for reseting the uniform random number generator urng (if available).

int unur_urng_set_nextsub (UNUR URNG* urng, void (* nextsub)(void* state))
Set function that allows jumping to start of the next substream of urng (if available).

int unur_urng_set_resetsub (UNUR URNG* urng, void (* resetsub)(void* state
))

Set function that allows jumping to start of the current substream of urng (if available).

int unur_urng_set_delete (UNUR URNG* urng, void (* fpdelete)(void* state))
Set function for destroying urng (if available).

6.1 Simple interface for uniform random number generators

Simple interface for URNGs of type double uniform(void *state).
UNU.RAN contains some build-in URNGs of this type:

unur_urng_MRG31k3p
Combined multiple recursive generator by Pierre L’Ecuyer and Renee Touzin.

unur_urng_fish
Linear congruential generator by Fishman and Moore.

unur_urng_mstd
Linear congruential generator "Minimal Standard" by Park and Miller.

Notice, however, that these generators are provided as a fallback for the case that no state-of-
the-art uniform random number generators (e.g. see Section 6.5 [Pierre L’Ecuyer’s ‘Rngstream’
library], page 202) are used.

How To Use

Create an URNG object using unur_urng_fvoid_new. By this call a pointer to the sampling
routine and (optional) a pointer to a reset routine are copied into the URNG object. Other
functions, like seeding the URNG, switching to antithetic random number, or jumping to next
substream, can be added to the URNG object by the respective calls, e.g. by unur_urng_set_
seed. The following routines are supported for URNG objects of this type:

Chapter 6: Using uniform random number generators 199

− unur_urng_sample

− unur_urng_sample_array

− unur_urng_seed [optional]
− unur_urng_reset [optional]
− unur_urng_free

Function reference

UNUR_URNG* unur_urng_fvoid_new (double (* random)(void* state), void (*
reset)(void* state))

Make a URNG object for a genertor that consists of a single function call.
If there is no reset function use NULL for the second argument.

6.2 Interface to GSL uniform random number generators

Interface to the uniform random number generators from the GNU Scientific Li-
brary (GSL). Documentation and source code of this library is available from
http://www.gnu.org/software/gsl/.

The interface to the GSL must be compiled into UNU.RAN using the configure flag --with-
urng-gsl. Notice that the GSL has to be installed before running ./configure.

How To Use
When using this interface ‘unuran_urng_gsl.h’ must be included in the corresponding C file,
i.e., one must add the line

#include <unuran_urng_gsl.h>

Moreover, one must not forget to link the executable against ‘libgsl’.
The following routines are supported for URNG objects of type GSL:
− unur_urng_sample

− unur_urng_sample_array

− unur_urng_seed

− unur_urng_reset

− unur_urng_free
/* --- */

/* File: example_gsl.c */

/* --- */

#ifdef UNURAN_SUPPORTS_GSL

/* --- */

/* This example makes use of the GSL library for generating */

/* uniform random numbers. */

/* (see http://www.gnu.org/software/gsl/) */

/* To compile this example you must have set */

/* ./configure --with-urng-gsl */

/* (Of course the executable has to be linked against the */

/* GSL library.) */

/* --- */

/* Include UNURAN header files. */

#include <unuran.h>

#include <unuran_urng_gsl.h>

/* --- */

int main(void)

{

http://www.gnu.org/software/gsl/

200 UNU.RAN User Manual

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Declare objects for uniform random number generators. */

UNUR_URNG *urng; /* uniform generator objects */

/* GNU Scientific Library only: */

/* Make a object for uniform random number generator. */

urng = unur_urng_gsl_new(gsl_rng_mt19937);

if (urng == NULL) exit (EXIT_FAILURE);

/* Create a generator object using this URNG */

distr = unur_distr_normal(NULL, 0);

par = unur_tdr_new(distr);

unur_set_urng(par, urng);

gen = unur_init(par);

if (gen == NULL) exit (EXIT_FAILURE);

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* Destroy objects */

unur_free(gen);

unur_urng_free(urng);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

#else

#include <stdio.h>

#include <stdlib.h>

int main(void) {

printf("You must enable the GSL to run this example!\n\n");

exit (77); /* exit code for automake check routines */

}

#endif

/* --- */

Function reference

UNUR_URNG* unur_urng_gsl_new (const gsl_rng_type* urngtype)
Make object for URNGs from the ‘GSL’ (GNU Scientific Library). urngtype is the type of the
chosen generator as described in the GSL manual (see Section Random Number Generation).
This library is available from http://www.gnu.org/software/gsl/.

UNUR_URNG* unur_urng_gslptr_new (gsl rng* urng)
Similar to unur_urng_gsl_new but it uses a pointer to a generator object as returned by
gsl_rng_alloc(rng_type); see ‘GSL’ manual for details.
Notice: There is a subtle but important difference between these two calls. When a generator
object is created by a unur_urng_gsl_new call, then resetting of the generator works. When

http://www.gnu.org/software/gsl/

Chapter 6: Using uniform random number generators 201

a generator object is created by a unur_urng_gslptr_new call, then resetting only works
after a unur_urng_seed(urng,myseed) call.

6.3 Interface to GSL generators for quasi-random points

Interface to the generators for quasi-random points (also called low discrepancy point sets) from
the GNU Scientific Library (GSL). Documentation and source code of this library is available
from http://www.gnu.org/software/gsl/.

The interface to the GSL must be compiled into UNU.RAN using the configure flag --with-
urng-gsl. Notice that the GSL has to be installed before running ./configure.

How To Use
When using this interface ‘unuran_urng_gsl.h’ must be included in the corresponding C file,
i.e., one must add the line

#include <unuran_urng_gsl.h>

Moreover, one must not forget to link the executable against ‘libgsl’.

The following routines are supported for URNG objects of this type:

− unur_urng_sample

− unur_urng_sample_array

− unur_urng_reset

− unur_urng_sync

− unur_urng_free

unur_urng_sync is used to jump to the first coordinate of the next point generated by the
generator.

Function reference

UNUR_URNG* unur_urng_gslqrng_new (const gsl_qrng_type* qrngtype, unsigned
int dim)

Make object for quasi-random point generators for dimension dim from the ‘GSL’ (GNU
Scientific Library). qrngtype is the type of the chosen generator as described in the
GSL manual (see section Quasi-Random Sequences). This library is available from
http://www.gnu.org/software/gsl/.

6.4 Interface to Otmar Lendl’s pseudo-random number
generators

URNGs from Otmar Lendl’s prng library. It provides a very flexible way to sample form arbitrary
URNGs by means of an object oriented programing paradigma. Similarly to the UNU.RAN
library independent generator objects can be build and used.

This library has been developed by the pLab group at the university
of Salzburg (Austria, EU) and implemented by Otmar Lendl. It is avail-
able from http://statistik.wu-wien.ac.at/prng/ or from the pLab site at
http://random.mat.sbg.ac.at/.

The interface to the PRNG library must be compiled into UNU.RAN using the configure
flag --with-urng-prng. Notice that the PRNG library has to be installed before running
./configure.

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://statistik.wu-wien.ac.at/prng/
http://random.mat.sbg.ac.at/

202 UNU.RAN User Manual

How To Use
When using this interface ‘unuran_urng_prng.h’ must be included in the corresponding C file,
i.e., one must add the line

#include <unuran_urng_prng.h>

Moreover, one must not forget to link the executable against ‘libprng’.
The following routines are supported for URNG objects of type PRNG:
− unur_urng_sample

− unur_urng_sample_array

− unur_urng_seed (availability depends on chosen PRNG generator!)
− unur_urng_reset

− unur_urng_free

Function reference

UNUR_URNG* unur_urng_prng_new (const char* prngstr)
Make object for URNGs from Otmar Lendl’s ‘prng’ package. prngstr is a string that contains
the necessary information to create a uniform random number generator. For the format of
this string see the ‘prng’ user manual.
The ‘prng’ library provides a very flexible way to sample form arbitrary URNGs by means of
an object oriented programing paradigma. Similarly to the UNU.RAN library independent
generator objects can be build and used. The library has been developed and implemented
by Otmar Lendl as member of the pLab group at the university of Salzburg (Austria, EU).
It is available via anonymous ftp from http://statistik.wu-wien.ac.at/prng/ or from
the pLab site at http://random.mat.sbg.ac.at/.

UNUR_URNG* unur_urng_prngptr_new (struct prng* urng)
Similar to unur_urng_prng_new but it uses a pointer to a generator object as returned by
prng_new(prngstr); see ‘prng’ manual for details.

6.5 Interface to L’Ecuyer’s RNGSTREAM random number
generators

URNGs from Pierre L’Ecuyer’s ‘RngStream’ library for multiple independent streams of
pseudo-random numbers. This library provides multiple independent streams of pseudo-
random numbers which itselves can be splitted into many substreams. It is available from
http://www.iro.umontreal.ca/~lecuyer/myftp/streams00/c/. A GNU-style package is
available from http://statistik.wu-wien.ac.at/software/RngStreams/.

The interface to the RngStream library must be compiled into UNU.RAN using the configure
flag --with-urng-rngstream. Notice that the RngStream library has to be installed before
running ./configure.

How To Use
When using this interface ‘unuran_urng_rngstream.h’ must be included in the corresponding
C file, i.e., one must add the line

#include <unuran_urng_rngstream.h>

Moreover, one must not forget to link the executable against the ‘RngStream’ library (i.e.,
when using the GNU-style package in UNIX like environments one has to add -lrngstreams
when linking an executable).

Notice that the ‘rngstream’ library uses a package seed, that means one should seed the
uniform random number generator only once in an application using the routine RngStream_
SetPackageSeed:

http://statistik.wu-wien.ac.at/prng/
http://random.mat.sbg.ac.at/
http://www.iro.umontreal.ca/~lecuyer/myftp/streams00/c/
http://statistik.wu-wien.ac.at/software/RngStreams/
http://statmath.wu-wien.ac.at/software/RngStreams/doc/rngstreams.html#index-RngStream_005fSetPackageSeed-2
http://statmath.wu-wien.ac.at/software/RngStreams/doc/rngstreams.html#index-RngStream_005fSetPackageSeed-2

Chapter 6: Using uniform random number generators 203

unsigned long seed[] = {111u, 222u, 333u, 444u, 555u, 666u};

RngStream_SetPackageSeed(seed);

The following routines are supported for URNG objects of this type:
− unur_urng_sample

− unur_urng_sample_array

− unur_urng_reset

− unur_urng_nextsub

− unur_urng_resetsub

− unur_urng_anti

− unur_urng_free

Function reference

UNUR_URNG* unur_urng_rngstream_new (const char* urngstr)
Make object for URNGs from Pierre L’Ecuyer’s ‘RngStream’ library. urngstr is an arbitrary
string to label a stream. It need not be unique.

UNUR_URNG* unur_urng_rngstreamptr_new (RngStream rngstream)
Similar to unur_urng_rngstream_new but it uses a pointer to a generator object as returned
by RngStream_CreateStream().

6.6 Combine point set generator with random shifts

Generators of type RANDOMSHIFT combine a point set generator with generators to apply
random shifts as proposed in [CPa76] :
1. Sample and store a random vector S.
2. Run a QMC simulation where S is added to each point of the generated quasi-random point

(mod 1).
3. Repeat steps 1 and 2.

How To Use

Create a URNG object for a point set generator and a URNG object for a generator to create shift
vectors at random. The meta URNG object can then be created using unur_urng_randomshift_
new. Notice that only pointers to the two underlying URNG generator objects are copied into the
newly created meta generator. Thus manipulating the meta URNG also changes the underlying
URNGs and vice versa.

The following routines are supported for URNG objects of type RANDOMSHIFT:
− unur_urng_sample

− unur_urng_sample_array

− unur_urng_reset

− unur_urng_sync

− unur_urng_randomshift_nextshift

− unur_urng_free

unur_urng_sync is used to jump to the first coordinate of the next point generated by the
generator. unur_urng_randomshift_nextshift allows to replace the shift vector by another
randomly chosen shift vector.

Important: unur_urng_sync is only available if it is if it is implemented for the underlying
point set generator.

Important: unur_urng_reset is only available if it is available for both underlying generators.

204 UNU.RAN User Manual

Function reference

UNUR_URNG* unur_urng_randomshift_new (UNUR URNG* qrng, UNUR URNG*
srng, int dim)

Make object for URNG with randomly shifted point sets. qrng is a generated that generates
point sets of dimension dim. srng is a generated that generates random numbers or vectors.
Notice: Only pointers to the respective objects qrng and srng are copied into the created
meta generator. Thus manipulating the meta URNG also changes the underlying URNGs
and vice versa.

int unur_urng_randomshift_nextshift (UNUR URNG* urng)
Get the next (randomly chosen) vector for shifting the points set, and the underlying point
generator qrng is reset.

Chapter 7: UNU.RAN Library of standard distributions 205

7 UNU.RAN Library of standard distributions

Although it is not its primary target, many distributions are already implemented in UNU.RAN.
This section presents these available distributions and their parameters.

