
PRNG
Generating random numbers

Version: 3.0.2
Date: 12 March 2001

Otmar Lendl
Josef Leydold

Copyright 2001 Otmar Lendl (lendl@cosy.sbg.ac.at)
Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided also that the section entitled “Copying” and “GNU General
Public License” are included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be
stated in a translation approved by the Free Software Foundation.

i

Table of Contents

PRNG – Pseudo-Random Number Generator 1
Features . 1

1 Installing PRNG . 2
Documentation. 2
Profiling and Verification . 2

2 Usage of PRNG . 3
2.1 Interface Description . 3
2.2 PRNG Functions . 4
2.3 Examples . 5

3 The Theory behind PRNG . 6
3.1 General Remarks . 6
3.2 Generator Definitions and Parameters . 6

3.2.1 EICG (explicit inversive congruential generator) 6
3.2.2 ICG (inversive congruential generator) 7
3.2.3 LCG (linear congruential generator) 7
3.2.4 QCG (quadratic congruential generator) 8
3.2.5 MT19937 (Mersenne Twister) . 8
3.2.6 MEICG (modified explicit inversive congruential

generator) . 9
3.2.7 DICG (digital inversive congruential generator) 9
3.2.8 EXTERNAL (Interface to fixed-parameter generators)

. 9
3.2.9 COMPOUND . 10
3.2.10 SUB . 10
3.2.11 ANTI . 10
3.2.12 CON . 10
3.2.13 AFILE (ASCII file) . 11
3.2.14 BFILE (Binary file) . 11

3.3 Recommended Reading . 11

Appendix A Tables of Parameters 12
A.1 Parameters for LCG (linear congruential generators) 12
A.2 Parameters for ICG (inversive congruential generator) 17

PRNG – Pseudo-Random Number Generator 1

PRNG – Pseudo-Random Number Generator

PRNG is a collection of algorithms for generating pseudorandom numbers as a library of C
functions, released under the GPL (http://www.gnu.org/copyleft/gpl.html). It has been
written by Otmar Lendl (lendl@cosy.sbg.ac.at) and is now maintained by Josef Leydold
(leydold@statistik.wu-wien.ac.at).

The current version of this package can always be found on the ARVAG (Automatic Random
VAriate Generation) project group (http://statistik.wu-wien.ac.at/arvag/) in Vienna, or
the pLab server (http://random.mat.sbg.ac.at/) in Salzburg.

In the case of any troubles, bug reports or need of assistance please contact the maintainer
via prng@statistik.wu-wien.ac.at. Please let us also know about your experiencies with the
library.

Features

• Portability. This library should compile on any computer with an ANSI C compiler. A
verification program is included.

• General Implementations. This library does not implement certain fixed generators like
RANDU or rand, but implements the general PRNG algorithms to which all parameters
can be supplied by the user.

• Consistent and object-oriented interface. This interface simplifies the PRNG handling inside
the main application.

• Possibility of independent copies of the same generator.
• Extensibility. New generators are easily integrated into the framework of this library.
• Fully supported Pseudorandom number generating methods: (free parametrization)
− LCG (linear congruential generator)
− ICG (inversive congruential generator)
− EICG (explicit inversive congruential generator)
− mEICG (modified explicit inversive congruential generator)
− DICG (digital inversive congruential generator)
− QCG (quadratic congruential generator)

Fixed parameter PRNG (external generators):
− MT19937 (Mersenne Twister by M. Matsumoto)
− TT800 (a large TSFR by M. Matsumoto)
− CTG (Combined Tausworthe Generator by P. L’Ecuyer)
− MRG (Multiple Recursive Generator by P. L’Ecuyer)
− CMRG (Combined (Multiple Recursive Generator by P. L’Ecuyer)

plus the following methods (meta-generators):
− C (Compound generator)
− SUB (Subsequences)
− ANTI (antithetic random variables)
− CON (Consecutive blocks)
− AFILE (Ascii file)
− BFILE (Binary file)

Chapter 1: Installing PRNG 2

1 Installing PRNG

While the code is plain ANSI C and thus quite portable, the following adaptions might be
neccessary for compile this library.

All configurations are done in the file ‘src/prng.h’. Each option is extensively commented
there. Here is a quick rundown on what to expect there:
• Definition of the basic numeric data-type prng_num. It is not recommended to change this.

For 32 and 64 bit computers all neccessary auxiliary definitions will be made automatically.
For other architectures, please edit ‘prng.h’ according to the comments.

• Various constants. See comments on the exact meanings.
• Definition of prng_inverse. In previous versions, there was no algorithm which was fastest

on all architectures, thus is was necessary configure the library for the each platform. Now
prng_inverse_own, which combines the speedups of all old algorithms is the fastest one on
all tested architectures and thus no configuration is necessary any more.

The code is optimized for GNU CC (gcc). If your compiler supports the type (long long
int), too, you can use this feature by defining HAVE_LONGLONG in ‘prng.h’.

Then do:
./configure --prefix=<prefix_path>
make

This should compile the library (‘libprng.a’) and example programs.
To install the library (see also GNU generic installation instructions in file ‘INSTALL’) type:

make install

which installs ‘<prefix_path>/lib/libprng.a’, ‘<prefix_path>/include/prng.h’, and ‘
<prefix_path>/info/prng.info’. If --prefix is omitted, then /usr/local is used as default.

It is possible to remove these files by
make uninstall

I could not test this code in many environments, thus it might be necessary to tweak the
code to compile it. Please mail me any changes you made, so that I can include them in the
next official release.

Documentation

A manual can be found in directory ‘doc’ in various formats, including PS, PDF, HTML,
Info and plain text.

Profiling and Verification

Do
make check

to make and run the following executables:
• iter

This program counts the number of iterations in the euclid_table algorithm. It’s NOT
kept up to date. Use at own risk.

• validate
Using the supplied file tests.dat, this program tests the generator library for correct opera-
tion. On 32-bit computers it will fail on generators requiring 64-bit arithmetic.

Chapter 2: Usage of PRNG 3

2 Usage of PRNG

2.1 Interface Description

The interface has changed dramatically in version 2.0. As more and more generator types
were added to this package, a new generic interface was needed. While still plain Ansi C, the
architecture is now object-oriented.

All generators are identified by a textual description. This description is either of the form
"type(parameter1,parameter2, ...)" or is a shortcut name for a common PRNG as defined
in ‘src/prng_def.h’.

Calling prng_new with such a description as the only argument will allocate a new generator
object, initialize it, and return its handle (struct prng *).

All further calls need this handle as the first argument. They are best explained by example:
#include <prng.h> /* make sure that the compiler can find this file. */

main()
{

struct prng *g;
prng_num seed, n, M;
double next, *array;
int count;

g = prng_new("eicg(2147483647,111,1,0)");

if (g == NULL) /* always check whether prng_new has been successful */
{

fprintf(stderr,"Initialisation of generator failed.\n");
exit (-1);

}

printf("Short name: %s\n",prng_short_name(g));
/* definition as in call to prng_new */

printf("Expanded name: %s\n",prng_long_name(g));
/* Shortcuts expanded */

next = prng_get_next(g); /* get next number 0 <= next < 1 */
prng_get_array(g,array,count); /* fill array with count numbers */
prng_reset(g); /* reset the generator */
prng_free(g); /* deallocate the generator object */

}

These functions work with all generators. For certain generators, the following functions are
available, too:

if (prng_is_congruential(g))
{

n = prng_get_next_int(g); /* return next *unscaled* number */
M = prng_get_modulus(g); /* return the modulus of the prng */

}

Chapter 2: Usage of PRNG 4

if (prng_can_seed(g))
prng_seed(g,seed); /* reseed the generator */

if (prng_can_fast_sub(g))
puts(prng_get_sub_def(g,20,0)); /* Get subsequence definition */

if (prng_can_fast_con(g))
puts(prng_get_con_def(g,20,1)); /* Get block definition */

NOTE:
prng_new performs only a rudimentary check on the parameters. The user is responsible for
enforcing all restrictions on the parameters, such as checking that the modulus of an [E]ICG is
prime, or that LCG and ICG are maximum period generators.