The syntax to get a distribuion object for distributions <dname> is:

[–]UNUR_DISTR* unur_distr_<dname> (double* params, int n_params)
params is an array of doubles of size n params holding the parameters.

E.g. to get an object for the gamma distribution (with shape parameter) use
unur_distr_gamma(params, 1);

Distributions may have default parameters with need not be given explicitely. E.g. The
gamma distribution has three parameters: the shape, scale and location parameter. Only the
(first) shape parameter is required. The others can be omitted and are then set by default
values.

/* alpha = 5; default: beta = 1, gamma = 0 */

double fpar[] = {5.};

unur_distr_gamma(fpar, 1);

/* alpha = 5, beta = 3; default: gamma = 0 */

double fpar[] = {5., 3.};

unur_distr_gamma(fpar, 2);

/* alpha = 5, beta = 3, gamma = -2

double fpar[] = {5., 3., -2.};

unur_distr_gamma(fpar, 3);

Important: Naturally the computational accuracy limits the possible parameters. There
shouldn’t be problems when the parameters of a distribution are in a “reasonable” range but
e.g. the normal distribution N(10^15,1) won’t yield the desired results. (In this case it would
be better generating N(0,1) and then transform the results.)
Of course computational inaccuracy is not specific to UNU.RAN and should always be kept in
mind when working with computers.

Important: The routines of the standard library are included for non-uniform random variate
generation and not to provide special functions for statistical computations.

Remark

The following keywords are used in the tables:

PDF probability density function, with variable x.

PMF probability mass function, with variable k.

constant normalization constant for given PDF and PMF, resp. They must be multiplied by
constant to get the “real” PDF and PMF.

CDF gives information whether the CDF is implemented in UNU.RAN.

domain domain PDF and PMF, resp.

parameters n std (n total): list
list of parameters for distribution, where n std is the number of parameters for the
standard form of the distribution and n total the total number for the (non-standard
form of the) distribution. list is the list of parameters in the order as they are stored
in the array of parameters. Optional parameter that can be omitted are enclosed in
square brackets [...].

206 UNU.RAN User Manual

A detailed list of these parameters gives then the range of valid parameters and
defaults for optional parameters that are used when these are omitted.

reference gives reference for distribution (see Appendix C [Bibliography], page 241).

special generators
lists available special generators for the distribution. The first number is the vari-
ant that to be set by unur_cstd_set_variant and unur_dstd_set_variant call,
respectively. If no variant is set the default variant DEF is used. In the table the
respective abbreviations DEF and INV are used for UNUR_STDGEN_DEFAULT and UNUR_
STDGEN_INVERSION. Also the references for these methods are given (see Appendix C
[Bibliography], page 241).
Notice that these generators might be slower than universal methods.
If DEF is ommited, the first entry is the default generator.

Chapter 7: UNU.RAN Library of standard distributions 207

7.1 UNU.RAN Library of continuous univariate distributions

7.1.1 F – F-distribution

PDF: (xν1/2−1)/(1 + ν1/ν2x)(ν1+ν2)/2

constant: (ν1/ν2)ν1/2/Beta(ν1/2, ν2/2)

domain: 0 < x <∞

parameters 2 (2): nu 1, nu 2

No. name default
[0] nu1 > 0 (scale)
[1] nu2 > 0 (scale)

reference: [JKBc95: Ch.27; p.322]

7.1.2 beta – Beta distribution

PDF: (x− a)p−1 (b− x)q−1

constant: 1/(Beta(p, q) (b− a)p+q−1)

domain: a < x < b

parameters 2 (4): p, q [, a, b]

No. name default
[0] p > 0 (scale)
[1] q > 0 (scale)
[2] a 0 (location, scale)
[3] b > a 1 (location, scale)

reference: [JKBc95: Ch.25; p.210]

7.1.3 cauchy – Cauchy distribution

PDF: 1
1+((x−θ)/λ)2

constant: 1
π λ

domain: −∞ < x <∞

parameters 0 (2): [theta [, lambda]]

No. name default
[0] θ 0 (location)
[1] λ > 0 1 (scale)

reference: [JKBb94: Ch.16; p.299]

special generators:
INV Inversion method

7.1.4 chi – Chi distribution

PDF: xν−1 exp(−x2/2)

constant: 1/(2(ν/2)−1 Γ(ν/2))

domain: 0 ≤ x <∞

208 UNU.RAN User Manual

parameters 1 (1): nu

No. name default
[0] ν > 0 (shape)

reference: [JKBb94: Ch.18; p.417]

special generators:
DEF Ratio of Uniforms with shift (only for ν ≥ 1) [MJa87]

7.1.5 chisquare – Chisquare distribution

PDF: x(ν/2)−1 exp(−x/2)

constant: 1/(2ν/2 Γ(ν/2))

domain: 0 ≤ x <∞

parameters 1 (1): nu

No. name default
[0] ν > 0 (shape (degrees of freedom))

reference: [JKBb94: Ch.18; p.416]

7.1.6 exponential – Exponential distribution

PDF: exp(−x−θ
σ

)

constant: 1
σ

domain: θ ≤ x <∞

parameters 0 (2): [sigma [, theta]]

No. name default
[0] σ > 0 1 (scale)
[1] θ 0 (location)

reference: [JKBb94: Ch.19; p.494]

special generators:
INV Inversion method

7.1.7 extremeI – Extreme value type I (Gumbel-type) distribution

PDF: exp(− exp(−x−ζ
θ

)− x−ζ
θ

)

constant: 1
θ

domain: −∞ < x <∞

parameters 0 (2): [zeta [, theta]]

No. name default
[0] ζ 0 (location)
[1] θ > 0 1 (scale)

reference: [JKBc95: Ch.22; p.2]

special generators:
INV Inversion method

Chapter 7: UNU.RAN Library of standard distributions 209

7.1.8 extremeII – Extreme value type II (Frechet-type) distribution

PDF: exp(−(x−ζ
θ

)−k) (x−ζ
θ

)−k−1

constant: k
θ

domain: ζ < x <∞

parameters 1 (3): k [, zeta [, theta]]

No. name default
[0] k > 0 (shape)
[1] ζ 0 (location)
[2] θ > 0 1 (scale)

reference: [JKBc95: Ch.22; p.2]

special generators:
INV Inversion method

7.1.9 gamma – Gamma distribution

PDF: (x−γ
β

)α−1 exp(−x−γ
β

)

constant: 1/(β Γ(α))

domain: γ < x <∞

parameters 1 (3): alpha [, beta [, gamma]]

No. name default
[0] α > 0 (shape)
[1] β > 0 1 (scale)
[2] γ 0 (location)

reference: [JKBb94: Ch.17; p.337]

special generators:
DEF Acceptance Rejection combined with Acceptance Complement [ADa74]

[ADa82]

2 Rejection from log-logistic envelopes [CHa77]

7.1.10 laplace – Laplace distribution

PDF: exp(− |x−θ|
φ

)

constant: 1
2φ

domain: −∞ < x <∞

parameters 0 (2): [theta [, phi]]

No. name default
[0] θ 0 (location)
[1] φ > 0 1 (scale)

reference: [JKBc95: Ch.24; p.164]

special generators:
INV Inversion method

210 UNU.RAN User Manual

7.1.11 logistic – Logistic distribution

PDF: exp(−x−α
β

) (1 + exp(−x−α
β

))−2

constant: 1
β

domain: −∞ < x <∞
parameters 0 (2): [alpha [, beta]]

No. name default
[0] α 0 (location)
[1] β > 0 1 (scale)

reference: [JKBc95: Ch.23; p.115]

special generators:
INV Inversion method

7.1.12 lomax – Lomax distribution (Pareto distribution of second
kind)

PDF: (x+ C)−(a+1)

constant: aCa

domain: 0 ≤ x <∞
parameters 1 (2): a [, C]

No. name default
[0] a > 0 (shape)
[1] C > 0 1 (scale)

reference: [JKBb94: Ch.20; p.575]

special generators:
INV Inversion method

7.1.13 normal – Normal distribution

PDF: exp(− 1
2

(x−µ
σ

)2)

constant: 1
σ
√

2π

domain: −∞ < x <∞
parameters 0 (2): [mu [, sigma]]

No. name default
[0] µ 0 (location)
[1] σ > 0 1 (scale)

reference: [JKBb94: Ch.13; p.80]

special generators:
DEF ACR method (Acceptance-Complement Ratio) [HDa90]

1 Box-Muller method [BMa58]

2 Polar method with rejection [MGa62]

3 Kindermann-Ramage method [KRa76]

INV Inversion method (slow)

Chapter 7: UNU.RAN Library of standard distributions 211

7.1.14 pareto – Pareto distribution (of first kind)

PDF: x−(a+1)

constant: a ka

domain: k < x <∞

parameters 2 (2): k, a

No. name default
[0] k > 0 (shape, location)
[1] a > 0 (shape)

reference: [JKBb94: Ch.20; p.574]

special generators:

INV Inversion method

7.1.15 powerexponential – Powerexponential (Subbotin) distribution

PDF: exp(−|x|τ)

constant: 1/(2 Γ(1 + 1/τ))

domain: −∞ < x <∞

parameters 1 (1): tau

No. name default
[0] τ > 0 (shape)

reference: [JKBc95: Ch.24; p.195]

special generators:

DEF Transformed density rejection (only for τ ≥ 1) [DLa86]

7.1.16 rayleigh – Rayleigh distribution

PDF: x exp(−1/2 (x
σ

)2)

constant: 1
σ2

domain: 0 ≤ x <∞

parameters 1 (1): sigma

No. name default
[0] σ > 0 (scale)

reference: [JKBb94: Ch.18; p.456]

7.1.17 student – Student’s t distribution

PDF: (1 + t2

ν
)−(ν+1)/2

constant: 1√
ν B(1/2,ν/2)

CDF: not implemented!

domain: −∞ < x <∞

212 UNU.RAN User Manual

parameters 1 (1): nu

No. name default
[0] ν > 0 (shape)

reference: [JKBc95: Ch.28; p.362]

7.1.18 triangular – Triangular distribution

PDF: 2x/H, for 0 ≤ x ≤ H
2 (1− x)/(1−H), for H ≤ x ≤ 1

constant: 1

domain: 0 ≤ x ≤ 1

parameters 0 (1): [H]

No. name default
[0] H 0 ≤ H ≤ 1 1/2 (shape)

reference: [JKBc95: Ch.26; p.297]

special generators:
INV Inversion method

7.1.19 uniform – Uniform distribution

PDF: 1
b−a

constant: 1

domain: a < x < b

parameters 0 (2): [a, b]

No. name default
[0] a 0 (location)
[1] b > a 1 (location)

reference: [JKBc95: Ch.26; p.276]

special generators:
INV Inversion method

7.1.20 weibull – Weibull distribution

PDF: (x−ζ
α

)c−1 exp(−(x−ζ
α

)c)

constant: c
α

domain: ζ < x <∞
parameters 1 (3): c [, alpha [, zeta]]

No. name default
[0] c > 0 (shape)
[1] α > 0 1 (scale)
[2] ζ 0 (location)

reference: [JKBb94: Ch.21; p.628]

special generators:
INV Inversion method

Chapter 7: UNU.RAN Library of standard distributions 213

7.2 UNU.RAN Library of continuous multivariate distributions

7.2.1 copula – Copula (distribution with uniform marginals)

UNUR_DISTR *unur_distr_copula(int dim, const double *rankcorr) creates a distribution
object for a copula with dim components. rankcorr is an array of size dimxdim and holds
the rank correlation matrix (Spearman’s correlation), where the rows of the matrix are stored
consecutively in this array. The NULL pointer can be used instead the identity matrix.

If covar is not a valid rank correlation matrix (i.e., not positive definite) then no distribution
object is created and NULL is returned.

7.2.2 multicauchy – Multicauchy distribution

PDF: f(x) = 1/(1 + (x− µ)t.Σ−1.(x− µ))(dim+1)/2

constant: Γ((dim+ 1)/2)/(π(dim+1)/2
√
det(Σ))

domain: −∞dim < x <∞dim

parameters 0 (2): [mu, Sigma]

No. name default
[0] µ (0,. . . ,0) (location)
[1] Sigma Symm,Pos.def. I (shape)

special generators:

DEF Cholesky factor

7.2.3 multiexponential – Multiexponential distribution

PDF: f(x) = Prodi=dim−1
i=0 exp(−(dim−i)(xi−xi−1−(θi−θi−1))/σi);withx−1 = 0andθi−1 =

0

constant: Prodi=dim−1
i=0 1/σi

domain: 0dim ≤ x <∞dim

parameters 0 (2): [sigma, theta]

No. name default
[0] σ (1,. . . ,1) (shape)
[1] θ (0,. . . ,0) (location)

7.2.4 multinormal – Multinormal distribution

PDF: f(x) = exp(−1/2 (x− µ)t.Σ−1.(x− µ))

constant: 1/((2π)dim/2
√
det(Σ))

domain: −∞dim < x <∞dim

parameters 0 (2): [mu, Sigma]

No. name default
[0] µ (0,. . . ,0) (location)
[1] Sigma Symm,Pos.def. I (shape)

reference: [KBJe00: Ch.45; p.105]

214 UNU.RAN User Manual

7.2.5 multistudent – Multistudent distribution

PDF: f(x) = 1/(1 + (x− µ)t.Σ−1.(x− µ)/m)(dim+m)/2)

constant: Γ((dim+m)/2)/(Γ(m/2)(mπ)dim/2
√
det(Σ))

domain: −∞dim < x <∞dim

parameters 0 (3): [m, mu, Sigma]

No. name default
[0] m m > 0 1 (location)
[1] µ (0,. . . ,0) (location)
[2] Sigma Symm,Pos.def. I (shape)

Chapter 7: UNU.RAN Library of standard distributions 215

7.3 UNU.RAN Library of discrete univariate distributions

At the moment there are no CDFs implemented for discrete distribution. Thus unur_distr_
discr_upd_pmfsum does not work properly for truncated distribution.