Most of these functions are implemented as macros, so be careful with autoincrements (++)
in parameters.

2.2 PRNG Functions

Library Functionstruct prng prng new (char *str)
Create a new generator object. If initialisation of the generator object fails then NULL is
returned. Thus the pointer returned by this routine must be checked against NULL before
using it. Otherwise the program aborts with a segmentation fault.

Library Functionvoid prng reset (struct prng *g)
Reset random number generator.

Library Functiondouble prng get next (struct prng *g)
Sample from generator (get next pseudo-random number from stream).

Library Functionvoid prng get array (struct prng *g, double *array, int count)

Sample array of length count.

Library Functionprng_num prng get next int (struct prng *g)
Sample integer random number from generator.

Library Functionvoid prng free (struct prng *g)
Destroy generator object.

Library Functionchar* prng short name (struct prng *g)
Get name of generator as in call to prng_new.

Library Functionchar* prng long name (struct prng *g)
Get name of generator with shortcuts expanded.

Library Functionint prng is congruential (struct prng *g)
TRUE if g is a congruential generator.

Chapter 2: Usage of PRNG 5

Library Functionprng_num prng get modulus (struct prng *g)
Return modulus of generator.

Library Functionint prng can seed (struct prng *g)
TRUE if generator g can be reseeded.

Library Functionvoid prng seed (struct prng *g, prng_num next)
Reseed generator.

Library Functionint prng can fast sub (struct prng *g)
TRUE if subsequences of the random stream can computed directly.

Library Functionchar* prng get sub def (struct prng *g, int s, int i)
Get definition for the generator of the subsequence stream of g with starting point i and
stepwidth s. It returns a character string that can be used a argument for prng_new. For
generators where prng_can_fast_sub is TRUE. (see also Section 3.2.10 [SUB], page 10).

Library Functionint prng can fast con (struct prng *g)
TRUE if blocks of the random stream can computed directly.

Library Functionint prng get con def (struct prng *g, int l, int i)
Get definition for the generator of the blocked stream of g with position i and block length
l. It returns a character string that can be used a argument for prng_new. For generators
where prng_can_fast_con is TRUE. (see also Section 3.2.12 [CON], page 10).

2.3 Examples

‘examples/pairs.c’ is an example how to generate overlapping pairs of PRN using this
package.

‘examples/tuples.c’ is a more general version of pairs.

Chapter 3: The Theory behind PRNG 6

3 The Theory behind PRNG

This chapter lists the implemented generators plus a few recommendations on the parameters.

3.1 General Remarks

• On a b-bit computer, the size of the modulus is limited by 2b−1, that is 2147483648 on a 32
bit machine or 9223372036854775808 on a 64 bit architecture. As of version 1.3 the library
will reject larger moduli.

• The library relies on controlled overflow. If you feel uncomfortable with that, restrict your
choice of moduli to numbers < 2b−2,
and disable the check for power of two moduli in mult_mod_setup (‘support.c’). Run the
supplied validate program if you have doubts about this.

• The library does NOT test if the parameters are valid for the chosen generator. The user is
responsible for ensuring that the modulus of an inversive generator is a prime, or that the
choice of parameters will lead to an optimal period length.
IT IS THUS NOT A GOOD IDEA TO JUST USE ARBITRARY NUMBERS.