7.3.1 binomial – Binomial distribution

PMF:
(n
k

)
pk (1− p)n−k

constant: 1

domain: 0 ≤ k ≤ n

parameters 2 (2): n, p

No. name default
[0] n ≥ 1 (no. of elements)
[1] p 0 < p < 1 (shape)

reference: [JKKa92: Ch.3; p.105]

special generators:
DEF Ratio of Uniforms/Inversion [STa89]

7.3.2 geometric – Geometric distribution

PMF: p (1− p)k

constant: 1

domain: 0 ≤ k <∞

parameters 1 (1): p

No. name default
[0] p 0 < p < 1 (shape)

reference: [JKKa92: Ch.5.2; p.201]

special generators:
INV Inversion method

7.3.3 hypergeometric – Hypergeometric distribution

PMF:
(M
k

) (N−M
n−k

)
/
(N
n

)
constant: 1

domain: max(0, n−N +M) ≤ k ≤ min(n,M)

parameters 3 (3): N, M, n

No. name default
[0] N ≥ 1 (no. of elements)
[1] M 1 ≤M ≤ N (shape)
[2] n 1 ≤ n ≤ N (shape)

reference: [JKKa92: Ch.6; p.237]

special generators:
DEF Ratio of Uniforms/Inversion [STa89]

216 UNU.RAN User Manual

7.3.4 logarithmic – Logarithmic distribution

PMF: θk/k

constant: −log(1.− θ);

domain: 1 ≤ k <∞

parameters 1 (1): theta

No. name default
[0] θ 0 < θ < 1 (shape)

reference: [JKKa92: Ch.7; p.285]

special generators:
DEF Inversion/Transformation [KAa81]

7.3.5 negativebinomial – Negative Binomial distribution

PMF:
(k+r−1
r−1

)
pr (1− p)k

constant: 1

domain: 0 ≤ k <∞

parameters 2 (2): p, r

No. name default
[0] p 0 < p < 1 (shape)
[1] r > 0 (shape)

reference: [JKKa92: Ch.5.1; p.200]

7.3.6 poisson – Poisson distribution

PMF: θk/k!

constant: exp(θ)

domain: 0 ≤ k <∞

parameters 1 (1): theta

No. name default
[0] θ > 0 (shape)

reference: [JKKa92: Ch.4; p.151]

special generators:
DEF Tabulated Inversion combined with Acceptance Complement [ADb82]

2 Tabulated Inversion combined with Patchwork Rejection [ZHa94]

Chapter 7: UNU.RAN Library of standard distributions 217

7.4 UNU.RAN Library of random matrices

7.4.1 correlation – Random correlation matrix

UNUR_DISTR *unur_distr_correlation(int n) creates a distribution object for a random
correlation matrix of n rows and columns. It can be used with method MCORR (see Section 5.9.1
[Random Correlation Matrix], page 188) to generate random correlation matrices of the given
size.

218 UNU.RAN User Manual

Chapter 8: Error handling and Debugging 219

8 Error handling and Debugging

UNU.RAN routines report an error whenever they cannot perform the requested task. Addi-
tionally it is possible to get information about the generated distribution of generator objects
for debugging purposes. However, the latter must be enabled when compiling and installing the
library. (It is disabled by default.) This chapter describes all necessary details:
• Choose an output stream to for writing the requested information.
• Select a debugging level.
• Select an error handler.
• Write your own error handler.
• Get more information for a particular error code.

8.1 Output streams

UNU.RAN uses a logfile for writing all error messages, warnings, and debugging information
onto an output stream. This stream can be set at runtime by the unur_set_stream call. If no
such stream is given by the user a default stream is used by the library: all messages are written
into the file ‘unuran.log’ in the current working directory. The name of this logfile is defined
by the macro UNUR_LOG_FILE in ‘unuran_config.h’. (If UNU.RAN fails to open this file for
writing, ‘stderr’ is used instead.)

To destinguish between messages for different objects each of these has its own identifier
which is composed by the name of the distribution obejct and generator type, resp., followed
by a dot and three digits. (If there are more than 999 generators then the identifiers are not
unique.)

Remark: Writting debugging information must be switched on at compile time using the
configure flag --enable-logging, see Section 8.2 [Debugging], page 219.

Function reference

FILE* unur_set_stream (FILE* new_stream)
This function sets a new file handler for the output stream, new stream, for the UNU.RAN
library routines. The previous handler is returned (so that you can restore it later). Note that
the pointer to a user defined file handler is stored in a static variable, so there can be only one
output stream handler per program. This function should be not be used in multi-threaded
programs except to set up a program-wide error handler from a master thread.
The NULL pointer is not allowed. (If you want to disable logging of debugging information use
unur set default debug(UNUR DEBUG OFF) instead. If you want to disable error messages
at all use unur_set_error_handler_off.)

FILE* unur_get_stream (void)
Get the file handle for the current output stream. It can be used to allow applications to
write additional information into the logfile.

8.2 Debugging

The UNU.RAN library has several debugging levels which can be switched on/off by debugging
flags. This debugging feature must be enabled when building the library using the --enable-
logging configure flag.

The debugging levels range from print a short description of the created generator object to
a detailed description of hat functions and tracing the sampling routines. The output is printed
onto the debugging output stream (see Section 8.1 [Output streams], page 219).

220 UNU.RAN User Manual

The debugging flags can be set or changed by the respective calls unur_set_debug and
unur_chg_debug independently for each generator.

By default flag UNUR_DEBUG_INIT (see below) is used. This default flags is set by the macro
UNUR_DEBUGFLAG_DEFAULT in ‘unuran_config.h’ and can be changed at runtime by a unur_
set_default_debug call.

Off course these debugging flags depend on the chosen method. Since most of these are
merely for debugging the library itself, a description of the flags are given in the corresponding
source files of the method. Nevertheless, the following flags can be used with all methods.

Common debug flags:

UNUR_DEBUG_OFF
switch off all debuging information

UNUR_DEBUG_ALL
all avaivable information

UNUR_DEBUG_INIT
parameters of generator object after initialization

UNUR_DEBUG_SETUP
data created at setup

UNUR_DEBUG_ADAPT
data created during adaptive steps

UNUR_DEBUG_SAMPLE
trace sampling

Notice that these are flags which could be combined using the | operator.

Almost all routines check a given pointer before they read from or write to the given address.
This does not hold for time-critical routines like all sampling routines. Thus you are responsible
for checking a pointer that is returned from a unur_init call. However, it is possible to turn
on checking for invalid NULL pointers even in such time-critical routines by building the library
using the --enable-check-struct configure flag.

Another debugging tool used in the library are magic cookies that validate a given pointer.
It produces an error whenever a given pointer points to an object that is invalid in the context.
The usage of magic cookies is also switched on by the --enable-check-struct configure flag.

Function reference

int unur_set_debug (UNUR PAR* parameters, unsigned debug)
Set debugging flags for generator.

int unur_chg_debug (UNUR GEN* generator, unsigned debug)
Change debugging flags for generator.

int unur_set_default_debug (unsigned debug)
Change default debugging flag.

Chapter 8: Error handling and Debugging 221

8.3 Error reporting

UNU.RAN routines report an error whenever they cannot perform the requested task. For
example, applying transformed density rejection to a distribution that violates the T-concavity
condition, or trying to set a parameter that is out of range, result in an error message. It might
also happen that the setup fails for transformed density rejection for a T-concave distribution
with some extreme density function simply because of round-off errors that makes the generation
of a hat function numerically impossible. Situations like this may happen when using black box
algorithms and you should check the return values of all routines.

All ..._set_..., and ..._chg_... calls return UNUR_SUCCESS if they could be executed
successfully. Otherwise, some error codes are returned if it was not possible to set or change the
desired parameters, e.g. because the given values are out of range, or simply because the set
call does not work for the chosen method.

All routines that return a pointer to the requested object will return a NULL pointer in case
of error. (Thus you should always check the pointer to avoid possible segmentation faults.
Sampling routines usually do not check the given pointer to the generator object.)

The library distinguishes between two major classes of error:

(fatal) errors:
The library was not able to construct the requested object.

warnings: Some problems encounters while constructing a generator object. The routine has
tried to solve the problem but the resulting object might not be what you want. For
example, chosing a special variant of a method does not work and the initialization
routine might switch to another variant. Then the generator produces random vari-
ates of the requested distribution but correlation induction is not possible. However,
it also might happen that changing the domain of a distribution has failed. Then
the generator produced random variates with too large/too small range, i.e. their
distribution is not correct.

It is obvious from the example that this distinction between errors and warning is rather
crude and sometimes arbitrary.

UNU.RAN routines use the global variable unur errno to report errors, completely analo-
gously to errno in the ANSI C standard library. (However this approach is not thread-safe.
There can be only one instance of a global variable per program. Different threads of execution
may overwrite unur errno simultaneously). Thus when an error occurs the caller of the routine
can examine the error code in unur errno to get more details about the reason why a routine
failed. You get a short description of the error by a unur_get_strerror call. All the error code
numbers have prefix UNUR_ERR_ and expand to non-zero constant unsigned integer values. Error
codes are divided into six main groups, see Section 8.4 [Error codes], page 222.

Alternatively, the variable unur errno can also read by a unur_get_errno call and can be
reset by the unur_reset_errno call (this is in particular required for the Windows version of
the library).

Additionally, there exists a error handler (see Section 8.5 [Error handlers], page 224) that is
invoked in case of an error.

In addition to reporting errors by setting error codes in unur errno, the library also has an
error handler function. This function is called by other library functions when they report an
error, just before they return to the caller (see Section 8.5 [Error handlers], page 224). The
default behavior of the error handler is to print a short message:

AROU.004: [error] arou.c:1500 - (generator) condition for method violated:

AROU.004: ..> PDF not unimodal

222 UNU.RAN User Manual

The purpose of the error handler is to provide a function where a breakpoint can be set
that will catch library errors when running under the debugger. It is not intended for use in
production programs, which should handle any errors using the return codes.

Function reference

[Variable]extern int unur_errno
Global variable for reporting diagnostics of error.

int unur_get_errno (void)
Get current value of global variable unur errno.

void unur_reset_errno (void)
Reset global variable unur errno to UNUR_SUCCESS (i.e., no errors occured).

const char* unur_get_strerror (const int unur_errno)
Get a short description for error code value.

8.4 Error codes

List of error codes

• Procedure executed successfully (no error)

UNUR_SUCCESS (0x0u)
success (no error)

• Errors that occurred while handling distribution objects.

UNUR_ERR_DISTR_SET
set failed (invalid parameter).

UNUR_ERR_DISTR_GET
get failed (parameter not set).

UNUR_ERR_DISTR_NPARAMS
invalid number of parameters.

UNUR_ERR_DISTR_DOMAIN
parameter(s) out of domain.

UNUR_ERR_DISTR_GEN
invalid variant for special generator.

UNUR_ERR_DISTR_REQUIRED
incomplete distribution object, entry missing.

UNUR_ERR_DISTR_UNKNOWN
unknown distribution, cannot handle.

UNUR_ERR_DISTR_INVALID
invalid distribution object.

UNUR_ERR_DISTR_DATA
data are missing.

UNUR_ERR_DISTR_PROP
desired property does not exist

• Errors that occurred while handling parameter objects.

Chapter 8: Error handling and Debugging 223

UNUR_ERR_PAR_SET
set failed (invalid parameter)

UNUR_ERR_PAR_VARIANT
invalid variant -> using default

UNUR_ERR_PAR_INVALID
invalid parameter object

• Errors that occurred while handling generator objects.

UNUR_ERR_GEN
error with generator object.

UNUR_ERR_GEN_DATA
(possibly) invalid data.

UNUR_ERR_GEN_CONDITION
condition for method violated.

UNUR_ERR_GEN_INVALID
invalid generator object.

UNUR_ERR_GEN_SAMPLING
sampling error.

UNUR_ERR_NO_REINIT
reinit routine not implemented.

UNUR_ERR_NO_QUANTILE
quantile routine not implemented.

• Errors that occurred while handling URNG objects.

UNUR_ERR_URNG
generic error with URNG object.

UNUR_ERR_URNG_MISS
missing functionality.

• Errors that occurred while parsing strings.

UNUR_ERR_STR
error in string.

UNUR_ERR_STR_UNKNOWN
unknown keyword.

UNUR_ERR_STR_SYNTAX
syntax error.

UNUR_ERR_STR_INVALID
invalid parameter.

UNUR_ERR_FSTR_SYNTAX
syntax error in function string.

UNUR_ERR_FSTR_DERIV
cannot derivate function.

• Other run time errors.

UNUR_ERR_DOMAIN
argument out of domain.

224 UNU.RAN User Manual

UNUR_ERR_ROUNDOFF
(serious) round-off error.

UNUR_ERR_MALLOC
virtual memory exhausted.

UNUR_ERR_NULL
invalid NULL pointer.

UNUR_ERR_COOKIE
invalid cookie.

UNUR_ERR_GENERIC
generic error.

UNUR_ERR_SILENT
silent error (no error message).

UNUR_ERR_INF
infinity occured.

UNUR_ERR_NAN
NaN occured.

UNUR_ERR_COMPILE
Requested routine requires different compilation switches. Recompilation of
library necessary.

UNUR_ERR_SHOULD_NOT_HAPPEN
Internal error, that should not happen. Please report this bug!

8.5 Error handlers

The default behavior of the UNU.RAN error handler is to print a short message onto the output
stream, usually a logfile (see Section 8.1 [Output streams], page 219), e.g.,

AROU.004: [error] arou.c:1500 - (generator) condition for method violated:

AROU.004: ..> PDF not unimodal

This error handler can be switched off using the unur_set_error_handler_off call, or
replace it by a new one. Thus it allows to set a breakpoint that will catch library errors when
running under the debugger. It also can be used to redirect error messages when UNU.RAN is
included in general purpose libraries or in interactive programming environments.

[Data Type]UNUR_ERROR_HANDLER
This is the type of UNU.RAN error handler functions. An error handler will be passed six
arguments which specify the identifier of the object where the error occured (a string), the
name of the source file in which it occurred (also a string), the line number in that file (an
integer), the type of error (a string: "error" or "warning"), the error number (an integert),
and the reason for the error (a string). The source file and line number are set at compile
time using the __FILE__ and __LINE__ directives in the preprocessor. The error number
can be translated into a short description using a unur_get_strerror call. An error handler
function returns type void.
Error handler functions should be defined like this,

void my_handler(
const char *objid,
const char *file,
int line,
const char *errortype,
int unur_errno,
const char *reason)

Chapter 8: Error handling and Debugging 225

To request the use of your own error handler you need the call unur_set_error_handler.

Function reference

UNUR_ERROR_HANDLER* unur_set_error_handler (UNUR ERROR HANDLER*
new_handler)

This function sets a new error handler, new handler, for the UNU.RAN library routines. The
previous handler is returned (so that you can restore it later). Note that the pointer to a
user defined error handler function is stored in a static variable, so there can be only one
error handler per program. This function should be not be used in multi-threaded programs
except to set up a program-wide error handler from a master thread.
To use the default behavior set the error handler to NULL.

UNUR_ERROR_HANDLER* unur_set_error_handler_off (void)
This function turns off the error handler by defining an error handler which does nothing
(except of setting unur errno. The previous handler is returned (so that you can restore it
later).

226 UNU.RAN User Manual

Chapter 9: Testing 227

9 Testing

The following routines can be used to test the performance of the implemented generators and
can be used to verify the implementions. They are declared in ‘unuran_tests.h’ which has to
be included.

Function reference

void unur_run_tests (UNUR PAR* parameters, unsigned tests, FILE* out)
Run a battery of tests. The following tests are available (use | to combine these tests):

UNUR_TEST_ALL
run all possible tests.

UNUR_TEST_TIME
estimate generation times.

UNUR_TEST_N_URNG
count number of uniform random numbers

UNUR_TEST_N_PDF
count number of PDF calls

UNUR_TEST_CHI2
run chi^2 test for goodness of fit

UNUR_TEST_SAMPLE
print a small sample.

All these tests can be started individually (see below).

void unur_test_printsample (UNUR GEN* generator, int n_rows, int n_cols,
FILE* out)

Print a small sample with n rows rows and n cols columns. out is the output stream to
which all results are written.

UNUR_GEN* unur_test_timing (UNUR PAR* parameters, int log_samplesize,
double* time_setup, double* time_sample, int verbosity, FILE* out)

Timing. parameters is an parameter object for which setup time and marginal generation
times have to be measured. The results are written into time setup and time sample, respec-
tively. log samplesize is the common logarithm of the sample size that is used for timing.

If verbosity is TRUE then a small table is printed to output stream out with setup time,
marginal generation time and average generation times for generating 10, 100, . . . random
variates. All times are given in micro seconds and relative to the generation times for the un-
derlying uniform random number (using the UNIF interface) and an exponential distributed
random variate using the inversion method.

The created generator object is returned. If a generator object could not be created success-
fully, then NULL is returned.

If verbosity is TRUE the result is written to the output stream out.

Notice: All timing results are subject to heavy changes. Reruning timings usually results in
different results. Minor changes in the source code can cause changes in such timings up to
25 percent.

228 UNU.RAN User Manual

double unur_test_timing_uniform (const UNUR_PAR* parameters, int
log_samplesize)

double unur_test_timing_exponential (const UNUR_PAR* parameters, int
log_samplesize)

Marginal generation times for the underlying uniform random number (using the UNIF in-
terface) and an exponential distributed random variate using the inversion method. These
times are used in unur_test_timing to compute the relative timings results.

double unur_test_timing_total (const UNUR_PAR* parameters, int samplesize,
double avg_duration)

Timing. parameters is an parameter object for which average times a sample of size samplesize
(including setup) are estimated. Thus sampling is repeated and the median of these timings
is returned (in micro seconds). The number of iterations is computed automatically such
that the total amount of time necessary for the test ist approximately avg duration (given in
seconds). However, for very slow generator with expensive setup time the time necessary for
this test may be (much) larger.

If an error occurs then -1 is returned.

Notice: All timing results are subject to heavy changes. Reruning timings usually results in
different results. Minor changes in the source code can cause changes in such timings up to
25 percent.

int unur_test_count_urn (UNUR GEN* generator, int samplesize, int
verbosity, FILE* out)

Count used uniform random numbers. It returns the total number of uniform random num-
bers required for a sample of non-uniform random variates of size samplesize. In case of an
error -1 is returned.

If verbosity is TRUE the result is written to the output stream out.

Notice: This test uses global variables to store counters. Thus it is not thread save.

int unur_test_count_pdf (UNUR GEN* generator, int samplesize, int
verbosity, FILE* out)

Count evaluations of PDF and similar functions. It returns the total number of evaluations
of all such functions required for a sample of non-uniform random variates of size samplesize.
If verbosity is TRUE then a more detailed report is printed to the output stream out. In case
of an error -1 is returned. This test is run on a copy of the given generator object.

Notice: The printed numbers of evaluation should be interpreted with care. For example,
methods either use the PDF or the logPDF; if only the logPDF is given, but a method needs
the PDF then both the logPDF and the PDF (a wrapper around the logPDF) are called and
thus one call to the PDF is counted twice.

Notice: This test uses global variables to store function pointers and counters. Thus it is not
thread save.

int unur_test_par_count_pdf (UNUR PAR* parameters, int samplesize, int
verbosity, FILE* out)

Same as unur_test_count_pdf except that it is run on a parameter object. Thus it also
prints the number of function evaluations for the setup. The temporary created generator
object is destroyed before the results are returned.

Chapter 9: Testing 229

double unur_test_chi2 (UNUR GEN* generator, int intervals, int
samplesize, int classmin, int verbosity, FILE* out)

Run a Chi^2 test with the generator. The resulting p-value is returned.
It works with discrete und continuous univariate distributions. For the latter the CDF of the
distribution is required.
intervals is the number of intervals that is used for continuous univariate distributions. sam-
plesize is the size of the sample that is used for testing. If it is set to 0 then a sample of size
intervals^2 is used (bounded to some upper bound).
classmin is the minimum number of expected entries per class. If a class has to few entries
then some classes are joined.
verbosity controls the output of the routine. If it is set to 1 then the result is written to
the output stream out. If it is set to 2 additionally the list of expected and observed data is
printed. If it is set to 3 then all generated numbers are printed. There is no output when it
is set to 0.
Notice: For multivariate distributions the generated points are transformed by the inverse
of the Cholesky factor of the covariance matrix and the mean vectors (if given for the un-
derlying distribution). The marginal distributions of the transformed vectors are then tested
against the marginal distribution given by a unur_distr_cvec_set_marginals or unur_
distr_cvec_set_marginal_array call. (Notice that these marginal distributions are never
set by default for any of the distributions provided by UNU.RAN.) Then the Bonferroni
corrected p-value of all these tests is returned. However, the test may not be performed
correctly if the domain of the underlying distribution is truncated by a unur_distr_cvec_
set_domain_rect call and the components of the distribution are correlated (i.e. unur_
distr_cvec_set_covar is called with the non-NULL argument). Then it almost surely will
fail.

int unur_test_moments (UNUR GEN* generator, double* moments, int
n_moments, int samplesize, int verbosity, FILE* out)

Computes the first n moments central moments for a sample of size samplesize. The result
is stored into the array moments. n moments must be an integer between 1 and 4. For
multivariate distributions the moments are stored consecutively for each dimension and the
provided moments-array must have a length of at least (n moments+1) * dim, where dim
is the dimension of the multivariate distribution. The m’th moment for the d’th dimension
(0<=d<dim) is thus stored in the array element moments[d*n moments+m]
If verbosity is TRUE the result is written to the output stream out.

double unur_test_correlation (UNUR GEN* generator1, UNUR GEN*
generator2, int samplesize, int verbosity, FILE* out)

Compute the correlation coefficient between streams from generator1 and generator2 for two
samples of size samplesize. The resultung correlation is returned.
If verbosity is TRUE the result is written to the output stream out.

int unur_test_quartiles (UNUR GEN* generator, double* q0, double* q1,
double* q2, double* q3, double* q4, int samplesize, int verbosity, FILE* out)

Estimate quartiles of sample of size samplesize. The resulting quantiles are stored in the
variables q:

q0 minimum

q1 25%

q2 median (50%)

230 UNU.RAN User Manual

q3 75%

q4 maximum

If verbosity is TRUE the result is written to the output stream out.

double unur_test_inverror (const UNUR_GEN* generator, double* max_error,
double* MAE, double threshold, int samplesize, int randomized, int
testtails, int verbosity, FILE* out)

Estimate U-error of an inversion method, i.e. error = |CDF−1(U) − U | , by means of a
simple Monte Carlo method. Maximum and mean absolute errors are stored in max error and
MAE, respectively. The particular computed U-errors should not exceed the given threshold.
However, approximization and round-off errors might occasionally trigger such an event. Thus
the function returns a penalty score. It is 0. when the U-error never exceed the threshold
value. It roughly gives the portion of praticular test where the U-error is too larger. However,
each such event is weighted with 1 + 10× (uerror − threshold)/threshold .
If randomized is TRUE a pseudo-random sequence is used for the estimation.
If randomized is FALSE then the U-values are choosen equidistributed. If in addition ran-
domized is set to TRUE then the tails of the distributions are tested with a more dense set of
points.
If verbosity is TRUE the result is written to the output stream out.
When the domain of the distribution is truncated then the u-error might be larger due
to rescaling of floating point numbers. Thus the observed u-errors are corrected by the
corresponding rescaling factor.
In case of an error a negative value is returned.

Chapter 10: Miscelleanous 231

10 Miscelleanous

10.1 Mathematics

The following macros have been defined

UNUR_INFINITY
indicates infinity for floating point numbers (of type double). Internally HUGE_VAL
is used.

INT_MAX
INT_MIN indicate infinity and minus infinity, resp., for integers (defined by ISO C standard).

TRUE
FALSE bolean expression for return values of set functions.

232 UNU.RAN User Manual

Appendix A: A Short Introduction to Random Variate Generation 233

Appendix A A Short Introduction to Random
Variate Generation

Random variate generation is the small field of research that deals with algorithms to generate
random variates from various distributions. It is common to assume that a uniform random
number generator is available. This is a program that produces a sequence of independent and
identically distributed continuous U(0, 1) random variates (i.e. uniform random variates on the
interval (0, 1)). Of course real world computers can never generate ideal random numbers and
they cannot produce numbers of arbitrary precision but state-of-the-art uniform random number
generators come close to this aim. Thus random variate generation deals with the problem of
transforming such a sequence of U(0, 1) random numbers into non-uniform random variates.

Here we shortly explain the basic ideas of the inversion, rejection, and the ratio of uniforms
method. How these ideas can be used to design a particular automatic random variate genera-
tion algorithms that can be applied to large classes of distributions is shortly explained in the
description of the different methods included in this manual.

For a deeper treatment of the ideas presented here, for other basic methods and for automatic
generators we refer the interested reader to our book [HLD04].