This chapter contains recommended values for all implemented generator types.
• Do not base your simulation on a single generator. Even if you picked a good one you

should verify the results using a completely different generator. There is no generator
whose output does not exhibit an intrinsic structure, so it is in theory possible that this
structure correlates to the simulation problem and thus leads to a skewed result. Do not
use just other parameters for the verification but use a different generator type.

• Small (< 32767) factors will be faster than larger ones.

3.2 Generator Definitions and Parameters

TeX notation is used.
Most generators operate in the group (or field) Z p and generate a sequence y n, n >= 0 of

numbers in Z p. p is called modulus. In order to generate U([0,1[) distributed numbers, the y n
are scaled: x n = y n / p.

Notice: If p is prime, one can define the inversion inv() so that
inv(a)*a mod p = 1 (a != 0)
inv(0) = 0

Generator types

3.2.1 EICG (explicit inversive congruential generator)

• Definition:
y_n = inv(a*(n_0 + n) + b) (mod p) n >= 0

• Name (as given to prng_new): "eicg(p,a,b,n_0)"
• Properties:
− Period length = p.
− Strong non-linear properties. (e.g. no lattice)
− Parameter selection not sensitive.
− prng_is_congruential is TRUE

Chapter 3: The Theory behind PRNG 7

− prng_can_seed is TRUE.
The parameter of prng_seed will be used as "n" in the next call to get_next.

− prng_can_fast_sub and prng_can_fast_con are TRUE.
• Parameter selection: Besides a != 0, no restrictions or even suggestions are known.
• Introduced in: Eichenauer-Hermann, J. "Statistical independence of a new class of inversive

congruential pseudorandom numbers", Math. Comp. 60:375-384, 1993

3.2.2 ICG (inversive congruential generator)

• Definition:
y_n = a * inv(y_{n-1}) + b (mod p) n > 0

• Name (as given to prng_new): "icg(p,a,b,y_0)"
• Properties:
− Period length = p. (for suitable parameters)
− Strong non-linear properties. (e.g. no lattice)
− Parameter selection not sensitive.
− prng_is_congruential is TRUE.
− prng_can_seed is TRUE.

The parameter of prng_seed will be used as y_{n-1} in the next call to get_next.
− prng_can_fast_sub and prng_can_fast_con are FALSE.

• Parameter selection: To ensure that the period length is p, a and b must be chosen in a
way that x^2 - bx -a (\in F p[x]) is a primitive polynomial over F p.
If ICG(p,a,1) has period length p, then ICG(p,a*c^2,c) will have period length p, too. For
recommended parameters see Section A.2 [Table ICG], page 17.

• Introduced in: Eichenauer, J. and J. Lehn. "A non-linear congruential pseudo random
number generator", Stat. Papers 27:315-326, 1986

3.2.3 LCG (linear congruential generator)

• Definition:
y_n = a * y_{n-1} + b (mod p) n > 0

• Name (as given to prng_new): "lcg(p,a,b,y_0)".
• Properties:
− Period lengths up to p are possible.
− Strong linear properties.
− The quality of the PRN depends very strongly on the choice of the parameters.
− prng_is_congruential is TRUE.
− prng_can_seed is TRUE. The parameter of prng_seed will be used as y_{n-1} in the

next call to get_next.
− prng_can_fast_sub and prng_can_fast_con are TRUE.

Requesting these subsequence may be slow if large skips are involved and b is not 0.
• Parameter selection: If p is a power of 2, then a mod 4 = 1 and b odd will guarantee period

length = p.
If p is prime and b = 0 then any prime-root modulo p as a will guarantee period length
p-1. (y 0 != 0)
For recommended parameters see Section A.1 [Table LCG], page 12.
See also the file ‘src/prng_def.h’ for a list of frequently used LCGs.