A.1 The Inversion Method

When the inverse F−1 of the cumulative distribution function is known, then random variate
generation is easy. We just generate a uniformly U(0, 1) distributed random number U and
return

X = F−1(U).
The following figure shows how the inversion method works for the exponential distribution.

0 1 2 3 4 5
0

1

This algorithm is so simple that inversion is certainly the method of choice if the inverse CDF
is available in closed form. This is the case e.g. for the exponential and the Cauchy distribution.

The inversion method also has other special advantages that make it even more attractive for
simulation purposes. It preserves the structural properties of the underlying uniform pseudo-
random number generator. Consequently it can be used, e.g., for variance reduction techniques,
it is easy to sample from truncated distributions, from marginal distributions, and from order
statistics. Moreover, the quality of the generated random variables depends only on the underly-
ing uniform (pseudo-) random number generator. Another important advantage of the inversion
method is that we can easily characterize its performance. To generate one random variate we
always need exactly one uniform variate and one evaluation of the inverse CDF. So its speed

234 UNU.RAN User Manual

mainly depends on the costs for evaluating the inverse CDF. Hence inversion is often considered
as the method of choice in the simulation literature.

Unfortunately computing the inverse CDF is, for many important standard distributions (e.g.
for normal, student, gamma, and beta-distributions), comparatively difficult and slow. Often
no such routines are available in standard programming libraries. Then numerical methods for
inverting the CDF are necessary, e.g. Newton’s method. Such procedures, however, have the
disadvantage that they may be slow or not exact, i.e. they compute approximate values. The
methods NINV (see Section 5.3.10 [NINV], page 117) and HINV (see Section 5.3.5 [HINV],
page 107) of UNU.RAN are numerical inversion methods. Both require the CDF of the desired
distribution. As the CDF is quite complicated and slow for many distributions this implies either
that the generation is very slow (NINV) or a very slow setup step and large tables are necessary
(HINV). Sometimes the CDF of a distribution is not available and alternative methods like the
rejection method (see Section A.2 [Rejection], page 234) must be used.

A.2 The Rejection Method

The rejection method, often called acceptance-rejection method, has been suggested by John von
Neumann in 1951. Since then it has proven to be the most flexible and most efficient method
to generate variates from continuous distributions.

We explain the rejection principle first for the density f(x) = sin(x)/2 on the interval (0, π).
To generate random variates from this distribution we also can sample random points that are
uniformly distributed in the region between the graph of f(x) and the x-axis, i.e., the shaded
region in the below figure.

In general this is not a trivial task but in this example we can easily use the rejection trick:
Sample a random point (X,Y) uniformly in the bounding rectangle (0, π)× (0, 0.5). This is easy
since each coordinate can be sampled independently from the respective uniform distributions
U(0, π) and U(0, 0.5). Whenever the point falls into the shaded region below the graph (indicated
by dots in the figure), i.e., when Y < sin(X)/2, we accept it and return X as a random variate
from the distribution with density f(x). Otherwise we have to reject the point (indicated by
small circles in the figure), and try again.

It is quite clear that this idea works for every distribution with a bounded density on a
bounded domain. Moreover, we can use this procedure with any multiple of the density, i.e.,
with any positive bounded function with bounded integral and it is not necessary to know the
integral of this function. So we use the term density in the sequel for any positive function with
bounded integral.

From the figure we can conclude that the performance of a rejection algorithm depends
heavily on the area of the enveloping rectangle. Moreover, the method does not work if the
target distribution has infinite tails (or is unbounded). Hence non-rectangular shaped regions

Appendix A: A Short Introduction to Random Variate Generation 235

for the envelopes are important and we have to solve the problem of sampling points uniformly
from such domains. Looking again at the example above we notice that the x-coordinate of the
random point (X,Y) was sampled by inversion from the uniform distribution on the domain
of the given density. This motivates us to replace the density of the uniform distribution by
the (multiple of a) density h(x) of some other appropriate distribution. We only have to take
care that it is chosen such that it is always an upper bound, i.e., h(x) ≥ f(x) for all x in the
domain of the distribution. To generate the pair (X,Y) we generate X from the distribution
with density proportional to h(x) and Y uniformly between 0 and h(X). The first step (generate
X) is usually done by inversion (see Section A.1 [Inversion], page 233).

Thus the general rejection algorithm for a hat h(x) with inverse CDF H−1 consists of the
following steps:
1. Generate a U(0, 1) random number U.
2. Set X to H−1(U).
3. Generate a U(0, 1) random number V.
4. Set Y to V h(X).
5. If Y ≤ f(X) accept X as the random variate.
6. Else try again.

If the evaluation of the density f(x) is expensive (i.e., time consuming) it is possible to use
a simple lower bound of the density as so called squeeze function s(x) (the triangular shaped
function in the above figure is an example for such a squeeze). We can then accept X when
Y ≤ s(X) and can thus often save the evaluation of the density.

We have seen so far that the rejection principle leads to short and simple generation algo-
rithms. The main practical problem to apply the rejection algorithm is the search for a good
fitting hat function and for squeezes. We do not discuss these topics here as they are the
heart of the different automatic algorithms implemented in UNU.RAN. Information about the
construction of hat and squeeze can therefore be found in the descriptions of the methods.

The performance characteristics of rejection algorithms mainly depend on the fit of the hat
and the squeeze. It is not difficult to prove that:
• The expected number of trials to generate one variate is the ratio between the area below

the hat and the area below the density.
• The expected number of evaluations of the density necessary to generate one variate is

equal to the ratio between the area below the hat and the area below the density, when no
squeeze is used. Otherwise, when a squeeze is given it is equal to the ratio between the area
between hat and squeeze and the area below the hat.

• The sqhratio (i.e., the ratio between the area below the squeeze and the area below the
hat) used in some of the UNU.RAN methods is easy to compute. It is useful as its reciprocal
is an upper bound for the expected number of trials of the rejection algoritm. The expected
number of evaluations of the density is bounded by (1/sqhratio)− 1.

A.3 The Composition Method

The composition method is an important principle to facilitate and speed up random variate
generation. The basic idea is simple. To generate random variates with a given density we
first split the domain of the density into subintervals. Then we select one of these randomly
with probabilities given by the area below the density in the respective subintervals. Finally we
generate a random variate from the density of the selected part by inversion and return it as
random variate of the full distribution.

Composition can be combined with rejection. Thus it is possible to decompose the domain
of the distribution into subintervals and to construct hat and squeeze functions seperatly in

236 UNU.RAN User Manual

every subinterval. The area below the hat must be determined in every subinterval. Then the
Composition rejection algorithm contains the following steps:

1. Generate the index J of the subinterval as the realisation of a discrete random variate with
probabilities proportional to the area below the hat.

2. Generate a random variate X proportional to the hat in interval J.
3. Generate the U(0, f(X)) random number Y.
4. If Y ≤ f(X) accept X as random variate.
5. Else start again with generating the index J.

The first step can be done in constant time (i.e., independent of the number of chosen
subintervals) by means of the indexed search method (see Section A.6 [IndexedSearch], page 238).

It is possible to reduce the number of uniform random numbers required in the above algo-
rithm by recycling the random numbers used in Step 1 and additionally by applying the principle
of immediate acceptance. For details see [HLD04: Sect. 3.1] .

A.4 The Ratio-of-Uniforms Method

The construction of an appropriate hat function for the given density is the crucial step for
constructing rejection algorithms. Equivalently we can try to find an appropriate envelope for the
region between the graph of the density and the x-axis, such that we can easily sample uniformly
distributed random points. This task could become easier if we can find transformations that
map the region between the density and the axis into a region of more suitable shape (for
example into a bounded region).

As a first example we consider the following simple algorithm for the Cauchy distribution.

1. Generate a U(−1, 1) random number U and a U(0, 1) random number V.
2. If U2 + V 2 ≤ 1 accept X = U/V as a Cauchy random variate.
3. Else try again.

It is possible to prove that the above algorithm indeed generates Cauchy random variates.
The fundamental principle behind this algorithm is the fact that the region below the density
is mapped by the transformation

(X,Y) 7→ (U, V) = (2X
√
Y , 2
√
Y)

into a half-disc in such a way that the ratio between the area of the image to the area of the
preimage is constant. This is due to the fact that that the Jacobian of this transformation is
constant.

u

v

The above example is a special case of a more general principle, called the Ratio-of-uniforms
(RoU) method. It is based on the fact that for a random variable X with density f(x) and some

Appendix A: A Short Introduction to Random Variate Generation 237

constant µ we can generate X from the desired density by calculating X = U/V + µ for a pair
(U, V) uniformly distributed in the set

Af = {(u, v): 0 < v ≤
√
f(u/v + µ)}.

For most distributions it is best to set the constant µ equal to the mode of the distribution.
For sampling random points uniformly distributed in Af rejection from a convenient enveloping
region is used, usually the minimal bounding rectangle, i.e., the smallest possible rectangle that
contains Af (see the above figure). It is given by (u−, u+)× (0, v+) where

v+ = sup
bl<x<br

√
f(x),

u− = inf
bl<x<br

(x− µ)
√
f(x),

u+ = sup
bl<x<br

(x− µ)
√
f(x).

Then the ratio-of-uniforms method consists of the following simple steps:
1. Generate a U(u−, u+) random number U and a U(0, v+) random number V.
2. Set X to U/V + µ.

3. If V 2 ≤ f(X) accept X as the random variate.
4. Else try again.

To apply the ratio-of-uniforms algorithm to a certain density we have to solve the simple
optimization problems in the definitions above to obtain the design constants u−, u+, and v+.
This simple algorithm works for all distributions with bounded densities that have subquadratic
tails (i.e., tails like 1/x2 or lower). For most standard distributions it has quite good rejection
constants. (E.g. 1.3688 for the normal and 1.4715 for the exponential distribution.)

Nevertheless, we use more sophisticated method that construct better fitting envelopes, like
method AROU (see Section 5.3.1 [AROU], page 95), or even avoid the computation of these
design constants and thus have almost no setup, like method SROU (see Section 5.3.13 [SROU],
page 126).

The Generalized Ratio-of-Uniforms Method

The Ratio-of-Uniforms method can be generalized: If a point (U, V) is uniformly distributed in
the set

Af = {(u, v): 0 < v ≤ (f(u/vr + µ))1/(r+1)}
then X = U/V r +µ has the denity f(x). The minimal bounding rectangle of this region is given
by (u−, u+)× (0, v+) where

v+ = sup
bl<x<br

(f(x))1/(r+1),

u− = inf
bl<x<br

(x− µ)(f(x))r/(r+1),

u+ = sup
bl<x<br

(x− µ)(f(x))r/(r+1).

The above algorithm has then to be adjusted accordingly. Notice that the original Ratio-of-
Uniforms method is the special case with r = 1.

A.5 Inversion for Discrete Distributions

We have already presented the idea of the inversion method to generate from continuous random
variables (see Section A.1 [Inversion], page 233). For a discrete random variable X we can write
it mathematically in the same way:

X = F−1(U),
where F is the CDF of the desired distribution and U is a uniform U(0, 1) random number.
The difference compared to the continuous case is that F is now a step-function. The following
figure illustrates the idea of discrete inversion for a simple distribution.

238 UNU.RAN User Manual

0 1 2 3 4 5
0

1

To realize this idea on a computer we have to use a search algorithm. For the simplest version
called Sequential Search the CDF is computed on-the-fly as sum of the probabilities p(k), since
this is usually much cheaper than computing the CDF directly. It is obvious that the basic form
of the search algorithm only works for discrete random variables with probability mass functions
p(k) for nonnegative k. The sequential search algorithm consists of the following basic steps:
1. Generate a U(0, 1) random number U.
2. Set X to 0 and P to p(0).
3. Do while U > P

4. Set X to X + 1 and P to P + p(X).
5. Return X.

With the exception of some very simple discrete distributions, sequential search algorithms
become very slow as the while-loop has to be repeated very often. The expected number of
iterations, i.e., the number of comparisons in the while condition, is equal to the expectation
of the distribution plus 1. It can therefore become arbitrary large or even infinity if the tail of
the distribution is very heavy. Another serious problem can be critical round-off errors due to
summing up many probabilities p(k). To speed up the search procedure it is best to use indexed
search.

A.6 Indexed Search (Guide Table Method)

The idea to speed up the sequential search algorithm is easy to understand. Instead of starting
always at 0 we store a table of size C with starting points for our search. For this table we
compute F−1(U) for C equidistributed values of U, i.e., for ui = i/C, i = 0, ..., C − 1. Such a
table is called guide table or hash table. Then it is easy to prove that for every U in (0, 1) the
guide table entry for k = floor(UC) is bounded by F−1(U). This shows that we can really start
our sequential search procedure from the table entry for k and the index k of the correct table
entry can be found rapidly by means of the truncation operation.

The two main differences between indexed search and sequential search are that we start
searching at the number determined by the guide table, and that we have to compute and
store the cumulative probabilities in the setup as we have to know the cumulative probability
for the starting point of the search algorithm. The rounding problems that can occur in the
sequential search algorithm can occur here as well. Compared to sequential search we have now
the obvious drawback of a slow setup. The computation of the cumulative probabilities grows
linear with the size of the domain of the distribution L. What we gain is really high speed as the
marginal execution time of the sampling algorithm becomes very small. The expected number of
comparisons is bounded by 1 +L/C. This shows that there is a trade-off between speed and the
size of the guide table. Cache-effects in modern computers will however slow down the speed-up
for really large table sizes. Thus we recommend to use a guide table that is about two times
larger than the probability vector to obtain optimal speed.

Appendix B: Glossary 239

Appendix B Glossary

CDF cumulative distribution function

HR hazard rate (or failure rate)

inverse local concavity
local concavity of inverse PDF f−1(y) expressed in term of x = f−1(y). Is is given
by ilcf (x) = 1 + x f ′′(x)/f ′(x)

local concavity
maximum value of c such that PDF f(x) is Tc. Is is given by lcf (x) = 1 −
f ′′(x) f(x)/f ′(x)2

PDF probability density function

dPDF derivative (gradient) of probability density function

PMF probability mass function

PV (finite) probability vector

URNG uniform random number generator

U(a, b) continuous uniform distribution on the interval (a, b)

T-concave a function f(x) is called T-convace if the transformed function T(f(x)) is concave.
We only deal with transformations Tc, where

c = 0 T (x) = log(x)

c = −0.5 T (x) = −1/
√
x

c != 0 T (x) = sign(x) · xc

240 UNU.RAN User Manual

Appendix C: Bibliography 241

Appendix C Bibliography

Standard Distributions

[JKKa92] N.L. Johnson, S. Kotz, and A.W. Kemp (1992). Univariate Discrete Distribu-
tions, 2nd edition, John Wiley & Sons, Inc., New York.

[JKBb94] N.L. Johnson, S. Kotz, and N. Balakrishnan (1994). Continuous Univariate
Distributions, Volume 1, 2nd edition, John Wiley & Sons, Inc., New York.

[JKBc95] N.L. Johnson, S. Kotz, and N. Balakrishnan (1995). Continuous Univariate
Distributions, Volume 2, 2nd edition, John Wiley & Sons, Inc., New York.

[JKBd97] N.L. Johnson, S. Kotz, and N. Balakrishnan (1997). Discrete Multivariate
Distributions, John Wiley & Sons, Inc., New York.

[KBJe00] S. Kotz, N. Balakrishnan, and N.L. Johnson (2000). Continuous Multivariate
Distributions, Volume 1: Models and Applications, John Wiley & Sons, Inc., New
York.

Universal Methods – Surveys

[HLD04] W. Hörmann, J. Leydold, and G. Derflinger (2004). Automatic Nonuniform
Random Variate Generation, Springer, Berlin.

Universal Methods

[AJa93] J.H. Ahrens (1993). Sampling from general distributions by suboptimal division of
domains, Grazer Math. Berichte 319, 30pp.

[AJa95] J.H. Ahrens (1995). An one-table method for sampling from continuous and dis-
crete distributions, Computing 54(2), pp. 127-146.

[CAa74] H.C. Chen and Y. Asau (1974). On generating random variates from an empirical
distribution, AIIE Trans. 6, pp. 163-166.

[DHLa08] G. Derflinger, W. Hörmann, and J. Leydold (2008). Numerical inversion
when only the density function is known, Research Report Series of the Department
of Statistics and Mathematics 78, WU Wien, Augasse 2–6, A-1090 Wien, Austria,
http://epub.wu-wien.ac.at/english/.

[DLa86] L. Devroye (1986). Non-Uniform Random Variate Generation, Springer Verlag,
New York.

[GWa92] W.R. Gilks and P. Wild (1992). Adaptive rejection sampling for Gibbs sampling,
Applied Statistics 41, pp. 337-348.

[HWa95] W. Hörmann (1995). A rejection technique for sampling from T-concave distribu-
tions, ACM Trans. Math. Software 21(2), pp. 182-193.

[HDa96] W. Hörmann and G. Derflinger (1996). Rejection-inversion to generate vari-
ates from monotone discrete distributions, ACM TOMACS 6(3), 169-184.

[HLa00] W. Hörmann and J. Leydold (2000). Automatic random variate generation
for simulation input. In: J.A. Joines, R. Barton, P. Fishwick, K. Kang (eds.),
Proceedings of the 2000 Winter Simulation Conference, pp. 675-682.

[HLa03] W. Hörmann and J. Leydold (2003). Continuous Random Variate Generation
by Fast Numerical Inversion, ACM TOMACS 13(4), 347-362.

http://epub.wu-wien.ac.at/english/

242 UNU.RAN User Manual

[HLDa07] W. Hörmann, J. Leydold, and G. Derflinger (2007). Automatic Random
Variate Generation for Unbounded Densities, ACM Trans. Model. Comput. Simul.
17(4), pp.18.

[KLPa05] R. Karawatzki, J. Leydold, and K. Pötzelberger (2005). Automatic Markov
chain Monte Carlo procedures for sampling from multivariate distributions, Research
Report Series of the Department of Statistics and Mathematics 27, WU Wien, Au-
gasse 2–6, A-1090 Wien, Austria, http://epub.wu-wien.ac.at/english/.

[LJa98] J. Leydold (1998). A Rejection Technique for Sampling from Log-Concave Multi-
variate Distributions, ACM TOMACS 8(3), pp. 254-280.

[LJa00] J. Leydold (2000). Automatic Sampling with the Ratio-of-Uniforms Method, ACM
Trans. Math. Software 26(1), pp. 78-98.

[LJa01] J. Leydold (2001). A simple universal generator for continuous and discrete uni-
variate T-concave distributions, ACM Trans. Math. Software 27(1), pp. 66-82.

[LJa02] J. Leydold (2003). Short universal generators via generalized ratio-of-uniforms
method, Math. Comp. 72(243), pp. 1453-1471.

[WGS91] J.C. Wakefield, A.E. Gelfand, and A.F.M. Smith (1992). Efficient genera-
tion of random variates via the ratio-of-uniforms method, Statist. Comput. 1(2),
pp. 129-133.

[WAa77] A.J. Walker (1977). An efficient method for generating discrete random variables
with general distributions, ACM Trans. Math. Software 3, pp. 253-256.

Special Generators

[ADa74] J.H. Ahrens, U. Dieter (1974). Computer methods for sampling from gamma,
beta, Poisson and binomial distributions, Computing 12, 223-246.

[ADa82] J.H. Ahrens, U. Dieter (1982). Generating gamma variates by a modified rejec-
tion technique, Communications of the ACM 25, 47-54.

[ADb82] J.H. Ahrens, U. Dieter (1982). Computer generation of Poisson deviates from
modified normal distributions, ACM Trans. Math. Software 8, 163-179.

[BMa58] G.E.P. Box and M.E. Muller (1958). A note on the generation of random
normal deviates, Annals Math. Statist. 29, 610-611.

[CHa77] R.C.H. Cheng (1977). The Generation of Gamma Variables with Non-Integral
Shape Parameter, Appl. Statist. 26(1), 71-75.

[HDa90] W. Hörmann and G. Derflinger (1990). The ACR Method for generating
normal random variables, OR Spektrum 12, 181-185.

[KAa81] A.W. Kemp (1981). Efficient generation of logarithmically distributed pseudo-
random variables, Appl. Statist. 30, 249-253.

[KRa76] A.J. Kinderman and J.G. Ramage (1976). Computer Generation of Normal
Random Variables, J. Am. Stat. Assoc. 71(356), 893 - 898.

[MJa87] J.F. Monahan (1987). An algorithm for generating chi random variables, ACM
Trans. Math. Software 13, 168-172.

[MGa62] G. Marsaglia (1962). Improving the Polar Method for Generating a Pair of Ran-
dom Variables, Boeing Sci. Res. Lab., Seattle, Washington.

[MOa84] G. Marsaglia and I. Olkin (1984). Generating Correlation Matrices, SIAM J.
Sci. Stat. Comput 5, 470-475.

http://epub.wu-wien.ac.at/english/

Appendix C: Bibliography 243

[STa89] E. Stadlober (1989). Sampling from Poisson, binomial and hypergeometric dis-
tributions: ratio of uniforms as a simple and fast alternative, Bericht 303, Math.
Stat. Sektion, Forschungsgesellschaft Joanneum, Graz.

[ZHa94] H. Zechner (1994). Efficient sampling from continuous and discrete unimodal
distributions, Pd.D. Thesis, 156 pp., Technical University Graz, Austria.

Other references

[CPa76] R. Cranley and T.N.L. Patterson (1976). Randomization of number theoretic
methods for multiple integration, SIAM J. Num. Anal., Vol. 13, pp. 904-914.

[HJa61] R. Hooke and T.A. Jeeves (1961). Direct Search Solution of Numerical and
Statistical Problems, Journal of the ACM, Vol. 8, April 1961, pp. 212-229.

244 UNU.RAN User Manual

Appendix D: Function Index 245

Appendix D Function Index

F
FALSE . 231

I
INT_MAX . 231
INT_MIN . 231

T
TRUE . 231

U
unur_arou_chg_verify . 96
unur_arou_get_hatarea . 96
unur_arou_get_sqhratio . 96
unur_arou_get_squeezearea . 96
unur_arou_new. 95
unur_arou_set_cpoints . 96
unur_arou_set_darsfactor . 95
unur_arou_set_guidefactor . 96
unur_arou_set_max_segments 96
unur_arou_set_max_sqhratio 96
unur_arou_set_pedantic . 96
unur_arou_set_usecenter . 96
unur_arou_set_usedars . 95
unur_arou_set_verify . 96
unur_ars_chg_reinit_ncpoints 99
unur_ars_chg_reinit_percentiles 99
unur_ars_chg_verify . 99
unur_ars_eval_invcdfhat . 100
unur_ars_get_loghatarea . 100
unur_ars_new . 98
unur_ars_set_cpoints . 99
unur_ars_set_max_intervals 99
unur_ars_set_max_iter . 99
unur_ars_set_pedantic . 99
unur_ars_set_reinit_ncpoints 99
unur_ars_set_reinit_percentiles 99
unur_ars_set_verify . 99
unur_auto_new. 90
unur_auto_set_logss . 90
unur_cext_get_distrparams 104
unur_cext_get_ndistrparams 104
unur_cext_get_params . 104
unur_cext_new . 103
unur_cext_set_init . 103
unur_cext_set_sample . 103
unur_chg_debug . 220
unur_chg_urng . 195
unur_chg_urng_aux . 195
unur_chgto_urng_aux_default 195
unur_cstd_chg_truncated . 106
unur_cstd_new . 105
unur_cstd_set_variant . 105
unur_dari_chg_verify . 174
unur_dari_new . 173
unur_dari_set_cpfactor . 174
unur_dari_set_squeeze . 173

unur_dari_set_tablesize . 173
unur_dari_set_verify . 174
unur_dau_new. 175
unur_dau_set_urnfactor . 175
UNUR_DEBUG_ADAPT . 220
UNUR_DEBUG_ALL . 220
UNUR_DEBUG_INIT . 220
UNUR_DEBUG_OFF . 220
UNUR_DEBUG_SAMPLE . 220
UNUR_DEBUG_SETUP . 220
unur_dext_get_distrparams 179
unur_dext_get_ndistrparams 179
unur_dext_get_params . 179
unur_dext_new . 178
unur_dext_set_init . 178
unur_dext_set_sample . 178
unur_dgt_new. 180
unur_dgt_set_guidefactor . 180
unur_dgt_set_variant . 181
unur_distr_<dname> . 205
unur_distr_beta . 207
unur_distr_binomial . 215
unur_distr_cauchy . 207
unur_distr_cemp_get_data . 69
unur_distr_cemp_new . 69
unur_distr_cemp_read_data . 69
unur_distr_cemp_set_data . 69
unur_distr_cemp_set_hist . 69
unur_distr_cemp_set_hist_bins 70
unur_distr_cemp_set_hist_domain 70
unur_distr_cemp_set_hist_prob 69
unur_distr_chi . 207
unur_distr_chisquare . 208
unur_distr_condi_get_condition 80
unur_distr_condi_get_distribution 80
unur_distr_condi_new . 79
unur_distr_condi_set_condition 79
unur_distr_cont_eval_cdf . 60
unur_distr_cont_eval_dlogpdf 61
unur_distr_cont_eval_dpdf . 60
unur_distr_cont_eval_hr . 63
unur_distr_cont_eval_logcdf 61
unur_distr_cont_eval_logpdf 61
unur_distr_cont_eval_pdf . 60
unur_distr_cont_get_cdf . 60
unur_distr_cont_get_cdfstr 61
unur_distr_cont_get_center 64
unur_distr_cont_get_dlogpdf 61
unur_distr_cont_get_dlogpdfstr 62
unur_distr_cont_get_domain 63
unur_distr_cont_get_dpdf . 60
unur_distr_cont_get_dpdfstr 61
unur_distr_cont_get_hr . 63
unur_distr_cont_get_hrstr . 64
unur_distr_cont_get_logcdf 61
unur_distr_cont_get_logcdfstr 62
unur_distr_cont_get_logpdf 61
unur_distr_cont_get_logpdfstr 62
unur_distr_cont_get_mode . 64
unur_distr_cont_get_pdf . 60
unur_distr_cont_get_pdfarea 65