Chapter 3: The Theory behind PRNG 8

Hint: A rule of thumb suggests not to use more than sqrt(p) random numbers from an
LCG.
References:
Fishman, G.S. "Multiplicative congruential random number generators ..." Math. Comp.
54:331-344 (1990);
L’Ecuyer, P., "Efficient and portable combined random number generators" Comm. ACM
31:742-749, 774 (1988)
L’Ecuyer, P., Blouin, F. and Couture R. "A search for good multiple recursive random
number generators" ACM Trans. Modelling and Computer Simulation 3:87-98 (1993)

• Introduced by D. H. Lehmer in 1948.
The LCG is the classical method. I refer to: Knuth, D. E. "The Art of Computer Program-
ming, Vol. 2 Seminumerical Algorithms", Addison-Wesley, second edition, 1981

3.2.4 QCG (quadratic congruential generator)

• Definition:
y_n = a * y_{n-1}^2 + b *y_{n-1} + c (mod p) n > 0

• Name (as given to prng_new): "qcg(p,a,b,c,y0)".
• Properties:
− Period lengths up to p are possible.
− Weaker linear properties (tuples fall into union of lattices)
− Reasonable distribution in dimension 2, but not that good in dimension 3.
− prng_is_congruential is TRUE.
− prng_can_seed is TRUE.

The parameter of prng_seed will be used as y_{n-1} in the next call to get_next.
− prng_can_fast_sub and prng_can_fast_con are FALSE.

• Parameter selection:
If p is a power of 2, then a even, b == a + 1 mod 4, and c odd will guarantee period length
= p.
No table of good parameters has been published.

• Introduced in:
Knuth, D. E. "The Art of Computer Programming, Vol. 2 Seminumerical Algorithms",
Addison-Wesley, second edition, 1981

3.2.5 MT19937 (Mersenne Twister)

• Name (as given to prng_new): "mt19937(seed)".
• Properties:
− Period lengths is 2^19937-1.
− prng_is_congruential is TRUE.
− prng_can_seed is TRUE.

The parameter of prng_seed will be used to seed the array of coefficients.
− prng_can_fast_sub and prng_can_fast_con are FALSE.

• Introduced in:
Matsumoto, M. and Nishimura, T., "Mersenne Twister: A 623-Dimensionally Equidis-
tributed Uniform Pseudo-Random Number Generator", ACM Transactions on Modeling
and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3–30.

Chapter 3: The Theory behind PRNG 9

3.2.6 MEICG (modified explicit inversive congruential generator)

• Definition:
y_n = n * inv(a*(n_0 + n) + b) (mod p) n >= 0

• Name (as given to prng_new): "meicg(p,a,b,n_0)".
• Properties:
− Period length = p.
− prng_is_congruential is TRUE.
− prng_can_seed is TRUE. The parameter of prng_seed will be used as "n" in the next

call to get_next.
− prng_can_fast_sub and prng_can_fast_con are FALSE.

Experimental generator: USE AT OWN RISK

• Parameter selection:
− For prime moduli, a != 0 suffices.
− It’s possible to use a powe of 2 as modulus, which requires a = 2 (mod 4) and b = 1

(mod 2).
• Introduced in:

Eichenauer-Hermann, J. "Modified explicit inverive congruential pseudorandom numbers
with power of 2 modulus" Statistics and Computing 6:31-36 (1996)

3.2.7 DICG (digital inversive congruential generator)

• Definition:
y_n = a * inv(y_{n-1}) + b (mod p) n > 0

All operations are in the field F {2^k} !!

• Name (as given to prng_new): "dicg(k,a,b,y_0)".
• Properties:
− Period length = 2^k.
− Strong non-linear properties.
− Parameters seem not to be sensitive
− prng_is_congruential is TRUE.
− prng_can_seed is TRUE. The parameter of prng_seed will be used as y_{n-1} in the

next call to get_next

• prng_can_fast_sub and prng_can_fast_con are FALSE.
• Parameter selection:

Tricky.
• Introduced in:

Eichenauer-Herrmann and Niederreiter, "Digital inversive pseudorandom numbers", ACM
Transactions on Modeling and Computer Simulation, 4:339-349 (1994)

3.2.8 EXTERNAL (Interface to fixed-parameter generators)

These generators are included to provide a uniform interface to a wider range of PRNG.
The only enhancements from the published code is the support for multiple streams of these
generators, as the original code used global variables.