246 UNU.RAN User Manual

unur_distr_cont_get_pdfparams 62
unur_distr_cont_get_pdfparams_vec 62
unur_distr_cont_get_pdfstr 61
unur_distr_cont_get_truncated 63
unur_distr_cont_new . 59
unur_distr_cont_set_cdf . 59
unur_distr_cont_set_cdfstr 61
unur_distr_cont_set_center 64
unur_distr_cont_set_dlogpdf 61
unur_distr_cont_set_domain 62
unur_distr_cont_set_dpdf . 59
unur_distr_cont_set_hr . 63
unur_distr_cont_set_hrstr . 64
unur_distr_cont_set_logcdf 61
unur_distr_cont_set_logcdfstr 62
unur_distr_cont_set_logpdf 61
unur_distr_cont_set_logpdfstr 62
unur_distr_cont_set_mode . 64
unur_distr_cont_set_pdf . 59
unur_distr_cont_set_pdfarea 65
unur_distr_cont_set_pdfparams 61
unur_distr_cont_set_pdfparams_vec 62
unur_distr_cont_set_pdfstr 61
unur_distr_cont_upd_mode . 64
unur_distr_cont_upd_pdfarea 65
unur_distr_copula . 213
unur_distr_corder_eval_cdf 66
unur_distr_corder_eval_dpdf 66
unur_distr_corder_eval_pdf 66
unur_distr_corder_get_cdf . 66
unur_distr_corder_get_distribution 66
unur_distr_corder_get_domain 67
unur_distr_corder_get_dpdf 66
unur_distr_corder_get_mode 67
unur_distr_corder_get_pdf . 66
unur_distr_corder_get_pdfarea 68
unur_distr_corder_get_pdfparams 67
unur_distr_corder_get_rank 66
unur_distr_corder_get_truncated 67
unur_distr_corder_new . 66
unur_distr_corder_set_domain 67
unur_distr_corder_set_mode 67
unur_distr_corder_set_pdfarea 67
unur_distr_corder_set_pdfparams 67
unur_distr_corder_set_rank 66
unur_distr_corder_upd_mode 67
unur_distr_corder_upd_pdfarea 68
unur_distr_correlation . 217
unur_distr_cvec_eval_dlogpdf 73
unur_distr_cvec_eval_dpdf . 73
unur_distr_cvec_eval_logpdf 73
unur_distr_cvec_eval_pdf . 72
unur_distr_cvec_eval_pdlogpdf 73
unur_distr_cvec_eval_pdpdf 73
unur_distr_cvec_get_center 78
unur_distr_cvec_get_cholesky 74
unur_distr_cvec_get_covar . 74
unur_distr_cvec_get_covar_inv 74
unur_distr_cvec_get_dlogpdf 73
unur_distr_cvec_get_dpdf . 72
unur_distr_cvec_get_logpdf 73
unur_distr_cvec_get_marginal 76
unur_distr_cvec_get_mean . 73
unur_distr_cvec_get_mode . 78
unur_distr_cvec_get_pdf . 72

unur_distr_cvec_get_pdfparams 76
unur_distr_cvec_get_pdfparams_vec 77
unur_distr_cvec_get_pdfvol 78
unur_distr_cvec_get_rankcorr 75
unur_distr_cvec_get_rk_cholesky 75
unur_distr_cvec_is_indomain 77
unur_distr_cvec_new . 71
unur_distr_cvec_set_center 78
unur_distr_cvec_set_covar . 74
unur_distr_cvec_set_covar_inv 74
unur_distr_cvec_set_dlogpdf 73
unur_distr_cvec_set_domain_rect 77
unur_distr_cvec_set_dpdf . 72
unur_distr_cvec_set_logpdf 73
unur_distr_cvec_set_marginal_array 75
unur_distr_cvec_set_marginal_list 76
unur_distr_cvec_set_marginals 75
unur_distr_cvec_set_mean . 73
unur_distr_cvec_set_mode . 77
unur_distr_cvec_set_pdf . 71
unur_distr_cvec_set_pdfparams 76
unur_distr_cvec_set_pdfparams_vec 76
unur_distr_cvec_set_pdfvol 78
unur_distr_cvec_set_pdlogpdf 73
unur_distr_cvec_set_pdpdf . 72
unur_distr_cvec_set_rankcorr 75
unur_distr_cvec_upd_mode . 78
unur_distr_cvec_upd_pdfvol 78
unur_distr_cvemp_get_data . 81
unur_distr_cvemp_new . 81
unur_distr_cvemp_read_data 81
unur_distr_cvemp_set_data . 81
unur_distr_discr_eval_cdf . 84
unur_distr_discr_eval_pmf . 84
unur_distr_discr_eval_pv . 84
unur_distr_discr_get_cdfstr 85
unur_distr_discr_get_domain 85
unur_distr_discr_get_mode . 86
unur_distr_discr_get_pmfparams 85
unur_distr_discr_get_pmfstr 85
unur_distr_discr_get_pmfsum 86
unur_distr_discr_get_pv . 84
unur_distr_discr_make_pv . 83
unur_distr_discr_new . 83
unur_distr_discr_set_cdf . 84
unur_distr_discr_set_cdfstr 85
unur_distr_discr_set_domain 85
unur_distr_discr_set_mode . 86
unur_distr_discr_set_pmf . 84
unur_distr_discr_set_pmfparams 85
unur_distr_discr_set_pmfstr 84
unur_distr_discr_set_pmfsum 86
unur_distr_discr_set_pv . 83
unur_distr_discr_upd_mode . 86
unur_distr_discr_upd_pmfsum 86
unur_distr_exponential . 208
unur_distr_extremeI . 208
unur_distr_extremeII . 209
unur_distr_F. 207
unur_distr_free . 57
unur_distr_gamma . 209
unur_distr_geometric . 215
unur_distr_get_dim . 57
unur_distr_get_extobj . 58
unur_distr_get_name . 57

Appendix D: Function Index 247

unur_distr_get_type . 57
unur_distr_hypergeometric 215
unur_distr_is_cemp . 58
unur_distr_is_cont . 57
unur_distr_is_cvec . 57
unur_distr_is_cvemp . 58
unur_distr_is_discr . 58
unur_distr_is_matr . 58
unur_distr_laplace . 209
unur_distr_logarithmic . 216
unur_distr_logistic . 210
unur_distr_lomax . 210
unur_distr_matr_get_dim . 82
unur_distr_matr_new . 82
unur_distr_multicauchy . 213
unur_distr_multiexponential 213
unur_distr_multinormal . 213
unur_distr_multistudent . 214
unur_distr_negativebinomial 216
unur_distr_normal . 210
unur_distr_pareto . 211
unur_distr_poisson . 216
unur_distr_powerexponential 211
unur_distr_rayleigh . 211
unur_distr_set_extobj . 58
unur_distr_set_name . 57
unur_distr_student . 211
unur_distr_triangular . 212
unur_distr_uniform . 212
unur_distr_weibull . 212
unur_dsrou_chg_cdfatmode . 183
unur_dsrou_chg_verify . 182
unur_dsrou_new . 182
unur_dsrou_set_cdfatmode . 182
unur_dsrou_set_verify . 182
unur_dss_new. 184
unur_dstd_new . 185
unur_dstd_set_variant . 185
unur_empk_chg_smoothing . 148
unur_empk_chg_varcor . 148
unur_empk_new . 147
unur_empk_set_beta . 148
unur_empk_set_kernel . 147
unur_empk_set_kernelgen . 147
unur_empk_set_positive . 148
unur_empk_set_smoothing . 148
unur_empk_set_varcor . 148
unur_empl_new . 149
UNUR_ERR_COMPILE . 224
UNUR_ERR_COOKIE . 224
UNUR_ERR_DISTR_DATA . 222
UNUR_ERR_DISTR_DOMAIN . 222
UNUR_ERR_DISTR_GEN . 222
UNUR_ERR_DISTR_GET . 222
UNUR_ERR_DISTR_INVALID . 222
UNUR_ERR_DISTR_NPARAMS . 222
UNUR_ERR_DISTR_PROP . 222
UNUR_ERR_DISTR_REQUIRED . 222
UNUR_ERR_DISTR_SET . 222
UNUR_ERR_DISTR_UNKNOWN . 222
UNUR_ERR_DOMAIN . 223
UNUR_ERR_FSTR_DERIV . 223
UNUR_ERR_FSTR_SYNTAX . 223
UNUR_ERR_GEN. 223
UNUR_ERR_GEN_CONDITION . 223

UNUR_ERR_GEN_DATA . 223
UNUR_ERR_GEN_INVALID . 223
UNUR_ERR_GEN_SAMPLING . 223
UNUR_ERR_GENERIC . 224
UNUR_ERR_INF. 224
UNUR_ERR_MALLOC . 224
UNUR_ERR_NAN. 224
UNUR_ERR_NO_QUANTILE . 223
UNUR_ERR_NO_REINIT . 223
UNUR_ERR_NULL . 224
UNUR_ERR_PAR_INVALID . 223
UNUR_ERR_PAR_SET . 223
UNUR_ERR_PAR_VARIANT . 223
UNUR_ERR_ROUNDOFF . 224
UNUR_ERR_SHOULD_NOT_HAPPEN 224
UNUR_ERR_SILENT . 224
UNUR_ERR_STR. 223
UNUR_ERR_STR_INVALID . 223
UNUR_ERR_STR_SYNTAX . 223
UNUR_ERR_STR_UNKNOWN . 223
UNUR_ERR_URNG . 223
UNUR_ERR_URNG_MISS . 223
unur_errno . 222
unur_free . 88
unur_gen_anti . 197
unur_gen_info. 88
unur_gen_nextsub . 197
unur_gen_reset . 197
unur_gen_resetsub . 197
unur_gen_seed . 197
unur_gen_sync . 197
unur_get_default_urng . 194
unur_get_default_urng_aux 195
unur_get_dimension . 88
unur_get_distr . 89
unur_get_errno . 222
unur_get_genid . 89
unur_get_stream . 219
unur_get_strerror . 222
unur_get_urng . 195
unur_get_urng_aux . 195
unur_gibbs_chg_state . 161
unur_gibbs_get_state . 161
unur_gibbs_new . 160
unur_gibbs_reset_state . 161
unur_gibbs_set_burnin . 161
unur_gibbs_set_c . 160
unur_gibbs_set_startingpoint 160
unur_gibbs_set_thinning . 161
unur_gibbs_set_variant_coordinate 160
unur_gibbs_set_variant_random_direction . . . 160
unur_hinv_chg_truncated . 109
unur_hinv_estimate_error . 110
unur_hinv_eval_approxinvcdf 109
unur_hinv_get_n_intervals 109
unur_hinv_new . 108
unur_hinv_set_boundary . 109
unur_hinv_set_cpoints . 108
unur_hinv_set_guidefactor 109
unur_hinv_set_max_intervals 109
unur_hinv_set_order . 108
unur_hinv_set_u_resolution 108
unur_hist_new . 150
unur_hitro_chg_state . 166
unur_hitro_get_state . 166