See the file ‘src/external.c’ for the references. Included are
− TT800 (a large TSFR by M. Matsumoto)

Chapter 3: The Theory behind PRNG 10

− CTG (Combined Tausworthe Generator by P. L’Ecuyer)
− MRG (Multiple Recursive Generator by P. L’Ecuyer)
− CMRG (Combined (Multiple Recursive Generator by P. L’Ecuyer)

3.2.9 COMPOUND

• Definition:
This is a "meta"-generator which combines a number of PRNG into one single generator
by adding the respective numbers modulo 1.

• Name (as given to prng_new): "c(generator1,generator2, ...)".
Up to PRNG_MAX_COMPOUNDS generators are permitted. generatorX may be any valid gen-
erator definition, including a compound generator.

• Properties:
− Period length: Least common multiple of the period length’s of the component gener-

ators.
− Generally speaking, most properties of PRNG are preserved if combining generators of

the same type.
− prng_is_congruential is FALSE.
− prng_can_seed is TRUE.
− The parameters of prng_seed is used to seed all seedable component generators.
− prng_can_fast_sub and prng_can_fast_con depend on the underlying generators.

3.2.10 SUB

• Definition: This is a "meta"-generator which takes a subsequence out of another generator.
• Name (as given to prng_new): "sub(gen,s,i)".

The output of "gen" is spliced into s streams, and the i-th is used. (0 <= i < s)
• Properties:
− Period length: Typically the period of "gen".
− Generally speaking, most properties of PRNG are preserved when taking subsequence.
− prng_is_congruential and prng_can_seed depend on "gen".
− prng_can_fast_sub and prng_can_fast_con are FALSE.

3.2.11 ANTI

• Definition:
This is a "meta"-generator wich returns 1-U instead of U as random number.

• Name (as given to prng_new): "anti(gen)".
The output of gen (U) is changed to 1-U.

3.2.12 CON

• Definition:
This is a "meta"-generator which takes a block of numbers out of the output of another
generator.

• Name (as given to prng_new): "con(gen,l,i)".
The output of "gen" is divided into blocks of length l, and the i-th is used. (0 <= i < l)

Chapter 3: The Theory behind PRNG 11

• Properties:
− Period length: The period of "gen".
− prng_is_congruential and prng_can_seed depend on "gen".
− prng_can_fast_sub and prng_can_fast_con are FALSE.

3.2.13 AFILE (ASCII file)

• Definition :
This generator takes its numbers from the named file. It expects each number in plain ascii
(atof must be able to parse it) and on its own line. If EOF is reached, a warning is printed
to stderr and reading continues at the beginning of the file.

• Name (as given to prng_new): "afile(some_file_name)".
• Properties:
− prng_is_congruential is FALSE.
− prng_can_seed is FALSE.
− prng_can_fast_sub and prng_can_fast_con are FALSE.

3.2.14 BFILE (Binary file)

• Definition:
This generator takes its numbers from the named file. In order to get good numbers, the
file should contain random bytes. If EOF is reached, a warning is printed to stderr and
reading continues at the beginning of the file.

• Name (as given to prng_new): "bfile(some_file_name)".
WARNING: The conversion between bytes and numbers in [0,1) is NOT guaranteed to
yield the same results on different computers.

• Properties:
− prng_is_congruential is FALSE.
− prng_can_seed is FALSE.
− prng_can_fast_sub and prng_can_fast_con are FALSE.

3.3 Recommended Reading

Niederreiter, H. "New developments in uniform pseudorandom number and vector genera-
tion" in "Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing", Lecture Notes
in Statistics, Springer.