248 UNU.RAN User Manual

unur_hitro_new . 164
unur_hitro_reset_state . 166
unur_hitro_set_adaptive_multiplier 166
unur_hitro_set_burnin . 166
unur_hitro_set_r . 165
unur_hitro_set_startingpoint 166
unur_hitro_set_thinning . 166
unur_hitro_set_u . 165
unur_hitro_set_use_adaptiveline 164
unur_hitro_set_use_adaptiverectangle 165
unur_hitro_set_use_boundingrectangle 164
unur_hitro_set_v . 165
unur_hitro_set_variant_coordinate 164
unur_hitro_set_variant_random_direction . . . 164
unur_hrb_chg_verify . 111
unur_hrb_new. 111
unur_hrb_set_upperbound . 111
unur_hrb_set_verify . 111
unur_hrd_chg_verify . 112
unur_hrd_new. 112
unur_hrd_set_verify . 112
unur_hri_chg_verify . 114
unur_hri_new. 113
unur_hri_set_p0 . 113
unur_hri_set_verify . 114
UNUR_INFINITY . 231
unur_init . 87
unur_itdr_chg_verify . 116
unur_itdr_get_area . 116
unur_itdr_get_cp . 116
unur_itdr_get_ct . 116
unur_itdr_get_xi . 116
unur_itdr_new . 116
unur_itdr_set_cp . 116
unur_itdr_set_ct . 116
unur_itdr_set_verify . 116
unur_itdr_set_xi . 116
unur_makegen_dsu . 37
unur_makegen_ssu . 37
unur_mcorr_chg_eigenvalues 189
unur_mcorr_new . 188
unur_mcorr_set_eigenvalues 188
unur_mvtdr_chg_verify . 153
unur_mvtdr_get_hatvol . 153
unur_mvtdr_get_ncones . 153
unur_mvtdr_new . 153
unur_mvtdr_set_boundsplitting 153
unur_mvtdr_set_maxcones . 153
unur_mvtdr_set_stepsmin . 153
unur_mvtdr_set_verify . 153
unur_ninv_chg_max_iter . 118
unur_ninv_chg_start . 118
unur_ninv_chg_table . 119
unur_ninv_chg_truncated . 119
unur_ninv_chg_x_resolution 118
unur_ninv_eval_approxinvcdf 119
unur_ninv_new . 118
unur_ninv_set_max_iter . 118
unur_ninv_set_start . 118
unur_ninv_set_table . 118
unur_ninv_set_usenewton . 118
unur_ninv_set_useregula . 118
unur_ninv_set_x_resolution 118
unur_norta_new . 154
unur_nrou_chg_verify . 121

unur_nrou_new . 121
unur_nrou_set_center . 121
unur_nrou_set_r . 121
unur_nrou_set_u . 121
unur_nrou_set_v . 121
unur_nrou_set_verify . 121
unur_pinv_estimate_error . 125
unur_pinv_eval_approxinvcdf 125
unur_pinv_get_n_intervals 124
unur_pinv_new . 123
unur_pinv_set_boundary . 124
unur_pinv_set_max_intervals 124
unur_pinv_set_order . 123
unur_pinv_set_searchboundary 124
unur_pinv_set_u_resolution 123
unur_pinv_set_usecdf . 124
unur_pinv_set_usepdf . 124
unur_quantile. 88
unur_reinit . 87
unur_reset_errno . 222
unur_run_tests . 227
unur_sample_cont . 88
unur_sample_discr . 88
unur_sample_matr . 88
unur_sample_urng . 196
unur_sample_vec . 88
unur_set_debug . 220
unur_set_default_debug . 220
unur_set_default_urng . 194
unur_set_default_urng_aux 195
unur_set_error_handler . 225
unur_set_error_handler_off 225
unur_set_stream . 219
unur_set_urng . 195
unur_set_urng_aux . 195
unur_set_use_distr_privatecopy 89
unur_srou_chg_cdfatmode . 128
unur_srou_chg_pdfatmode . 128
unur_srou_chg_verify . 128
unur_srou_new . 127
unur_srou_set_cdfatmode . 127
unur_srou_set_pdfatmode . 127
unur_srou_set_r . 127
unur_srou_set_usemirror . 128
unur_srou_set_usesqueeze . 127
unur_srou_set_verify . 128
unur_ssr_chg_cdfatmode . 130
unur_ssr_chg_pdfatmode . 130
unur_ssr_chg_verify . 130
unur_ssr_new. 129
unur_ssr_set_cdfatmode . 130
unur_ssr_set_pdfatmode . 130
unur_ssr_set_usesqueeze . 130
unur_ssr_set_verify . 130
unur_str2distr . 37
unur_str2gen . 37
UNUR_SUCCESS (0x0u) . 222
unur_tabl_chg_truncated . 134
unur_tabl_chg_verify . 135
unur_tabl_get_hatarea . 134
unur_tabl_get_n_intervals 134
unur_tabl_get_sqhratio . 134
unur_tabl_get_squeezearea 134
unur_tabl_new . 132
unur_tabl_set_areafraction 133

Appendix D: Function Index 249

unur_tabl_set_boundary . 134
unur_tabl_set_cpoints . 132
unur_tabl_set_darsfactor . 133
unur_tabl_set_guidefactor 134
unur_tabl_set_max_intervals 134
unur_tabl_set_max_sqhratio 133
unur_tabl_set_nstp . 132
unur_tabl_set_pedantic . 135
unur_tabl_set_slopes . 134
unur_tabl_set_usedars . 133
unur_tabl_set_useear . 132
unur_tabl_set_variant_ia . 132
unur_tabl_set_variant_splitmode 133
unur_tabl_set_verify . 135
unur_tdr_chg_reinit_ncpoints 138
unur_tdr_chg_reinit_percentiles 138
unur_tdr_chg_truncated . 138
unur_tdr_chg_verify . 140
unur_tdr_eval_invcdfhat . 140
unur_tdr_get_hatarea . 139
unur_tdr_get_sqhratio . 139
unur_tdr_get_squeezearea . 139
unur_tdr_new. 137
unur_tdr_set_c . 137
unur_tdr_set_cpoints . 138
unur_tdr_set_darsfactor . 138
unur_tdr_set_guidefactor . 139
unur_tdr_set_max_intervals 139
unur_tdr_set_max_sqhratio 139
unur_tdr_set_pedantic . 140
unur_tdr_set_reinit_ncpoints 138
unur_tdr_set_reinit_percentiles 138
unur_tdr_set_usecenter . 139
unur_tdr_set_usedars . 137
unur_tdr_set_usemode . 139
unur_tdr_set_variant_gw . 137
unur_tdr_set_variant_ia . 137
unur_tdr_set_variant_ps . 137
unur_tdr_set_verify . 140
unur_test_chi2 . 229
unur_test_correlation . 229
unur_test_count_pdf . 228
unur_test_count_urn . 228
unur_test_inverror . 230
unur_test_moments . 229
unur_test_par_count_pdf . 228
unur_test_printsample . 227
unur_test_quartiles . 229
unur_test_timing . 227
unur_test_timing_exponential 228
unur_test_timing_total . 228
unur_test_timing_uniform . 228

unur_unif_new . 191
unur_urng_anti . 196
unur_urng_free . 197
unur_urng_fvoid_new . 199
unur_urng_gsl_new . 200
unur_urng_gslptr_new . 200
unur_urng_gslqrng_new . 201
unur_urng_new . 197
unur_urng_nextsub . 197
unur_urng_prng_new . 202
unur_urng_prngptr_new . 202
unur_urng_randomshift_new 204
unur_urng_randomshift_nextshift 204
unur_urng_reset . 196
unur_urng_resetsub . 197
unur_urng_rngstream_new . 203
unur_urng_rngstreamptr_new 203
unur_urng_sample . 196
unur_urng_sample_array . 196
unur_urng_seed . 196
unur_urng_set_anti . 198
unur_urng_set_delete . 198
unur_urng_set_nextsub . 198
unur_urng_set_reset . 198
unur_urng_set_resetsub . 198
unur_urng_set_sample_array 198
unur_urng_set_seed . 198
unur_urng_set_sync . 198
unur_urng_sync . 196
unur_use_urng_aux_default 195
unur_utdr_chg_pdfatmode . 142
unur_utdr_chg_verify . 142
unur_utdr_new . 141
unur_utdr_set_cpfactor . 141
unur_utdr_set_deltafactor 142
unur_utdr_set_pdfatmode . 141
unur_utdr_set_verify . 142
unur_vempk_chg_smoothing . 169
unur_vempk_chg_varcor . 169
unur_vempk_new . 169
unur_vempk_set_smoothing . 169
unur_vempk_set_varcor . 169
unur_vnrou_chg_u . 156
unur_vnrou_chg_v . 156
unur_vnrou_chg_verify . 157
unur_vnrou_get_volumehat . 157
unur_vnrou_new . 156
unur_vnrou_set_r . 156
unur_vnrou_set_u . 156
unur_vnrou_set_v . 156
unur_vnrou_set_verify . 157

250 UNU.RAN User Manual

	UNU.RAN -- Universal Non-Uniform RANdom number generators
	Introduction
	Usage of this document
	Installation
	Using the library
	Concepts of UNU.RAN
	Contact the authors

	Examples
	As short as possible
	As short as possible (String API)
	Select a method
	Select a method (String API)
	Arbitrary distributions
	Arbitrary distributions (String API)
	Change parameters of the method
	Change parameters of the method (String API)
	Change uniform random generator
	Sample pairs of antithetic random variates
	Sample pairs of antithetic random variates (String API)
	More examples

	String Interface
	Syntax of String Interface
	Distribution String
	Keys for Distribution String

	Function String
	Method String
	Keys for Method String

	Uniform RNG String

	Handling distribution objects
	Functions for all kinds of distribution objects
	Continuous univariate distributions
	Continuous univariate order statistics
	Continuous empirical univariate distributions
	Continuous multivariate distributions
	Continuous univariate full conditional distribution
	Continuous empirical multivariate distributions
	MATRix distributions
	Discrete univariate distributions

	Methods for generating non-uniform random variates
	Routines for all generator objects
	AUTO -- Select method automatically
	Methods for continuous univariate distributions
	AROU -- Automatic Ratio-Of-Uniforms method
	ARS -- Adaptive Rejection Sampling
	CEXT -- wrapper for Continuous EXTernal generators
	CSTD -- Continuous STandarD distributions
	HINV -- Hermite interpolation based INVersion of CDF
	HRB -- Hazard Rate Bounded
	HRD -- Hazard Rate Decreasing
	HRI -- Hazard Rate Increasing
	ITDR -- Inverse Transformed Density Rejection
	NINV -- Numerical INVersion
	NROU -- Naive Ratio-Of-Uniforms method
	PINV -- Polynomial interpolation based INVersion of CDF
	SROU -- Simple Ratio-Of-Uniforms method
	SSR -- Simple Setup Rejection
	TABL -- a TABLe method with piecewise constant hats
	TDR -- Transformed Density Rejection
	UTDR -- Universal Transformed Density Rejection

	Methods for continuous empirical univariate distributions
	EMPK -- EMPirical distribution with Kernel smoothing
	EMPL -- EMPirical distribution with Linear interpolation
	HIST -- HISTogramm of empirical distribution

	Methods for continuous multivariate distributions
	MVTDR -- Multi-Variate Transformed Density Rejection
	NORTA -- NORmal To Anything
	VNROU -- Multivariate Naive Ratio-Of-Uniforms method

	Markov chain samplers for continuous multivariate distributions
	GIBBS -- Markov Chain - GIBBS sampler
	HITRO -- Markov Chain - HIT-and-run sampler with Ratio-Of-uniforms

	Methods for continuous empirical multivariate distributions
	VEMPK -- (Vector) EMPirical distribution with Kernel smoothing

	Methods for discrete univariate distributions
	DARI -- Discrete Automatic Rejection Inversion
	DAU -- (Discrete) Alias-Urn method
	DEXT -- wrapper for Discrete EXTernal generators
	DGT -- (Discrete) Guide Table method (indexed search)
	DSROU -- Discrete Simple Ratio-Of-Uniforms method
	DSS -- (Discrete) Sequential Search method
	DSTD -- Discrete STandarD distributions

	Methods for random matrices
	MCORR -- Random CORRelation matrix

	Methods for uniform univariate distributions
	UNIF -- wrapper for UNIForm random number generator

	Using uniform random number generators
	Simple interface for uniform random number generators
	Interface to GSL uniform random number generators
	Interface to GSL generators for quasi-random points
	Interface to Otmar Lendl's pseudo-random number generators
	Interface to L'Ecuyer's RNGSTREAM random number generators
	Combine point set generator with random shifts

	UNU.RAN Library of standard distributions
	UNU.RAN Library of continuous univariate distributions
	F -- F-distribution
	beta -- Beta distribution
	cauchy -- Cauchy distribution
	chi -- Chi distribution
	chisquare -- Chisquare distribution
	exponential -- Exponential distribution
	extremeI -- Extreme value type I (Gumbel-type) distribution
	extremeII -- Extreme value type II (Frechet-type) distribution
	gamma -- Gamma distribution
	laplace -- Laplace distribution
	logistic -- Logistic distribution
	lomax -- Lomax distribution (Pareto distribution of second kind)
	normal -- Normal distribution
	pareto -- Pareto distribution (of first kind)
	powerexponential -- Powerexponential (Subbotin) distribution
	rayleigh -- Rayleigh distribution
	student -- Student's t distribution
	triangular -- Triangular distribution
	uniform -- Uniform distribution
	weibull -- Weibull distribution

	UNU.RAN Library of continuous multivariate distributions
	copula -- Copula (distribution with uniform marginals)
	multicauchy -- Multicauchy distribution
	multiexponential -- Multiexponential distribution
	multinormal -- Multinormal distribution
	multistudent -- Multistudent distribution

	UNU.RAN Library of discrete univariate distributions
	binomial -- Binomial distribution
	geometric -- Geometric distribution
	hypergeometric -- Hypergeometric distribution
	logarithmic -- Logarithmic distribution
	negativebinomial -- Negative Binomial distribution
	poisson -- Poisson distribution

	UNU.RAN Library of random matrices
	correlation -- Random correlation matrix

	Error handling and Debugging
	Output streams
	Debugging
	Error reporting
	Error codes
	Error handlers

	Testing
	Miscelleanous
	Mathematics

	A Short Introduction to Random Variate Generation
	The Inversion Method
	The Rejection Method
	The Composition Method
	The Ratio-of-Uniforms Method
	Inversion for Discrete Distributions
	Indexed Search (Guide Table Method)

	Glossary
	Bibliography
	Function Index