Hellekalek, P. "Inversive pseudorandom number generators: Concepts, Results and Links"
Eichenauer-Herrmann, J. "Pseudorandom Number Generation by Nonlinear Methods" Int.

Statistical Review 63:247-255 (1995)
L’Ecuyer, P. "Uniform random number generation" Ann. Oper. Res. 53:77-120 (1994)
Wegenkittl, S. "Empirical testing of pseudorandom number generators" Master’s thesis, Uni-

versitaet Salzburg, 1995

Appendix A: Tables of Parameters 12

Appendix A Tables of Parameters

This chapter lists the implemented generators plus a few recommendations on the parameters.

A.1 Parameters for LCG (linear congruential generators)

y_n = a * y_{n-1} + b (mod p) n > 0

Hint: A rule of thumb suggests not to use more than sqrt(p) random numbers from an LCG.

Notice that moduli larger than 2^32 require a computer with sizeof(long)>32.

Generators recommended by Park and Miller (1988), "Random number generators: good
ones are hard to find", Comm. ACM 31, pp. 1192-1201 (Minimal standard).

modul p multiplicator a
———— —————————
2^31 - 1 = 2147483647 16807 (b = 0)

Generators recommended by Fishman (1990), “Multiplicative congruential random number
generators with modulus 2β: An exhaustive analysis for β = 32 and a partial analysis for
β = 48”, Math. Comp. 54, pp. 331-344.

modul p multiplicator a
———— —————————
2^31 - 1 = 2147483647 950706376 (b = 0)

Generators recommended by L’Ecuyer (1999), "Tables of linear congruential generators of
different sizes and good lattice structure", Math.Comp. 68, pp. 249-260. (constant b = 0.)

Generators with short periods can be used for generating quasi-random numbers (Quasi-
Monte Carlo methods). In this case the whole period should be used.

(These figures are listed without warranty. Please see also the original paper.)

modul p multiplicator a
———— —————————
2^8 - 5 = 251 33

55

2^9 - 3 = 509 25
110
273
349

2^10 - 3 = 1021 65
331

Appendix A: Tables of Parameters 13

2^11 - 9 = 2039 995
328
393

2^12 - 3 = 4093 209
235
219
3551

2^13 - 1 = 8191 884
1716
2685

2^14 - 3 = 16381 572
3007
665
12957

2^15 - 19 = 32749 219
1944
9515
22661

2^16 - 15 = 65521 17364
33285
2469

2^17 - 1 = 131071 43165
29223
29803

2^18 - 5 = 262139 92717
21876

2^19 - 1 = 524287 283741
37698
155411

2^20 - 3 = 1048573 380985
604211
100768
947805
22202
1026371

2^21 - 9 = 2097143 360889
1043187
1939807

2^22 - 3 = 4194301 914334
2788150
1731287
2463014

Appendix A: Tables of Parameters 14

2^23 - 15 = 8388593 653276
3219358
1706325
6682268
422527
7966066

2^24 - 3 = 16777213 6423135
7050296
4408741
12368472
931724
15845489

2^25 - 39 = 33554393 25907312
12836191
28133808
25612572
31693768

2^26 - 5 = 67108859 26590841
19552116
66117721

2^27 - 39 = 134217689 45576512
63826429
3162696

2^28 - 57 = 268435399 246049789
140853223
29908911
104122896

2^29 - 3 = 536870909 520332806
530877178

2^30 - 35 = 1073741789 771645345
295397169
921746065

2^31 - 1 = 2147483647 1583458089
784588716

2^32 - 5 = 4294967291 1588635695
1223106847
279470273

2^33 - 9 = 8589934583 7425194315
2278442619
7312638624

2^34 - 41 = 17179869143 5295517759
473186378

Appendix A: Tables of Parameters 15

2^35 - 31 = 34359738337 3124199165
22277574834
8094871968

2^36 - 5 = 68719476731 49865143810
45453986995

2^37 - 25 = 137438953447 76886758244
2996735870
85876534675

2^38 - 45 = 274877906899 17838542566
101262352583
24271817484

2^39 - 7 = 549755813881 61992693052
486583348513
541240737696

2^40 - 87 = 1099511627689 1038914804222
88718554611
937333352873

2^41 - 21 = 2199023255531 140245111714
416480024109
1319743354064

2^42 - 11 = 4398046511093 2214813540776
2928603677866
92644101553

2^43 - 57 = 8796093022151 4928052325348
4204926164974
3663455557440

2^44 - 17 = 17592186044399 6307617245999
11394954323348
949305806524

2^45 - 55 = 35184372088777 25933916233908
18586042069168
20827157855185

2^46 - 21 = 70368744177643 63975993200055
15721062042478
31895852118078

2^47 - 115 = 140737488355213 72624924005429
47912952719020
106090059835221

2^48 - 59 = 281474976710597 49235258628958
51699608632694
59279420901007

Appendix A: Tables of Parameters 16

2^49 - 81 = 562949953421231 265609885904224
480567615612976
305898857643681

2^50 - 27 = 1125899906842597 1087141320185010
157252724901243
791038363307311

2^51 - 129 = 2251799813685119 349044191547257
277678575478219
486848186921772

2^52 - 47 = 4503599627370449 4359287924442956
3622689089018661
711667642880185

2^53 - 111 = 9007199254740881 2082839274626558
4179081713689027
5667072534355537

2^54 - 33 = 18014398509481951 9131148267933071
3819217137918427
11676603717543485

2^55 - 55 = 36028797018963913 33266544676670489
19708881949174686
32075972421209701

2^56 - 5 = 72057594037927931 4595551687825993
26093644409268278
4595551687828611

2^57 - 13 = 144115188075855859 75953708294752990
95424006161758065
133686472073660397

2^58 - 27 = 288230376151711717 101565695086122187
163847936876980536
206638310974457555

2^59 - 55 = 576460752303423433 346764851511064641
124795884580648576
573223409952553925

2^60 - 93 = 1152921504606846883 561860773102413563
439138238526007932
734022639675925522

2^61 - 1 = 2305843009213693951 1351750484049952003
1070922063159934167
1267205010812451270

2^62 - 57 = 4611686018427387847 2774243619903564593

Appendix A: Tables of Parameters 17

431334713195186118
2192641879660214934

2^63 - 25 = 9223372036854775783 4645906587823291368
2551091334535185398
4373305567859904186

2^64 - 59 = 18446744073709551557 13891176665706064842
2227057010910366687
18263440312458789471

A.2 Parameters for ICG (inversive congruential generator)

y_n = a * inv(y_{n-1}) + b (mod p) n > 0

Notice that moduli larger than 2^32 require a computer with sizeof(long)>32.

Parameters suggested by P. Hellekalek (1995), “Inversive pseudorandom number generators:
Concepts, Results and Links”, in: C. Alexopoulos, K. Kang, W.R. Lilegdon, and D. Goldsman
(eds.), Proceedings of the 1995 Winter Simulation Conference, pp. 255-262:

There are no results that give reason to prefer one set of parameters over another.

(These figures are listed without warranty. Please see also the original paper.)

p a b
——— ——— ———
1031 849 1

345 1
55 1
116 1
441 1

1033 413 1
878 1
595 1
522 1
818 1

1039 173 1
481 1
769 1
1028 1
136 1

2027 579 1
1877 1
390 1
837 1
1048 1

2147483053 858993221 1

Appendix A: Tables of Parameters 18

22211 11926380
579 24456079
11972 62187060
21714 94901263
4594 44183289

2147483647 1288490188 1
9102 36884165
14288 758634
21916 71499791
28933 59217914
31152 48897674

